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Abstract. Ceilometers are used routinely at aerodromes
worldwide to derive the height and sky coverage fraction
of cloud layers. This information, possibly combined with
direct observations by human observers, contributes to the
production of meteorological aerodrome reports (METARs).
Here, we present ampycloud, a new algorithm, and its asso-
ciated Python package for automatic processing of ceilome-
ter data with the aim of determining the sky coverage frac-
tion and base height of cloud layers above aerodromes. The
ampycloud algorithm was developed at the Swiss Federal
Office of Meteorology and Climatology (MeteoSwiss) as
part of the AMAROC (AutoMETAR/AutoReport rOund the
Clock) program to help in the fully automatic production of
METARs at Swiss civil aerodromes. ampycloud is designed
to work with no direct human supervision. The algorithm
consists of three distinct, sequential steps that rely on ag-
glomerative clustering methods and Gaussian mixture mod-
els to identify distinct cloud layers from individual cloud
base hits reported by ceilometers. The robustness of the
ampycloud algorithm stems from the first processing step,
which is simple and reliable. It constrains the two subsequent
processing steps that are more sensitive but also better suited
to handling complex cloud distributions. The software im-
plementation of the ampycloud algorithm takes the form of
an eponymous, pip-installable Python package developed on
GitHub and made publicly accessible.

1 Introduction

Ceilometers are being used at numerous aerodromes world-
wide to derive autonomously the base height and sky cov-
erage fraction of cloud layers (Wauben et al., 2006; ICAO,
2011; de Haij et al., 2016). These parameters form an
essential component of meteorological aerodrome reports
(METARs; WMO, 2022). These compact telegrams provide
a detailed description of the current meteorological condi-
tions at and around the aerodrome ground to pilots, air traffic
controllers, and aerodrome safety services. Regulations from
the International Civil Aviation Organization (ICAO) and the
corresponding European Commission of Implementing Reg-
ulation (CIR, EU373) dictate that METARs should be issued
at 30 min intervals – or less in the case of a rapid change in
terms of operational significance in the meteorological con-
ditions. Depending on local agreements, the latter situation
leads to a SPECI (with the same template as METARs) or a
local special report (SPECIAL – with the same template as
local routine reports, known as MET REPORTs). METARs
and/or SPECIs are representative of the whole aerodrome
and are thus mainly used by pilots for flight planning, while
MET REPORTs and/or SPECIALs are representative of the
threshold and touchdown zone of a specific runway and are
mostly used for the management of landing and departure
operations by air traffic controllers (ATCs).

The first METAR in Switzerland was issued in 1969
(Willemse and Furger, 2017). The Swiss Federal Office
of Meteorology and Climatology (MeteoSwiss) is currently
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responsible for the production of METARs at the Swiss
civil aerodromes. These include the international aerodromes
of Geneva (ICAO code: LSGG) and Kloten (ICAO code:
LSZH) and eight regional aerodromes. Since 2007, this
production has been conducted using the SM/\RT (Sys-
tem for Meteorological Automated ReporTing) software that
has been fully developed and maintained by MeteoSwiss.
SM/\RT is comprised of both a backend component and a
frontend component. The backend is responsible for the data
collection from meteorological sensors and includes algo-
rithms for the generation of METAR, MET REPORT, and
SPECIAL proposals every minute. The frontend includes the
SM/\RT editor, which is used by the aeronautical meteoro-
logical observers (AMOs) to compile and send the reports
(supported by the message proposals) and a series of “view-
ers” showing, for example, the real-time data from meteoro-
logical sensors on different runways, among others.

The 24/7 automation of METARs is a challenging objec-
tive that has been pursued by several meteorological services
over the years (see, e.g., Leroy, 2006; Wauben et al., 2006;
Hartley and Quayle, 2014; JMA, 2022). With its AMAROC
(AutoMETAR/AutoReport rOund the Clock) program, Me-
teoSwiss is no exception (MeteoSwiss, 2022). At first, the
automatic METAR, MET REPORT, and SPECIAL propos-
als generated by SM/\RT at LSGG and LSZH were system-
atically reviewed and adjusted by AMOs during the aero-
drome’s operational hours (05:30–23:30 LT). Since Novem-
ber 2016 at LSGG and since April 2021 at LSZH, dur-
ing non-operational hours only, SM/\RT-generated METARs
have been issued without any human interaction. At LSGG,
they have been distributed around the clock since 1 Decem-
ber 2024 and are referred to as AUTO METARs, AUTO MET
REPORTs, and AUTO SPECIALs.

Deriving cloud base heights and sky coverage fractions
from ceilometer data requires dedicated software. A pi-
oneering algorithm assembled by Esbjörn Olsson at the
Swedish Meteorological and Hydrological Institute (SMHI)
in 1995 was subsequently shared with ceilometer manu-
facturers Vaisala and Eliasson (at least), who further de-
veloped it (Britt Nordberg, SMHI, private communication,
2022). The original SMHI algorithm was also the base for
the software deployed at aerodromes in the Netherlands
by the Royal Netherlands Meteorological Institute (KNMI)
(Wauben, 2002). In the Unites States, the “sky condition al-
gorithm” developed for the Automated Surface Observing
Systems (ASOS; Nadolski, 1998) is another example.

Despite their widespread use, very little detailed informa-
tion exists on these different algorithms beyond the fact that
they rely on clustering methods. None of the associated soft-
ware are open-source, and several are, in fact, considered to
be trade secrets. As a result, the national weather services
who want to have full control over their software are of-
ten forced to re-develop custom algorithms and/or associated
software from scratch. The opacity surrounding the differ-
ent algorithms responsible for generating AUTO METARs

worldwide prevents any external (neutral) assessment, vali-
dation, and/or intercomparison of their capabilities. Further-
more, the lack of open-source software and publicly avail-
able documentation hinders the improvement of algorithms
through collaborative work. This opacity may also impede
the combined use of distinct ceilometer types at a given site.

In this article, we present ampycloud, a new open-source
algorithm, and its associated Python package designed to de-
rive the base height and sky coverage fraction of cloud layers
from ceilometer data. ampycloud is part of the SM/\RT back-
end. It is one among several new and/or improved algorithms
developed at MeteoSwiss as part of the AMAROC program,
with the goal of generating fully automated METAR reports
at Swiss civil aerodromes. The algorithm itself is introduced
in Sect. 2. The ampycloud Python package, its computational
performance and accuracy, and its deployment and opera-
tional use by MeteoSwiss are all described in Sect. 3. The
known limitations of ampycloud are discussed in Sect. 4, to-
gether with different enhancement possibilities. Our conclu-
sions are presented in Sect. 5.

Throughout this article, heights are reported in units of feet
(ft), with 1 ft = 0.3048 m.

2 The ampycloud algorithm

2.1 Requirements

An algorithm that has to operate 24/7 without direct human
supervision should meet specific requirements. In particular,
it should be

1. robust (any input, no matter its plausibility, is process-
able) and

2. reliable (any input results in a reasonable output).

For the specific case of generating information to be used
in METARs, the algorithm should also be designed to be

3. stable (a small change in the input results in a small
change in the output),

4. conservative (if two possible outputs are equally prob-
able, the worst one – from an aerodrome and/or flight
safety perspective – is to be favored), and

5. fast (the processing time should be less than ∼ 1 min in
order to issue SPECIs or SPECIALs as soon as they are
warranted).

Furthermore, any meteorological algorithm can also bene-
fit from being

6. physics-based (methods and parameters have a physical
interpretation and justification).

This can ease, for example, the selection of parameter values
and the identification of specific shortcomings in the algo-
rithm and, thus, of elements with potential for improvement.
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A supervised machine learning method trained to reproduce
(subjective) cloud observations would be an example of a
non-physics-based algorithm, which is generally more dif-
ficult to interpret and often expensive to maintain (typically
denoted as a black box; see, e.g., Sculley et al., 2015; Rudin,
2019). ampycloud was developed with these different re-
quirements in mind.

One should note that the ampycloud algorithm was not de-
veloped because the other algorithms serving similar goals
and being used at aerodromes worldwide are unfit for their
purpose. Rather, it is the lack of information and trans-
parency about their design that led MeteoSwiss to assemble
ampycloud, in addition to ensuring its long-term maintain-
ability and extendability.

2.2 Algorithm concept

The ampycloud algorithm is composed of three sequential
steps, which we refer to as slicing, grouping, and layering.
The slicing step is designed for robust detection of the main
cloud layers. It is meant to constrain the ampycloud outputs
to a reasonable range, no matter the input data. The high
degree of reliability in this step is achieved by reducing its
capacity to handle complex cloud distributions. Specifically,
the slicing step is subject (by design) to two pitfalls:

1. It can split cloud layers that span a broad range of
heights and/or have a marked upward or downward
trend.

2. It can aggregate close-but-distinct cloud layers.

The grouping and layering steps of the ampycloud algo-
rithm are designed specifically to refine the slicing step. The
slicing, grouping, and layering steps of ampycloud thus form
a coherent sequence, with each step operating on the outcome
of the previous one.

ampycloud reports compliant METAR codes1 for up to
three cloud layers at most, with the following selection rules
(ICAO, 2018):

– The lowest layer is always reported.

– The second layer up is reported if it has a sky coverage
of SCT or more.

– The third layer up is reported if it has a sky coverage of
BKN or more.

It must be stressed that, when used on its own, ampycloud
can comply with only a subset of the ICAO’s rules for cloud
reporting in the sense that it is designed to characterize cloud
layers with well-defined bases only. The ampycloud algo-
rithm does not concern itself with the question of whether

1By definition, the METAR codes FEW, SCT, BKN, and OVC
correspond to sky coverage fractions of 1–2 oktas, 3–4 oktas, 5–
7 oktas, and exactly 8 oktas, respectively.

a vertical-visibility (VV) code should be reported instead of
a cloud base height in METARs. At MeteoSwiss, this aspect
is being handled by different tools within the SM/\RT infras-
tructure. Obscuration of the sky by fog or snow is also being
handled by a separate algorithm within SM/\RT. ampycloud
does not consider the question of convective cloud detection
(CB/TCU) either, which is best done using a combination
of lightning and weather radar data. Regulations state that “if
there are no clouds of operational significance and no restric-
tion on vertical visibility and the abbreviation CAVOK is not
appropriate, the abbreviation NSC should be used” (ICAO,
2018). Given its scope, ampycloud cannot decide whether a
CAVOK code is appropriate and will therefore always return
the code NSC if there are no cloud layers found below the
minimum sector altitude (MSA). If no clouds are detected at
all by the ceilometers, ampycloud will return the code NCD.
Importantly, users should bear in mind that because ampy-
cloud does not and cannot handle CB and TCU cases, any
NCD or NSC code issued by ampycloud may need to be
overwritten by the user in certain situations.

2.3 Input data

The World Meteorological Organization (WMO) defines
a cloud base as “a zone in which the obscuration cor-
responding to a change from clear air or haze to water
droplets or ice crystals causes significant changes in the pro-
files of the backscatter and extinction coefficients” (WMO,
2021). Ceilometers deployed at aerodromes worldwide are
designed to detect such changes in backscatter coefficient
profiles (ICAO, 2011), which are typically reported in the
form of cloud base and/or vertical-visibility (VV) hits (see,
e.g., Vaisala Oyj, 2015; Campbell Scientific, 2021; OTT
HydroMet, 2022) but with significant differences between
ceilometer types or models (Martucci et al., 2010; Görs-
dorf et al., 2016, 2018). ampycloud is designed to use cloud
and VV hits acquired by one or more ceilometers over a
time interval 1t to characterize the cloud base heights and
sky coverage fractions above a specific area. This is a well-
established approach (Wauben et al., 2006; Nadolski, 1998;
Wauben et al., 2006; ICAO, 2011; WMO, 2021). It relies on
the wind dragging the cloud distribution over the ceilome-
ter line(s) of sight to enhance their otherwise very restricted
spatial sampling capabilities and, thus, to obtain a more rep-
resentative view of the sky. The longer the time interval or
the larger the wind speed, the better the spatial representa-
tivity of the dataset but the worse the view of the “current”
state of the sky (especially in the case of rapidly changing
conditions).

ampycloud requires every cloud and VV hit h to be com-
prised of four elements:

h≡ (hhgt,htme,hcid,htpe), (1)

with hhgt being the cloud base height above aerodrome level
(a.a.l.; in ft); htme being the observation time (in seconds –
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Table 1. Summary of the ceilometers deployed at the LSGG and LSZH civil aerodromes as of May 2024. The MSA values are expressed in
units of feet above aerodrome level (ft a.a.l.; MeteoSwiss, 2023).

Aerodrome City Elevation MSA Ceilometer

count model manufacturer measurement
time interval

LSGG Geneva 1411 ft a.m.s.l. 10 000 ft a.a.l. 4 CL31 Vaisala 15 s
LSZH Kloten 1416 ft a.m.s.l. 8000 ft a.a.l. 7 CL31 Vaisala 15 s

either as absolute Unix time or relative to a specific event,
e.g., the most recent ceilometer data in the set); hcid be-
ing a ceilometer reference ID; and htpe being the hit type,
which will be explained below. The models and numbers of
ceilometers in operation at LSGG and LSZH are summarized
in Table 1. The use of ampycloud is not restricted to any spe-
cific model of ceilometer in particular, provided that individ-
ual hits can be specified following Eq. (1). One should note
that, for the moment, ampycloud cannot use full backscat-
ter profiles to derive cloud base hits independently from the
ceilometers’ proprietary software. Implementing such a ca-
pability could enhance the robustness and traceability of the
hit derivation, but it would not fundamentally change the be-
havior of the ampycloud algorithm in itself.

ampycloud can process measurements from any number
of ceilometers and makes no distinction between them. Data
from different ceilometers are analyzed together, indepen-
dently of the spatial distribution of the instruments on the
ground. The specification of hcid for every hit ensures that a
correct estimation of the sky coverage fraction can be made
under the assumption that cloud layers have a unique base
per time step per ceilometer line of sight. Without a value
of hcid to differentiate sightlines, two simultaneous measure-
ments from distinct ceilometers would not be distinguishable
and, thus, would possibly become contradictory. One can, of
course, apply ampycloud to a smaller number of ceilome-
ters, e.g., to a specific subset associated with a given runway
to generate local routine reports (AUTO MET REPORTs).

Aside from operational redundancy, one benefit of using
multiple ceilometers to characterize cloud layers lies in the
boost of the probability of detecting clouds (clear sky) for
cloud layers with very low (very high) sky coverage frac-
tions. This fact, demonstrated experimentally by Wauben
(2002), is illustrated in Fig. 1. The ability to better distinguish
between OVC and BKN layers may not be a crucial benefit
in itself, given that both categories imply the existence of an
(operationally relevant) “ceiling”. However, using multiple
ceilometers can also contribute to a reduction in the cases
of gross overestimation or underestimation of sky coverage
fractions under slow-moving conditions (i.e., low wind with
quasi-stationary clouds), provided that the horizontal separa-
tion between ceilometers is larger than the applicable cloud
characteristic scale length (Slobodda et al., 2015; Denby et
al., 2022).

Figure 1. Theoretical improvement in the probability of getting at
least one cloud hit with n ceilometers p>1(n) compared to only one
ceilometer p>1(1) (at any one specific moment in time), ignoring
any spatial scale considerations in the cloud and ceilometer distri-
butions (red curves). The mirrored probabilities of detecting at least
one clear sightline p<n are shown in gray.

It is important to consider the hit type htpe to derive a cor-
rect estimation of the sky coverage fraction of cloud layers.
Typically, ceilometers can report multiple cloud base heights
and/or vertical visibilities with every observation (i.e., at ev-
ery time step). For example, the ceilometers deployed at
LSZH and LSGG report, for every measurement, either up
to three distinct cloud base heights or a vertical visibility
and signal range (Vaisala Oyj, 2015). The latter occurs if the
sky is obscured (for example, due to fog or precipitation).
The hit type htpe is used to keep track of these differences.
It must be stressed, however, that ampycloud does not treat
vertical-visibility (VV) hits differently to regular hits. Every
hit h inputted into ampycloud is treated as a regular cloud
base hit. It is up to the user to decide if and when VV hits
should be provided to ampycloud and whether they need to
be pre-processed in any way before doing so. Not passing
VV hits to ampycloud can lead to an underestimation of the
sky coverage fraction. However, VV hits can also be caused
by precipitation that might lead to the reporting of spurious
(lower) cloud layers. As of the release of ampycloud v1.0.0,
MeteoSwiss inputs any VV hits reported by CL31 ceilome-
ters into the code without further selection or modification of
their reported height.
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ampycloud works in a relative time space and will auto-
matically assign to each measurement a time difference with
respect to the latest one. The algorithm poses no restriction
on the time interval 1t over which cloud and VV hits can be
bundled. For historical reasons, cloud and VV hits spanning
1t = 15 min for AUTO METARs (from all ceilometers) and
1t = 6 min for AUTO MET REPORTS (from specific pairs
of ceilometers associated with a given runway) serve as in-
puts for ampycloud at LSGG and LSZH. Users can, how-
ever, freely choose to collect cloud and VV hits over a longer
time interval: ampycloud will process whatever collection of
cloud and VV hits it receives as input.

2.4 The parameters of ampycloud

The parameters of ampycloud are summarized in Table 2.
Those specifically related to the slicing, grouping, and lay-
ering steps will be discussed in Sect. 2.6. The other ampy-
cloud parameters are responsible for the generation of com-
pliant METAR codes. It must be stressed that the default val-
ues provided in Table 2 for the different parameters are not
necessarily applicable universally. Depending on their needs
and/or instrumental setups, some users may wish to consider
adjusting some of them, for example 20 and/or 28. 20 is
the maximum (absolute) number of cloud hits required for a
given slice, group, or layer to still be considered to be NCD
by ampycloud; 28, on the other hand, is the maximum num-
ber of “holes” (i.e., non-detection of clouds) required for a
given slice, group, or layer to be considered to be OVC by
ampycloud. We adopt 20 = 3 hits (28 = 1 hole) at LSGG
to avoid assigning cloud layers with low (high) sky cover-
age fractions to noise fluctuations and false cloud detections
(e.g., returns by airplanes passing above a ceilometer2).

ampycloud computes the base height of a given slice Si ,
group Gi , or layer Li as the βh percentile of the sorted hit
heights within the βt percentage of the most recent hits in
the slice, group, or layer. We adopt βh = 5 % and βt = 100 %
by default, such that all hits within a given slice, group, or
layer are used to derive the height of its base. It must be
stressed that ampycloud does not apply any weighting to the
different hits prior to computing the base height or sky cov-
erage fraction of a specific slice, group, or layer. This choice
is motivated by the following argument. ampycloud bundles
ceilometer data over a certain time interval 1t to obtain a
(more) representative view of the sky. All cloud hits, irre-
spective of their age, are equally trusted in order to identify
cloud layers. It thus makes sense to also treat them all equally
when computing the cloud base height of the identified lay-
ers. For ampycloud, old hits are not less valid: they merely
represent the state of the sky further away than the ceilometer
lines of sight. Nonetheless, if a user were to prefer the cloud
base heights to be more representative of the most recent hits

2The recent release of an “airplane hit filter” by Vaisala may
possibly warrant an adjustment of the default value of 20 in the
future.

within a slice, group, or layer, the βt parameter can be set to
lower values, e.g., βt = 30 %. Note that changing the value
of βt does not have any effect on the sky coverage fraction
measurements.

As will be discussed in Sect. 2.6.3, the layering step is able
to separate cloud layers that are very close to one another if
they are well defined. The grouping step can also lead to sub-
groups in very close proximity to each others when they are
well defined, which can be problematic from a user perspec-
tive. The parameters 1hl,vals = [250,1000] and 1hl,lims =

[0,10000,∞] are introduced to ensure that groups and lay-
ers identified in the second and third steps of the algorithm
are sufficiently far apart. Essentially, the base height of cloud
groups or layers must be at least 1hl,vals[k] ft apart if they
have a base height in the range [1hl,lims[k];1hl,lims[k+1]],
with k ∈ [0,1].

In the ampycloud Python package, two additional param-
eters – HMSA and 1MSA – are used to crop any hit with a
height above aerodrome level that is significantly beyond the
applicable minimum sector altitude (MSA), namely beyond
HMSA+1MSA, where HMSA is the MSA value (specified in
ft a.a.l., e.g., 10 000 and 8000 ft a.a.l. for LSGG and LSZH,
respectively), and 1MSA is a buffer to properly treat cloud
layers whose thicknesses and/or fluctuations extend slightly
beyond the MSA.

2.5 The ampycloud diagnostic diagram

The ampycloud diagnostic diagram for a mock dataset, de-
signed to demonstrate the role of each sequential step of the
algorithm, is presented in Fig. 2. The details of each step
will be discussed in Sects. 2.6.1 to 2.6.3. We do already
note, however, that, with the first robust slicing step being
fine-tuned by the subsequent grouping and layering of cloud
structures, the ampycloud algorithm is not overly sensitive to
any of its parameters in particular.

Individual (artificial) cloud hits are visible in Fig. 2 as
colored points in the diagram. This dataset simulates ob-
servations from four ceilometers, each performing (asyn-
chronous) observations every 15 s, with a look-back time of
900 s. The color of each hit corresponds to the horizontal
slice Si (with i ∈ [1,2,3,4] in this example) they are as-
signed to by the first step of the algorithm. The colored rect-
angles expand ±ε/100 · T (Si) above (below) the maximum
(minimum) height of each slice Si , with ε =+10 being a pa-
rameter of ampycloud and T (Si) being the thickness of the
slice Si . This vertical range is used to identify overlapping
slices that may require grouping. Colored lines correspond
to LOWESS (locally weighted scatterplot smoothing) fits of
the cloud hit distribution within each slice: they are used to
compute the slice fluffiness f (in ft) used in the grouping
step, which will be formally defined in Eq. (4). The black
squares, triangles, and circles around each cloud hit denote
the final layer Li (with i ∈ [1,2,3,4] in this example) they
are assigned to as a result of the third step of the algorithm.
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Table 2. Parameters (and associated default values) controlling the behavior of ampycloud as of version 2.0.0 of the eponymous Python
package. The values of each parameter were chosen and verified using specific examples and a large-scale statistical assessment of the
algorithm’s accuracy (see Sect. 3.4). The meaning and role of each parameter are described in detail in the associated article sections. Note
that the parameter specifying the aerodrome’s MSA must be specified in ft a.a.l. (and not in ft a.m.s.l.).

Parameter Value Unit Python variable name

General – Sect. 2.4

HMSA LSGG: 1× 104, LSZH: 8× 103 ft a.a.l. MSA
1MSA 1500 ft MSA_HIT_BUFFER
20 3 – MAX_HITS_OKTA0
28 1 – MAX_HOLES_OKTA8
βh 5 % BASE_LVL_HEIGHT_PERC
βt 100 % BASE_LVL_LOOKBACK_PERC
1hl,vals [250, 1000] ft MIN_SEP_VALS
1hl,lims [0,10000,∞] ft MIN_SEP_LIMS

Slicing step – Sect. 2.6.1

αs 0.2 – SLICING_PRMS[‘distance_threshold']
τs 105 s SLICING_PRMS[‘dt_scale']
1hs,min 1000 ft SLICING_PRMS[‘height_scale_kwargs'][‘min_range']

Grouping step – Sect. 2.6.2

ε +10 % GROUPING_PRMS[‘height_pad_perc']
τg 180 s GROUPING_PRMS[‘dt_scale']
1hg,min 100 ft GROUPING_PRMS[‘height_scale_range'][0]
1hg,max 500 ft GROUPING_PRMS[‘height_scale_range'][1]
Lfrac 0.35 – LOWESS[‘frac']
Lit 3 – LOWESS[‘it']

Layering step – Sect. 2.6.3

2min 2 okta LAYERING_PRMS[‘min_okta_to_split']
δ 0.95 – LAYERING_PRMS[‘gmm_kwargs'][‘delta_mul_gain']
γ 100 – LAYERING_PRMS[‘gmm_kwargs'][‘rescale_0to']

Figure 2. ampycloud diagnostic diagram for a mock (demonstration) dataset with a 900 s look-back time, designed to illustrate the slicing,
grouping, and layering steps of the algorithm. See Sect. 2.5 for a detailed description of the different elements of this figure.
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The intermediate groups Gi (with i ∈ [1,2,3] in this exam-
ple) identified by the second algorithm step are not shown
for readability purposes.

Secondary x and y axes on the right and at the top of the di-
agram show the rescaled hit time and height axes used for the
slicing and grouping steps. The characteristics of each slice
Si , group Gi , and/or layer Li with a sky coverage fraction
of FEW or more are shown on the right-hand side of the di-
agram, including the measured sky coverage in oktas. Over-
lapping slices are tagged with m. Groups for which the layer-
ing step was executed are tagged with −, =, or ≡ depending
on whether one, two, or three distinct sub-layers were iden-
tified. Cloud slices, groups, or layers found are reported ac-
cording to METAR syntax, i.e., [FEW|SCT|BKN|OVC]nnn,
where nnn is the cloud slice, group, or layer height in hun-
dreds of feet above aerodrome level. Not all cloud slices,
groups, or layers need to be reported according to the ICAO
rules (ICAO, 2018). The relevant ones are boxed.

The final selection of cloud layers is shown in the top right
of the figure. To the bottom left of the diagram, the number of
ceilometers contributing data to the diagram is indicated ex-
plicitly, alongside the maximum number of cloud hits possi-
ble per cloud layer (240 in this example) corresponding to the
total of the individual time steps reported by each ceilome-
ter. The superscripts and subscripts indicate the values of the
parameters 28 and 20 (with the format 8 :28 and 0 :20).
One should note that the number of slices, groups, and layers
reported on the right-hand side of the diagrams do include
clusters that are comprised of less than 20 hits, as illustrated
by the single cloud hit at −800 s (3100 ft a.a.l.) that gets as-
signed its own slice, group, or layer as indicated by the dotted
horizontal line in the diagram.

2.6 The three ampycloud steps

2.6.1 Slicing

Given a set of hits gathered over a time interval 1t , the first
ampycloud step consists of the identification of (horizontal)
height slices Si . The algorithm does this using an agglom-
erative clustering approach with an average linkage criterion
and a Manhattan metric3. The key to the robustness of this
processing step lies in the rescaling of the cloud base hits
along both the time and height dimensions, applied prior to
the clustering.

Given the minimum and maximum hit heights hmin and
hmax, the interval [hmin;hmax] is mapped linearly onto the
interval [0;1]. If, however, hmax−hmin <1hs,min, it is the
following interval:[
hmax+hmin

2
− 0.51hs,min;

hmax+hmin

2
+ 0.51hs,min

]
,

3Implemented in the Python package via the scikit-learn pack-
age (Pedregosa et al., 2011).

with length 1hs,min being mapped onto [0;1] instead. Es-
sentially, 1hs,min (which is a parameter of ampycloud; see
Table 2 for the complete list) ensures that cases with a small
height dispersion do not get over-stretched and, thus, “over-
sliced”.

Along the time axis, hits are rescaled (i.e., normalized) by
a very large number τs . If τs is large enough, the distance
between hits along the time direction becomes essentially
negligible in the rescaled space. As a result, the measure of
the linkage distance – used by the agglomerative clustering
method to decide whether to merge hits or not – is dominated
by the height component of the hits4. In this rescaled space,
a distance threshold αs will identify horizontal slices of hits
whose rescaled mean heights are separated by no more than
αs . With τs � 1, the value of αs represents the maximum
thickness of individual horizontal slices, expressed as a frac-
tion of the total height range in the sample. Hence, at most,
1/αs distinct slices can be identified by ampycloud, and these
will never be thinner than αs ·1hs,min. For the default ampy-
cloud parameters, 1/αs = 5 slices, and αs ·1hs,min = 200 ft.

This rescaling scheme is well suited to identifying ver-
tically stratified cloud layers with a stable base as a func-
tion of time. However, it is ill-suited for cloud layers with
a thick and/or time-varying base height, where the variation
is larger than αs · (hmax−hmin). This shortcoming is illus-
trated in Fig. 2, with the top layer being sliced in two. The
slicing step is also ill-suited to distinguishing isolated cloud
layers separated by less than αs · (hmax−hmin). This is illus-
trated with the bottom two cloud layers in Fig. 2, which are
detected as a single slice.

The grouping and layering steps of ampycloud are de-
signed specifically to handle these limitations of the slicing
step. As a result, the output of ampycloud is not very sensi-
tive to the values of 1hs,min and αs in that any over-slicing
or under-slicing of hits is compensated for by the subsequent
processing steps.

2.6.2 Grouping

This processing step is designed to handle the over-slicing of
coherent cloud hit structures as a result of a broad height span
or marked upward or downward trends of a cloud layer (as
illustrated by the top two slices in Fig. 2). It begins by iden-
tifying so-called overlapping slices. These are flagged by the
symbol m in the ampycloud diagnostic diagrams. By (our)
definition, slices i and j overlap if one of the following two

4The attentive reader may wonder why the slicing step relies on
a 2-D clustering algorithm, given that the use of τs � 1 essentially
implies that a 1-D clustering approach would be equivalent. The
reason for this is historical and is related to the initial assembly of
the ampycloud algorithm.
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conditions is met:

min(Si)−
ε

100
· T (Si) <max(Sj )+

ε

100
· T (Si), (2)

max(Si)+
ε

100
· T (Si) >min(Sj )−

ε

100
· T (Si), (3)

with min(Si) and max(Si) being the minimum and maxi-
mum hit heights of the slice Si , T (Si)=max(Si)−min(Si)
being the thickness of the slice Si , and ε being a parameter
of the ampycloud algorithm. Setting ε = 0 would result in a
strict overlap diagnostic. To avoid edge cases with identical
minima and maxima in terms of cloud hit heights, as well
as to account for natural cloud base height fluctuations, we
adopt a default value of ε = 10 % to slightly pad the slices
by a fraction of their thickness before checking for overlap.
For example, the top two slices in Fig. 2 (green and red)
overlap according to this criterion with our adopted value of
ε =+10 %.

Having identified a set of n overlapping slices, ampycloud
uses an agglomerative clustering method with a single link-
age criterion and an Euclidean metric to identify coherent
sub-groups gk , with k ∈ [1;2; . . .]. Each sub-group gk is sub-
sequently assigned to a master group Gi based on the slice Si
to which the majority of the hits in group gk belong. Hence,
the ampycloud grouping of n overlapping slices will result
in no fewer than one and no more than n master groups G.
In other words, there can be no more groups G than slices
S. Essentially, the slicing step of ampycloud constrains the
grouping step, which would otherwise be overly sensitive to
noisy datasets. It also ensures that sparse cloud layers do not
get broken into sub-groups along the time axis.

The hit heights and (relative) times are rescaled prior to be-
ing inputted into the (single-linkage) agglomerative cluster-
ing method of the grouping step. The rescaling is performed
separately for each set of overlapping slices. In all cases, the
time-axis-scaling factor is set to τg . The height-scaling factor
is taken to be the minimum slice fluffiness fmin in the over-
lapping bundle, provided that fmin ∈ [1hg,min, 1hg,max]. If
fmin is larger (smaller) than 1hg,max (1hg,min), the latter
value is used as the height-rescaling factor instead. The fluffi-
ness f of a slice Si is a measure of the spread of cloud hits
around the smoothed cloud height trend, which we formally
define as follows:

f (Si)= 2 ·
1
N

∑
hk∈Si

∣∣hhgt,k −L(htme,k)
∣∣ , (4)

with N being the number of cloud hits in the slice, hhgt,k
being the individual cloud hit heights, and L(htme,k) being
the LOWESS-derived (Cleveland, 1979) height correspond-
ing to the hit time htme,k . The LOWESS algorithm5 is used
to robustly measure the mean cloud hit height as a function

5Implemented in the ampycloud Python package via the
statsmodels package (Seabold and Perktold, 2010).

of time using a series of localized weighted linear regres-
sions. The LOWESS fit of each slice in Fig. 2 is shown us-
ing colored lines. It relies on two parameters: the fraction
of slice hits (along the time axis) Lfrac to be used for each
linear regression and the number of iterations Lit for each
fit. The LOWESS fit of a given slice Si is fully sensitive to
coherent cloud hit height fluctuations affecting more than a
fraction Lfrac of the slice’s cloud hits. The smaller the frac-
tional duration of a specific height variation is below Lfrac,
the smaller its influence on the resulting LOWESS fit is. By
default, we adopt Lfrac = 0.35, which corresponds to a sen-
sitivity timescale of ∼ 5 min for a uniform cloud hit distribu-
tion observed over an interval of 15 min. The default value of
Lit = 3 ensures that the final LOWESS fit is not affected by
spurious hits with significant height offsets. We note that, al-
though the ampycloud algorithm uses the fluffiness of (over-
lapping) slices S only for the grouping step, the ampycloud
Python package computes the fluffiness of every slice Si ,
group Gi , and layer Li by default.

The agglomerative clustering method with a single-
linkage criterion uses the closest elements of sub-clusters to
decide whether to merge them or not. With a linkage dis-
tance of 1 fixed inside ampycloud, τg and the slice fluffiness
determine the maximum distance (in time and height, respec-
tively) below which two cloud hits will be assumed to belong
to the same cloud structure. Unlike the slicing step that ig-
nores the time information (with τs ≫ 1), the grouping step
is much better suited to tracking coherent height variations as
a function of time, as demonstrated in Fig. 2. In that exam-
ple, the hits in the top two slices (red and green at 3800 and
5400 ft, respectively) are grouped into a single master group
with a base at 3800 ft.

2.6.3 Layering

By design and as illustrated in Fig. 2, the slicing step will in-
evitably bundle distinct cloud structures into common slices
if isolated cloud layers are separated by less than αs ·(hmax−

hmin). The layering step is designed to correct this shortcom-
ing. It relies on the computation of Gaussian mixture models
with one, two, and three components for every master group
Gi with a sky coverage fraction of at least 2min oktas. For
each model, the value of the associated Bayesian informa-
tion criterion BICi is recorded.

Statistically speaking, the best-fitting model out of the
three will have the lowest BIC score. However, cloud hits
belonging to a given cloud layer typically will not follow a
Gaussian distribution. Using the relative likelihood (and as-
sociated probabilities) of different Gaussian mixture models
to identify the most likely number of components in a group
would thus typically lead to an overestimation: not because
more components represent a better fit but rather because
they represent a somewhat-less-bad-but-still-terrible one (see
Appendix A for details). Hence, ampycloud does not simply
follow this criterion alone to decide whether a given group
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requires being broken up. The following selection approach
is adopted instead.

The starting assumption for each group Gi is that it does
not contain sub-layers. Moving sequentially through the
Gaussian mixture models with one, two, and three compo-
nents, ampycloud will identify n sub-layers if BICn < δ ·
BICcurrent best. Essentially, ampycloud assumes n sub-layers
to be present only if the decrease in the model’s BIC score
over the current best number of sub-layers is greater than
(1− δ).

BIC scores are sensitive to the data values in the underly-
ing dataset. To alleviate the consequences of this fact, ampy-
cloud rescales the height range of every individual master
group Gi between 0 and γ prior to searching for sub-layers.
A given δ value will thus split groups based upon the relative
separation of their sub-layers in terms of their height disper-
sion, irrespective of whether the groups are located at 2000
or 20 000 ft.

This approach still remains unstable for small datasets.
This is why ampycloud will not attempt to break-up groups
with a sky coverage fraction of less than2min = 2 oktas. The
adopted values of δ = 0.95 and γ = 100 imply that two per-
fectly Gaussian sub-layers would be separated by ampycloud
if their means are offset by at least ∼ 5 standard deviations
from one another (see Appendix A for details).

3 The ampycloud Python package

3.1 Implementation

The ampycloud Python package (Vogt et al., 2024) was de-
veloped on GitHub (ampycloud, 2024a) as a regular, non-
MeteoSwiss-specific, pip-installable Python package. The
source code is made available to the general community as
open-source software under the terms of the 3-Clause BSD
License. As a project, ampycloud follows an approach of
continuous integration and continuous delivery. It relies on
GitHub Actions to run automated quality, stability, and valid-
ity checks; to publish the documentation; and to upload new
versions to the Python Package Index (PyPI). The algorithm
described in this article corresponds to version 2.0.0 of the
ampycloud Python package. The scientific behavior of this
version is essentially identical to version 1.0.0, which was
deployed at LSGG in November 2023. Version 2.0.0 sim-
ply provides a more coherent variable-naming scheme and
an improved handling of NSC and NCD codes in addition to
a few minor code updates.

As a key dependency of the operational AUTO METAR
software of MeteoSwiss, ampycloud must remain robust
and stable. An evolution of the code over time is inevitable
and even desirable, but it will be carefully controlled. Any
future release of the code (and associated changes) will
be fully documented in the online documentation of the
ampycloud package (ampycloud, 2024b), to which we refer

the interested readers for more details on the evolution
of the algorithm after the publication of this article. We
shall not discuss in extensive detail here the technical
implementation of the ampycloud Python package itself. It
suffices to say that (1) ampycloud requires cloud and VV
hits stored in a suitably formatted Pandas DataFrame
as input; (2) the slicing and grouping steps rely on the
sklearn.cluster.AgglomerativeClustering()
class from the scikit-learn Python pack-
age; (3) the layering step relies on the
sklearn.mixture.GaussianMixture() class
from the same package; and (4) the fluffiness of slices,
groups, and layers is computed using the LOWESS algo-
rithm implemented in the statsmodels package. We refer
the interested readers to the official ampycloud online
documentation (ampycloud, 2024b) for further information
on its different classes and functions.

3.2 Deployment at MeteoSwiss

The ampycloud algorithm and associated Python package
have been used at LSGG since 31 October 2022 outside the
operational hours of the aerodrome, with its outcome being
supervised by an AMO during operational hours and used
for METAR proposals. The initial version 0.5.0 was replaced
by version 1.0.0 of the code on 28 November 2023. Version
2.0.0 of the code, developed as part of the publication of this
article, will be deployed in the near future. As of 1 May 2024,
ampycloud has been operating (alongside SM/\RT) in stan-
dalone mode (i.e., without human interaction) at LSGG dur-
ing the aerodrome’s operational hours.

In the MeteoSwiss operational setup, the ampycloud
Python package is imported as an external dependency
within a Python service known as the cloud calculator
(closed-source software). The cloud calculator is one of sev-
eral calculators that comprise the autometpy software suite,
developed as part of the AMAROC program. The cloud cal-
culator runs on the MeteoSwiss OpenShift container plat-
form, where it stands ready to receive calculation requests.
The requests are issued and orchestrated by SM/\RT, which
decides how often and with what data the cloud calculator is
called. At LSGG, SM/\RT makes three requests to the cloud
calculator every minute as follows:

– in AUTO METAR mode using data from all four
ceilometers over the last 15 min

– in AUTO MET REPORT mode using data from the
two ceilometers representative of RWY22 over the last
6 min.

– in AUTO MET REPORT mode using data from the
two ceilometers representative of RWY04 over the last
6 min.

Monitoring the status and computational performances of
the cloud calculator is done using a flexible dashboard pro-
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viding access to various metrics (CPU load, memory use, re-
quest time, number of requests, errors). Dedicated log files
are also collected and can be queried whenever necessary.
Diagnostic plots are produced by a separate calculation re-
quest using the same input data for monitoring and debug-
ging purposes, particularly to quickly answer questions from
stakeholders.

3.3 Computational speed (performance)

We use the mock dataset presented in Fig. 2 to keep track
of the speed performance of the ampycloud package over the
course of its development by means of the dedicated GitHub
Action (ampycloud, 2024d). With ampycloud v2.0.0, the pro-
cessing of this dataset takes 0.20 s on average on a 16 in.
MacBook Pro 2019 with a 2.3 GHz 8-Core Intel Core i9.
On a server running Ubuntu with Linux kernel 6.2 with four
cores, the processing lasts 0.30 s (ampycloud, 2024e). These
values are representative of ampycloud processing times in
general. Among the real examples presented in Appendix B,
the case in Fig. B2 takes the most time to process (0.35 s),
whereas the case in Fig. B12 takes the least time (0.12 s).
These processing times do not include the creation of the
ampycloud diagnostic diagrams, which are optional and re-
quire an additional ∼ 2 s per diagram.

3.4 Comparison with reference METARs (accuracy)

We present in Appendix B a series of representative, real ex-
amples from the Swiss civil aerodromes. These are meant
to illustrate the behavior of the ampycloud algorithm un-
der varying weather conditions. For each case, the actual
METAR cloud codes (produced by an AMO at the time) are
provided for comparison purposes. To maximize the read-
ability of this article, each case is discussed directly within
the figure caption.

Comparing AUTO METAR cloud codes (derived purely
from ceilometer observations) with METAR ones (derived
fully or in part from AMOs) is evidently subject to a series
of fundamental caveats. Both methods have specific strengths
and limitations (see, e.g., paragraph 7.4.3.1 in ICAO, 2011).
For example, cloud layers in the 1–2 okta range are systemat-
ically more difficult to observe at night for human observers,
which is not the case for ceilometers (Boers et al., 2010).
On the other hand, the exact ceilometer performances can
vary depending on air temperature and direct sun exposure.
Standard ceilometers typically only sample a small part of
the sky immediately above them, whereas AMOs can more
easily observe the entire sky (even though the slanted view
from a fixed position still limits their ability to detect holes
in cloud layers with high sky coverage fractions). Ceilome-
ters will typically require the collection of data over a longer
time frame than AMOs to derive the appropriate cloud codes
such that METAR cloud codes will typically be more rep-
resentative of the “instantaneous” situation at the message

distribution time when compared to AUTO METARs. Fi-
nally, AMOs at Swiss aerodromes (at least) will typically
estimate sky coverage fractions independently but remain en-
couraged to use ceilometer data for their estimation of cloud
base heights. The extent to which they do so depends on the
weather conditions and the personal inclination of each ob-
server.

Bearing these differences in mind, the overall accuracy
of the ampycloud algorithm was evaluated in a statistical
sense using a reference dataset of 2128 cases extracted over
a 5-year period (2018–2022) from LSGG METARs. Doing
such a comparison for LSGG remains meaningful and impor-
tant: not because METARs represent the absolute truth but
rather because AMOs were the existing operational system.
Any significant and/or systematic change in the behavior of
AUTO METARs with respect to METARs must be charac-
terized, documented, and explained to the relevant civil avi-
ation authority and stakeholders (e.g., air traffic controllers).
The 2128 reference cases were selected to provide a repre-
sentative sub-sample of all the METARs over this period.
The case selection focused on operationally relevant situa-
tions (according to the METAR, ampycloud, or both). Of the
2128 cases, 71.5 % correspond to a cloud ceiling situation,
i.e., the presence of a BKN or OVC cloud layer. Without any
pre-selection, the ratio of ceiling cases at LSGG is ∼ 36 %.

Using the sample of 2128 cases, we present in Fig. 3a
comparison of the cloud layers with the highest sky cover-
age fraction as identified by the ampycloud algorithm and
the actual METAR. In 57.8 % of the cases, the ampycloud
output is consistent with the METAR and is, at most, one cat-
egory off in 95.7 % of the cases. The cases where ampycloud
differs more significantly (by at least two classes) from the
METAR land in two categories. The cases when ampycloud
underestimates the sky coverage fraction of the cloud layer
(i.e., “misses” – 3.2 % of the cases) are related to situations
where cloud layers are not seen by the ceilometers – either
because they are not above the line of sight or because the
ceilometer signal is blocked by a lower layer. This also ex-
plains the 6.3 % of misses where ampycloud returns NCD
or NSC and the AMO reports FEW: a situation typically
related to stationary cumulus clouds above the Jura moun-
tain range at a distance of ∼ 12 km from the aerodrome. The
“false alarms” (1.2 % of all cases), where ampycloud over-
estimates the sky coverage fraction of the cloud layer by at
least two classes, are nearly all related to cases of low-level
fog being seen as a low-level cloud layer by the ceilometers.
For operations, these cases are treated by a separate vertical-
visibility algorithm, which also uses horizontal visibility and
present weather information (i.e., the presence of snow and
fog).

The same information can also be presented using opera-
tionally relevant categories. In Fig. 4, we present the ability
of ampycloud to report a cloud ceiling. The ampycloud iden-
tification of a ceiling (or absence thereof) is in agreement
with the corresponding METAR 87.7 % of the time. The
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Figure 3. Matrix comparing the categorization of the cloud layers
with the highest sky coverage fraction identified by the ampycloud
algorithm (vertical axis) with the actual METAR validated by an
AMO (horizontal axis) for a reference dataset of 2128 cases assem-
bled from LSGG observations. Boxes located above the diagonal
can be associated with false alarms where ampycloud finds a sky
coverage fraction that is larger than the METAR. The cases below
the diagonal can be understood as misses, where the opposite hap-
pens.

comparison of Figs. 3 and 4 shows that ceiling false alarms
(4.6 %) and misses (7.8 %) are dominated (respectively) by
cases where ampycloud characterizes an SCT layer as BKN
(3.3 % of the cases) and a BKN layer as SCT (5.5 % of the
cases). These two types of situations are a direct consequence
of the limited spatial-sampling capabilities of ceilometers. Of
course, one cannot rule out the possibility that some of these
mismatches are driven by the limited ability of human ob-
servers to distinguish between cloud layers with a sky cov-
erage fraction of slightly more or less than 56.25 % (which
corresponds to the limit between SCT and BKN; see Boers
et al., 2010).

The matrix in Fig. 3 is useful to identify cases with strong
deviations in the sky coverage fraction. However, detecting
the correct sky coverage fraction for a given cloud layer does
not guarantee that the cloud layer will be detected at the cor-
rect height. We thus provide in Fig. 5a a comparison of the
height of cloud layers with the highest sky coverage frac-
tions measured by ampycloud with respect to those reported
in the corresponding METAR. In 64.4 % of the cases, ampy-
cloud identifies a cloud layer height that is in good agree-
ment with the METAR. The majority of the remaining cases
are comprised of situations where ampycloud provides some-
what lower cloud base heights than the METARs. This is a di-
rect consequence of the conservative approach of the ampy-
cloud algorithm, that considers the entire set of cloud and
VV hits (in its default configuration) to derive a given cloud

Figure 4. Same as Fig. 3 but with simplified categories related to
the presence or absence of a cloud ceiling.

Figure 5. Same as Fig. 3 but for the height of the densest cloud
layer. The differences between ampycloud and the METARs are
dominated by cases where ampycloud returns a cloud layer height
somewhat lower than that of the METAR. This is a direct conse-
quence of the conservative design of the algorithm that (in its de-
fault configuration) considers the entire look-back time to compute
the height of a given set of cloud and VV hits.

base height. The example in Fig. B11 illustrates this behav-
ior. Cases in the bottom row (6.6 % of the total) correspond
to situations where the cloud layer is missed entirely by the
ceilometers over the duration of the time interval 1t .

4 Limitations and future prospects

The ampycloud Python package focuses tightly on the im-
plementation of the ampycloud algorithm itself, with only a
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handful of dependencies, all well-maintained and under ac-
tive development within the Python community. The ampy-
cloud package is not designed to interact with the outside
world (and other programming languages, e.g., via JSON for-
mat). The implementation of the necessary application pro-
gramming interfaces (APIs) is left to the interested users.
ampycloud is also not designed to handle partial or complete
ceilometer failures or data transmission issues: it will sim-
ply process the cloud and VV hits that one feeds it. From
this perspective, the handling of operational exceptions and
errors must be done by the user before calling ampycloud.

In its current implementation, ampycloud uses a fixed time
interval 1t to characterize cloud layers. In doing so, ampy-
cloud is essentially trading-off its responsiveness to rapidly
evolving conditions with its ability to obtain a more repre-
sentative view of the entire sky. The default time interval
1t = 15 min adopted by MeteoSwiss is shorter than in other
algorithms with similar goals (see, e.g., Nadolski, 1998;
Wauben, 2002; ICAO, 2011). However, unlike those algo-
rithms that give additional weight to the most recent mea-
surements, ampycloud treats every hit equally. This implies
that ampycloud may possibly respond somewhat less rapidly
to changes but should be more stable when analyzing sparse
cloud layers. We note that increasing the value of 1t does
not necessarily guarantee a better match with the AMOs. At
LSGG, for example, there are often cumulus (humilis and/or
mediocris, which are not operationally relevant) that remain
stationary over the Jura mountain ridge and that can never be
detected by the aerodrome’s ceilometers. Several cases pre-
sented in Appendix B have the lowest cloud layer missed en-
tirely by the ceilometers (see Figs. B4, B6, B7, B8, and B10).
Had one used a time interval 1t = 30 min instead of 15 min,
the lowest cloud layers would still have been missed entirely
by the ceilometers in each of these cases. Understanding the
exact behavioral differences between ampycloud and other
algorithms with similar purposes will require a dedicated
comparison of their respective accuracies against a reference
set of ceilometer data (either real or simulated), which is out-
side the scope of this article. Up until now, such compar-
isons were essentially impossible due to the private nature of
source codes and the lack of detailed documentation. With
this article and its accompanying material (Vogt, 2024), we
purposely seek to make the ampycloud processing of the ex-
amples shown in Figs. B1 to B12 reproducible by motivated
users and researchers.

It must be stressed that ampycloud does not challenge the
quality or nature of the cloud and VV hits that it is being
provided: it trusts them all fully and equally. The capacity
of the algorithm to provide an accurate assessment of cloud
layers above an aerodrome is thus directly limited by the
ability of ceilometers to report clouds up to the aerodrome’s
MSA and to measure their heights accurately in the first place
(Costa-Surós et al., 2013; Wagner and Kleiss, 2016; Kot-
thaus et al., 2016; Illingworth et al., 2019). This (current)
reliance of ampycloud on cloud base hits (as reported by

ceilometers via black-box algorithms) should not be over-
looked by users interested in combining datasets from mul-
tiple ceilometer brands or models. Any spurious cloud hit
(be it caused by measurement noise, rain, or airplanes flying
overhead) will inevitably impact the outcome of ampycloud,
as would a “lack of cloud hits”: for example, when the view
towards upper layers is blocked by lower ones in complex sit-
uations. ampycloud does not do any upward correction of the
cloud coverage of the upper layers (yet), e.g., as done in the
ASOS algorithm (see, e.g., Appendix A, Sect. Cloud layers
(8), Example 1 in ICAO, 2011). Another enhancement possi-
bility for the ampycloud algorithm would be to use the wind
speed to identify suitable look-back times as a function of
height in order to obtain a (more) representative sampling of
the sky. Doing so in real time could be achieved, at least up to
the aerodrome minimum sector altitudes, by direct measure-
ments (for example, using wind profilers), by data extraction
from numerical models, or by a combination of both.

The slicing step of ampycloud relies on the rescaling fac-
tor τs to reduce the dimensionality of the 2-D clustering to al-
most 1-D. A further development might be to use a robust 1-
D clustering method instead. The layering step of ampycloud
is the part of the algorithm that shows the most potential for
improvement for the following reasons. Unlike the slicing
and grouping steps, the parameters γ and δ associated with
this step are less directly related to physical quantities. For
specific distributions of cloud hits, this step can be sensitive
to the random seed used by the system6. Most importantly,
the use of Gaussian mixture models clearly is not ideal from
a physics perspective given the fact that cloud base hits are
not expected (nor seen) to systematically follow a Gaussian
distribution, although it remains a sufficiently valid approxi-
mation.

The main limitation of ampycloud, however, currently re-
sides in the fact that it relies exclusively on cloud and VV
hits, which are processed without question. The use of com-
plete backscatter profiles from the ceilometers could help im-
prove this state of affairs: for example, by enabling the iden-
tification of spurious hits triggered by heavy precipitation or
aircraft and/or by supplementing cloud base height measure-
ments with cloud layer thickness, which could significantly
ease the identification of coherent structures. The use of com-
plete backscatter profiles could also enable the identification
of the maximum observed height (in the case of thick cloud
layers) and better account for the sky coverage fraction of
partially obscured cloud layers while removing any reliance
on black-box algorithms (developed by ceilometer manufac-
turers to detect cloud base hits).

The use of a finite number of ceilometers alone cannot
always be sufficient to differentiate very sparse cloud lay-
ers from a “true” clear sky. If a series of ceilometers detect
no clouds, the use of pyrgeometers (see, e.g., Aviolat et al.,

6This seed is fixed by ampycloud to ensure that results are
strictly repeatable in a given system.
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1998; Marty and Philipona, 2000; Dürr and Philipona, 2004),
visible all-sky cameras (Wacker et al., 2015), infrared all-sky
imagers (Aebi et al., 2018), or even satellite images could
help in ascertaining the validity of a clear-sky condition – al-
beit without the ability to estimate the height of the sparse
cloud layers that may have been missed by the ceilometers
with the same accuracy. Similarly to Doppler lidars, the use
of rotating-beam ceilometers (WMO, 2021) with the ability
to probe more than one sightline could clearly improve the
reliability of AUTO METARs for sparse cloud layers (i.e.,
for intermediate okta values), albeit at an increased financial
cost and with maintenance challenges (a rotating mechanical
component is more prone to technical issues).

5 Conclusions

The ampycloud algorithm was developed at MeteoSwiss as
part of a large effort to fully automate the production of
METARs at Swiss civil aerodromes. Its specific purpose is to
determine the sky coverage fraction and base height of cloud
layers using ceilometer data (in the form of individual cloud
base hits). The eponymous Python package is released on-
line as open-source software under the terms of the 3-Clause
BSD license. The ampycloud Python package forms an inte-
gral part of the software infrastructure of MeteoSwiss. Yet,
it does not contain any MeteoSwiss-specific code nor does
it rely on any specific hardware–software infrastructure (all
contained within the autometpy software suite; see Sect. 3.2).
The code and its dedicated online (technical) documentation
are completed by this article describing the underlying algo-
rithm and its scientific motivation.

The accuracy of the ampycloud algorithm has been tested
in detail on a series of specific examples (as illustrated in
Figs. B1 to B12) and, statistically, over a reference set of
cases extracted over a 5-year period. With the correct identi-
fication of a ceiling (or absence thereof) 87.7 % of the time,
the results of the ampycloud algorithm are found to be in
good agreement with the corresponding METARs, such that
the use of this algorithm at LSGG was approved by the Swiss
civil aviation authority.

The automatic production and dissemination of AUTO
METARs without human supervision at LSGG started on
1 May 2024. Nonetheless, several elements of the ampy-
cloud algorithm have potential for further improvement. The
necessity and exact benefits of these improvements will be
continuously investigated and evaluated by MeteoSwiss over
the coming years throughout and beyond the transition from
METAR to AUTO METAR at Swiss civil aerodromes.

The public release of ampycloud has taken place within
a large paradigm change towards open government data in
Switzerland (Assemblée fédérale de la Confédération suisse,
2023). An open-source software evidently facilitates addi-
tional testing of the algorithm at various locations beyond
the Swiss civil aerodromes. Most importantly, we hope that

it will ease the implementation of dedicated intercomparison
campaigns to evaluate the accuracy of the various cloud al-
gorithms deployed at aerodromes worldwide.

Appendix A: The ampycloud Gaussian mixture model
selection rule

In ampycloud, Gaussian mixture models with one, two, and
three components are used to determine whether a given
group G is comprised of multiple distinct sub-layers. To il-
lustrate how the Bayesian information criterion (BIC) scores
allow us to reliably select the optimal number of sub-layers
in a given group, we create a series of artificial distributions
of cloud hits. Each distribution is comprised of either two
or three Gaussian layers, each with a number of randomly
generated hits Nhits ∈ [10, . . .,350] and with the layers being
separated by height by up to 1= 8 times their standard de-
viation σ . Four examples of these distributions are presented
in Fig. A1.

Figure A1. Simulations of two (a, b) and three (c, d) cloud layers
using random normal distributions with Nhits artificial cloud base
hits per layer. Individual layers are separated by 1= 2 (a, c) and
1= 5 (b, d) standard deviations σ .

The Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC) scores provide means to assess the
goodness of fit of different Gaussian mixture models. The
smaller the AIC or BIC scores are, the better the model fit is.
In ampycloud, we use BIC scores to decide whether a given
group G is composed of sub-layers. The AIC score tends to
favor models with larger numbers of components, which is
at odds with the ampycloud approach of favoring – for near-
equal scores – the lowest number of Gaussian components
to prevent unjustified sub-layering. Therefore, we rely on the
BIC score only.

The relative likelihood of different Gaussian mixture mod-
els can be used to assign probabilities to each of them. The
Bayesian probability of model i is

pBIC,i =
e−0.5(BICi−BICmin)∑
ie
−0.5(BICi−BICmin)

, (A1)

with BICmin being the minimum BIC score among the Gaus-
sian mixture models under consideration.

https://doi.org/10.5194/amt-17-4891-2024 Atmos. Meas. Tech., 17, 4891–4914, 2024



4904 F. P. A. Vogt et al.: The ampycloud algorithm

Figure A2. Illustration of the ability of the ampycloud layering step to distinguish the presence of two simulated Gaussian sub-layers inside a
group G as a function of the relative separation of the sub-layers1 (expressed in terms of the layers’ standard deviation σ ) and the number of
cloud hits per layer Nhits. (a–c) BIC probabilities pBIC computed following Eq. (A1), built from the relative likelihood of Gaussian mixture
models with one (a), two (b), and three (c) components. Each pixel in the image corresponds to the median of 10 independent realizations.
For very low numbers of hits per layer (Nhits . 50), the selection of the best Gaussian mixture model is less sharp. When the sub-layers
are close to one another (with 1. 2σ ), the Gaussian mixture model approach is unable to reliably identify two distinct components. (e–g)
Distributions of BICj / BICi for the cases of one component vs. two, two components versus three, and one component versus three. For the
cases where BICj / BICi > 1 are tagged with a white cross, these are regions where the model with j components is unambiguously rejected
against the model with i components because of a larger BIC score. On the other hand, for the cases where BICj / BICi < 0.95 are tagged
using black circles, and for these only, ampycloud will favor the model with j components following Eq. (A2). The resulting map of the
model favored by ampycloud as a function of Nhits and 1/σ is visible in the bottom-left diagram (d).

Figure A3. Same as Fig. A2 but for three simulated layers. As for the case of two simulated layers, the ampycloud layering step is able to
correctly identify three distinct layers when they are separated by ∼ 5 standard deviations (1& 5σ ). A single layer is favored otherwise.
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We show in Fig. A2 the values of pBIC,i for the simulated
datasets with two Gaussian sub-layers. The Gaussian mix-
ture model approach appears to be incapable of identifying
two distinct components when 1. 2σ , i.e., when the layers
are separated by less than twice their standard deviation. For
cases with 1& 2σ , the probability of the distributions being
comprised of a single Gaussian distribution drops extremely
rapidly in favor of the two-component model. The transition
is slightly less sharp for cases with a lower number of cloud
base hits (i.e., cases whereNhits . 50). The case of three sim-
ulated cloud layers is shown in Fig. A3. A single compo-
nent is favored by the Gaussian mixture model approach for
cases where 1. 2σ . A narrow, intermediate zone favoring
two components is present for cases where 2σ .1. 3σ ,
whereas three components are correctly identified for cases
where 1& 3σ .

Unlike the simulated cases presented here, real cloud base
hits do not follow a Gaussian distribution, particularly due
to temporal trends in the cloud base heights (a fact which
is clearly visible in Figs. B1 to B8). For real cases, using
the probabilities pBIC to select the optimal number of sub-
layers present inside a given group G works too efficiently in
the sense that a single Gaussian component is ruled out too
rapidly in the case of broad, flat layers. To circumvent this
limitation, ampycloud uses a slightly adjusted selection cri-
terion based on the BIC scores which varies more smoothly
as a function of the (normalized) layer separation 1/σ . The
general idea is to assume that one component is present and
to only favor a solution with two (or three) components if the
decrease in the associated BIC scores is sufficiently signifi-
cant. In other words, a model with j components is favored
over a model with i components only if

BICj < δ ·BICi, (A2)

where δ is a multiplicative factor (a parameter of the ampy-
cloud algorithm).

The consequences of these selection criteria are shown in
the bottom rows of Figs. A2 and A3. Varying the value of δ
allows us to more easily decide the level 1/σ at which two
(or three) components are favored over a single one. With the
default ampycloud value of δ = 0.95, this transition occurs at
1/σ ≈ 5. Sub-layers are therefore identified in a given group
G only if they are well separated, as illustrated in Fig. A1. For
the case of three simulated sub-layers, the selection criterion
defined in Eq. (A2) also has the advantage that it never favors
two components (unlike the probabilities pBIC, as illustrated
in Fig. A2). If three components cannot be identified unam-
biguously, no sub-layering occurs.

Appendix B: Detailed examples

We present in Figs. B1 to B12 the ampycloud diagnostic dia-
grams from a series of representative, real situations taken
from the LSGG and LSZH aerodromes. These examples
serve to illustrate the behavior of ampycloud in different con-
ditions and to compare the algorithm’s output with the offi-
cial METAR cloud codes that were validated and issued by
an AMO at the time. For the ease of readability, each example
is discussed in detail in the associated figure caption. These
examples are all part of the set of cases used to verify the sci-
entific behavior of the ampycloud algorithm over the course
of its development by means of dedicated tests (ampycloud,
2024c) run using the pytest module.

The underlying sets of cloud and VV hits associated with
each example are made available to the interested reader,
alongside a small Python script designed to process them us-
ing ampycloud and to generate the associated ampycloud di-
agnostic diagrams. This material is archived on Zenodo and
is publicly available (under a Creative Commons Attribution
4.0 International license; Vogt, 2024).
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Figure B1. ampycloud diagnostic diagram for LSGG on 29 December 2020 at 04:50 UTC. The hits from four ceilometers over a period of
15 min are being considered. The four dominant slices are found to be overlapping, but the separations between individual hits is too large
for the second processing step to bundle them all into a common master group. The symbol − in the “groups” column on the right-hand side
indicates that sub-layers are being searched for (but not found) by the layering step for the second group (from bottom; BKN055), which is
the only structure with sufficient hits to do so (i.e., with a sky coverage fraction larger than or equal to 2 oktas).

Figure B2. Same as Fig. B1 but for LSZH on 24 December 2020 at 01:20 UTC. VV hits are indicated using colored points with no filling:
they are treated like regular cloud base hits by ampycloud. In this example, the grouping step has been used to merge the majority of hits in
the top two slices: only the highest two cloud base hits remain as the upper-most layer, but they are discarded as a minimum of four hits are
required for a layer to be considered to have a sky coverage fraction above 0 oktas (i.e., 20 = 3).
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Figure B3. Same as Fig. B1 but for LSGG on 1 May 2021 at 03:50 UTC. In this case, the slicing step correctly identifies the two dominant
cloud layers present. The grouping and layering steps do not modify the initial slices. The top SCT013 layer slightly underestimates the sky
coverage fraction that was reported to be BKN by the AMO, plausibly because of its obscuration by the lower layer.

Figure B4. Same as Fig. B1 but for LSGG on 23 May 2021 at 04:20 UTC. In this case, with very sparse layers, the slicing step correctly
identifies the dominant cloud layers present. The layer at 3000 ft reported by the observer is missed entirely by the ceilometers over the
duration of the time interval 1t = 900 s, while the sky coverage fraction of the layer at 4500–4800 ft is slightly underestimated by the
ceilometers. Should a user prefer a less granular output at high altitudes, it is sufficient to change the parameters 1hl,vals and 1hl,lims to set
a minimum separation value of 500 ft above 5000 ft, for example.
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Figure B5. Same as Fig. B1 but for LSGG on 9 September 2021 at 07:50 UTC. The ampycloud layering step identifies two sub-layers
separated by ∼ 500 ft in the bottom group, with a sky coverage fraction of FEW smaller than the SCT090 reported by the AMO, who likely
merged the two sub-layers together. It is, however, worth noting that even the group FEW089 identified by ampycloud (bottom entry of the
middle column) does not reach a sky coverage fraction of SCT, indicating that the ceilometers were globally looking at clear sightlines. The
top layer SCT110 detected by ampycloud is not reported in the view of the MSA applicable at LSGG.

Figure B6. Same as Fig. B1 but for LSGG on 19 September 2021 at 11:50 UTC. The AMO reported two distinct layers at 3500 and 5000 ft,
which is consistent with the initial ampycloud slices. The overall cloud hit distribution is, however, suggestive of a single coherent structure
increasing from 3000 to 5000 ft over the 15 min interval and is identified as such by the grouping step of the ampycloud algorithm. The
bottom layer at 1000 ft is missed entirely by the ceilometers over the duration of the time interval 1t = 900 s.
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Figure B7. Same as Fig. B1 but for LSGG on 30 April 2018 at 18:17 UTC. The value of1MSA is exceptionally set to 4000 ft in this example
for visualization purposes. The bottom two slices are merged into a single structure by the grouping step (as they connect to each other at the
start and end of the interval) and are then re-separated into two distinct layers. Clouds at 5000 ft were missed entirely by the ceilometers over
the duration of the time interval1t = 900 s. This example also illustrates the difficulty in blindly comparing METARs with AUTO METARs.
The AMO decided to report the BKN120 layer despite the MSA applicable at LSGG (whereas ampycloud simply ignores it), leading to an
(apparently) missed ceiling.

Figure B8. Same as Fig. B1 but for LSGG on 10 January 2019 at 04:50 UTC. It is because ampycloud accounts for the fluffiness of the
bottom two slices that the grouping step decides that these form a single structure despite the somewhat offset cluster of hits appearing within
the last 150 s. It is not clear why the layer at 7000 ft was not reported in the METAR while clouds at 3000 ft were missed entirely by the
ceilometers over the duration of the time interval 1t = 900 s.
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Figure B9. Same as Fig. B1 but for LSGG on 5 October 2021 at 03:50 UTC. The slicing step correctly identifies the two cloud layers
present, albeit with a slightly different sky coverage fraction than that reported by the AMO. The top group is not separated into two distinct
sub-layers by the layering step because their separation of ∼ 180 ft would be smaller than the minimum value of 1hl,vals = 250 ft.

Figure B10. Same as Fig. B1 but for LSGG on 6 October 2021 at 19:20 UTC. The grouping step is key to connect the two central slices
given the rapidly decreasing nature of the cloud base between −400 and −100 s. Once again, the layer FEW035 reported by the AMO is
missed entirely by the ceilometers over the duration of the time interval 1t = 900 s.
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Figure B11. Same as Fig. B1 but for LSGG on 27 November 2021 at 16:50 UTC. The grouping step correctly joins the middle two slices in
this case with a rapidly rising cloud base. ampycloud considers the full set of hits (with βt = 100 % by default) to derive the base height of
this layer, whereas the AMO is likely to have ignored the oldest ceilometer data.

Figure B12. Same as Fig. B1 but for LSGG on 15 December 2021 at 06:50 UTC. A single OVC001 slice is (correctly) identified by the
ampycloud algorithm in this case, with a large number of VV hits being reported by the ceilometers. However, we stress once again that
ampycloud is neither intended nor designed to formally decide whether a VV code must be issued in the AUTO METAR (instead of OVC001
in this example). This task should be performed by a separate algorithm focusing on vertical-visibility detection and reporting.
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Code and data availability. The ampycloud Python package
is freely available on GitHub (https://github.com/MeteoSwiss/
ampycloud, last access: 1 July 2024), with each release archived
on Zenodo (DOI: https://doi.org/10.5281/zenodo.8399683,
Vogt et al., 2024). The script and cloud hits used to generate
the figures in Appendix B have also been stored on Zen-
odo (DOI: https://doi.org/10.5281/zenodo.10171151, Vogt,
2024), from where they can be downloaded freely. Dia-
grams in this article have been generated using the ampy-
cloud Python module, which relies on the following Python
packages: matplotlib (https://doi.org/10.5281/zenodo.592536,
The Matplotlib Development Team, 2024; Hunter, 2007),
NumPy (https://github.com/numpy/numpy/, Harris et al.,
2020), Pandas (https://doi.org/10.5281/zenodo.4452601,
The Pandas Development Team, 2021; McKinney,
2010), scikit-learn (https://doi.org/10.5281/zenodo.591564,
Grisel et al., 2024; Pedregosa et al., 2011), SciPy
(https://doi.org/10.5281/zenodo.595738, Gommers et
al., 2024; Virtanen et al., 2020), and statsmodels
(https://doi.org/10.5281/zenodo.593847, Perktold et al.,
2024; Seabold and Perktold, 2010). The ampycloud dia-
grams were enhanced using the metsymb LaTeX package
(https://doi.org/10.5281/zenodo.8302082, Vogt, 2023).
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