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Abstract. For over 40 years, the Geostationary Operational
Environmental Satellite (GOES) system has provided fre-
quent snapshots of the Western Hemisphere. The advanced
baseline imagers (ABIs) on the GOES-16, GOES-17, and
GOES-18 platforms are the first GOES-series imagers that
meet the precision requirements for high-quality, aerosol-
related research. We present MAGARA, a Multi-Angle Geo-
stationary Aerosol Retrieval Algorithm, that leverages multi-
angle ABI imagery to exploit the differences in autocorrela-
tion timescales between surface reflectance, aerosol type, and
aerosol loading. MAGARA retrieves pixel-level (up to 1 km)
aerosol loading and fine-mode fraction at up to the cadence
of the measurements (10 min), fine- and coarse-mode aerosol
particle properties at a daily cadence, and surface properties
by combining the multi-angle radiances with robust surface
characterization inherent to temporally tiled algorithms.

We present three case studies, and because GOES-17 was
not making observations for one case, we present this as
a unique demonstration of the multi-angle algorithm using
only a single ABI sensor. We also compare MAGARA re-
trievals of fine-mode (FM) aerosol optical depth (AOD),
coarse-mode (CM) AOD, and single-scattering albedo (SSA)
statistically, with coincident AErosol RObotic NETwork
(AERONET) spectral deconvolution algorithm (SDA) and
inversion retrievals for the same period, and against bias-
corrected NOAA GOES-16 and GOES-17 retrieved 550 nm
AOD. For MAGARA vs. coincident AERONET over-land
500 nm fine-mode fraction and AOD> 0.3, MAE= 0.031,

RMSE= 0.100, and r = 0.902, indicating good sensitivity to
fine-mode fraction over land, especially for smoky regions.
For bias-corrected MAGARA vs. coincident AERONET
spectral single-scattering albedo with MAGARA AOD> 0.5
(n= 116), MAE= 0.010, RMSE= 0.015, and the corre-
lation is 0.87. MAGARA performs best in regions where
surface reflectance varies over long timescales with mini-
mal clouds. This represents a large portion of the western
half of the United States, much of north-central Africa and
the Middle East, some of central Asia, and much of Aus-
tralia. For these regions, aerosol type and aerosol loading on
timescales as short as 10 min could allow for novel research
into aerosol–cloud interactions, improvements to air-quality
modeling and forecasting, and tighter constraints on direct
aerosol radiative forcing.

1 Introduction

With the Television Infrared Observation Satellite (TIROS-
1) launch in 1960, weather forecasting entered the space age.
Although the imager on board TIROS-1 was only operational
for a couple of months, within 10 years of the TIROS-1
launch, NASA had launched an additional 20 meteorological
satellites into low Earth orbit (LEO). The first full-disk im-
agery from geostationary orbit was acquired from the Appli-
cations Technology Satellite (ATS-1) on 11 December 1966.
Five more ATS series satellites were launched over the next
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10 years, including ATS-3, which took the first true-color
image from geostationary orbit. Interestingly, Warnecke and
Sunderlin (1968) present dual views from ATS-1 and ATS-
3, with images from the two stapled together only 7 h apart,
resulting in a montage of the Atlantic and Pacific oceans.
Nearly 55 years later, it is now possible to view nearly all
sub-polar (within ∼ 60◦ latitude of the Equator) regions of
the planet within a few minutes of each other.

To be designated a geostationary platform, a satellite must
maintain an orbit ∼ 35800 km above any particular point
on the equatorial belt wrapping around the Earth (0◦ incli-
nation). At that altitude and inclination, the satellite is sta-
tionary relative to any point on the ground, as its orbital pe-
riod matches the planet’s rotational period. The GOES pro-
gram officially began over 45 years ago, with the launch of
GOES-1 on 16 October 1975 (https://www.nesdis.noaa.gov/
news/40-years-of-goes-the-anniversary-of-goes-1, last ac-
cess: 24 August 2022). Since the launch of GOES-1, ma-
jor advances have been made to the onboard Earth-viewing
imager design, resulting in significant improvements in the
number of spectral bands, spatial resolution, temporal ca-
dence, radiometric accuracy, geometric registration, and bit
depth (i.e., the amount of information in a given pixel of
data). The latest generation of GOES satellites, designated
the R-series, began with the launch of GOES-16 (i.e., GOES-
R) on 19 November 2016. After a check-out period to de-
termine that the spacecraft and instruments were operating
nominally, the spacecraft was maneuvered to 75.2◦W, de-
clared operational, and designated GOES-East on 18 Decem-
ber 2017 (Schmit et al., 2018). GOES-17 (i.e., GOES-S) was
launched in March 2018, moved to 137.2◦W, and declared
operational as GOES-West in February 2019 (Wang et al.,
2020). Although GOES-17 suffered a partial failure of its
loop heat pipe, which resulted in severe degradation, primar-
ily in the thermal infrared spectral bands, much of the issue
has since been mitigated. MAGARA, a Multi-Angle Geo-
stationary Aerosol Retrieval Algorithm, uses none of the af-
fected bands. Additionally, the recently launched GOES-18
satellite has now taken over operations from GOES-17 (https:
//www.goes-r.gov/users/transitionToOperations18.html, last
access: 5 May 2023), which formally resolves this issue.

Each GOES-R series satellite contains an Earth-viewing
advanced baseline imager (ABI). ABI measures upwelling
radiance in 16 spectral bands from 0.5 to 2.0 km spatial res-
olution directly above the Equator at the longitude of the
spacecraft, with spatial resolution inversely proportional to
the cosine of view-zenith angle. Of these 16 spectral bands,
2 centered on wavelengths of 0.470 µm (blue) and 0.640 µm
(red) are sensitive to light in the visible portion of the elec-
tromagnetic spectrum. Four bands centered on wavelengths
of 0.865, 1.38, 1.61, and 2.25 µm are sensitive to reflected
solar radiation in the near-infrared portion of the spectrum.
These six bands are known as solar reflective bands because
they measure solar light that has been reflected by the Earth’s
atmosphere and underlying land and ocean surfaces. Ten ad-

ditional bands measure light at longer wavelengths, in which
emission by the Earth tends to dominate the observed signals.
Because these 10 longwave bands are sensitive to electro-
magnetic radiation at wavelengths much longer than the sub-
micrometer size of most aerosol particles, with dust and vol-
canic ash as the main exceptions, we do not use these bands
in the MAGARA aerosol retrievals, as they add minimal in-
formation content on the aerosols relative to that contained
in the solar reflective bands.

As geostationary imagers view the same region of Earth
24 h a day, these imagers are inherently optimal for appli-
cations that require the ability to resolve changes in a lo-
cal region’s environment (either surface or atmosphere) on
short timescales. The most obvious and recognizable use of
these platforms is for operational weather forecasting. One
of the earliest technical reports on the feasibility of taking
space-borne observations of the planet was presented in 1951
and published in 1960 (Greenfield and Kellogg, 1960). Ad-
ditional applications include observations of volcanic erup-
tions via satellite (Cochran and Pyle, 1978), as well as clas-
sification of volcanic eruption plume particles (Flower and
Kahn, 2020a, b; Scollo et al., 2012) and determination of
volcanic aerosol (Kahn and Limbacher, 2012) and wildfire
smoke (Junghenn Noyes et al., 2022) plume properties. With
regards to the MAGARA retrieval described in this article,
potential aerosol-related applications include improvements
made to climate modeling of aerosol direct (Matus et al.,
2019) and indirect effects (Quaas et al., 2020), as well as
improvements made to air-quality modeling (Friberg et al.,
2018; deSouza et al., 2020). Although this article describes
and assesses the accuracy of MAGARA for a few small
case studies, there are several other research groups devel-
oping their own aerosol retrieval algorithms for geostation-
ary Earth-viewing imagers. This includes the MODIS dark-
target (DT) group (Gupta et al., 2019; Remer et al., 2020),
the MAIAC group (Multi-Angle Implementation of Atmo-
spheric Correction; Lyapustin et al., 2018; Li et al., 2019;
Wang et al., 2022), the GRASP team (Li et al., 2020), and
the NOAA aerosol team themselves (GOES AOD Algorithm
Theoretical Basis Document (ATBD), 2018; Liu et al., 2018;
Kondragunta et al., 2020; Zhang et al., 2020), among others.
Other groups have sought to use observations of both GOES-
R and GOES-S to constrain the scattering phase function of
dust aerosols (e.g., Bian et al., 2021).

Most existing aerosol retrieval algorithms make use of
a single sensor at a given time to determine aerosol load-
ings and properties. Bian et al. (2021) used both GOES-16
and GOES-17 to constrain the phase functions of dust, but
the algorithm they developed is not a fully fledged aerosol
retrieval algorithm. Govaerts et al. (2010) used prior gen-
erations of geostationary imagers to retrieve daily aerosol
optical depths and surface bidirectional reflectance factors
(BRFs). This is similar to MAGARA, but they only retrieved
aerosol optical depth (AOD) once per day rather than at ev-
ery imager snapshot, which is a significant limitation com-

Atmos. Meas. Tech., 17, 471–498, 2024 https://doi.org/10.5194/amt-17-471-2024

https://www.nesdis.noaa.gov/news/40-years-of-goes-the-anniversary-of-goes-1
https://www.nesdis.noaa.gov/news/40-years-of-goes-the-anniversary-of-goes-1
https://www.goes-r.gov/users/transitionToOperations18.html
https://www.goes-r.gov/users/transitionToOperations18.html


J. A. Limbacher et al.: MAGARA: a Multi-Angle Geostationary Aerosol Retrieval Algorithm 473

pared to more contemporary algorithms (with advanced geo-
stationary imagers). The GRASP (Generalized Retrieval of
Aerosol and Surface Properties) algorithm is similar to MA-
GARA in terms of its ability to ingest imager data from mul-
tiple platforms at multiple times in order to constrain aerosol
and surface properties; their algorithm is significantly more
mature (and generalizable to different instruments/platforms;
Dubovik et al., 2014). One reason that MAGARA may be
able to add value here is our simultaneous use of dual-view
imagery combined with our exploitation of the varying au-
tocorrelation timescales for AOD vs. aerosol type (Sayer,
2020). Ceamanos et al. (2023) explored using 15 min im-
agery from the Meteosat Second Generation (MSG) platform
in order to perform 15 min retrievals of AOD (aerosol type
is assumed based on geography and retrieved aerosol op-
tical depth). Zhang et al. (2013) developed a simultaneous
dual-view aerosol retrieval algorithm using the prior genera-
tion of GOES imagers (GOES 11–15). Much of the logic of
MAGARA follows along Zhang et al.’s line of thinking, in-
cluding the use of MAIAC data, relative calibration between
GOES-East and GOES-West, retrieval of the surface using
low aerosol loading days, and using simultaneous imagery
from GOES-East and GOES-West to retrieve aerosol load-
ing. MAGARA takes this a step further by directly retriev-
ing the average surface BRF over the course of a week (or
more) in lieu of using surface reflectance ratios. Addition-
ally, MAGARA retrieves daily particle property information
about the fine and coarse modes as well as retrieving aerosol
loading and fine-mode fraction at (up to) the cadence of the
input observations.

As far as the authors are aware, no direct analog to MAG-
ARA exists, but any approach that makes use of the differing
autocorrelation timescales of surface reflectance (longest),
aerosol type (long), and AOD (short) could be used to ex-
tract a significant amount of information about aerosol par-
ticle properties, especially if those algorithms exploit (via
multi-sensor data fusion) the next-generation geostationary
ring that is currently being assembled. The layout of this
article is as follows: the MAGARA algorithm methodol-
ogy is presented in Sect. 2. Section 3 outlines three sepa-
rate case studies: the Camp Fire, the Williams Flats Fire,
and the Kincade Fire. Section 4 details initial comparison/-
validation of NOAA/MAGARA 550 nm AOD, MAGARA
fine-mode fraction, and MAGARA single-scattering albedo
with AErosol RObotic NETwork (AERONET) sun photome-
ters. General conclusions on MAGARA performance are
presented in Sect. 5.

2 Methodology

MAGARA was initially conceived as a way to maximize
the retrieval of aerosol information content by fusing top-
of-atmosphere (TOA) bi-directional reflectance factor (BRF)
observations (i.e., Level 1B data) from both GOES-16 and

GOES-17 onto a common grid, tiling these observations over
the course of several days to a couple weeks, and then ap-
plying knowledge of aerosols/satellite remote sensing (e.g.,
the varying autocorrelation timescales of AOD, aerosol type,
and surface reflectance) to develop a pixel-level (1 km at the
sub-spacecraft point) aerosol retrieval algorithm to convert
those TOA BRFs into information about aerosol loading and
aerosol type. This section details that process as faithfully
as possible. A code flowchart is presented in Fig. 1, out-
lining the process from data download to comparison with
AERONET to video presentation of aerosol properties. The
subsections within this section are presented in a manner
consistent with that flowchart. An example of the output file
generated by MAGARA is presented in the Supplement. All
MAGARA output data used for this publication are available
in the repository listed at the bottom of the article.

2.1 MAGARA data preparation

Section 2.1.1 details general scene selection, data download,
regridding, and radiometric corrections for trace gas absorp-
tion. Section 2.1.2 outlines MAIAC surface BRF ingestion
into the MAGARA algorithm, MAGARA’s radiative trans-
fer (RT) look-up table (LUT) is presented in Sect. 2.1.3,
and MAGARA’s initial cloud screening is described in
Sect. 2.1.4.

2.1.1 Scene selection, GOES L1B data download,
regridding, and corrections

Prior to downloading the radiance data from NOAA, we first
identify the central latitude–longitude, date range, and time
range (time of day) of interest, and the size of the boxes (grid)
to be created and then tiled with the GOES Level-1B (L1B)
TOA BRF data. The date range of interest is typically deter-
mined by ensuring that each pixel has at least two cloud-free
days (for a given time of day) and that there is sufficient com-
puter RAM (random-access memory). We identify the time
range of interest by calculating the solar geometry for our
region of interest based on time of day. The time range of
interest is then set to ensure that the solar geometry does not
exceed our LUT values for any pixel within our region of in-
terest (ROI). Because satellite view angle directly determines
the spatial resolution for a given GOES imager, we then de-
termine whether it would be more useful to use GOES-R or
GOES-S as our interpolated grid. For feature recognition,
higher spatial resolution would typically be preferred. But
for accuracy, it makes more sense to interpolate to the coars-
est grid (GOES-R for the western Unites States), as all the
fine features will not be captured by imager data that have
been regridded to higher spatial resolution. For all cases pre-
sented here, data are interpolated to the standard GOES-R
grid, which means that GOES-R data do not need to be spa-
tially interpolated. GOES-R and GOES-S radiance data are
then downloaded for bands 1, 2, 3, 4, 5, and 6 correspond-
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Figure 1. Algorithmic flowchart of MAGARA, from initial data formatting to video generation and validation. Four FORTRAN subroutines
compiled and imported into the Python programming environment are shown in the upper right.

ing to the date and times of interest. The GOES radiance and
BRF data are provided courtesy of the GOES-R Calibration
Working Group and GOES-R Series Program (2017).

Once the data are downloaded, we begin by running the
Python program GOESDataFormatter.py. Because different
spectral bands have different spatial resolutions (0.5–2 km),
we first regrid all data to the 0.47 µm band grid (1 km
at the sub-spacecraft point) either by averaging (for the
0.64 µm band) or using a bicubic interpolation for the longer-
wavelength, coarser-spatial-resolution bands. The program,
which was converted to FORTRAN 90, then regrids the
GOES-S latitude–longitude grid to the GOES-R grid us-
ing the FORTRAN area-based polygon interpolation pro-
gram produced by Zerzan (1989). The final grid is estab-
lished using the provided central latitude–longitude to iden-
tify the closest GOES pixel. Then the algorithm uses the user-
provided bounding box size to trim the data to the region of
interest. Once the regional data have been extracted, we then
loop over every date and time for each band and GOES-S and
GOES-R spacecraft, interpolating to the background grid, if
necessary, and converting radiances to TOA BRFs. TOA ra-
diances are converted to TOA BRFs via the following rela-
tionship:

BRF= L ·
π ·D2

ETOA , (1)

where L represents the observed TOA radiance
(Wm−2 µm−1 sr−1) for a particular band and imaging
platform (GOES-R or GOES-S here), D is the Earth–Sun
distance at the time of observation in astronomical units
(AU), and ETOA is the exo-atmospheric solar irradiance
at 1 AU (Wm−2 µm−1). Because each spacecraft, band,
date, and time corresponds to a separate radiance file (every
10–15 min), the algorithm must process about 3000–10 000
radiance files for a given 7–14 d case study period.

After sorting and tiling these TOA BRFs into a 6-
dimensional array, we correct TOA BRFs in bands 1, 2, 3, 5,
and 6 for ozone and water vapor absorption. Ozone absorp-
tion primarily impacts bands 1 and 2, whereas water vapor
absorption impacts bands 3, 5, and 6 most heavily. Correct-
ing for absorption by these gases is simplified by assuming
that they are located above the significant scattering layers in
the atmosphere, including those resulting from aerosols. Al-
though this assumption is more justified for ozone, we also
apply it to water vapor (with acceptable error). The follow-
ing two-way transmittance correction is applied to produce
adjusted BRFs that mitigate the presence of absorbing gases:

BRFnew = BRFold · exp
(

OD
µ0

)
· exp

(
OD
µ

)
, (2)

where the ozone (272 Dobson units) + water vapor (1 cm)
static gas absorption optical depths (ODs) are taken to be
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0.0052, 0.0265, 0.0017, 0.019, and 0.0316 for the five bands
used by MAGARA, µ represents the cosine of the viewing
zenith angle, µ0 represents the cosine of the solar zenith an-
gle, BRFold represents the TOA BRF prior to correction, and
BRFnew represents the TOA BRF after correction for trace
gas absorption. The second factor in Eq. (2) represents the
correction to the solar beam as it passes through the absorb-
ing layer, and the third factor represents the correction to the
surface and atmosphere reflected beam as it passes back up
through the absorbing layer towards the satellite. The opti-
cal depths in Eq. (2) are based on an atmospheric column
of ozone appropriate to the region and times of interest. It
is unlikely that ozone absorption varies across a region in
space and time by an amount sufficient to induce significant
errors. Water vapor, on the other hand, may deviate signif-
icantly from the 1 cm column value assumed when running
the RT code for the case study at hand. However, if the vari-
ation correlates only with time of day rather than day to day,
the algorithm should alias the error into the retrieved surface
BRF (BRFSurf), yielding a small bias in BRFSurf for the 1.6
and 2.25 µm bands for those times when column water vapor
differs significantly from 1 cm. If the algorithm fails to alias
the water vapor errors into BRFSurf, they will show up in the
retrievals of coarse-mode AODs, as fine-mode AODs have
minimal impact on modeled BRFs at 1.6 and 2.25 µm. As far
as we can tell, these assumptions do not negatively impact
the results shown in Sect. 3, but dynamically varying values
of ozone and water vapor would need to be ingested for any
operational version of MAGARA.

Once the algorithm has corrected TOA BRFs for ozone
and water vapor absorption, the algorithm regrids the data
to either a 10 or 15 min time spacing, depending on GOES
observation mode (or user preference), using linear interpo-
lation. Although GOES data do not fit exactly to this 10 or
15 min cadence, these data are close to it. So, filling any tem-
poral gaps in the data via temporal linear interpolation from
the gap’s bounding data is reasonable. This step does not cor-
rect for any bad data present in the radiance files, but this
temporal interpolation does allow us to put the data on a reg-
ular temporal grid. These gap-filled, corrected BRFs are then
stored in a Hierarchical Data Format-5 (HDF-5) file, along
with solar and viewing geometries, latitudes, longitudes, sur-
face pressures, days, and times for all of the data. A land–
water mask is also included in the HDF-5 file for diagnostic
purposes only, as the retrieval algorithm makes no distinc-
tion between land and water surfaces in the aerosol–surface
retrieval process.

2.1.2 MODIS MAIAC surface BRF data ingestion

First, MODIS MAIAC surface BRF kernels (Lyapustin et
al., 2018; Lyapustin and Wang, 2018) are spatially interpo-
lated to our GOES grid using the polygon-based interpola-
tion technique described previously. This is done by running
the program magaraMAIACGridder.py, which spatially in-

terpolates these surface BRF kernels for the central day of
our case study period. Because these kernels contain all in-
formation necessary to produce the surface BRF at any given
time of day, only one set of kernels is needed for a given
band, pixel, and sensor. As MAGARA directly retrieves the
average BRFSurf for a given band, sensor, and time of day
over the entire time period, the MAIAC data are needed only
to correct for small changes in BRFSurf over that time frame
due solely to small differences in solar geometry from day
to day for the same time of day. Once these BRFSurf ker-
nels have been spatiotemporally interpolated bilinearly to our
GOES grid for every time and day on our grid, we save this
information to the HDF-5 file.

Note that MAIAC only produces kernels over land. For all
over-water regions where such BRF kernels are missing, the
algorithm assumes an initial albedo and surface reflectance of
0.0 for all days, times, and spectral bands. For a given MAG-
ARA run, the algorithm will retrieve the surface BRF of the
water by aliasing differences between our aerosol model and
the observations (residuals) into the retrieved surface BRF.
This will give the retrieved surface BRF a blue hue over wa-
ter and will not impact our retrieval of aerosol properties, as
shown in our case studies.

Next, these BRFSurf kernels must be converted to ac-
tual BRFSurf values as described in Lyapustin et al. (2018).
As shown in Fig. 1, this is performed in the program
GOESCloudMaskandLUT.py. These BRFSurf values, which
are stored in the same size array as the input TOA BRFs, are
then added to the MAGARA input file. As with unscreened
clouds, real changes in BRFSurf values over a given win-
dow will cause large errors in retrieved aerosol loading and
aerosol properties. For such cases, it is also likely that the
algorithm will yield elevated residuals, allowing us to screen
out such data.

2.1.3 MAGARA aerosol look-up table

Similar to the MISR research aerosol retrieval algorithm
(MISR RA; Limbacher and Kahn, 2019; Limbacher et al.,
2022), and just like most other modern aerosol retrieval al-
gorithms, MAGARA uses a prebuilt look-up table of radia-
tive transfer outputs in lieu of running a radiative transfer
code on the fly, as doing so is orders of magnitude faster. The
SCIATRAN radiative transfer (RT) discrete ordinates solver
output is corrected for atmospheric polarization effects, with
ordinate density dictated by aerosol model (larger particle-
size optical models use a denser grid; Rozanov et al., 2014),
as was done in Limbacher et al. (2022). The aerosol mod-
els (components) used in this paper are identical to the ones
that were used in other previously published work (Junghenn
Noyes et al., 2020) and are presented in Table 1. All effective
radii are based on an area-weighted calculation of effective
radius, as is done in Eq. (5.248) of Mishchenko et al. (2002).
The aerosol components presented here cover the range of
aerosols to which we would expect to have sensitivity with an
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aerosol retrieval algorithm such as MAGARA. In all sections
of this article, the use of the term “particle properties” is anal-
ogous to “component fraction”. This is because MAGARA
actually retrieves a component fraction, not particle proper-
ties, using the principle of linear mixing, meaning we assume
that the TOA-modeled BRFs for our aerosol components are
aggregated linearly as was done with the MISR RA in Lim-
bacher et al. (2022). This linear mixing of the TOA modeled
BRFs also implies that the particle properties for each in-
dividual component (e.g., single-scattering albedo, SSA, in
Table 1) are linearly combinable to form aggregate aerosol
particle properties.

The LUT dimensions presented in Table 2 are similar to
the older ones used for the MISR RA. The major difference
is that the SCIATRAN RT code has to be run for a com-
pletely different set of spectral bands, as MISR and ABI
do not share similar spectral responses. Additionally, due to
lower expected precision of the GOES measurements and re-
trievals, only 14 AOD bins are used rather than the 26 bins for
the MISR RA. MAGARA uses the exact same algorithm over
land and water, thereby eliminating the need to account for
whitecaps and Fresnel reflection directly in an over-water-
based LUT. Although the LUT in Table 2 is relatively small,
we further trim the number of bins for each dimension of
the LUT prior to saving the modified LUT directly as part of
the MAGARA input file for a particular region. Over a small
region, µ may only vary by 0.2–0.5, meaning that we need
fewer bins for µ in the LUT (for a given scene), rather than
all 19 listed in Table 2. We also do the same thing for relative
azimuth and µ0, trimming the LUT as much as possible. For
the Camp Fire case, this resulted in a 75 % reduction in LUT
size, which allowed us to substantially mitigate RAM usage
when running MAGARA.

2.1.4 MAGARA initial cloud screening

One of the fundamental assumptions of MAGARA is that
accurate separation of the surface and atmospheric signals is
possible. This is predicated on our ability to identify days and
times with clouds and thick aerosol, screen them out, and use
the remaining cloud-free days and times to retrieve BRFSurf

for each time of day, under the assumption that the day-to-
day changes in BRFSurf are minimal.

After trimming our aerosol RT LUT and saving it to our
input HDF-5 file, we then fit a fourth-order polynomial to
the TOA BRFs in the trimmed LUT for each spectral band,
ABI (analogous to camera for MISR), pixel, and day. For
the following definition of our cost function, we assume the
uncertainty in the TOA BRFs is 1 % + 0.001, representing
1 % relative uncertainty plus 0.001 absolute uncertainty in
the TOA BRFs, which represents a best-case scenario for ei-
ther imager. For all other cost calculations in this article, we
assume a more realistic value of 0.005+5 %, as recent work
suggests an uncertainty ranging from 2 %–5 % (McCorkel et
al., 2020). We then calculate the discrepancies between the

fitted and observed TOA BRFs as a cost function:

CostModel
d,t =

∑
λ

∑
c

(
√
wλ,c,d,t ·

[
BRFTOA

λ,c,d,t−BRFModel
λ,c,d,t

]
Uncλ,c,d,t

)2

∑
λ

∑
cwλ,c,d,t

. (3)

Here,wλ,c,d,t represents the weights given to a particular ob-
servation (1 unless the TOA BRFs are <−0.01, then 0).
λ represents the spectral band, c represents the platform
(GOES-16 or GOES-17), d represents the day, and t rep-
resents the time of day. Unc represents the uncertainty de-
scribed above, and the TOA observed (BRFTOA) and mod-
eled (BRFModel) BRFs are labeled accordingly. This cost
function is then converted into a modeled weighting function
via

WeightModel
d,t = 1.0−

CostModel
d,t∑

dCostModel
d,t

. (4)

For each time of day (e.g., 10:00 UTC, 10:10 UTC, . . .),
CostModel

d,t identifies the days when the modeled TOA BRFs
most closely match the observations and generates a weight
WeightModel

d,t bounded by 0 and 1. For times when the
model closely matches the observations, Eq. (4) will yield
a WeightModel

d,t near unity, whereas Eq. (4) will yield a
WeightModel

d,t near 0 when the model is a poor fit to the ob-
servations. This weight is then multiplied by a temporally
smoothed version of Eq. (4) to capture clouds that are tem-
porally transient. Basically, Eq. (4) identifies clouds, and
multiplying it by a temporally smoothed Eq. (4) captures
the times around which clouds are present. This aggregate
weight works well in regions where cloud cover is minimal or
cloud cover is temporally random (California and the Desert
Southwest Region). For a given time of day, it is entirely pos-
sible that none of the modeled TOA BRFs (for any day) fit
the observations well. In this case, Eq. (4) will erroneously
suggest that at least some of the observations are cloud (or
aerosol) free, when this is not the case. For this reason, MA-
GARA must be allowed to run over a sufficient number of
days to ensure that there are at least 2 cloud-free days for ev-
ery time of day in the dataset. If this condition is not met, the
retrieved surface BRFs for the time of day when clouds are
present every day will not be accurate. In addition, this would
cause errors in the retrieval of aerosol loading and aerosol
particle properties every day over the improperly weighted
region.

2.2 MAGARA aerosol and surface retrieval description

Although the following three subsections detail the complex-
ity of MAGARA, the overall retrieval approach is rather
simple. MAGARA first performs an iterative retrieval of
daily averaged fine-mode (components 1–15 in Table 1) and
coarse-mode (components 16 and 17 in Table 1) aerosol com-
ponent fractions (from which particle properties are derived),
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Table 1. Microphysical and optical properties of the new RA aerosol component climatology.

Analog (aerosol type) re Ang SSA (550 nm) AAE

Very small, spherical, strongly absorbing BlS 0.06 2.74 0.80 1.43
Very small, spherical, strongly absorbing BrS 0.06 3.17 0.80 3.23
Very small, spherical, moderately absorbing BlS 0.06 2.97 0.90 1.35
Very small, spherical, moderately absorbing BrS 0.06 3.19 0.90 3.12
Small, spherical, strongly absorbing BlS 0.12 1.80 0.80 1.34
Small, spherical, strongly absorbing BrS 0.12 2.04 0.80 3.02
Small, spherical, moderately absorbing BlS 0.12 2.05 0.90 1.37
Small, spherical, moderately absorbing BrS 0.12 2.18 0.90 3.14
Medium, spherical, strongly absorbing BlS 0.26 0.69 0.80 0.91
Medium, spherical, strongly absorbing BrS 0.26 0.76 0.80 2.36
Medium, spherical, moderately absorbing BlS 0.26 0.92 0.90 1.08
Medium, spherical, moderately absorbing BrS 0.26 0.98 0.90 2.74
Very small, spherical, non-absorbing 0.06 3.22 1.00 N/A
Small, spherical, non-absorbing 0.12 2.31 1.00 N/A
Medium, spherical, non-absorbing 0.26 1.22 1.00 N/A
Large, spherical, non-absorbing 1.28 −0.20 1.00 N/A
Large, non-spherical, weakly absorbing 1.48 −0.03 0.96 2.71

BlS represents black smoke and BrS is brown smoke. Column 1 describes the aerosol analogs, column 2 represents
effective radius (in µm), column 3 is the Ångström exponent (computed from 470–864 nm), column 4 is the
single-scattering albedo (SSA) at 0.550 µm wavelength, and column 5 is the absorption Ångström exponent (AAE,
computed from 470–864 nm). Spherical aerosol component optical properties are modeled using a Mie code with an
assumed lognormal particle size distribution. The nonspherical component optical models are described in Lee et al.
(2017).

Table 2. MAGARA LUT values and dimensionality.

550 nm Surface pressure
Component name (17) AOD (14) λ (nm) (5) µ0 (19) µ (19) 18 (37) (mbar) (2)

sph_abs_0.06_0.80_BlS 0.00 470.3 0.10 0.10 0 608
sph_abs_0.06_0.80_BrS 0.05 635.6 0.15 0.15 5 1050
sph_abs_0.06_0.90_BS 0.10 863.8 0.20 0.20 10
sph_abs_0.06_0.90_BrS 0.15 1608.8 0.25 0.25 15
sph_abs_0.12_0.80_BlS 0.25 2242.1 0.30 0.30 20
sph_abs_0.12_0.80_BrS 0.35 0.35 0.35 25
sph_abs_0.12_0.90_BlS 0.50 0.40 0.40 30
sph_abs_0.12_0.90_BrS 0.75 0.45 0.45 35
sph_abs_0.26_0.80_BlS 1.00 0.50 0.50 40
sph_abs_0.26_0.80_BrS 1.50 0.55 0.55 45
sph_abs_0.26_0.90_BlS 2.00 0.60 0.60 50
sph_abs_0.26_0.90_BrS 2.75 0.65 0.65 55
sph_nonabs_0.06 3.75 0.70 0.70 60
sph_nonabs_0.12 5.00 0.75 0.75 65
sph_nonabs_0.26 0.80 0.80 –
sph_nonabs_1.28 0.85 0.85 –
Dust 0.90 0.90 –

0.95 0.95 175
1.00 1.00 180

The columns are independent of each other, with each column listing the values for the variable in the heading that are included in the
LUT. The number of values is given in parentheses at the top. The overall dimensionality of the LUT is 7.

iterating between retrievals of surface BRF, time-averaged
retrievals of AOD, and retrievals of daily averaged fine- and
coarse-mode aerosol components. It then performs another
iterative set of retrievals towards a more refined surface BRF,
this time iterating only between retrievals of surface BRF

and time-averaged AOD. Finally, the algorithm performs a
retrieval of fine-mode fraction (FMF) and refined AOD once,
at the cadence of the measurements with no iteration and no
time averaging. Retrieval of FMF technically means the al-
gorithm retrieves different aerosol particle properties at the
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cadence of the measurements by allowing selection of differ-
ent fine- to coarse-mode ratios at a 10–15 min cadence within
each day.

The order in which the final output products are generated
is driven by the necessary accuracy of the input data. Be-
cause fine- and coarse-mode components are assessed on a
daily basis, whereas AOD, FMF, and surface BRF are eval-
uated at multiple times a day, we have many more, ranging
from 30 to 50+, sets of TOA BRF measurements (and up
to two ABIs) for the daily averaged fine- and coarse-mode
component retrieval. As such, the required accuracy of any
individual BRF is much lower for the daily averaged fine-
and coarse-mode component retrieval than that needed to re-
trieve AOD or FMF, which is why the daily averaged fine-
and coarse-mode component retrieval is performed first. The
refined surface retrieval follows next because the retrieved
AOD and FMF are quite sensitive to errors in surface BRF.
The AOD–FMF retrieval is last because we have constrained
all other parameters necessary in their retrieval. The number
of iterations performed in any given portion of the code was
determined empirically by observing the required number of
iterations to reach convergence (using pixel-to-pixel smooth-
ness as an indicator of convergence) for the Camp Fire case,
with the same number of iterations being applied to all three
case studies.

As MAGARA is a research algorithm, we then use the
same number of iterations for all three case studies below,
although this will likely be refined in the future. The reason
we use an iterative approach is that this is much faster than
retrieving all parameters simultaneously, as explained in the
Supplement. For the portion of the code that performs the
retrievals of daily averaged fine- and coarse-mode compo-
nents along with their daily averaged fractions (Sect. 2.2.1),
as well as for the code that performs refined retrievals of sur-
face BRF (Sect. 2.2.2), we use different time averages than
for our FMF–AOD retrievals. The reason behind these differ-
ent time averages mostly relates to our inability to separate
the atmospheric and surface scattered signals otherwise, as
explained further in Sects. 2.2.1 and 2.2.2.

There are only two ways to properly describe an algo-
rithm like MAGARA: a detailed Algorithm Theoretical Ba-
sis Document (ATBD), which NASA and NOAA commonly
use for operational algorithms, or a series of flowcharts.
As MAGARA is not an operational aerosol retrieval algo-
rithm, we present the algorithm as a series of flowcharts. The
next three subsections correspond to bullets 1, 2, and 3 in
the algorithmic flowchart panel titled GOESMAGARAMulti-
Core.py within Fig. 1. These bullets are further broken down
as flowcharts in Figs. 2–4, with special emphasis placed on
the sequential stepwise retrievals within MAGARA as op-
posed to retrieving all aerosol and surface parameters simul-
taneously.

After generating the input file as described in the previ-
ous subsections, we then run the Python program GOESMA-
GARAMultiCore.py, which splits the input TOA BRF and

BRFSurf data into 50× 50-pixel chunks that are (optionally)
run in parallel. The MacBook Pro used to generate the MA-
GARA output in Sects. 3 and 4 ran 12 instances of these
50× 50-pixel chunks at a time. As indicated in the algo-
rithmic flowchart presented as Fig. 1, the algorithm first re-
trieves daily averaged fine- and coarse-mode aerosol compo-
nent fractions in a subroutine within the file magaraAerosol-
SurfaceProperties.f90. The algorithm then produces a final
estimate of BRFSurf within a separate subroutine in that same
FORTRAN file. Finally, the algorithm retrieves AOD and
FMF every 10–15 min in a subroutine found within the FOR-
TRAN file magaraAODFMF.f90, before saving this informa-
tion in a user-friendly format, as described in the Supple-
ment. The following three subsections expand on all aspects
of the MAGARA retrieval in a manner consistent with how
the algorithm runs.

2.2.1 MAGARA daily fine- and coarse-mode
component fraction retrieval

A flowchart of this subsection, from LUT regridding to
aerosol component fraction and surface retrievals, is pre-
sented as Fig. 2. A common foundation of any well-built
remote-sensing retrieval algorithm is the understanding that
we cannot accurately retrieve everything. Many of the algo-
rithm design choices in this section are based on this under-
standing. We emphasize that a necessary but not sufficient
condition for an accurate particle property retrieval of daily
fine- and coarse-mode component fractions is an elevated
aerosol loading and multiple cloud-free views. This condi-
tion is required for the remote-sensing measurements to con-
tain adequate aerosol property information in the presence
of a surface that reflects light, thereby typically degrading
aerosol signal-to-noise ratio. Additionally, MAGARA is only
able to retrieve daily averaged fine- and coarse-mode compo-
nent fractions accurately if the BRFSurf and AOD are reason-
ably well characterized. As explained in the previous subsec-
tion, errors in TOA modeled BRF will be larger in this step.
This is acceptable because we use many more observations
to constrain these daily averaged fine- and coarse-mode com-
ponent fractions compared to either the refined AOD or the
refined surface reflectance retrievals in the subsequent sub-
sections. To better constrain AOD and BRFSurf, this portion
of MAGARA iterates multiple times between retrievals of
BRFSurf (for a given time of day, band, and ABI), retrievals
of time-averaged AOD for a given day, and retrievals of daily
averaged fine- and coarse-mode component fractions. The
retrievals of daily averaged fine- and coarse-mode compo-
nent fractions are based on the principle of linear mixing.
As explained in Sect. 2.1.3, this means that TOA-modeled
BRFs for a given component can be weighted by a particular
component fractional contribution for a given AOD, with the
sum of the fractional contributions totaling unity, and added
together to form one aggregate TOA aerosol mixture, as is
done for the MISR RA in Limbacher et al. (2022). This im-
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plies that particle properties can be aggregated in a similar
manner.

The different retrievals used by this portion of MAGARA
are presented below: a retrieval of BRFSurf, an AOD retrieval,
and a daily averaged fine- and coarse-mode aerosol compo-
nent fraction retrieval. The retrieval of BRFSurf is very similar
to the retrievals of surface albedo (or remote-sensing BRF)
presented in Limbacher et al. (2022). For a given aerosol
model, AOD, and BRFSurf, we create a cost function which
penalizes the difference between the observed TOA BRFs
and the modeled TOA BRFs:

CostSurf
λ,c,t =

∑
d

wλ,c,d,t ·

 BRFTOA

λ,c,d,t−(
BRFPath

λ,c,d,t+TT∗λ,c,d,t ·BRFSurf
λ,c,t

)


Uncλ,c,d,t


2


∑
dwλ,c,d,t

. (5)

Equation (5) is very similar to Eq. (6) in Limbacher et
al. (2022), with the major difference being the term with
BRFSurf, which just represents the BRFSurf for a given pixel’s
spectral band (λ), ABI platform (c), day (d), and time (t).
The weights w used here are initially the same as those pre-
sented in Sect. 2.1.4, which allows us to minimize the impact
of clouds. One of the fundamental assumptions of MAGARA
is that BRFSurf is nearly invariant from day to day, for the
exact same time of day. For example, the algorithm assumes
that BRFSurf at 17:20 UTC for the start day will be nearly
the same as BRFSurf at 17:20 UTC on the end day. Because
the BRFSurf model used by MAIAC allows for changes in
BRFSurf with solar/viewing geometry, a small change in so-
lar geometry causes a slight change in BRFSurf, which is ac-
counted for in TT∗λ,c,d,t , along with accounting for multiple
reflections of light off the Earth’s surface:

TT∗λ,c,d,t =
BRFMAIAC

λ,c,d,t〈
BRFMAIAC

λ,c,d,t

〉
d

·
TTλ,c,d,t

1− sλ,d,t ·Aλ
. (6)

Here, sλ,d,t represents the average backscatter of the Earth’s
atmosphere, including aerosols, for all solar and viewing
geometries, Aλ represents the spectral surface albedo, and
TTλ,c,d,t represents the two-way transmittance. sλ,d,t de-
pends on time and day here because we allow the algo-
rithm to assume/retrieve a different aerosol model (i.e., set of
aerosol component fractions) for each day, and sλ,d,t varies
with retrieved/prescribed AOD, which can vary with time.

BRFMAIAC
λ,c,d,t

〈BRFMAIAC
λ,c,d,t 〉d

represents the expected fractional deviation of

BRFSurf from the average value over the given set of days. To
account for multiple reflections, we simply multiply through
by 1.0/(1.0− sλ,d,t ·Aλ). Similar to our prior publications,
we can then analytically solve for BRFSurf for a given time

of day by taking the derivative of Eq. (5) with respect to
BRFSurf, setting the result equal to 0, and solving directly
for BRFSurf:

BRFSurf
λ,c,t =∑

d

(
wλ,c,d,t

Unc2
λ,c,d,t

·TT∗λ,c,d,t ·
[
BRFTOA

λ,c,d,t −BRFPath
λ,c,d,t

])
∑
d

(
wλ,c,d,t

Unc2
λ,c,d,t

·

[
TT∗λ,c,d,t

]2
) . (7)

The fact that Eq. (7) is similar to Eq. (7) from Limbacher
et al. (2022) is no coincidence. The ABIs aboard GOES-16
and GOES-17 are multi-angle imagers, but we can only treat
them as such if we tile the observations over time and day
rather than view angle as with MISR.

Once BRFSurf has been retrieved for the initial assumed
aerosol model and AOD (Fig. 2), the algorithm iterates to a
more optimal AOD. This is done by computing a cost func-
tion for aerosol loading:

CostAero
t,d =

∑
c

∑
λ

wλ,c,d,t ·

[

BRFTOA
λ,c,d,t−(

BRFPath
λ,c,d,t+TT∗λ,c,d,t ·BRFSurf

λ,c,t

) ]
Uncλ,c,d,t


2


∑
c

∑
λwλ,c,d,t

. (8)

For each day and time, this cost function is calculated at ev-
ery AOD bin found in Table 2, with the AOD correspond-
ing to the minimum cost identified as the initial guess. This
value is then further refined using Newton’s method. Finally,
a temporally averaged AOD over±16 time bins, or 2.5–4.0 h,
is calculated using the updated cloud/heavy aerosol loading
weights of the AOD established via Newton’s method. This
weighting prevents stray clouds from impacting temporally
averaged AOD, unless cloudiness is persistent throughout the
day. Because this algorithm is iterative and Eq. (8) is costly
to compute for every AOD in our LUT, this calculation is
only performed once in order to locate a general minimum in
cost. Subsequently, Newton’s method is solely used to iterate
towards a more optimum AOD.

The final piece of this portion of MAGARA is the retrieval
of daily averaged fine- and coarse-mode component frac-
tions. Aerosol particle properties are not directly retrieved
here. Rather, we assume that the TOA BRF can be modeled
as a linear combination of RT parameters together with the
surface BRF, with aerosol particle properties coming from a
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Figure 2. Flowchart of MAGARA daily fine- and coarse-mode aerosol component fraction retrieval. Output aerosol component fractions are
converted into aerosol particle properties via Table 1.

linear combination of the properties presented in Table 1:

BRFPath
λ,c,d,t =

∑
m

mixFrm,d ·BRFPath
m,λ,c,d,t ,

TTλ,c,d,t =
∑
m

mixFrm,d ·TTm,λ,c,d,t ,

sλ,d,t =
∑
m

mixFrm,d · sm,λ,d,t ,∑
m

mixFrm,d = 1.0. (9)

For all three RT parameters, we are summing over the aerosol
component dimension (m), resulting in this dimension be-
ing eliminated from the new parameter on the left-hand side.
mixFrm,d represents the mixture fraction of all 17 compo-
nents to the total aerosol loading for a given day. We de-
fine the fine mode as components 1–15 in Table 1 and the
coarse mode as components 16 and 17 in Table 1. To solve
for the optimal mixture fractions, we first set up the follow-
ing system of linear equations using all TOA observations for

a given day:

∑
m

√ w1,1,1

Unc2
1,1,1
·

(
BRFPath

m,1,1,1+TT∗m,1,1,1 ·BRFSurf
1,1,1

)

·mixFrm

=√ w1,1,1

Unc2
1,1,1
·BRFTOA

1,1,1

...∑
m

√ wλ,c,t

Unc2
λ,c,t

·

(
BRFPath

m,λ,c,t +TT∗m,λ,c,t ·BRFSurf
λ,c,t

)

·mixFrm

=√ wλ,c,t

Unc2
λ,c,t

·BRFTOA
λ,c,t∑

m

109
·mixFrm,d = 109. (10)

For a day with 50 sets of observations (5 bands and 2 GOES
platforms), this results in a weighted (using the updated
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weights described above) set of 501 equations and 17 un-
knowns. The last equation of (10) forces the fractional sum of
all components to be unity, with the 109 weighting ensuring
that this will be the case. This system of linear equations is
then solved using a non-negative least squares (NNLS) solver
(Lawson and Hanson, 1995), as was used for the MISR RA
for several years.

2.2.2 MAGARA-refined surface BRF retrieval

To this point, MAGARA has performed retrievals of daily
averaged AOD, BRFSurf, and daily averaged fine- and coarse-
mode component fractions and has yet to retrieve refined val-
ues for either AOD or BRFSurf. As one might expect, an accu-
rate retrieval of BRFSurf is critical for the accurate retrieval of
AOD, and especially FMF, as described in the next subsec-
tion. Here, we describe our refined BRFSurf retrieval, using
the retrieved daily averaged aerosol component fractions, ex-
actly as retrieved in Sect. 2.2.1, along with initial guesses for
both AOD and BRFSurf, as described in Sect. 2.2.1 (and ex-
panded upon in the Supplement). Because this algorithm uses
our retrieved daily averaged fine- and coarse-mode aerosol
component fractions from the previous subsection, this por-
tion of MAGARA only iterates between retrievals of BRFSurf

and AOD. To accurately retrieve BRFSurf using Eq. (7), the
algorithm first needs to severely penalize (weight against)
times when aerosol/cloud optical depth is elevated, otherwise
clouds (or heavy aerosol loading) will prevent an accurate
BRFSurf retrieval. Therefore, we perform retrievals of AOD
with no time averaging for this part of MAGARA, as this al-
lows us to update our initial cloud weighting, improving our
final retrieval of BRFSurf.

A flowchart describing MAGARA’s refined BRFSurf re-
trieval is presented as Fig. 3. This section represents bullet
2 in the algorithmic flowchart corresponding to Fig. 1, which
explains that this refined BRFSurf retrieval is found within
a subroutine called magaraAerosolSurfaceProperties.f90. In
the previous subsection we introduce three types of retrievals
(i.e., AOD, daily averaged fine- and coarse-mode compo-
nent fractions, and BRFSurf) performed by MAGARA within
that section of code. As stated above, because we already re-
trieved the daily averaged fine- and coarse-mode component
fractions and use the exact component fractions from that re-
trieval, this section of code only uses two of those three re-
trievals.

As in the previous section, this portion of the algorithm
is best described as loops containing BRFSurf and AOD re-
trievals. The initial aerosol retrieval here does not use any
temporal averaging, which allows us to better identify tem-
porally transient clouds in the scene. After a series of BRFSurf

and AOD retrieval iterations with no temporal weights to get
better constraints on optical loading, the algorithm uses these
10–15 min retrieved AODs to update the retrieved surface
albedo and the retrieval weights, which are negatively cor-
related with the retrieved optical loading. The algorithm then

retrieves AOD over ±32 bins, corresponding to timescales
ranging from±5 to±8 h, depending on the temporal cadence
of the ABI instruments during the observation window. This
long-window average helps prevent extreme nonlinearity in
retrieved BRFSurf (as a function of time of day) from alias-
ing into the retrievals of aerosol optical depth, which should
be far less variable on days with low aerosol loading and are
weighted much more heavily for the analytic surface BRF
retrieval. After several iterations of AOD and BRFSurf re-
trievals, BRFSurf should have converged to a solution with
minimal aerosol artifacts present. After first coarsely retriev-
ing AOD using only the bins in our LUT with no tempo-
ral averaging, the algorithm then iterates five more times us-
ing Newton’s method, again without any temporal averaging.
Because these iterations are performed using a surface with a
nearly all-day temporally averaged AOD, it is hoped, and the
results over-land bear this out, that any errors present in the
surface are minimal. A final retrieval of BRFSurf is then per-
formed, and the final output surface parameters are updated.

2.2.3 MAGARA AOD and FMF retrieval

After the previous two MAGARA steps, this portion of MA-
GARA now has access to refined daily averaged aerosol
fine- and coarse-mode component fractions and a refined set
of 10–15 min BRFSurf. This section now describes the por-
tion of MAGARA that implements the refined retrieval of
AOD and FMF, information that is critical to fields such
as air quality. For the case studies presented in Sect. 3, the
temporal cadence of the ABI instruments ranges from 10–
15 min. Because the retrievals of AOD and FMF presented
here are performed at or near the cadence of the measure-
ments, the temporal resolution of these retrievals also varies
between 10–15 min. A flowchart describing MAGARA’s re-
trieval of AOD and FMF is presented as Fig. 4. Note that
this is different than the retrieval of daily averaged fine-
and coarse-mode aerosol component fractions retrieved in
Sect. 2.2.1. This portion of MAGARA calls a subroutine in
magaraAODFMF.f90, shown as bullet 3 in Fig. 1.

As BRFSurf for all times and days and daily fine- and
coarse-mode aerosol component fractions have been con-
strained in the prior two parts of MAGARA, this portion of
MAGARA is far less complicated. For the remainder of this
section, we treat each pixel, day, and time in our multi-day
retrieval as a series of for (or do) loops. The algorithm first
performs a retrieval of FMF, using AOD output from the code
described in Sect. 2.2.2 as our input AOD and daily averaged
fine- and coarse-mode component fractions output from the
code described in Sect. 2.2.1 as our input component frac-
tions. The algorithm then uses this retrieved FMF in order to
get a final estimate of AOD.

For the retrieval of FMF described in this subsection,
RT LUTs are broken down into fine (components 1–15
from Table 1) and coarse (components 16 and 17 from Ta-
ble 1) modes. Using the daily averaged fine- and coarse-
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Figure 3. Flowchart of MAGARA-refined surface BRF retrieval.

mode component fractions retrieved via the code described
in Sect. 2.2.1, we get an initial estimate of FMF and coarse-
mode fraction (CMF). If FMF< 0.1 or CMF< 0.1, the daily
fine- or coarse-mode aerosol component fractions are too
poorly constrained to use them as the initial estimate to gen-
erate aggregate RT parameters for that particular mode. If
FMF< 0.1, we modify the component fractions described in
Sect. 2.2.1, adding equal proportions of components 7 and 8
until the FMF reaches 0.10. Coarse-mode contributions are
then reduced by the same fraction until it reaches 0.90. If
CMF< 0.1, we modify the component fractions described
in Sect. 2.2.1, adding equal proportions of components 16
and 17 until the CMF reaches 0.10. The fine-mode contri-
bution is then reduced by the same fraction until it reaches
0.90. We then retrieve fine-mode fraction and coarse-mode
fraction under the assumption that the fine- and coarse-mode

TOA BRFs are combinable as a system of linear equations:

BRFFine
λ,c,t,d =

15∑
m=1

√ wλ,c,t,d

Unc2
λ,c,t,d

·

(
BRFPath

m,λ,c,t,d +TT∗m,λ,c,t,d ·BRFSurf
λ,c,t

)

·mixFrm,d

 ,
BRFCoarse

λ,c,t,d =

17∑
m=16

√ wλ,c,t,d

Unc2
λ,c,t,d

·

(
BRFPath

m,λ,c,t,d +TT∗m,λ,c,t,d ·BRFSurf
λ,c,t

)

·mixFrm,d

 ,
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Figure 4. MAGARA AOD and FMF retrieval flowchart.

BRFFine
1,1,t,d ·FMFt,d +BRFCoarse

1,1,t,d ·CMFt,d =√
w1,1,t,d

Unc2
1,1,t,d

·BRFTOA
1,1,t,d ,

...

BRFFine
λ,c,t,d ·FMFt,d +BRFCoarse

λ,c,t,d ·CMFt,d =√
wλ,c,t,d

Unc2
λ,c,t,d

·BRFTOA
λ,c,t,d ,

106
· FMFt,d + 106

·CMFt,d = 106. (11)

Here the weights w are independent of the cloud screening
done initially and updated as described above. Instead,w = 1
if the TOA BRFs are greater than −0.01, and 0.0000001
otherwise, which eliminates unphysically dark observations
sometimes found at longer wavelengths over water. Although
it appears as though Eqs. (11) are using 6 or 11 equations
to solve for 2 unknowns, CMF is just 1.0−FMF. As such,
Eq. (11) really only solves for FMF, as one could argue
Eq. (10) solves for only 16 unknowns, not 17. Once we re-
trieve FMF and update the output aerosol models, now as a
function of day and time rather than just day, we then re-
trieve a crude estimate of AOD using the cost function we
present as Eq. (8), calculated for all AOD bins and using the
weights described a few sentences above. First and second

derivatives of cost with respect to AOD are then computed,
and Newton’s method is used to iterate to the final reported
AOD at the cadence of the ABI measurements. A 10–15 min
new cost function value is then produced, which represents
the cost presented in the final product.

2.3 The AErosol RObotic NETwork (AERONET)

In Sect. 3 we use AERONET measurements and retrievals
from dozens of sites across the western half of the United
States to validate AOD and aerosol particle properties for
our three case studies. AERONET sun photometers directly
measure spectral AOD (Holben et al., 1998) at an uncer-
tainty of ∼ 0.01 (Eck et al., 1999; Sinyuk et al., 2012). As in
Limbacher et al. (2022), we first interpolate AERONET V3
L1.5 AOD to the MAGARA band centers, using a second-
order polynomial in log space (Giles et al., 2019; Sinyuk
et al., 2020). We attempt to limit spatiotemporal variability
from negatively impacting MAGARA to AERONET com-
parisons by masking out all AERONET data falling outside a
±10/15 min window centered on the GOES acquisition time.
AERONET AODs for each of the spectral bands are then
averaged over this window prior to comparison with MA-
GARA, as well as for comparison to the NOAA GOES-16
operational AOD product.

O’Neill et al. (2003) developed a spectral deconvolution
algorithm (SDA) to convert AOD at multiple wavelengths
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into a parameter related to fine-mode fraction and total
aerosol optical depth at a 500 nm wavelength. The idea be-
hind the algorithm is that fine-mode AOD should be highly
sensitive to wavelength, because fine-mode aerosols are gen-
erally smaller than the wavelengths of light used by sun pho-
tometers. This causes fine-mode AOD to drop, often dra-
matically, as wavelength increases, generally reaching un-
detectable values out near 2.25 µm, the longest wavelength
used in MAGARA. Coarse-mode AOD often behaves dif-
ferently with wavelength, as it may show little change in
AOD with increasing wavelength. One of the most useful
features of SDA retrievals is that they are performed at the
15 min or so cadence of the AERONET direct-sun measure-
ments, rather than at the cadence of the almucantar inver-
sions, which are hourly and performed only under favorable
scattering geometries. In Sects. 4.1 and 4.2, we provide com-
parisons of MAGARA-retrieved 500 nm AOD and 550 nm
FMF with the same parameters (FMF at 500 nm) as retrieved
by AERONET using their spectral deconvolution algorithm.
As previously mentioned, MAGARA fine-mode fraction is
defined as fractional 550 nm extinction due to aerosol com-
ponents 1–15 in Table 1.

We also compare SSA to AERONET almucantar retrievals
of SSA (Dubovik and King, 2000), with interpolation to
470, 550, 636, and 864 nm done in an identical manner as
above. Instead of averaging AERONET inversion data, we
take the temporally closest MAGARA time, if that clos-
est time is within ±10–15 min of any GOES-16/17 obser-
vation. Although AERONET almucantar inversions are re-
trievals themselves, they provide an opportunity to assess, or
at least compare, particle properties retrieved from imagers
such as ABI. Although we present all AERONET and MA-
GARA SSA coincidences where MAGARA AOD is greater
than 0.3, it is important to note that AERONET SSA uncer-
tainty itself increases with decreasing AOD.

2.4 MAGARA cloud screening

MAGARA cloud/quality screening consists of applying
seven separate thresholds for a given pixel, day, and time,
with any indicating the presence of cloud labeled as bad data:

1. AOD< 0.05 and cost function > 1

2. a change in coarse-mode AOD of > 0.05 from one time
step to the next over land or > 0.10 over water

3. retrieval cost function > 10

4. daily minimum cost function > 0.5

5. temporal minimum cost function > 0.5

6. daily minimum cost function (for a given pixel) > 3
times the 68th percentile daily minimum cost function
calculated over the entire retrieval region and cost> 0.5

7. the minimum (among GOES-R or GOES-S ABI)
relative spectral standard deviation (standard devia-
tion/mean) of TOA BRF for ABI bands 1–3, 5, and 6
< 0.2 (over water only).

Failing any of these seven tests automatically sets the pixel
quality assessment (QA) value to 1. Afterwards, a pixel may
be reclassified as good if the minimum 470 nm/2.25 µm BRF
ratio exceeds 3 (strongly indicating smoke/pollution). After-
wards, a 3× 3 spatial maximum filter is applied to these QA
data, and a rolling maximum temporal filter (±3 time steps)
is applied. The tests and threshold values described above
were devised empirically, by looking at obvious meteoro-
logical clouds and surface artifacts in the output MAGARA
data. Although these tests appear to work well for the three
case study fires (and the hundreds of millions of retrievals
therein), further work is required to assess their performance
in a range of additional scenes.

The first test screens for cloud shadows by identifying re-
gions where the retrieved AOD is low and the model fits are
poor. Because clouds are comprised of coarse-mode droplets,
any rapid increase in coarse-mode AOD could be interpreted
as a cloud (second test). The third test is a simple goodness-
of-fit test. The fourth, fifth, and sixth tests are acknowledge-
ments that if the fundamental assumptions underlying MAG-
ARA are violated, the results will be poor. Namely, if cloud
cover is consistent from day to day for the same time of day,
MAGARA’s initial cloud screening will fail to identify all
days as cloud. This could negatively impact the retrievals of
aerosol for both that time of day, and for the entire day itself,
depending on how many cloud-free retrievals were produced
for that day. This test also tends to mask out regions where
the surface BRF is not temporally stable. The last over-water-
only test is based on the principle that liquid clouds are nearly
spectrally invariant over MAGARA’s spectral range; hence
they look white, whereas aerosols in the size range typically
observed in the atmosphere show greater spectral variability.
The spatial and temporal filters applied afterwards just en-
sure that we do not miss the edges of clouds.

2.5 NOAA GOES-16/17 bias-corrected aerosol product

The operational GOES ABI AOD retrieval algorithm re-
trieves AOD at 550 nm from GOES-East and GOES-West
(ABI AOD ATBD, 2018) L1b data. The algorithm also yields
a data quality flag (DQF) with the following possible values:
0 (high quality), 1 (medium quality), 2 (low quality), and 3
(no retrieval). The retrieval algorithm over land is based on
the assumption of linear relationships between the surface re-
flectance at 0.47, 0.64, and 2.2 µm, derived from AERONET
and ABI high-quality data. The uncertainty in these sur-
face reflectance ratios can cause diurnal biases in retrieved
AOD, especially for low–medium-quality data. Therefore, a
bias correction algorithm was developed to reduce the bias
(Zhang et al., 2020). The bias correction algorithm derives
AOD bias by analyzing the 30 d period surrounding a given
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time and looking for the lowest AOD. A diurnal curve is fit-
ted to obtain the lower bound of the 30 d AOD. The differ-
ence between the lower bound and the background AOD is
assumed to be the bias. The bias-corrected AOD is obtained
by subtracting the bias from the original AOD. Validation
shows that the bias correction can improve the performance
for the medium–high-quality AOD retrieval: correlation in-
creases from 0.87 to 0.91, mean bias decreases from 0.04 to
0.00, and RMSE decreases from 0.09 to 0.05. Additionally,
the medium-quality bias-corrected retrievals improve signifi-
cantly enough to warrant use in quantitative applications, re-
sulting in a nearly 100 % coverage increase. As a result, we
use all bias-corrected results with a DQF≤ 1.

Although NOAA produces a 2 km (1 km for MAGARA)
L2 AOD product for both GOES-R and GOES-S, the GOES-
S version was not available for the duration of the Camp Fire.
As a result, Camp Fire comparisons between MAGARA and
NOAA GOES AOD were performed using the bias-corrected
GOES-16 AOD product. For the two other case studies,
we make use of the bias-corrected GOES-17 AOD prod-
uct, which provides substantially more high-quality retrievals
(due to the lower view zenith angle for GOES-17). Because
MAGARA was run at 15 min cadence for the Kincade Fire
case (using 10 min input BRFs), the NOAA bias-corrected
aerosol product was first regridded to the 15 min cadence of
MAGARA via linear interpolation (temporally) for AOD and
making use of a maximum filter for the DQF.

3 MAGARA case studies

This section outlines three separate case studies that demon-
strate MAGARA capabilities and provide an initial assess-
ment of MAGARA performance. AERONET validation for
all three case studies is aggregated and presented in Sect. 4.

3.1 Camp Fire, Desert Southwest Region
(5–12 November 2018)

The 2018 Camp Fire, California’s deadliest wildfire in his-
tory (Baldassari, 2018), killed 85 people and burned >

150 000 acres (> 607 km2) of north-central California from
8–25 November 2018 (Maranghides et al., 2021). The fire
was entirely contained within the county of Butte, California
(https://www.fire.ca.gov/incidents/2018/11/8/camp-fire/, last
access: 3 September 2022), and caused the destruction of the
town of Paradise, along with over USD 16 billion of damage
(Reyes-Velarde, 2019). A snapshot of the Camp Fire, with
MAGARA retrievals of aerosol properties and surface BRF,
is presented in Fig. 5. Videos can be generated from the MA-
GARA output for the three case studies, although this is not
presented here.

Although the Camp Fire began on 8 November, MAG-
ARA was run from 5–12 November, as the low optical load-
ing days at the start of the time period were necessary for

the algorithm to derive an adequate constraint on BRFSurf.
This MAGARA run is also unique in that it was run solely
with GOES-R, as GOES-S data were not yet available. Dur-
ing this period, GOES-R ABI full-disk cadence was 15 min,
and MAGARA results (and output data) are presented here
at that cadence as well. The reason that we specifically cen-
tered on this region, rather than slightly further north, is due
to the large density of AERONET sites found in the selected
area (and the presence of some dust plumes).

Daily-averaged retrievals of AOD, FMF, effective radius,
SSA, and a time-averaged RGB image are provided for con-
text as Fig. 5. Looking at the entire region, MAGARA re-
trieves almost all smoke plumes observed as fine-mode-
dominated aerosol. Not only does this match expectation, but
we can confirm this with AERONET retrievals of fine-mode
fraction over the same region. According to Fig. 5, retrieved
aerosol single-scattering albedo appears suppressed on 9 and
10 November for California’s Central Valley. Although there
are a few AERONET sites in this region that retrieve SSA, we
can confirm that significant absorption is present by compar-
ing the TOA BRFs for a ∼ 10 0002 km region in the northern
central valley for the same time of day (10:30 Pacific stan-
dard time, PST) over the case-study observation period.

We present these spatially averaged BRFs as Fig. 6, with
the visible bands shown in the upper panel and the NIR
bands shown in the lower panel. All GOES-R bands are
relatively stable from 5–8 November, but the visible bands
show a large BRF increase on 9 November as the Camp Fire
plume passes over the region. All NIR bands show a BRF de-
crease on 9 and 10 November, with larger decreases at shorter
wavelengths. The reason is twofold: most of these absorbing
aerosols tend to be very absorbing in the NIR, and most nat-
ural land surfaces are extremely bright in the NIR (> 800 nm
wavelength), especially at 870 nm and 1.6 µm. When an ab-
sorbing aerosol resides over a bright surface, it will dimin-
ish the brightness of the scene. For a given aerosol absorp-
tion, a brighter surface will yield a larger decrease in TOA
BRF. For this region, the largest absorbing aerosol loading
is retrieved on 9 November and 10 November. Even with
this enhanced absorption, scattering dominates in the blue
and red bands. However, at 870 nm and 1.6 µm wavelengths
the TOA BRF drops significantly due to the absorption of
these aerosols. Because these aerosols are fine mode domi-
nated, hence small, the signal drop is largest at 870 nm, due
to a much higher spectral AOD (even though SSA is likely
higher), with the decrease significantly mitigated at 2.25 µm
due to a substantially lower spectral AOD and a darker sur-
face. Over water, BRFSurf at 870 nm, 1.6 µm, and 2.25 µm is
nearly 0, except in sun glint, as is the signal due to minimal
Rayleigh scattering, meaning we will not see any loss in sig-
nal, only increases in TOA BRF due to scattering.
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Figure 5. Context daily-averaged MAGARA retrievals over the Camp Fire region, Southwest United States, 8–12 November 2018. All
panels, including the RGB images, are time-averaged for the entire day. Weights are also applied (0.0001 if not QA, 1 if the retrieval passes
QA) prior to the time averaging. Each row corresponds to a separate day (8th for the top row and 12th for the bottom row). The first column
represents the weighted, temporally averaged RGB image for the entire day. The second column represents the weighted, temporally averaged
550 nm AOD. The third column represents the weighted, temporally averaged 550 nm fine-mode fraction. The fourth column represents the
weighted, temporally averaged effective radius (in micrometers). The fifth column represents the weighted, temporally averaged 550 nm
single-scattering albedo. AOD and particle property results are shown only if the temporal weight sum is > 1 for the day (at least 1 valid
retrieval). Otherwise, they are masked as gray. Particle properties are only shown if AOD> 0.30, which represents the minimum we show
for comparison to AERONET as well. Latitude labels are provided for the first column, and longitude labels are provided for the last row.

3.2 Williams Flats Fire, Pacific Northwest Region
(29 July–8 August 2019)

The Williams Flats Fire began on 2 August 2019 and burned
nearly 45 000 acres (182 km2) of forest, grass, and brush in
the northeastern region of Washington State. During this
time, NASA and NOAA were conducting a joint field cam-
paign in the western United States designated the “Fire Influ-

ence on Regional to Global Environments and Air Quality”
(FIREX-AQ). As a result of this field campaign, NASA pro-
vided AERONET sun photometers across the region to mea-
sure total column optical loading. There were many other
instruments involved, including NASA’s Cloud Physics Li-
dar (CPL), which flew on NASA’s ER-2. The MAGARA
dataset presented in this section was the same dataset used
to help constrain the lidar ratio (i.e., the ratio of extinction
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Figure 6. Line plot of the GOES-16 10:30 PST (17:30 UTC) over-
land TOA BRFs in the north-central Camp Fire region as a function
of day. For this region and time of day, the smoke plume is observed
beginning on 9 November, with aerosol absorption decreasing every
day afterwards.

to backscatter) in Midzak et al. (2022). Although the Pacific
Northwest is not an ideal region for satellite aerosol remote
sensing due to persistent cloudiness, especially for an algo-
rithm that requires both stable surface reflectances and non-
persistent cloud cover, MAGARA was run for the time frame
of 29 July–8 August 2019. For the case study presented here,
the output 10 min cadence of MAGARA matched the input
10 min cadence of the GOES-ABI full-disk imagery.

We present daily averaged aerosol particle property re-
sults for the Williams Flats Fire region from 3–8 August
2019, as Fig. 7. Unlike the other case studies presented here,
MAGARA struggled with the persistent cloud cover found
in parts of the William Flats region. Additionally, the sur-
face BRF was not stable for a region centered on 47◦ N,
117◦W. Looking at this region in Fig. 7, one can observe
the “no retrieval” hole increasing in size with time due to
this change in surface BRF (and the algorithm’s inability to
adapt to it). Even though we were able to screen out these
retrievals, this reveals another limitation of MAGARA. Al-
though our good QA retrievals agree well with AERONET
here, AERONET was unable to capture any major smoke
plume, as AERONET-observed AODs never exceeded 0.5
even though MAGARA daily averaged AOD exceeded 2 on
8 August. Compared to the Kincade Fire and Camp Fire, re-
trieved single-scattering albedos were much higher for the
Williams Flats Fire, with the exception of very near source
retrievals.

Figure 8 shows an interesting comparison of retrieved
single-scattering albedo vs. distance from a 2.25 µm hotspot
for all retrievals found within the Williams Flats Fire region.
Although the smoke plumes are relatively absorbing near
the source, the smoke rapidly becomes nonabsorbing within
about 20 km from the source. Tiling observations over a day,
an algorithm such as MAGARA can extract enough informa-

tion from ABI to observe changes in aerosol particle proper-
ties over short distances. The SSA results presented here are
similar to retrievals from the information-content-rich MISR
research algorithm (Junghenn Noyes et al., 2020), which was
used to study the same plume.

3.3 Kincade Fire, Desert Southwest Region
(23 October–1 November 2019)

The Kincade Fire began on 23 October 2019, burning nearly
78 000 acres (316 km2) of land in Sonoma County, Califor-
nia, through 6 November (Cal Fire, 2020). Interestingly,
GOES-17 detected the heat signature from this fire within
a minute of detection from ground-based cameras (Lind-
ley et al., 2020). Figure 9 presents daily averaged retrievals
of AOD, FMF, effective radius, and SSA for the Kincade
Fire region from 24–29 October 2019, even though MAG-
ARA was run from 23 October–1 November. Like the Camp
Fire case study, MAGARA was run for several relatively
clean days to retrieve BRFSurf. Unlike the Camp Fire case,
where the temporal cadence of the input observations was
15 min, the temporal cadence of the input observations here
is 10 min. The output cadence of the MAGARA retrieval here
is 15 min, meaning the algorithm automatically interpolated
the data to a coarser temporal grid. Although this was ini-
tially unintentional, this ended up being a useful way to en-
sure that the temporal interpolation code worked as intended.
So we present the results (and the output data) for this section
using that 15 min temporal grid.

As in the previous cases, MAGARA identifies almost all
smoke plumes as either fine-mode dominated, or a mixture
of fine and coarse aerosol. Retrieved effective radius falls
within the range of expectation for biomass burning (∼ 0.1–
0.2 µm ), with 550 nm SSA varying from 0.8–0.9 on the
west coast, to 0.9–1.0 for the fire in Arizona. On 27 Oc-
tober MAGARA retrieves significant coarse mode over the
southern Central Valley region of California. Visual inspec-
tion of the TOA BRFs (not shown) and a comparison with
AERONET (shown in the comparison section) indicate that
this was a dust plume activated by a frontal system moving
from the north to the south. The plume was present in di-
minished quantity the following day, but only a few pixels
of retrievals passed our QA threshold. Another dust plume
was activated over the southern Central Valley on 30 Octo-
ber, but a georegistration anomaly on the GOES-16 ABI sig-
nificantly impacted our retrievals for this day (the anomaly
caused the georegistration to be off by several dozen kilo-
meters for one time-step). Because MAGARA tiles obser-
vations for all bands and ABIs over time and day, one bad
set of BRFs can negatively affect the retrievals for the entire
day or possibly even the entire period. This represents one of
the significant limitations of MAGARA, as it makes large-
scale data processing very difficult. Additionally, MAGARA
retrievals over water in the northwest corner of the scene ap-
pear to be negatively impacted by poor cloud/quality screen-
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Figure 7. Same as Fig. 5 but for the Williams Flats Fire region, Pacific Northwest, 3–8 August 2019.

ing and possible variability in surface wind speeds (which
could have substantial impacts without the use of a rough-
ened ocean-surface model). These limitations would need to
be addressed in the future before any version of this algo-
rithm could be operationalized. Regardless, properly identi-
fying both fine- and coarse-mode aerosol in the same scene
over land represents an important step for an algorithm that
uses only scalar, single-view-angle BRFs (albeit from differ-
ent imagers and for different times).

4 MAGARA–AERONET comparison and validation

Here we present comparisons of MAGARA AOD and the
NOAA GOES-16/17 bias-corrected ABI AOD retrievals with
coincident AERONET data. We also compare retrievals of
MAGARA and AERONET FMF and SSA. An overview of
the optimal spatial averaging window to use for comparison
with AERONET is presented in the Supplement.
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Figure 8. Comparison of average 550 nm single-scattering albedo
(y axis) vs. distance from a 2.25 µm hotspot (x axis) with a BRF>
0.99 for the Williams Flats Fire region, Pacific Northwest, 3–8 Au-
gust 2019. Averaging was done in absorbing AOD and AOD space,
prior to converting to single-scattering albedo, as this will minimize
the impact of retrievals outside the smoke plume. In order to mini-
mize the impact of clouds, only retrievals with cost< 20 were used
in this analysis.

4.1 MAGARA and NOAA GOES-16/17 bias-corrected
AOD and comparison with AERONET

Figure 10 shows 2-D histograms of MAGARA vs.
AERONET AOD and 2-D histograms of the NOAA bias-
corrected product vs. AERONET for the 9× 9 spatial aver-
aging window identified in the Supplement. For the 10 148
MAGARA–AERONET coincidences, MAGARA presents a
RMSE of 0.062, MAE of 0.019, correlation coefficient (r) of
0.903, and a fairly large bias of 0.017. For the 10 431 NOAA
bias-corrected/AERONET coincidences, error statistics are
as follows: RMSE= 0.057, MAE= 0.023, r = 0.644, and
a small bias of 0.005. For the 8443 MAGARA–NOAA co-
incidences where both aerosol retrieval algorithms provide
at least one quality-assessed retrieval over the 9× 9 region
centered on AERONET, statistics are as follows: RMSE=
0.040, MAE= 0.016, r = 0.785, and a bias of 0.011 for MA-
GARA, and RMSE= 0.049, MAE= 0.021, r = 0.666, and
a bias of −0.002.

4.2 MAGARA fine-mode fraction comparison with
AERONET

Similar to our MAGARA–NOAA comparison, but now only
for MAGARA, we first identify all MAGARA–AERONET
SDA coincidences within±15 min (10 for the Williams Flats
case). We then save 9×9 pixels of MAGARA spectral AOD
and fine-mode fraction centered on the AERONET site, as
well as AERONET 500 nm fine-mode AOD and AERONET
500 nm coarse-mode AOD. After identifying all good data
(over land and water), we spatially average all MAGARA

data for each AERONET coincidence prior to spectrally in-
terpolating the MAGARA data in log–log space to 500 nm.
This allows us to compare 500 nm AOD and 550 nm fine-
mode fraction with AERONET 500 nm AOD and 500 nm
fine-mode fraction. The difference in wavelength for the fine-
mode fraction comparison is likely much less significant
than the difference in fine-mode definition for MAGARA vs.
AERONET. Therefore, MAGARA 500 nm fine-mode AOD
is presented as 550 nm FMF multiplied by 500 nm spectral
AOD. MAGARA 500 nm coarse-mode AOD is presented as
(1.0 – MAGARA 550 nm FMF) multiplied by 500 nm spec-
tral AOD.

Figure 11 presents an over-land comparison of
MAGARA–AERONET total 500 nm AOD, MAGARA
550 nm fine-mode fraction vs. AERONET 500 nm fine-
mode fraction, MAGARA 500 nm fine-mode AOD vs.
AERONET 500 nm fine-mode AOD, and MAGARA 500 nm
coarse-mode AOD vs. AERONET 500 nm coarse-mode
AOD. The upper-left panel of Fig. 11 is very similar to the
upper-left panel of Fig. 10, with the only difference being
that Fig. 11 is plotted as a function of 500 nm AOD instead
of 550 nm AOD. The slight discrepancy in the number of
coincidences is due to Fig. 10’s requirement of at least
512 MAGARA retrievals centered on the AERONET site,
vs. Fig. 11’s requirement of 92, meaning we are including
AERONET sites in Fig. 11 that were not present for the spa-
tial averaging window analysis presented in the Supplement.
Overall statistics for Fig. 11 are presented in the title of each
panel, but statistics for the 384 coincidences of fine-mode
fraction with MAGARA 500 nm AOD> 0.3 are as follows:
MAE= 0.031, RMSE= 0.10, and correlation coefficient =
0.902.

An over-water comparison of MAGARA and AERONET
500 nm AOD (and FMF) is provided as Fig. 12.

Note that there are far fewer coincidences of MAGARA
vs. AERONET, and most of the coincidences should be far-
ther from the AERONET site (over ocean). This means that
it is more likely that MAGARA reports a smoke plume
when AERONET observes clear sky, as seems to be indi-
cated by the lower-left panel of MAGARA–AERONET 2-
D histograms of fine-mode AOD. Because the AERONET
sites closest to water do not appear to observe as much
coarse-mode aerosol as sites further inland, the FMF statis-
tics over water cannot be used to identify smoke/dust dis-
crimination. The statistics for the 117 over-water coinci-
dences with 500 nm MAGARA AOD> 0.3 are as follows:
MAE= 0.045, RMSE= 0.088, and r = 0.783. Interestingly,
the clear high bias in MAGARA-retrieved fine-mode AOD
appears somewhat balanced by a low bias in MAGARA-
retrieved coarse-mode AOD. This discrepancy could be ei-
ther algorithmic (we do not use a roughened ocean surface
model at all for MAGARA) or just due to smoke/dust aerosol
variability discrepancy for these case studies. The Kincade
and Camp Fire plots of daily averaged particle properties
indicate that we should have good sensitivity to FMF over
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Figure 9. Same as Fig. 5 but for the Kincade Fire region, Southwest United States, 24–29 October 2019.

water. Still, we need more data in order to quantify this.
Regardless, our total AOD error statistics (MAE= 0.013,
RMSE= 0.087, r = 0.889) are similar to our over-land re-
trievals.

4.3 MAGARA single-scattering albedo comparison
with AERONET

Section 3 provides evidence that MAGARA should have
(Fig. 6) some sensitivity to single-scattering albedo over
land. Figures 5, 7, and 9 provide some evidence that MAG-
ARA probably has qualitative sensitivity to single-scattering
albedo. Additionally, Fig. 8 indicates that MAGARA may
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Figure 10. The 2-D histograms of MAGARA and NOAA bias-corrected 550 nm AOD retrievals vs. AERONET 550 nm AOD. Panel (a)
represents the MAGARA vs. AERONET 550 nm AOD 2-D histogram with a 9× 9 pixel spatial average. Panel (b) represents the NOAA
GOES-16/17 bias-corrected vs. AERONET 550 nm AOD 2-D histogram with a 9× 9 pixel spatial average. Panels (c and d) represent the
same as (a and b), but with the requirement of at least one valid MAGARA and NOAA bias-corrected pixel for each AERONET coincidence
(apples to apples). A standard ±(0.03+ 0.15 ·AOD) uncertainty envelope is provided for reference, with the percent meeting that threshold
indicated. Statistics for each panel are presented in the title.

also have sensitivity to over-land gradients of smoke plume
SSA. Here, we statistically compare retrievals of MAGARA
SSA against retrievals of AERONET (almucantar) SSA. As
in the prior two subsections, we perform 9× 9 pixel aver-
ages of spectral AOD and spectral absorbing AOD before
converting to spectral single-scattering albedo. AERONET
spectral fine-mode, coarse-mode, and absorbing AOD are
temporally averaged over ±10–15 min. Still, because the al-
mucantar inversions are done only every hour (at best), we
choose the closest (temporal) AERONET inversion. Because
AERONET data are unavailable for MAGARA’s longest
wavelengths, we only compare results for the following
wavelengths: 470, 550, 636, and 864 nm. AERONET spec-
tral AOD (fine, coarse, and absorbing) data are interpolated
to these wavelengths via fitting to a second-order polyno-
mial in log–log space prior to conversion to single-scattering
albedo.

It is important to note for this analysis that retrievals of
AERONET single-scattering albedo are not fully spectrally

independent, as restrictions on the smoothness of the imag-
inary part of refractive index can cause artificial biases in
the retrieved spectral single-scattering albedo (Sinyuk et al.,
2022). Because MAGARA employs discrete aerosol optical
models, the same can be said for MAGARA results. Ad-
ditionally, MAGARA only retrieves fine- and coarse-mode
aerosol particle properties at a daily cadence. However, be-
cause fine-mode fraction is allowed to vary at the cadence
of reported AOD, MAGARA single-scattering albedo can
vary over the course of the day. We present color-coded
scatterplots of MAGARA and AERONET spectral single-
scattering albedo as a four-panel plot in Fig. 13. For each
panel except for the lower right, statistics for all data are
presented in the title. We also provide statistics for each
spectral band separately in the color-coded legend. At lower
AOD (upper left panel; 0.3 ≤ MAGARA spectral AOD <

0.5), the 126 MAGARA retrievals show good agreement with
AERONET: RMSE= 0.022, MAE= 0.018, and r = 0.752.
Because data are only plotted here if MAGARA-retrieved
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Figure 11. Over-land comparison of MAGARA vs. AERONET AOD, fine-mode fraction, fine-mode AOD, and coarse-mode AOD. Panel
(a) represents a 2-D histograms of MAGARA vs. AERONET 500 nm AOD. Panel (b) is a scatterplot of MAGARA 550 nm fine-mode fraction
vs. AERONET 500 nm fine-mode fraction, for MAGARA-retrieved 500 nm AOD> 0.3. Panel (c) represents a 2-D histograms of MAGARA
vs. AERONET 500 nm fine-mode AOD. Panel (d) represents a 2-D histograms of MAGARA vs. AERONET 500 nm coarse-mode AOD.
Statistics for each panel are presented in the title. For the comparisons of AOD, a standard ±(0.03+ 0.15 ·AOD) uncertainty envelope is
provided for reference, with the percent meeting that threshold indicated.

spectral AOD falls within the range of 0.3–0.5, agreement
improves with wavelength, as these data are mostly fine-
mode dominated smoke plumes. At higher AOD (upper right
panel; MAGARA spectral AOD> 0.5), correlation contin-
ues to improve to 0.84, but the error statistics for the 116
MAGARA data points worsen substantially: RMSE= 0.030
and MAE= 0.028. If we plot MAGARA–AERONET spec-
tral SSA as a function of MAGARA-retrieved spectral AOD
(lower-right panel), we find the source of the discrepancy be-
tween correlation and error. Compared to AERONET, MAG-
ARA spectral single-scattering albedo becomes increasingly
negatively biased with increasing retrieved AOD. Although
we are unsure of the cause here, a simple bias correction is
sufficient to significantly mitigate the issue.

Figure 14 shows the same MAGARA–AERONET com-
parison, this time with the following MAGARA bias cor-
rection: SSA= SSA+0.055−0.075e−τ , where τ represents
spectral aerosol optical depth. Additionally, MAGARA SSA
is capped at 0.995, as this is a more realistic upper bound

for spectral SSA. All spectral bands show large improve-
ments in MAGARA SSA error statistics at elevated AOD
(AOD> 0.5): RMSE drops 50 % from 0.030 to 0.015, MAE
drops nearly 65 % from 0.028 to 0.01, and the correlation
coefficient increases from 0.84 to 0.87.

A comparison of AERONET and MAGARA AAE was
also performed, but it is not included here. Although
the agreement with AERONET was poor, there are only
14 MAGARA–AERONET coincidences with MAGARA
863 nm AOD> 0.5. Additionally, the angular smoothness
constraints placed upon the AERONET retrieval could sub-
stantially impact AERONET’s results (Sinyuk et al., 2022;
Wagner and Silva, 2008). AERONET Version 4 should ad-
dress these issues, and we look forward to a comparison at
that point.
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Figure 12. Same as Fig. 11 but for over-water coincidences.

5 Conclusions

In Sect. 1, we delve into the history of geostationary re-
mote sensing, briefly describing some of the advances in
geostationary imagers, especially as they relate to the ad-
vanced baseline imager. We also present MAGARA in the
context of other work being done in this area. Section 2
gives a detailed overview of MAGARA, from data download
and initial processing to aerosol and surface retrievals. By
the end of Sect. 2, MAGARA should manifest as a multi-
faceted pixel-level (up to 1 km) retrieval algorithm that oper-
ates on relatively simple and realistic (for certain geographic
regions) assumptions for a given location in the geostation-
ary field of view: (1) initial cloud screening is adequate to
remove most clouds; (2) the surface BRF (i.e., reflectance)
changes minimally from day to day for a given time of day
from a geostationary perspective; (3) fine- and coarse-mode
aerosol particle properties vary minimally over the course
of a day, though their AOD and fine-to-coarse ratio might
not; and (4) aerosol loading (i.e., AOD) and the fraction of
fine-to-coarse modes may change rapidly over 10 min to 1 h
timescales. Because the last three assumptions hold up quite
well in most situations, as illustrated by the results, the suc-
cess of MAGARA for these current case studies is mostly

driven by our ability to screen clouds and cloudiness in gen-
eral, a common problem in all aerosol remote sensing.

In Sect. 3, we present three case studies demonstrating the
qualitative efficacy of MAGARA: the 2018 Camp Fire, the
2019 Williams Flats Fire, and the 2019 Kincade Fire. Re-
trievals for the 2019 Camp Fire, which devastated the town
of Paradise, California, demonstrate MAGARA’s qualitative
sensitivity to total aerosol loading, single-scattering albedo,
and fine-mode fraction. These results are impressive consid-
ering that MAGARA was run only for GOES-16, as GOES-
17 data were unavailable.

For our second case study, we analyzed the 2019 Williams
Flats Fire over the Pacific Northwest region of the United
States and southwestern Canada. AERONET-reported AODs
are too low to validate information about aerosol particle
properties. Still, retrievals of single-scattering albedo from
MAGARA suggest qualitative sensitivity to gradients in
single-scattering albedo, consistent with MISR RA retrievals
over the same region. This case study also highlights one
of the problems with MAGARA, an assumption of near-
invariance in the surface reflectance from day to day.

For our third case study, we analyzed the 2019 Kincade
fire over the same region as for the Camp Fire case study.
Over the course of several days, MAGARA observed sev-
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Figure 13. Over-land MAGARA vs. AERONET spectral single-scattering albedo comparison, conditioned on MAGARA-retrieved spectral
AOD. Panel (a) shows MAGARA (y axis) vs. AERONET (x axis) spectral single-scattering albedo, for MAGARA-retrieved AODs between
0.3 and 0.5. Panel (b) shows MAGARA (y axis) vs. AERONET (x axis) spectral single-scattering albedo, for MAGARA-retrieved AODs
greater than 0.5. Panel (c) shows MAGARA (y axis) vs. AERONET (x axis) spectral single-scattering albedo, for MAGARA-retrieved
AODs greater than 0.3. Panel (d) shows MAGARA single-scattering albedo errors (y axis) vs. MAGARA-retrieved spectral AOD (x axis),
for MAGARA AOD> 0.3. Statistics for all points within a plot are presented in the title. Spectral single-scattering albedo statistics are
presented in the legend. The solid black line in the lower-right panel is represented by 0.075e−AOD

− 0.055.

eral smoke plumes, identifying them as being dominated by
fine-mode, absorbing aerosol. Interestingly, two days within
this case study show significant dust plumes, which MAG-
ARA retrieves as coarse-mode aerosols, one of which is also
captured by AERONET. This case study also highlighted a
potential limitation of MAGARA. A large georegistration
anomaly on 30 October for GOES-16 caused the algorithm
to mask out much of that day’s retrievals as poor quality. Be-
cause MAGARA tiles observations over both day and time
of day for several days, the algorithm is especially sensitive
to temporally varying radiometric/georegistration errors.

In Sect. 4, we provide comprehensive validation of MAG-
ARA AOD, fine-mode fraction (FMF), and single-scattering
albedo (SSA) against AERONET using only ±10–15 min

temporal averages for AERONET while also providing some
context with NOAA’s bias-corrected aerosol product. Af-
ter identifying an optimal averaging distance of 92 pix-
els (retrievals), we compare MAGARA and the NOAA
bias-corrected product against AERONET for the same
8443 coincidences. Overall, MAGARA median absolute er-
ror (MAE; 0.016 vs. 0.021) and root-mean-squared error
(RMSE; 0.040 vs. 0.049) are approximately 25 % lower than
the NOAA bias-corrected retrievals, with a correlation coef-
ficient of about 0.12 larger (r; 0.785 vs. 0.666). Additionally,
MAGARA quality appears significantly better at smaller spa-
tial scales (smaller averaging window).

Comparing MAGARA retrievals of fine-mode fraction to
AERONET spectral deconvolution data (n= 384), we re-
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Figure 14. Same as Fig. 13 but with bias correction of (0.075e−AOD
− 0.055) subtracted from the data.

port the following over-land error statistics: MAE= 0.031,
RMSE= 0.100, and r = 0.902. This suggests that MAG-
ARA is sensitive to fine-mode fraction at a temporal cadence
of 10–15 min.

We also compare retrievals of MAGARA spectral single-
scattering albedo with AERONET, even though MAGARA
only retrieves fine- and coarse-mode aerosol particle proper-
ties at a daily cadence. Because MAGARA does retrieve fine-
mode fraction at a much higher cadence, retrieved single-
scattering albedo technically varies at the cadence of reported
AOD/FMF. For MAGARA-retrieved spectral AOD between
0.3 and 0.5 (relatively low AOD, n= 126), MAGARA agrees
well with AERONET: MAE= 0.18, RMSE= 0.022, and
r = 0.752. At higher AOD, MAGARA suffers from a large
negative bias in retrieved SSA, resulting in the following
error statistics for our 116 MAGARA–AERONET coinci-
dences: MAE= 0.028, RMSE= 0.030, and r = 0.840. A
simple single parameter (AOD) bias correction is then pre-
sented, resulting in the following error statistics at high AOD:
MAE= 0.010, RMSE= 0.015, and r = 0.870. Although we

do not delve into the causes of this SSA bias, it is likely
at least partially because MAGARA only retrieves fine- and
coarse-mode aerosol properties at a daily cadence and that
the much higher cadence of retrieved fine-mode fraction is
unable to compensate for real diurnal variability in SSA.
From a retrieval standpoint, the fact that an AOD-based bias
correction can substantially mitigate this issue is very inter-
esting and convenient. That being said, we will need much
more data to verify these findings.

This article demonstrates MAGARA’s ability to retrieve
AOD and aerosol properties such as fine-mode fraction
and single-scattering albedo. Satellite observations from the
Camp Fire case indicate that aerosol absorption was substan-
tial at 870 nm, as the top-of-atmosphere signal declined sig-
nificantly when the plume moved over the region. MAGARA
was capable of discriminating smoke from dust for the Kin-
cade Fire case study. MAGARA’s ability to discern aerosol
loading and particle properties from geostationary data could
profoundly impact our ability to accurately model aerosol
within climate models. Additionally, the 10 min cadence of
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MAGARA retrievals and our ability to accurately separate
the fine and coarse modes could significantly improve air-
quality modeling and forecasting in certain regions. The re-
gions most likely to benefit from a MAGARA style approach
are those places where surface reflectance is slow to vary and
cloud cover is minimal: the western United States, north-
central Africa, the Middle East, parts of central Asia, and
large portions of Australia.

Future work for MAGARA includes the ingestion of high-
resolution column water vapor and ozone, which will allow
us to better account for trace gas absorption. Additionally,
ABI 1.37 µm and thermal infrared channels will be utilized to
improve cloud screening, allowing for the algorithm to be run
in regions where cloudiness is more pervasive. Depending on
the level of interest from the community, we may also con-
sider extending MAGARA to other geostationary imagers in
the future.
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