
Atmos. Meas. Tech., 17, 4675–4686, 2024
https://doi.org/10.5194/amt-17-4675-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Improving the Gaussianity of radar reflectivity departures between
observations and simulations using symmetric rain rates
Yudong Gao1, Lidou Huyan1, Zheng Wu1, and Bojun Liu2

1Key Laboratory of Core Tech on Numerical Model-AI Integrated Forecast for Hazardous Precipitation,
Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
2Chongqing Meteorological Observatory, Chongqing 401147, China

Correspondence: Yudong Gao (stephencool@163.com)

Received: 29 January 2024 – Discussion started: 19 February 2024
Revised: 27 May 2024 – Accepted: 4 June 2024 – Published: 13 August 2024

Abstract. Given that the Gaussianity of the observation er-
ror distribution is the fundamental principle of some data as-
similation and machine learning algorithms, the error struc-
ture of radar reflectivity has become increasingly important
with the development of high-resolution forecasts and now-
casts of convective systems. This study examines the error
distribution of radar reflectivity and discusses what causes
the non-Gaussian error distribution using 6-month observa-
tions minus backgrounds (OmBs) of composites of vertical
maximum reflectivity (CVMRs) in mountainous and hilly
areas. By following the symmetric error model in all-sky
satellite radiance assimilation, we reveal the error structure
of CVMRs as a function of symmetric rain rates, which is
the average of the observed and simulated rain rates. Un-
like satellite radiance, the error structure of CVMRs shows a
sharper slope for light precipitation than for moderate precip-
itation. Thus, a three-piecewise fitting function is more suit-
able for CVMRs. The probability density functions of OmBs
normalized by symmetric rain rates become more Gaussian
than the probability density functions normalized by all sam-
ples. Moreover, the possibility of using a third-party predic-
tor to construct the symmetric error model is also discussed
in this study. The result shows that the Gaussian distribution
of OmBs can be further improved via more accurate precip-
itation observations. According to the Jensen–Shannon di-
vergence, a more linear predictor, the logarithmic transfor-
mation of the rain rate, can provide the most Gaussian error
distribution in comparison with other predictors.

1 Introduction

The radar echo signal, called the equivalent reflectivity fac-
tor (unit: mm6 m−3), is proportional to the sixth power of
the hydrometeor diameter according to Rayleigh scattering.
Thanks to its high accuracy and spatiotemporal resolution,
the equivalent reflectivity factor can provide quantitative pre-
cipitation estimation (QPE) over a larger area in comparison
with rain gauge data (Chang et al., 2021; Yo et al., 2021). The
decibel relative to the equivalent reflectivity factor (hereafter
shorted to reflectivity, unit: dB) has been commonly used in
either data assimilation (DA) or machine learning (ML) al-
gorithms. Applying DA or ML to reflectivity has enhanced
forecasts and nowcasts of convective systems in the last 10
years (Stensrud et al., 2013; Sun et al., 2014; Gustafsson et
al., 2018; Ayzel et al., 2020; Cuomo and Chandrasekar, 2021;
Baron et al., 2023). Most current DA algorithms assume a
Gaussian error distribution of observations to guarantee sta-
tistically optimal estimations, while some classical ML al-
gorithms employ a Gaussian distribution to solve the con-
vex optimization problem. However, few studies have inves-
tigated whether the error distribution of reflectivity is Gaus-
sian.

To address non-Gaussian error distributions, several en-
semble DA algorithms have been designed. For instance, the
gamma, inverse-gamma, and Gaussian (GIGG) algorithm,
proposed by Bishop (2016), can handle a highly skewed un-
certainty distribution in an ideal model. The quadratic pro-
gramming ensemble Kalman filter (QPEns), incorporating
non-negativity constraints such as mass, energy, and enstro-
phy conservations into the classical Kalman filter, has been
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recognized as another effective approach (Janjić et al., 2014;
Gleiter et al., 2022). Because of the complex and expensive
computations, the above DA algorithms for non-Gaussian
distributions are rarely employed by current operational sys-
tems. To further explore the potential of high-resolution re-
flectivity data in current operational DA algorithms, the aim
of this study is to improve the Gaussianity of the reflectivity
error.

The error statistics associated with radar reflectivity, con-
sisting of both instrument error and representation error (Jan-
jić et al., 2018), have become increasingly important in DA.
In earlier studies, defining super observations over a large
area satisfied the assumption of uncorrelated errors (Sun
and Crook, 1997; Snyder and Zhang, 2003; Tong and Xue,
2005). The error of these “superobbed” reflectivity data could
approximate a Gaussian distribution with a constant value.
Thousands of reflectivity data points were discarded during
the thinning process. Recently, with the popularity of the
Desroziers method (Desroziers et al., 2005), the spatial error
correlations of radar reflectivity were investigated by the Met
Office (Waller et al., 2017) and the Deutscher Wetterdienst
(Zeng et al., 2021), but the non-Gaussian error distribution
is still a challenge in radar reflectivity assimilation. In this
study, we critically examine the non-Gaussian error structure
of the reflectivity and attempt to understand what causes the
non-Gaussian error distribution.

Similar to the all-sky satellite radiance reported by Geer
and Bauer (2011), the radar reflectivity error also exhibits
substantial non-Gaussian behavior for several reasons.

Boundedness. There are two kinds of boundedness for
radar reflectivity. First, radar reflectivity itself is a bounded
variable since the hydrometeors cannot be less than zero.
A similar boundedness issue leads to a non-Gaussian er-
ror distribution in satellite radiance assimilation. The sec-
ond boundedness indicates that the radar reflectivity could
decrease rapidly to zero outside rainy areas because the dis-
tribution of hydrometeors is limited by geophysical bound-
aries, such as precipitation and non-precipitation areas. In
contrast to satellite radiance assimilation, the discontinuity of
hydrometeors in the background prevents non-precipitation
areas from assimilating reflectivity. It is called the “zero gra-
dient” effect (Bannister et al., 2020).

Heteroscedasticity. The representation error of the reflec-
tivity, defined by observations minus backgrounds (hereafter
shorted to OmBs), can change with the convective strength.
In reflectivity assimilation, the representation error, includ-
ing mismatch between scales and observational operator er-
ror, increases with the intensification of convection. The mis-
match between scales becomes worse when the convection
intensifies rapidly, which often exhibits low predictability
(Sun and Zhang, 2020), leading to large-reflectivity OmBs.
Moreover, the cold microphysics in strong convection, in-
cluding ice-phase and mix-phase hydrometeors, complicate
the transformation from model variables to reflectivity (Jung
et al., 2008) in comparison with the warm microphysics in

weak convection. Some assumptions about the shapes and
sizes of ice-phase hydrometeors could bring additional un-
certainty to the observational operator of reflectivity. This
also leads to large OmBs in the melting layer or upper levels
of strong convection. Thus, the heteroscedasticity of reflec-
tivity OmBs can be described by the convective strength.

In an idealized system, Bishop (2019) demonstrated that
the state-dependent observation error variance should be
anticipated and estimated whenever the observation is a
bounded variable, whose error variance tends to zero as the
observation approaches the bound. Xue et al. (2007) also
noted the importance of properly modeling reflectivity errors
when the observation operator is nonlinear. The radar reflec-
tivity is a distinct bounded measurement and has a compli-
cated nonlinear observation operator. Inspired by these pre-
vious studies, the radar reflectivity error should be a state-
dependent function instead of a constant value. In this study,
we present the first in-depth study to unveil the error structure
of reflectivity by following the successful construction of a
symmetric error model in all-sky satellite radiance assimi-
lation (Geer and Bauer, 2011; Migliorini and Candy, 2019;
Zhu et al., 2019; Shahabadi and Buehner, 2021; Johnson et
al., 2022).

To construct a symmetric error model, we need a symmet-
ric predictor, which is the average of simulations and obser-
vations. For radar reflectivity, this predictor should be an es-
timation of convective strength and can be predicted by a nu-
merical weather model. Similar to the liquid water path de-
rived from satellite radiance observations, the rain rate can
be estimated by the radar reflectivity in terms of the Z–I
relationship and its variations. Meanwhile, the rain rate is
also indicative of the convective strength that correlates the
reflectivity and rain rate in physics. Thus, this study uses
the rain rate as a predictor of the symmetric error model of
radar reflectivity to describe the heteroscedasticity of reflec-
tivity OmBs.

It is a natural step forward to examine the effects of cer-
tain properties of the rain rate on the symmetric error model
of radar reflectivity. The accuracy of rain rate data is the
most uncertain property. It could vary from one dataset to
another. In this study, we first focus on the effects of observa-
tion accuracy on the symmetric error model. As reported for
reflectivity and precipitation assimilation (Liu et al., 2020;
Lopez, 2011), the logarithmic transform of hydrometeor con-
trol variables or observations can alleviate the nonlinear issue
in reflectivity assimilation. Here the linearization, the log-
arithmic transform of rain rates, is the second property we
attempt to investigate.

The rest of this study is organized as follows. In Sect. 2,
observations, model equivalents, and their OmBs are intro-
duced. The properties of various predictors are discussed in
Sect. 3. The error structure of radar reflectivity constructed
by symmetric rain rates is presented in Sect. 4. This section
also shows the effects of the accuracy and linearization of the
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Figure 1. The inner domain and its topography (shaded; units: m)
in the WRF model. The red dots and dashed red circles denote the
radar stations and the coverage of the radar network, respectively.
The research areas are delimited by black rectangles A and B to
exclude areas that are not covered by the radar network.

predictor on the symmetric error model of radar reflectivity.
Finally, conclusions are given in Sect. 5.

2 Observations, model equivalents, and their OmBs

2.1 Composite reflectivity observations

The weather radar network in Chongqing Municipality, de-
noted by red circles and dots in Fig. 1, consists of five radars
and covers the central and eastern Sichuan Basin. The two
black rectangles, A and B, delimit the research areas to ex-
clude the model results outside the radar coverage because
the truth outside the radar network is unknown. While the
constant-altitude plan position indicators at 1 km altitude
(hereafter shorted to 1 km CAPPIs) are more consistent with
precipitation observations, the composites of vertical maxi-
mum reflectivity (hereafter shorted to CVMRs) can provide
more samples in mountainous and hilly areas. Thus, the fea-
tures of 1 km CAPPIs and CVMRs, from April to Septem-
ber 2021, are examined before matching them to the rain rate
data. Both the 1 km CAPPIs and CVMRs have a 1 km reso-
lution.

The 1 km CAPPIs and CVMRs are interpolated linearly
to a 5 km resolution in Fig. 2 to match the resolution of the
rain rate data. Linear interpolation uses Euclidean distances
as weights without the effects of terrain or the Earth’s sphere.
Figure 2a shows a southwest–northeast convective system
captured by the CVMRs at 18:00 UTC on 28 August. Area
A contains more convective cells than area B. In contrast,
the 1 km CAPPIs, as shown in Fig. 2d, miss the convective
cells in area A owing to terrain blockage. Although both the

1 km CAPPIs and CVMRs indicate clear geophysical bound-
aries between precipitation and non-precipitation areas, the
CVMRs present better representations in mountainous areas.
Notably, the zero gradient of hydrometeors caused by geo-
physical boundaries created difficulties in the application of
some DA and ML algorithms.

2.2 Model equivalents

The 6-month model equivalents of 1 km CAPPIs and
CVMRs are simulated by the Weather Research and Fore-
casting (WRF; Skamarock et al., 2019) model Version 4.1.
The Lambert projection, whose standard latitudes are 20 and
30° N with standard longitude 106.5° E, is used. The same
physics packages, including the new Kain–Fritsch scheme
(Kain, 2004), the Yonsei University planetary scheme (YSU,
Hong et al., 2006), the Thompson scheme (Thompson et al.,
2008), and the Unified Noah Land Surface Model (Ek et al.,
2003), are employed in the 6-month simulations. The WRF
model has been one-way nested with a coarse resolution of
9 km and a fine resolution of 3 km. Figure 1 gives the topog-
raphy in the inner domain of the WRF model, whose central
location is at 29.8° N, 106.58° E and whose horizontal grids
are 480× 360. In the outer domain, the central location is at
30° N, 104.5° E and the horizontal grids are 600× 480. Both
domains have 51 vertical layers.

The initial and lateral boundary conditions of the
WRF model are 0.5°× 0.5° Global Forecast System
(GFS) data produced by the National Centers for En-
vironmental Prediction. More information about GFS
datasets is available at https://www.ncei.noaa.gov/products/
weather-climate-models/global-forecast (last access: 1 Au-
gust 2024). The GFS analyses at 00:00 and 12:00 UTC from
April to September are used to drive the WRF model. The
model equivalents are computed using 6 h simulations be-
cause a shorter simulation time causes spin-up issues and a
longer simulation time brings large model errors. The over-
all growth of model errors can be described by the 6 h in-
tegration of the WRF model since various observations are
assimilated by the GFS. No reflectivity assimilation has been
performed here since we investigated the impacts of the sym-
metric error model on the climatology of representation error.
The model equivalents have 12 h time intervals (i.e., 06:00
and 18:00 UTC) in this study.

The diagnostic algorithm of three-dimensional reflectivity,
consisting of raindrops, snow particles, and graupel particles,
can be briefly described as follows:

Z = 10log10
(
Zer+Zes+Zeg

)
, (1)

where Zer, Zes, and Zeg are the equivalent reflectivity factors
for rain, snow, and graupel droplets, respectively. This diag-
nostic algorithm (Stoelinga, 2005) employs 8×106, 2×107,
and 4× 106 m−4 as intercept parameters for rain, snow, and
graupel droplets, respectively. The densities of rain, snow,
and graupel droplets are 1000, 100, and 400 kg m−3, respec-
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Figure 2. Distributions of CVMRs (a–c) (unit: dB) and 1 km CAPPIs (d–f) (unit: dB) observed by radars (a, d) and simulated by the model
(b, e), along with their OmBs (e, f) at 18:00 UTC on 28 August 2021. The black rectangles indicate the research areas, as in Fig. 1.

tively. The Unified Post Processor (UPP) package (https://
epic.noaa.gov/unified-post-processor/, last access: 1 August
2024) interpolates diagnostic reflectivities from the coordi-
nates of the WRF model to altitude levels and then generates
the model equivalents of 1 km CAPPIs and CVMRs. Despite
some empirical assumptions, this diagnostic algorithm can
transform model variables, such as rain, snow, and graupel
mixing ratios, to reflectivity. Liu et al. (2022) used a simi-
lar diagnostic algorithm based on double-moment Thompson
microphysics as the forward operator in reflectivity assimila-
tion.

In Fig. 2b, the model equivalents of the CVMRs capture
the southwest–northeast rain belt with strong convective cells
in area A, illustrating that the WRF model is capable of sim-
ulating this convective system. The CVMRs and their model
equivalents still present discrepancies in the comparison of
Fig. 2a and b. As shown in Fig. 2c, the OmBs can vary
widely from place to place, implying that a constant stan-
dard deviation may be insufficient to describe the error struc-
ture of CVMRs. For the 1 km CAPPIs, the model equivalents
(Fig. 2e) and their OmBs (Fig. 2f) present similar features
to those of the CVMRs. Thus, regardless of 1 km CAPPIs or
CVMRs, the model equivalents are misplaced, are ill-shaped,
or have erroneous intensities compared to observations point
by point. Following Geer and Bauer (2011), we refer to all
these errors as “mislocation” errors. The mislocation errors
of 1 km CAPPIs and CVMRs can result in a non-Gaussian
error distribution that violates the Gaussian assumptions un-
derlying some DA and ML algorithms.

2.3 Observations minus backgrounds

To represent rainy echoes, the 1 km CAPPIs and CVMRs less
than 5 dB are removed in this study. Thus, the samples in
Fig. 3 do not contain false simulations (i.e., simulated, but
not observed). Figure 3a shows a histogram of all CVMRs
against their model equivalents based on 1 165 529 samples,
including missed simulations (i.e., observed, but not simu-
lated). The high numbers along the abscissa imply the large
mislocation error of CVMRs resulting from considerable
missed simulations. Compared with the satellite radiance de-
partures (Fig. 5 in Migliorini and Candy, 2019), these con-
siderable missed simulations are associated with the worse
spatial discontinuity in the CVMR OmBs. For convenience,
we refer to the discontinuous scenario as “any-reflectivity”.

To examine the effects of the large mislocation error on
the CVMR error structure, we removed all missed simula-
tions and obtained 504 123 samples (Fig. 3b). We refer to
this scenario as “both-reflectivity”, whose histogram is simi-
lar to the non-precipitating-cloud-affected satellite radiance
observed by the AMSR-E channel 37v (Geer and Bauer,
2011). A comparison of Fig. 3a and b shows that the any-
reflectivity scenario has a more complicated error structure
than the both-reflectivity scenario, illustrating that the non-
Gaussian error distribution in radar reflectivity assimilation
is likely to be stronger than that in satellite radiance assimi-
lation.

The sample numbers of the 1 km CAPPIs decreased to
232 681 and 71 516 for any-reflectivity and both-reflectivity,
respectively. In the comparison of Fig. 3c and d, the 1 km
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Figure 3. Histograms of the observed (a, b) CVMRs and (c, d) 1 km
CAPPIs (abscissa, unit: dB) against their model equivalents (ordi-
nate, unit: dB) in the “any-reflectivity” (first column) and “both-
reflectivity” (second column) scenarios.

CAPPIs also contain considerable missed simulations in
terms of the high numbers along the abscissa. The error struc-
ture of the 1 km CAPPIs estimated by OmBs is similar to that
of the CVMRs.

It is critical to understand the statistical features of sev-
eral OmBs by examining their probability density functions
(PDFs) before building a symmetric error model. Compared
with the normal Gaussian distributions in Fig. 4, the PDF
of CVMR OmBs (solid red line) in any-reflectivity presents
a positive skewness. Instead, the PDF for both-reflectivity
(solid blue line) is closer to a Gaussian distribution. The
comparison illustrates that the numerous missed simulations
along the abscissa in Fig. 3 have an undesirable effect on
some DA and ML algorithms. In practice, the mismatches
between observations and simulations provide valuable in-
formation related to convective systems. This non-Gaussian
distribution cannot be ignored in radar reflectivity applica-
tions.

Similarly, the PDF of the 1 km CAPPI OmBs also approx-
imates the Gaussian distribution after removing the missed
simulations in Fig. 4. The means and standard deviations of
the 1 km CAPPI and CVMR OmBs, denoted by µ and σ in
Fig. 4, respectively, are similar as well. According to above
comparisons, the statistical features of the 1 km CAPPI and
CVMR OmBs are comparable in this study. Thus, the CVMR
data in the any-reflectivity scenario are used to match the rain
rate data in the following sections.

Figure 4. Probability density functions of CVMR (solid lines) and
1 km CAPPI (dashed lines) OmBs in the “any-reflectivity” (red
lines) and “both-reflectivity” (blue lines) scenarios, normalized by
the mean and standard deviation of all samples. The gray line repre-
sents a normal Gaussian distribution. The µ and σ symbols denote
the mean and standard deviation of OmBs, respectively.

3 Predictors of the symmetric error model

3.1 Predictor derived from reflectivity

The predictors of previous symmetric error models for satel-
lite radiance assimilation were derived from satellite radiance
observations. Similarly, the rain rate can be derived from the
echo signal in terms of the Z–I relationship, which is an em-
pirical formula for estimating the rain rate I (unit: mm h−1)
from the equivalent reflectivity factor Ze (unit: mm6 m−3).

Ze = aI
b (2)

Here, the equivalent reflectivity factor at 3 km altitude
and typical coefficients a = 300 and b = 1.4 are employed.
Therefore, the “symmetric” rain rate, rrsym, which is used as
the symmetric predictor in this study, is the average of the
derived rain rate, rrobs, and simulated rain rate, rrmodel.

rrsym = 0.5× (rrobs+ rrmodel) (3)

In this study, rrmodel is the average of two consecutive hourly
precipitation events simulated by the WRF model, not de-
rived by the reflectivity simulation.

Figure 5 shows the distributions of the rain rate data
derived from the observations and simulated by the WRF
model. Despite some disagreements for CVMRs below
15 dB in area A, the derived rain belt has a southwest–
northeast distribution similar to that of the actual CVMRs.
Moreover, the large rainy centers in Fig. 5a are associated
with the strong convective cells in Fig. 2a. The simulated rain
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belt in Fig. 5b also presents similarities to the model equiv-
alents of the CVMRs in Fig. 2b. Consequently, the rain rate
OmBs in Fig. 5c agree with the CVMR OmBs in Fig. 2c,
illustrating that the CVMR error structure can be described
by the rain rates regardless of the discrepancy between the
CVMRs and rain rates.

3.2 Predictors from third-party observations

Derivation from the equivalent reflectivity factor is not the
only way to obtain rain rate data. Other hourly precipitation
observations can be used to produce rain rate data. Thus, it is
of interest to discuss how the accuracy of the rain rate affects
the symmetric error model.

In this study, the derived rain rates are replaced by
the CMA Multisource Precipitation Analysis System (CM-
PAS) data produced by the National Meteorological Infor-
mation Center of the China Meteorological Administration
(NMIC/CMA). Hourly CMPAS data with a 0.05° resolution,
merging precipitation observations from rain gauges, radar
QPEs, and satellite QPEs, capture a number of hourly precip-
itation details and are more accurate than other single-source
precipitation observations (Pan et al., 2018; Li et al., 2022).

Comparing Figs. 5a and 6a, the CMPAS rain rates are
comparable to the derived rain rates, especially for heavy pre-
cipitation in area A, because radar observations have been
used to generate the CMPAS data. The CMPAS rain rates
present a smoother southwest–northeast rain belt and a more
evident precipitation center in the mountainous area. A few
small and moderate precipitation events in area B are cap-
tured by the CMPAS rain rates, leading to a wider distri-
bution of OmBs, as shown in Fig. 6b. Thus, more accurate
precipitation data can provide more reliable samples for the
construction of a symmetric error model.

3.3 The linearization of predictor

The Z–I relationship exists between the rain rate I and the
equivalent reflectivity factor Ze (unit: mm6 m−3), not the re-
flectivity Z (unit: dB). A natural step forward is imposing a
logarithmic transformation on Eq. (2) to obtain a more linear
relationship between Z and I :

Z = 10log10Ze = 10log10a+ 10blog10I, (4)

where a and b are the coefficients of the Z–I relationship.
In this study, Eq. (4) is not a formula for accurately obtain-
ing the quantitative reflectivity. It merely transforms the re-
lationship between the CVMRs and symmetric rain rates to
a more linear relationship, which allows us to discuss the ef-
fects of the linearization of predictor on the symmetric error
model. Thus, this subsection uses 10log10(I+1.0), hereafter
referred to as the logarithmic rain rate (unit: dB), as a linear
predictor. Adding 1.0 to the rain rate ensures that the base of
the logarithm is greater than zero, which is the same as for
precipitation assimilation (Lopez, 2011).

The logarithmic rain rates also present the southwest–
northeast rain belt in Fig. 6c. However, the precipitation cen-
ter in area A is smoothed out by the logarithm. The OmBs of
the logarithmic rain rates in Fig. 6d present similar negative
and positive distributions in comparison with the derived rain
rates in Fig. 5c. Notably, a number of precipitation events be-
low 0.1 mm h−1 are amplified by the above logarithmic trans-
form, resulting in more OmBs of logarithmic rain rates. The
logarithmic rain rates allow us to obtain more small precipi-
tation samples.

To examine the relationship between CVMR OmBs and
symmetric rain rates, it is advisable to count the number
of CVMR OmBs over discrete intervals of symmetric rain
rates, chosen here to be 0.5 mm h−1. Owing to the numer-
ous missed simulations in Fig. 3a, most OmBs of the de-
rived rain rates (Fig. 7a) and CMPAS rain rates (Fig. 7b)
range from −20 to 30 dB when the symmetric rain rates are
less than 0.5 mm h−1. As shown in Fig. 7a, the major OmBs
against derived rain rates, chosen to be larger than 500 sam-
ples, become bimodal as the symmetric rain rates increase
from roughly 0.5 to 2 mm h−1. The two peaks are at about 30
and −10 dB.

In contrast, the major OmBs against CMPAS rain rates
in Fig. 7b exhibit a unimodal distribution peaking at about
−10 dB. Although this unimodal distribution is not symmet-
ric when the OmB equals zero, it is closer to a Gaussian
distribution, confirming that more accurate CMPAS data can
offer superior representation. When comparing the derived
rain rates (Fig. 7a) with the logarithmic rain rates (Fig. 7c),
the major OmBs exhibit a bimodal distribution but become
gradual along the abscissa. As a result, the logarithmic trans-
formation reduces the rain rate gradient without altering the
structure of the CVMR OmBs.

4 Errors as a function of symmetric rain rates

4.1 The CVMR symmetric error model

Similar to satellite radiances, it is possible to investigate the
CVMR error structure over discrete rain rate bins, chosen to
be 0.5 mm h−1 in this study. As shown in Fig. 8a, the stan-
dard deviations of the CVMR OmBs vary from about 10 to
33 dB. A constant value is insufficient to describe the CVMR
error structure. The difference between the first two bins is
much greater than that between the other bins. To illustrate
this, we may argue that light precipitation is closer to the
geophysical boundary than moderate precipitation, resulting
in a greater difference between the first two bins. From the
second bin, the standard deviations of the CVMR OmBs in-
crease with symmetric derived rain rates before peaking at
8.0 mm h−1. The standard deviations that alternately increase
and decrease after 8.0 mm h−1 could be caused by poor ini-
tial conditions of the WRF model, small sample numbers, or
inaccurate diagnostic reflectivity.
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Figure 5. Distributions of rain rates (unit: mm h−1) (a) derived from equivalent reflectivity factors at 3 km altitude and (b) simulated by the
WRF model, along with their (c) their OmBs at 18:00 UTC on 28 August 2021. The black rectangles indicate the research areas, as in Fig. 1.

Figure 6. Distributions of (a) CMPAS rain rates (unit: mm h−1)
and (c) logarithmic rain rates (unit: dB) at 18:00 UTC on 28 Au-
gust 2021. Panels (b) and (d) are OmBs of the CMPAS rain rates
(unit: mm h−1) and logarithmic rain rates (unit: dB), respectively.
The black rectangles indicate the research areas, as in Fig. 1.

To simplify the complex CVMR error structure, a three-
piecewise function (dashed red line) is fitted by using linear
regression. The first bin must be isolated from the linear re-
gression to pass the 95 % confidence level for the F test. A
straight line rather than a linear regression is used to describe
the reflectivity error for large symmetric derived rain rates.
This is a cautious approach to fit a rational linear regression
based on a large sample size (dashed black line), chosen to
be larger than 103 samples. Table 1 lists the key parameters
of the piecewise functions.

As shown in Fig. 8b, similar characteristics, such as the
distinct difference between the first two bins and the increase
in symmetric derived rain rates, are captured by the symmet-
ric CMPAS rain rates as well. The standard deviations vary

Table 1. The key parameters of the three-piecewise fitting functions.

Predictor Function Rain rate range R2

Derived y = 10.04 0.0< x ≤ 0.5
rain rates y = 16.31+ 1.27x 0.5< x ≤ 8.0 0.94

y = 26.47 8.0< x

CMPAS y = 9.78 0.0< x ≤ 0.5
rain rates y = 15.94+ 0.94x 0.5< x ≤ 9.5 0.96

y = 24.87 9.5< x

Logarithmic y = 7.8 0.0< x ≤ 0.5
rain rates y = 15.43+ 0.80x 0.5< x ≤ 9.0 0.83

y = 21.64 9.0< x

from about 10 to 25 dB when the symmetric CMPAS rain
rate increases from 1 to 9.5 mm h−1. The small variation in
the standard deviations after 10 mm h−1 results from the su-
perior representation of the CMPAS data. For the symmetric
logarithmic rain rates (Fig. 8c), the standard deviations of the
CVMR OmBs grow gradually from roughly 14 to 21 dB as
the symmetric logarithmic rain rates increase from 1 to 10,
even if they still increase quickly from about 8 to 14 in the
first two bins. The decreasing trend at the tail of the logarith-
mic rain rates (larger than 9.0) results from the rapid decrease
in sample size. The straight line prevents the three-piecewise
fitting function from being obtained from an irrational linear
regression. According to Table 1, the logarithmic rain rates
obtain the smallest slope of the fitting function among the
three symmetric predictors despite having the smallest R2.

4.2 Improvements in Gaussianity

To illustrate the potential benefits of symmetric error mod-
els to some DA and ML algorithms, the Gaussianity of the
PDF is examined in this subsection. Although the PDF of
CVMR OmBs is not Gaussian, the CVMR OmBs can be di-
vided into a number of subgroups with Gaussian PDFs ac-
cording to the binned standard deviations or piecewise func-
tions from the above subsection. Figure 9 shows the PDFs
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Figure 7. Histograms of CVMR OmBs (ordinate, unit: dB) against different symmetric predictors (abscissa), which are rain rates (unit:
mm h−1) (a) derived by equivalent reflectivity factors, (b) rain rates computed by CMPAS data, and (c) the symmetric logarithmic rain rate
(unit: dB).

Figure 8. Standard deviations of CVMR OmBs for symmetric (a) derived rain rates (unit: mm h−1), (b) CMPAS rain rates (unit: mm h−1),
and (c) logarithmic rain rates (unit: dB). The dashed red lines show the three-piecewise fitting functions (listed in Table 1). The dashed black
lines show the logarithm of sample numbers over symmetric rain rate bins.

of the CVMR OmBs normalized by various symmetric rain
rates, with the raw and normal Gaussian PDFs displayed
for comparison. Compared with the raw PDF (green line),
the PDFs normalized by the binned standard deviations (red
line) become more Gaussian. The three-piecewise function,
which simplifies the CVMR error structure, also corrects the
positive skewness of the raw PDF. We argue that the three-
piecewise function is sufficient in this study because it shows
an identical PDF to the binned standard deviations.

To quantify the similarity between the PDF normalized by
the symmetric rain rates and a normal Gaussian PDF, Table 2
lists the Jensen–Shannon divergence (JSD):

JSD(P ‖Q)=
1
2

∑
P(x) log

(
2P(x)

P (x)+Q(x)

)
+

1
2

∑
Q(x) log

(
2Q(x)

P (x)+Q(x)

)
, (5)

where P is the PDF normalized by symmetric rain rates or
raw standard deviations and Q represents a normal Gaus-
sian PDF. When JSD is zero, the distributions P and Q are
the same. For the derived rain rates, the JSDs of the PDFs
normalized by the binned standard deviations and the three-
piecewise function decrease from 0.010 to 0.006.

Table 2. Jensen–Shannon divergences of probability density func-
tions normalized by various symmetric rain rates.

Three-
Predictor Raw piecewise Binned

Derived rain rates 0.010 0.006 0.006
CMPAS rain rates 0.010 0.005 0.005
Logarithmic rain rates 0.008 0.004 0.004

For the CMPAS rain rates in Fig. 9b, the PDFs normalized
by the binned standard deviations and the three-piecewise
function not only correct the positive skewness, but also re-
duce the overestimation in the central area. The CMPAS rain
rates also have smaller JSDs than the derived rain rates, as
listed in Table 2. This demonstrates that the accuracy of CM-
PAS rain rates can further improve the Gaussianity of the
PDFs. For the logarithmic rain rates (Fig. 9c), the PDFs
normalized by the binned standard deviations and three-
piecewise function also approximate a normal Gaussian dis-
tribution according to comparison with the raw PDF. It is
worth noting that the logarithmic rain rates obtain the small-
est JSDs despite a few fluctuations in the PDFs normalized
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Figure 9. PDFs of CVMR OmBs normalized by symmetric (a) derived rain rates, (b) CMPAS rain rates, and (c) logarithmic rain rates. The
green, red, blue, and gray lines represent the raw, binned, three-piecewise, and normal Gaussian PDFs, respectively.

by the binned standard deviations and three-piecewise func-
tion.

5 Conclusions

In this study, the Gaussianity of two types of OmB data, i.e.,
the CVMRs and 1 km CAPPIs, is examined in southwestern
China. Their features, such as horizontal distributions and
PDFs, are similar regardless of the different definitions be-
tween the CVMRs and 1 km CAPPIs. Consequently, the 6-
month CVMR OmBs, which exhibit representation superior
to 1 km CAPPI OmBs in mountainous and hilly areas, are
employed to discuss the handling of non-Gaussian PDFs.

In the comparison of the any-reflectivity and both-
reflectivity scenarios, the Gaussianity of OmBs can be im-
proved by removing the numerous mismatches between ob-
servations and simulations. These mismatches cannot be ig-
nored in some DA or ML algorithms. They provide essen-
tial information related to convective systems. Moreover, the
reflectivity OmBs often varies widely from place to place,
demonstrating that a constant standard deviation is insuffi-
cient to describe the error structure of radar reflectivity in
most studies and operations.

The symmetric error model, which has been broadly
used in all-sky satellite radiance assimilation (Migliorini and
Candy, 2019; Zhu et al., 2019; Shahabadi and Buehner,
2021), is built to improve the Gaussianity of CVMR OmBs.
According to the symmetric derived rain rates, the standard
deviations of CVMR OmBs can vary from about 10 to 33 dB.
However, the instrument noise of radar is on the order of
1 dB.

Similar to satellite radiance, the standard deviations of
CVMR OmBs increase with the symmetric derived rain rates,
illustrating that the largest component of the CVMR OmBs
comes from the poor prediction associated with clouds and
rain as well as the inaccurate diagnostic algorithm of radar
reflectivity in some DA and ML applications. As discussed in
Geer and Bauer (2011), using the symmetric error model in
reflectivity assimilation may also compensate for the inade-
quate background error specification of hydrometeors, which

will be investigated by DA experiments in our ongoing study.
In contrast to satellite radiance, the symmetric error model of
CVMR data shows that the difference between the first two
bins is much greater than that between the other bins, illus-
trating that a more complex structure, a three-piecewise func-
tion, should be formulated at the convection-allowing scale.

Compared with the raw PDF, the PDFs normalized by the
binned standard deviations and the three-piecewise function
become more Gaussian by reducing the positive skewness.
Each subgroup of CVMR OmBs, separated by symmetric
derived rain rates, approximates a Gaussian PDF despite the
non-Gaussian PDF of all samples. Thus, this study demon-
strates that the Gaussianity of CVMR OmBs can be improved
by the symmetric error model based on the derived rain rates.

The effects of more accurate rain rate data on the symmet-
ric error model of CVMRs are also examined in this study.
Although the CMPAS rain rates build a three-piecewise func-
tion similar to that of the derived rain rates, the superior rep-
resentation can further improve the Gaussianity of CVMR
OmBs in terms of the JSDs in Table 2.

The logarithmic rain rates have profound effects on the
symmetric error model of CVMR OmBs. Not only do the
gradients of the standard deviations of CVMR OmBs de-
crease from the second bin, but the PDFs normalized by
the binned standard deviations and the three-piecewise func-
tion also obtain the smallest JSDs compared with those of
the other rain rates. It is convenient to create configuration
files for the logarithmic rain rates in the operational system.
Moreover, the logarithmic transform has been used to as-
similate precipitation observations directly in the operational
four-dimensional variation system at the European Centre for
Medium-Range Weather Forecasts (Lopez, 2011). Thus, us-
ing a more linear predictor is recommended for building a
symmetric error model of CVMRs.

In theory, the symmetric error models of CVMRs built in
this study are more consistent with the fundamental principle
of some DA and ML algorithms than a constant value. How-
ever, the symmetric error model, estimated by OmB data,
highly relies on the numerical weather model, DA or ML
strategy, and forward observation operator. Consequently,
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this study encourages readers to build an effective symmetric
error model based on their own assimilation and prediction
systems.

Performing several experiments to discuss the effects of
symmetric error models on several DA and ML algorithms
is also encouraged. The unskilled use of the symmetric error
model is briefly described here:

σ =


σlRRavg < RRavg1

σl+αβ
(
RRavg−RRavg1

)
RRavg1 ≤ RRavg < RRavg1

σuRRavg ≤ RRavg2,

(6)

where RRavg is the symmetric rain rate, and σl and σu are the
lower and upper boundaries of the reflectivity error, respec-
tively. β is the slope of the three-piecewise function and α is a
tuning parameter, as designed by Geer and Bauer (2011). By
tuning the parameter α, the representative error can either be
assigned completely by the symmetric error model (α = 1)
or ignored (α = 0). In the future, the effects of ice-phase hy-
drometeors on the symmetric error model of CVMRs should
be considered. Polarization measurements and their combi-
nations may provide additional information about hydrome-
teors.
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