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Abstract. Air quality sensor (AQS) networks are useful
for mapping PM2.5 (particles with a diameter of 2.5 µm or
smaller) in urban environments, but quantitative assessment
of the observed spatial and temporal variation is currently
underdeveloped. This study introduces a new metric – the
concentration similarity index (CSI) – to facilitate a quanti-
tative and time-averaged comparison of the concentration–
time profiles of PM2.5 measured by each sensor within an air
quality sensor network. Following development on a dataset
with minimal unexplained variation and robust tests, the CSI
function is used to represent an unbiased and fair depiction
of the air quality variation within an area covered by a mon-
itoring network. The measurement data is used to derive a
CSI value for every combination of sensor pairs in the net-
work, yielding valuable information on spatial variation in
PM2.5. This new method is applied to two separate AQS net-
works, in Dungarvan and in the city of Cork, Ireland. In Dun-
garvan there was a lower mean CSI value (xCSI, Dungarvan =

0.61, xCSI, Cork = 0.71), indicating lower overall similarity
between locations in the network. In both networks, the aver-
age diurnal plots for each sensor exhibit an evening peak in
PM2.5 concentration due to emissions from residential solid-
fuel burning; however, there is considerable variation in the
size of this peak. Clustering techniques applied to the CSI
matrices identify two different location types in each net-
work; locations in central or residential areas that experience
more pollution from solid-fuel burning and locations on the
edge of the urban areas that experience cleaner air. The dif-
ference in mean PM2.5 between these two location types was
6 µgm−3 in Dungarvan and 2 µgm−3 in Cork. Furthermore,
the examination of winter and summer months (January and
May) indicates that higher PM2.5 levels during periods of in-

creased residential solid-fuel burning act as a major driver
for greater differences (lower similarity indices) between lo-
cations in both networks, with differences in mean seasonal
CSI values exceeding 0.25 and differences in mean seasonal
PM2.5 exceeding 7 µgm−3. These findings underscore the
importance of including wintertime PM data in analyses, as
the differences between locations is enhanced during periods
when solid-fuel burning activities are at a peak. Additionally,
the CSI method facilitates the assessment of the representa-
tiveness of the PM2.5 measured at regulatory air quality mon-
itoring locations with respect to population exposure, show-
ing here that location type is more important than physical
proximity in terms of similarity and spatial representative-
ness assessments. Applying the CSI in this manner can al-
low for the placement of monitoring infrastructure to be op-
timised. The results indicate that the population exposure to
PM2.5 in Dungarvan is moderately represented (xCSI = 0.63)
by the current regulatory monitoring location, and the regu-
latory monitoring location assessed in Cork represented the
city-wide PM2.5 levels well (xCSI = 0.76).

1 Introduction

Air pollution affects the environment and quality of life and
is a major cause of premature death and disease (Cesaroni
et al., 2013; Lelieveld et al., 2015; Pedersen et al., 2013;
Raaschou-Nielsen et al., 2013). The category of air pollutant
with the largest impact on human mortality and health is fine
particulate matter, i.e. atmospheric particles with an aerody-
namic diameter of 2.5 µm or less (PM2.5) (Pope et al., 2020;
Pope and Dockery, 2012; Samoli et al., 2013). In many re-
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gions around the world, air quality monitoring and manage-
ment have become critical endeavours to mitigate the detri-
mental effects of air pollution, and especially PM2.5, on citi-
zens and the environment.

Over the years, technological advances have provided
valuable tools to enhance our understanding of air pollu-
tion, and low-cost air quality sensors (AQSs) are emerging
as promising instruments for collecting real-time air quality
data at an improved spatial and temporal resolutions (Kumar
et al., 2015; Munir et al., 2019). When used in networks, air
quality sensors offer immense potential for enhancing and
supplementing regulatory monitoring and assessment (Mal-
ings et al., 2020). However, further work needs to be carried
out to assess the effectiveness of sensor networks and how to
make best use of the data for gaining further insights into air
pollution within a locality because the data quality obtained
with such low-cost devices does not meet the standards for
regulatory monitoring. Careful consideration must be given
to the quality of the data provided by sensors, and the require-
ment for calibration must be assessed (Diez et al., 2022). Re-
cent studies have shown that the performance and calibration
of a PM2.5 sensor is dependent on the type of sensor and
often on the measurement location, suggesting the need for
site-specific and individual calibrations to correct for the ab-
solute level of PM2.5 (Kaur and Kelly, 2023; Sayahi et al.,
2019; Wang et al., 2015; Zamora et al., 2020). When these
factors are considered and accounted for, AQS networks offer
an unprecedented opportunity to gain further insights into the
complex dynamics of air pollution in localised areas, such as
urban environments, industrial zones, and residential neigh-
bourhoods (Crawford et al., 2021; Frederickson et al., 2022;
Heimann et al., 2015; Hodoli et al., 2023; O’Regan et al.,
2022).

Information on the spatial variation in air quality is impor-
tant because air pollution is not homogenous and can exhibit
significant variations across different areas even on a local
scale (Frederickson et al., 2022, 2023; Kassomenos et al.,
2014; Wang et al., 2018). The variability in air pollution can
be influenced by a multitude of factors such as traffic pat-
terns, industrial activities, meteorological conditions, and lo-
cal topography. Consequently, relying on single monitoring
locations or limited data resolution can provide an incom-
plete picture and inadequate understanding of local air qual-
ity in a certain area (Li et al., 2019). Understanding these
variations is crucial for targeted interventions and policy de-
cisions aimed at improving air quality and safeguarding pub-
lic health. Spatial analysis facilitated by sensor networks al-
lows for a more accurate and nuanced understanding of how
air quality, and therefore exposure to pollution, varies across
a population centre.

In a recent study, we used data collected by a PM2.5 sensor
network in the city of Cork, Ireland, to estimate the contribu-
tion of local pollution sources as separate and distinct from
regional or transported air pollution (Byrne et al., 2023). The
results highlighted the very localised nature of PM2.5 caused

by residential solid-fuel burning during winter, which is a
significant problem in many towns and cities in Ireland and
elsewhere (Dall’Osto et al., 2013; Kourtchev et al., 2011; Lin
et al., 2018, 2019; Ovadnevaite et al., 2021; Wenger et al.,
2020; Zhang et al., 2021).

In this work, we propose a new approach for assessing
the spatial profile of air quality using an AQS network. The
method yields a time-averaged concentration similarity index
(CSI) for quantitative assessment of the similarity between
the complete data series produced by different sensors within
the network. The CSI is built on the premise that sensors
exposed to similar ambient conditions and pollutant sources
will produce comparable PM2.5 temporal trends. Conversely,
sensors subject to different conditions might display diver-
gent PM2.5 concentration trends. The motivation for the de-
velopment of an assessment method based on the temporal
variation over an extended period is the realisation that the
annual average is often an incomplete representation of true
population exposure, which is experienced from hour to hour
and day to day. If hourly or daily PM2.5 variability is high, it
is not always adequate to merely compare annual averages of
PM2.5 in different locations to compare PM2.5 exposure ex-
perienced by the local populations. While the annual average
and hourly/daily values are often well correlated, numerous
studies have found positive associations between short-term
exposure to particulate matter and increased morbidity and
mortality due to respiratory and cardiovascular diseases (Fa-
jersztajn et al., 2017; Orellano et al., 2020; Weinmayr et al.,
2010). This method aims to translate this idea into a quantifi-
able metric by calculating the time-averaged degree of sim-
ilarity between two sensor datasets. After method develop-
ment and testing, the CSI analysis is applied to an AQS net-
work in the town of Dungarvan in Ireland to identify areas
that may be experiencing persistently elevated or very lo-
calised PM2.5 pollution compared to others. Clustering tech-
niques are used to group sensors based on the similarity of
their PM2.5 measurements. The CSI method is also retrospec-
tively applied to sensor network data collected in the city of
Cork to investigate the transferability of the method between
sensor networks and to explore any differences between the
locations.

2 Methodology

2.1 Data collection, preprocessing, and calibration

The collection, preprocessing, and calibration of the data col-
lected by the PM2.5 sensor networks in Dungarvan and the
city of Cork were carried out using the Julia programming
language and the openair package written for the R program-
ming language (Bezanson et al., 2017; Carslaw and Ropkins,
2012). Since low-cost AQSs are not of regulatory standard,
great care needs to be taken with quality assessment and
quality control of the data. In particular, the degree to which
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changes or differences in PM2.5 measurements between de-
vices can be trusted needs to be considered. The methodol-
ogy proposed here addresses these inherent issues to deliver
an approach for assessing the spatial representativeness of
any monitoring location and to facilitate comparison of dif-
ferent environment types, regardless of geographical distance
to the location.

2.1.1 Dungarvan PM2.5 sensor network

The Dungarvan sensor network consisted of 18 solar pow-
ered Clarity Node-S devices (Clarity Movement Co., USA),
which utilise the Plantower PM6003 sensor to measure
PM2.5 within the range of 1–1000 µgm−3 and at a resolution
of 1 µgm−3 (Clarity Movement Co., 2023; Node-S technical
sheet, 2023). By default, the Node-S devices take measure-
ments every 15 min, allowing sufficient data upload and bat-
tery sleep time in between sampling periods. However, this
can be adjusted to higher or lower frequencies. The highest
sampling interval achievable during winter without signifi-
cantly affecting the battery performance was 8 min.

The Clarity Node-S devices were typically attached to
street light poles between 2 and 4 m above the ground. The
sensors were positioned in a range of different environments
including urban background, residential, coastal, and road-
side locations (Fig. S1 in the Supplement). Many of these
locations were a mix of the different environments. The ma-
jority of devices were operational from 1 November 2022 to
31 May 2023; however three devices (AP7, AY9N, AY93)
with the Clarity Wind Module were only deployed from
12 January 2023. Measurements were taken over a continu-
ous period covering different meteorological seasons (mainly
winter and spring/early summer), thus ensuring that tempo-
ral variations in PM2.5 concentrations were captured compre-
hensively.

Prior to and after deployment in Dungarvan, the Clarity
Node-S devices were co-located on the roof of the Ellen
Hutchins Building, University College Cork (51.895136,
−8.516146), to compare their performance. Details of the
three co-location periods are outlined in Table S1 in the Sup-
plement. Although some devices were not available for all
three co-location periods, the three periods combined pro-
vide a comparison between the sensors across different sea-
sons. This co-location dataset enabled the CSI method to be
developed on measurements that in theory should be equal,
and the function could then be modified if necessary to al-
low for sensor behaviour, uncertainties, errors, and potential
limitations.

The raw sensor data from the co-location periods and field
deployment underwent a series of preprocessing steps to mit-
igate potential sources of error in the measurement and to en-
sure data quality and consistency. Data points outside of the
operational range of the sensors (> 1000 µgm−3) were iden-
tified and removed, although instances of these were mini-
mal. The 8 min data were averaged to produce hourly mea-

surements. Missing data points could potentially affect the
temporal continuity of the data; however, the data coverage
was overall very good for the co-location and measurement
campaign periods. On average, the devices had an hourly
measurement coverage of 87 % for the field measurement
campaign. This corresponds to an average of 4443 hourly
measurements per device for the campaign period.

Assessing the consistency of measurements across the sen-
sor network was paramount. Although the PM2.5 readings
were very well correlated when the devices were co-located
(Table S2 in the Supplement), a data harmonisation proce-
dure was performed to ensure the uniformity of sensor mea-
surements, which is a prerequisite for the subsequent de-
velopment of the concentration similarity index. Since there
was no reference-grade PM2.5 data available during the co-
location periods, the PM2.5 concentrations from each sensor
were scaled to a common reference point, represented by the
mean of all data points across the whole co-location dataset
(Fig. S2 in the Supplement). The data series for each sen-
sor was then individually compared with the calculated mean
dataset and subsequently harmonised to the common refer-
ence point using a simple linear regression approach. The
equations resulting from this harmonisation procedure were
applied to the measurements collected from all devices dur-
ing the subsequent field measurement campaign. While this
procedure did not convert the measured PM2.5 to reference-
equivalent concentrations, it minimised sensor output vari-
ability and facilitated a more equitable comparison between
sensor measurements (Table S2).

2.1.2 Cork PM2.5 sensor network

For brevity when referring to the sensor network, the term
“Cork” will herein refer exclusively to the city area of Cork.
The Cork sensor network consisted of 16 PurpleAir PA-II-
SD units that each contain two Plantower PMS5003 sen-
sors to measure PM2.5 within the effective range of 0–
500 µgm−3, with a maximum range of 1000 µgm−3, and at a
resolution of 1 µgm−3 (PMS5003 series data manual, 2022).
In this study, data recorded by the devices in the network
for the periods from 1 January 2021 to 31 May 2021 and
from 1 September 2021 to 31 December 2021 were collated
and analysed. However, four devices were found to have lim-
ited data capture for the specified periods (< 50 %) and were
therefore omitted from the analysis. The 12 sensors used in
this analysis had an average data capture of 85 % for the spec-
ified periods; their locations are shown in Fig. S3 in the Sup-
plement.

Due to logistical constraints, it was not possible to co-
locate all of the PurpleAir devices together to assess variabil-
ity in PM2.5 concentrations. However, low inter-sensor and
inter-unit variability was exhibited by four co-located Pur-
pleAir devices in our previous study on the Cork network,
where all inter-sensor and inter-unit comparisons yielded R2

values greater than 0.98 (Byrne et al., 2023). Moreover, Pur-
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pleAir PM2.5 measurements were highly correlated (R2
=

0.92) with hourly values of PM2.5 concentrations obtained
using a Met-One (USA) beta-attenuation monitor (BAM-
1020). The comparison yielded a low offset (0.3 µgm−3), al-
though reference measurements tended to be lower than the
sensor measurements (slope= 0.57). A co-location dataset
was then used to derive calibration factors incorporating the
effects of temperature and relative humidity. The data pro-
cessing procedures for obtaining the PM2.5 concentrations
reported here are identical to those reported by Byrne et
al. (2023).

The Cork dataset spans a similar measurement period to
the Dungarvan dataset to allow for comparable results due to
the known seasonality of PM2.5 pollution in Ireland (Ovad-
nevaite et al., 2021). Although the year 2021 included some
periods of COVID-19 pandemic restrictions, such measures
mainly affected NO2 concentrations and were not shown to
have a significant impact on PM levels in Ireland (Environ-
mental Protection Agency, EPA, 2020).

2.1.3 Meteorological measurements

Meteorological data was analysed in each location. For the
city of Cork, data collected at Cork Airport by Ireland’s Na-
tional Meteorological Service, Met Éireann, was accessed
from the website https://www.met.ie (last access: 25 April
2024). The airport weather station is located approximately
5.5 km from the Cork city centre.

There is no weather station located nearby Dungarvan that
provides hourly measurements; however three of the Clar-
ity Node-S devices were fitted with Clarity Wind Modules
(AP7, AY93, AY9N), which provide high-time-resolution
measurements of wind speed and direction (Clarity Move-
ment Co., USA). Due to technical difficulties, device AY9N
did not capture wind direction measurements, however its
wind speed is included. The Wind Module contains a solid-
state two-axis ultrasonic anemometer, which provides wind
speed measurements with a range of 0–60.00 ms−1 and a res-
olution of 0.01 ms−1, along with wind direction at a resolu-
tion of 0.1° over a range of 0–359.9° (Wind Module technical
sheet, 2024). These measurements have not been validated
against reference meteorological data; however, they are in-
cluded for indicative purposes.

2.2 Development of the concentration similarity index

The concentration similarity index (CSI) derived here quanti-
fies the degree of likeness between PM2.5 concentration pro-
files from two sensors for a defined period of time and forms
the basis for assessing the spatial disparities in PM2.5 mea-
surements within sensor networks. The methodology pro-
posed was developed through multiple iterations in order to
adjust and improve the procedure. An overview of the devel-
opment is described, showing the evolution towards the final
method.

2.2.1 Original function application

The first phase of development was based directly on the
work carried out by Piersanti et al. (2015), who used a con-
centration similarity function to assess the spatial represen-
tativeness of PM2.5 and O3 monitoring stations in the Italian
air quality monitoring network. Using modelled hourly air
pollutant data covering Italy with a 4km×4km grid cell res-
olution, Piersanti et al. (2015) produced maps showing how
representative certain sites in the Italian monitoring infras-
tructure were. The application proposed here compares point
measurement to point measurement as opposed to comparing
modelled grid cell data; however, the underlying principle of
comparing two concentration–time profiles to produce a sin-
gle indication of similarity between them still applies. The
function value fsite(x,y) used by Piersanti et al. (2015) to
assess the spatial coverage of point measurements is given in
Eq. (1):

fsite(x,y)=

∑Nt

i=1 flag
Nt

, (1)

where

flag=

1,
|C(Xsite,Ysite,ti )−C(x,y,ti )|

C(Xsite,Ysite,ti )
< 0.2

0,
|C(Xsite,Ysite,ti )−C(x,y,ti )|

C(Xsite,Ysite,ti )
> 0.2,

and where C(x,y, ti) represents the surface concentra-
tion from the modelled data in a grid point at time ti ,
C(Xsite,Ysite, ti) represents the modelled data of a specific
site of interest at time ti , and Nt is the total number of time
steps. The study defined a modelled grid cell at the site of in-
terest as representative of a surrounding grid cell area if the
condition fsite(x,y) > 0.9 is true.

In the first step of our approach, this function was ap-
plied to the hourly average PM2.5 data obtained from the co-
located Clarity Node-S units by comparing two sensor data
series at a time. The concentration at the point of interest and
surrounding grid cell concentration inputs were substituted
for sensor PM concentration values from any given sensor
A and sensor B pair, C(A,ti) and C(B,ti). Over a total of
1565 co-located hours, the mean number of comparable data
points per C(A,ti), C(B,ti) pair was 654 due to devices be-
ing present at different stages during the co-location periods
(Table S1).

In theory, the function value comparing two sensor data se-
ries would be 1, given that the measurements were collected
in the same location and were known to all represent the same
air parcel at each point in time. However, it was found that the
function was not comprehensive enough to allow for an ac-
ceptable comparison of the sensor data. The results showed
discrepancies between some device pairs because the func-
tion value deviated significantly from 1 in many cases (Ta-
ble 1) and was as low as 0.51 in some cases, with an overall
mean of 0.82.
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Table 1. Function values, fsite(x,y), for hourly averaged PM2.5 measured by a range of co-located Clarity Node-S devices. Device labels in
the columns were set as C(Xsite,Ysite, t), and device labels in the rows were set as C(x,y, ti).

A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AWF AY9N AY93 AYG

A3 1 0.83 0.88 0.8 0.8 0.86 0.88 0.87 0.87 0.99 0.67 0.9 0.8 0.99 0.8 0.61 0.8 0.98
A4 0.84 1 0.81 0.89 0.83 0.87 0.89 0.87 0.87 0.98 0.8 0.9 0.9 0.97 0.85 0.72 0.79 0.99
A8H 0.86 0.79 1 0.79 0.78 0.87 0.89 0.83 0.78 0.76 0.66 0.85 0.72 0.92 0.71 0.62 0.72 0.73
A8Z 0.82 0.91 0.81 1 0.78 0.88 0.89 0.85 0.84 0.97 0.87 0.88 0.9 0.97 0.86 0.81 0.73 0.98
A9 0.76 0.82 0.8 0.76 1 0.75 0.8 0.78 0.78 0.78 0.69 0.77 0.74 0.67 0.78 0.62 0.76 0.69
AQ 0.88 0.87 0.9 0.87 0.77 1 0.94 0.88 0.86 0.97 0.87 0.97 0.84 1 0.81 0.81 0.75 0.94
AZ 0.89 0.88 0.89 0.88 0.8 0.94 1 0.91 0.9 0.97 0.8 0.97 0.82 0.99 0.82 0.75 0.84 0.93
A7 0.87 0.87 0.86 0.83 0.82 0.88 0.91 1 0.89 0.98 0.68 0.91 0.81 0.99 0.8 0.63 0.74 0.96
A6P 0.87 0.86 0.79 0.82 0.77 0.87 0.92 0.89 1 0.89 0.77 0.9 0.83 0.75 0.82 0.8 0.78 0.89
AJ3 0.99 0.97 0.76 0.97 0.75 0.97 0.98 0.98 0.89 1 0.72 0.88 0.91 0.76 0.82 0.77 0.81 0.89
AP7 0.71 0.85 0.63 0.88 0.65 0.86 0.86 0.74 0.77 0.71 1 0.75 0.81 0.54 0.8 0.83 0.75 0.8
AQV 0.9 0.89 0.86 0.86 0.75 0.96 0.96 0.91 0.88 0.88 0.77 1 0.85 0.77 0.8 0.76 0.82 0.85
ARF 0.82 0.9 0.72 0.91 0.74 0.86 0.85 0.83 0.85 0.9 0.8 0.84 1 0.74 0.82 0.81 0.81 0.92
AW6 0.96 0.94 0.92 0.94 0.65 1 0.99 0.98 0.72 0.72 0.5 0.73 0.7 1 0.69 0.51 0.49 0.7
AWF 0.8 0.88 0.7 0.86 0.76 0.82 0.82 0.81 0.82 0.82 0.81 0.8 0.83 0.73 1 0.81 0.77 0.86
AY9N 0.62 0.76 0.59 0.81 0.6 0.79 0.75 0.65 0.78 0.77 0.81 0.74 0.8 0.55 0.8 1 0.72 0.8
AY93 0.76 0.76 0.67 0.65 0.72 0.69 0.74 0.65 0.78 0.84 0.75 0.8 0.81 0.55 0.77 0.75 1 0.82
AYG 0.99 0.99 0.72 0.99 0.67 0.95 0.95 0.98 0.87 0.87 0.78 0.83 0.9 0.75 0.84 0.79 0.76 1

2.2.2 Function parameter optimisation and
introduction of PM limit

Analysis of the results obtained from direct application of
the original function showed that the conditions set out by it
were too strict to apply to the sensor data, given the variations
that can occur in AQS measurements. The areas of the entire
sensor networks discussed here could be within the origi-
nal single grid cell size analysed by Piersanti et al. (2015).
Therefore, overall pollution dynamics would vary signifi-
cantly, in part because of hyper-local effects, and pollution
averaging effects would be more pronounced when assess-
ing larger areas. Moreover, the high hourly PM2.5 variation
and very localised effects exhibited in a typical Irish winter
PM2.5 profile are not suited to the original function (Byrne et
al., 2023). While the original application contains a mathe-
matical function examining the difference between two pol-
lutant concentrations and is independent of specifications re-
garding area size and pollution dynamics, the threshold val-
ues can be adapted to reflect the specific application of the
function. A second threshold value, a PM mass concentra-
tion limit, PMlim, was introduced to the function, with dif-
ferent relative concentration limits for the upper and lower
PM values, Clim, upper and Clim, lower, respectively. Treating
larger and smaller PM2.5 values differently when assessing
the similarity between two data series is useful for capturing
the nuanced relationships and patterns in the data. It allows
for the real-world significance of the data to be reflected,
acknowledging the varying implications of PM2.5 measure-
ments based on the magnitude. Higher PM2.5 values can in-
dicate a pollution episode or specific local pollution sources,
while lower values can represent background levels. There-
fore, treating lower PM2.5 values with more leniency in the
similarity assessment recognises that minor fluctuations in

low hourly concentrations might not be as concerning as sim-
ilar deviations in higher concentrations and the health-related
considerations associated with these high concentrations.

Another potential advantage of the PM limit concerns the
varying degrees of accuracy of the AQS measurements. Al-
lowing the leeway introduced here in assessing the similarity
of lesser measurement values considers potential measure-
ment uncertainties with these devices. However, it is impor-
tant to note that this approach is not accommodating sen-
sor limitations at the expense of accuracy, but rather it is a
strategy to ensure that the assessment remains faithful to the
underlying air quality dynamics while accounting for the po-
tential deficiencies in measurement equipment.

When the function is applied to a pair of sensors, the re-
sulting CSI can differ slightly depending on which sensor
was classified as C(x,y, ti) or C(Xsite,Ysite, ti), or sensor A
or sensor B, in Eq. (1) when computing the difference at each
time step. Due to the nature of the function, the denominator
value of the relative difference calculation, the concentration
of sensor A at a given time step, is what makes the differ-
ence. To counteract this and to avoid the possibility of large
discrepancies between the CSI values for a sensor pair de-
pending on which sensor is taken as A or B, the function
was modified to use the geometric mean, or the square root
of the product, of C(A,ti) and C(B,ti) as the denominator.
This ensured symmetry in the function so that the CSI values
were identical regardless of which sensor was classified as A
or B in a sensor pair.

Equation (2) shows the next form of the concentration sim-
ilarity function (function notation has been modified to be
more suitable for this application).

CSIA,B =

∑Nt

i=1f

Nt

, (2)
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where

f =



1 if |C(B,ti )−C(A,ti )|√
C(A,ti )×C(B,ti )

< Clim, upper

and C(A,ti) or C(B,ti) > PMlim

0 if |C(B,ti )−C(A,ti )|√
C(A,ti )×C(B,ti )

> Clim, upper

and C(A,ti) or C(B,ti) > PMlim

1 if |C(B,ti )−C(A,ti )|√
C(A,ti )×C(B,ti )

< Clim, lower

and C(A,ti) or C(B,ti) < PMlim

0 if |C(B,ti )−C(A,ti )|√
C(A,ti )×C(B,ti )

> Clim, lower

and C(A,ti) or C(B,ti) < PMlim,

and where C(A,ti) and C(B,ti) are the PM2.5 measurements
from devices A and B at time, ti . Clim, lower and Clim, upper are
the threshold values defining the acceptable level of differ-
ence between two concentrations, and PMlim is the PM mass
concentration threshold value.

2.2.3 Development and testing of the modified equation

The PM limit and associated concentration similarity limits
introduced were chosen by iteratively testing the similarity
function on the co-location data using different limits. Each
co-located sensor pair was tested with different PMlim val-
ues (5, 10, 15, 20 µg m−3) and with Clim values ranging from
0.1 to 2.0 in steps of 0.1 for both the upper and lower limits.
This produced a Clim vs. CSI comparison for each A–B pair
for data above and below the corresponding PMlim value. The
Clim value for each sensor comparison, which gave a mini-
mum CSI value of 0.95, was recorded with the overall mean
of these Clim values above and below each PMlim value taken
forward. The mean Clim pair values were then applied to the
co-location measurements with the respective PMlim values
to give final CSI values for each sensor pair, highlighting how
the PM2.5 concentration profile of each sensor compares to
that of all the other sensors. The highest mean CSI value for
all co-located A–B pairs was found for PMlim = 15 µgm−3,
Clim, upper = 0.2, and Clim, lower = 0.7. When applying these
new limits, all sensor pairs gave CSI > 0.85, with 99 % of
pairs above 0.90 and with an overall CSI mean of 0.98. These
final limits enabled a good comparison for the hourly co-
located AQS measurements (Table 2).

The CSI function was also applied to data obtained from
the four co-located PurpleAir devices in order to make sure
that the function was applicable across the two AQS types.
The data was harmonised by following the same procedure
as the Clarity device data, through scaling each data point
from each sensor to the mean data series of all four sensors.
Although this co-location period was shorter than that of the
Clarity dataset used for the function development, it still al-
lowed for the CSI to be calculated from around 250 common

data points per sensor pair. All device pairs reported a CSI
close to 1.0, with a mean CSI of 0.99 (Table S3 in the Sup-
plement).

The function described in Eq. (2) was further tested by
comparing the sensors to numerous sets of synthetic data
created from each sensor’s measurements to assess the im-
pact of a range of scenarios. Comparing a sensor dataset to
itself establishes a baseline for the comparison where the CSI
is 1 and any subsequent adjustments to the data to create
the synthetic data can be explored, resulting in a new CSI.
The first scenario investigated changes in CSI when outliers
are present in the data. To explore this, the sensor data was
changed so a certain number of data points could be con-
sidered outliers (n= 1, 10, 500, 1000). An outlier data point
was created by increasing a value by 100 µgm−3 in order
to ensure discrepancy between it and the original value. The
function was then tested in a scenario where the data was
scaled linearly so the mean remained constant, but the vari-
ance of the data was increased, and it was also tested in a
scenario where the entire dataset was offset by 5, 10, 15, and
20 µgm−3. The final test scenario involved the introduction
of noise to the dataset, representing impactful variations in
that data. Gaussian noise with various values of standard de-
viation was added to the data. The CSI results for the syn-
thetic data tests were also compared to the results when the
R2 was found between any two given datasets. Low vari-
ations were found during all synthetic data analyses, with
the resulting CSI values having standard deviations ≤ 0.05
across the individual devices for each test. As an example,
the effects of these tests on the CSI results for A6P are shown
in Table 3, where 4406 data points were included in the cal-
culations.

It is clear that in the case of the linearly scaled data with
higher variability but the same overall mean, the CSI is im-
pacted (CSI= 0.52) when the standard deviation is increased
by just a factor of 1.5, indicating that such a dataset is dissim-
ilar to the original. In comparison, the R2 is not an accurate
reflection of the change, as it does not deviate from 1. Offset-
ting the data by different degrees also shows a major change
in the CSI (CSI < 0.55). However, this is not reflected well in
the R2 values, which do not deviate from 1. The CSI method
is quite robust with respect to outliers, whereas the R2 is
more sensitive (R2

= 0.94) when 10 outliers are introduced
to the dataset, which is approximately 0.2 % of the total data
points. The R2 is significantly reduced (R2

= 0.45) with 500
outliers (∼ 11 % of the total data points), whereas the CSI is
only slightly impacted (CSI= 0.89). As the method yields a
time-averaged result, low numbers of outliers do not hugely
affect the index for a given sensor pair. So, two datasets that
are generally similar but where one experiences some out-
liers will be deemed similar by the method. The R2 also
shows a more limited response when larger amounts of Gaus-
sian noise are added, resulting in a value of 0.96 when the
standard deviation of the noise is 4 µgm−3, while the CSI is
adjusted to 0.7. From a health-impact and exposure point of
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Table 2. Concentration similarity indices for hourly averaged PM2.5 measured by a range of co-located Clarity Node-S devices. PMlim =
15 µgm−3, Clim, upper = 0.2, and Clim, lower = 0.7.

A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AWF AY9N AY93 AYG

A3 1 0.97 0.99 0.96 0.92 0.99 1 0.99 0.99 1 0.96 1 0.97 1 0.96 0.94 0.99 1
A4 1 0.97 0.99 0.95 0.98 0.99 0.99 0.99 1 0.99 0.99 0.99 1 0.98 0.97 0.97 1
A8H 1 0.96 0.92 0.99 1 0.99 0.99 0.97 0.94 0.99 0.96 0.98 0.96 0.94 0.97 0.98
A8Z 1 0.94 0.97 0.99 0.98 0.98 1 0.98 0.98 1 1 0.98 0.96 0.97 1
A9 1 0.92 0.92 0.94 0.95 0.97 0.96 0.95 0.97 0.92 0.97 0.95 0.96 0.96
AQ 1 1 1 0.99 1 0.97 1 0.97 1 0.96 0.97 1 1
AZ 1 0.99 0.99 1 0.97 1 0.98 1 0.96 0.95 1 1
A7 1 0.99 1 0.95 0.99 0.98 1 0.96 0.94 0.97 1
A6P 1 0.99 0.97 0.99 0.99 0.96 0.97 0.97 0.99 1
AJ3 1 0.98 0.98 0.99 0.95 0.99 0.98 1 0.99
AP7 1 0.96 0.99 0.85 0.99 0.99 0.97 0.98
AQV 1 0.98 0.98 0.97 0.96 0.99 0.99
ARF 1 0.96 0.98 0.99 0.99 1
AW6 1 0.92 0.87 0.9 0.97
AWF 1 0.98 0.97 0.98
AY9N 1 0.97 0.99
AY93 1 0.99
AYG 1

Table 3. Influence of data outliers and other factors on CSI determined in test scenarios with device A6P.

Number
of
outliers

CSI R2 Standard
deviation
factor
increase

CSI R2 PM2.5
positive
offset
(µgm−3)

CSI R2 PM2.5
negative
offset
(µgm−3)

CSI R2 Standard
deviation
of added
noise
(µgm−3)

CSI R2

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
1 1 1 1.5 0.52 1 5 0.54 1 5 0.34 1 1 0.96 1
10 1 0.94 2 0.29 1 10 0.05 1 10 0.02 1 4 0.70 0.96
500 0.89 0.45 4 0.10 1 15 0.01 1 15 0.01 1 10 0.36 0.77
1000 0.77 0.38 20 0.01 1 20 0.004 1

view, increased variation and higher offset represent very dif-
ferent exposure scenarios, whereas a large difference in the
occasional hourly average in an otherwise similar exposure
regime does not. The CSI offers a more appropriate compari-
son between hourly measurements collected at two locations.

2.3 Application to sensor networks and analysis of
spatial trends

The CSI methodology developed above was subsequently
applied to the Dungarvan and Cork sensor networks to eval-
uate the similarity and spatial variations in PM2.5. A system-
atic pairwise comparison approach was employed, wherein
each sensor was individually compared to every other sen-
sor within the network. Hierarchical clustering and fuzzy c-
means (FCM) clustering were both performed on the CSI re-
sults to identify groupings based on each sensor’s relation-
ship to other sensors in the network that can then be reflected
spatially.

With both clustering techniques, the quality of cluster as-
signments can be assessed with various evaluation metrics to

choose the optimal number of clusters. As the “true” cluster
classifications are not known here, validation must be per-
formed using the clustering algorithm itself. To assess the
quality of the hierarchical clustering assignments, the silhou-
ette metric was used along with the Calinski–Harabasz in-
dex to assess the FCM assignments (Caliński and Harabasz,
1974; Rousseeuw, 1987). The silhouette score, ranging from
−1 to+1, can be calculated for each member of a cluster and
then the mean silhouette score from all members indicates
an overall assignment quality for members of that cluster,
with a high score closer to 1 indicating higher-quality clus-
ters and a low or negative score indicating poorer cluster as-
signments. The Calinski–Harabasz index also quantifies the
quality of cluster assignments, with higher scores indicating
better quality. The metrics were used to test for the optimal
number of clusters for each algorithm.
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Figure 1. Diurnal profiles for hourly averaged measurements of
PM2.5 in the Dungarvan sensor network (September 2022 to May
2023).

3 Results and discussion

3.1 Dungarvan PM2.5 sensor network

Analysis of the harmonised data obtained from the sensors in
the Dungarvan PM2.5 network was conducted to determine
CSI values and assess the spatial variation in air pollution
across the town. Although the PM2.5 concentrations are not
as accurate as those collected by reference instrumentation,
any relative differences between the sensors and between in-
dividual sensor data trends can be regarded as genuine due
to the low inter-sensor variation observed after data harmon-
isation procedures, where the standard deviation of the mean
PM2.5 co-located measurements was 1.7 µgm−3.

The temporal and spatial trends of PM2.5 across the Dun-
garvan sensor network are reflected in the average diurnal
plots obtained for each sensor, Fig. 1. These diurnal profiles
all show large evening peaks in PM2.5, which are typical
of towns and cities in Ireland affected by residential solid-
fuel burning during winter evenings (Dall’Osto et al., 2014;
Healy et al., 2010; Wenger et al., 2020). However, there are
clear disparities in some of the average evening peak val-
ues between the sensors. One group of sensors has maximum
values above 35 µg m−3 (A3, A4, A8H, A9, AQ, A7, AW6,
AQV), while the sensors with maxima below 35 µgm−3 can
be further divided into three smaller groups. Sensors labelled
AJ3, AWF, and AZ all have a maximum PM2.5 concentration
around 30 µgm−3; sensors AY9N, AY93, ARF, A8Z, AYG,
and A6P all have maxima in the 20–26 µgm−3 range, while
AP7 has a significantly lower evening peak than all other de-
vices.

Most sensors exhibited the diurnal maximum around the
same time of day, between 18:00 and 20:00 LT; however
AP7 and ARF showed a slightly delayed peak from 20:00
to 22:00 LT. AP7 had the lowest peak concentration and did
not exhibit the sharp rise and subsequent decrease associ-

ated with evening solid-fuel burning that the other sensors
showed. AP7 was located on the southwestern edge of the
town, and since the predominant wind direction is southwest-
erly, it did not measure as much local pollution as other loca-
tions in the eastern part of the network.

Summary statistics obtained for the 18 sensors in the Dun-
garvan network are listed in Table 4. Unsurprisingly, most of
the devices with diurnal maxima > 35 µgm−3 have the high-
est mean, median, and maximum values. Out of this subset
of devices, AQV has the lowest overall mean (15 µgm−3) but
still has a relatively high standard deviation (22 µgm−3), in-
dicating that the PM2.5 values tend to vary widely but are
lower on average. This could be indicative of fluctuating
particle concentrations, consistent with intermittent pollution
sources such as residential solid-fuel burning.

The wind speed and direction recorded at sites AP7 and
AY93 showed some variation (Fig. S4a and b in the Sup-
plement); however, wind speeds measured at all three sites
showed a moderate correlation with all R2 values above 0.65.
The measured wind direction at the AP7 and AY93 sites re-
ported a moderate correlation (R2

= 0.63). Both sites mea-
sured winds emanating from a broad range of directions.
Both locations reported generally southerly winds 53 % of
the time and southwesterly winds 30 % of the time. The tem-
poral variations in wind speed measured at the three sites are
detailed in Fig. S5 in the Supplement. Little diurnal varia-
tion is seen between devices AY93 and AY9N; however, it
is clear that AP7 tended to experience slightly lower wind
speeds than AY93 and AY9N during the measurement cam-
paign. Nevertheless, this difference did not exceed 1 ms−1 in
any of the temporal variation assessments, and all three sites
reported the same overall trends in wind speed. The varia-
tions in wind measurements between the sites indicate some
slight local meteorological differences; however, the overall
meteorological field is not likely to differ greatly between the
three sites.

3.1.1 Concentration similarity index

The matrix of CSI values obtained for the Dungarvan sensor
network is shown in Table 5. The results can be analysed in
a number of ways. Firstly, the indices for one sensor can be
used to assess how similar or dissimilar the measurements
are to all other sensors in the network, thus providing infor-
mation on the spatial representativeness of that particular lo-
cation. Secondly, the indices of all sensors can be looked at
together to elucidate any potential relationship between sen-
sor measurement locations.

The minimum CSI value (0.85) determined during the co-
location deployment can act as the lower limit for when two
sensor locations can be considered very similar. The reported
CSI values for Dungarvan sensors ranged from 0.48 (ARF vs.
A7) to 0.79 (AYG vs. AWF) with a mean of 0.61, indicating
a significant difference in air quality representation between
locations across the town. The device with the lowest mean
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Table 4. Summary statistics of hourly average PM2.5 concentrations obtained for all sensors in the Dungarvan sensor network (September
2022 to May 2023).

ID Mean Median Standard Maximum Maximum Hour of maximum
deviation hourly value diurnal value diurnal value

(µgm−3) (µgm−3) (µgm−3) (µgm−3) (µgm−3)

AP7 11 7 12 153 12 21
AY9N 12 7 14 136 23 19
A8Z 13 7 16 274 25 19
A6P 13 8 18 311 26 19
AY93 13 8 15 176 22 19
AZ 14 7 18 286 30 19
ARF 14 8 18 243 26 20
AYG 14 8 16 259 24 19
AQV 15 8 22 281 44 19
AJ3 16 9 19 270 33 18
AWF 16 9 17 189 31 19
A3 18 9 27 412 45 19
A9 18 9 27 409 45 19
A8H 19 9 28 482 40 18
AQ 19 10 28 480 48 18
A4 21 12 27 370 52 18
A7 21 12 27 361 45 18
AW6 21 11 26 319 51 18

Table 5. Concentration similarity indices for the hourly averaged PM2.5 concentrations measured by Clarity Node-S devices in the Dungarvan
sensor network.

A3 A4 A8H A8Z A9 AQ AZ A7 A6P AJ3 AP7 AQV ARF AW6 AWF AY9N AY93 AYG

A3 1 0.56 0.64 0.56 0.58 0.67 0.58 0.62 0.64 0.59 0.53 0.61 0.5 0.63 0.55 0.59 0.6 0.57
A4 1 0.53 0.52 0.55 0.53 0.56 0.58 0.53 0.57 0.55 0.58 0.49 0.54 0.55 0.56 0.55 0.55
A8H 1 0.58 0.6 0.61 0.59 0.57 0.61 0.61 0.57 0.64 0.54 0.61 0.56 0.61 0.62 0.61
A8Z 1 0.62 0.55 0.69 0.54 0.62 0.65 0.71 0.66 0.6 0.56 0.62 0.66 0.62 0.67
A9 1 0.53 0.6 0.57 0.58 0.63 0.6 0.63 0.52 0.58 0.6 0.61 0.58 0.6
AQ 1 0.58 0.57 0.6 0.59 0.5 0.62 0.49 0.63 0.53 0.56 0.58 0.56
AZ 1 0.58 0.63 0.68 0.68 0.71 0.6 0.62 0.66 0.62 0.61 0.74
A7 1 0.57 0.58 0.53 0.6 0.48 0.62 0.55 0.56 0.57 0.55
A6P 1 0.72 0.62 0.66 0.58 0.63 0.64 0.65 0.68 0.71
AJ3 1 0.64 0.76 0.6 0.64 0.76 0.67 0.7 0.78
AP7 1 0.64 0.67 0.52 0.64 0.65 0.63 0.69
AQV 1 0.59 0.65 0.72 0.65 0.68 0.77
ARF 1 0.56 0.59 0.62 0.61 0.63
AW6 1 0.61 0.6 0.62 0.62
AWF 1 0.66 0.68 0.79
AY9N 1 0.59 0.67
AY93 1 0.72
AYG 1

of its CSI values with respect to the other locations was A4
(0.55), and although device ARF was only slightly above this
(0.57), it reported a larger range of CSI values, including the
lowest of the entire dataset. AJ3, AQV, and AYG all shared
the highest mean CSI values (0.66).

To further investigate the effect of solid-fuel burning on
local air quality, the CSI function was applied to data from
two isolated months – January and May 2023. The purpose
of this assessment was to evaluate the extent to which resi-

dential solid-fuel burning dictates the CSI between two sen-
sors, given that one month (January) will have higher PM2.5
levels, with measurements heavily influenced by solid-fuel
burning, and the other will not (May). For both months, all
sensors had data capture above 65 %, and the mean capture
was 94 % for January and 92 % for May. The January mean
CSI from all comparisons was 0.51, and the May mean CSI
was 0.84 (Tables S4 and S5 in the Supplement). The large
discrepancy between the mean CSI for January and May is
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Figure 2. Dendrogram output from hierarchical clustering of the
CSI data from the Dungarvan sensor network.

most likely due to the higher variation typically seen in win-
tertime PM2.5 (sJanuary = 25 µgm−3, sMay = 9 µgm−3) due to
residential solid-fuel burning (Fig. 1). This highlights the im-
portance of seasonality when assessing the spatial represen-
tativeness of monitoring network locations.

3.1.2 Clustering

Clustering techniques were employed on the CSI matrix to
uncover any inherent spatial relationships between different
locations in the network. Hierarchical clustering produced a
dendrogram showing the hierarchical relationship between
the sensor locations and was used to identify clusters (Fig. 2).
The highest mean silhouette score was found with two clus-
ters (Fig. S6 in the Supplement). However, it was not a high
silhouette score (0.19), indicating that the quality of the clus-
ter assignments was low. The highest Calinski–Harabasz in-
dex corresponded to the assignment of members to two clus-
ters when applying the FCM clustering (Fig. S7 in the Sup-
plement).

From both the dendrogram (Fig. 2) and the FCM mem-
bership weights (Fig. 3), it is clear that devices A4 through
AQ are grouped together in one cluster (Cluster 1), and de-
vices AQV to AP7 are grouped in another cluster (Cluster 2).
This split is very similar to the easily visualised groupings
shown in the diurnal profile maxima (Fig. 1), with the only
difference being device AQV. The devices in Cluster 1 are
also those with the highest mean PM2.5 for the measurement
period. The mean CSI for each sensor mostly corresponds
to the cluster assignments, with Cluster 1 devices having a
mean CSI equal to or below 0.6 and all devices in Cluster
2 having a mean CSI above 0.6 except for device ARF. In-
terestingly, this grouping also appears to have spatial impor-
tance too, as shown in Fig. 4. Cluster 2 devices are mainly
located around the edge of the town and generally experi-
ence cleaner air (xPM2.5 = 13 µgm−3, sPM2.5 = 27 µgm−3),
while Cluster 1 devices are located in central and residential
areas (xPM2.5 = 19 µgm−3, sPM2.5 = 17 µgm−3), which are
more polluted during winter months.

Figure 3. Membership weights from FCM clustering of the CSI
data from the Dungarvan sensor network.

3.2 Cork PM2.5 sensor network

The same approach as above was used to analyse the data
collected by the Cork AQS network. In this case, the cor-
rected measurements are indicative of the actual PM2.5 expe-
rienced in each location. The diurnal plots for each sensor in
the Cork network are similar to those observed in Dungarvan,
with a sizeable evening peak in PM2.5 concentrations (19:00–
21:00 LT) due to emissions from residential solid-fuel burn-
ing. Again, there is considerable variation in the peak con-
centration of PM2.5 (Fig. 5). Device MTU showed the lowest
diurnal average maximum of 9 µgm−3. This device is located
on the western side of the city and has few upwind pollu-
tion sources contributing to air pollution at the location, as
the prevailing wind direction is from the southwest. Devices
CCC12 and CCC9 both showed the highest diurnal average
maximum, 17 µgm−3. CCC12 is located northeast of the city
and so likely experiences urban PM2.5 sources upwind from
it or has strong localised sources. Similarly, CCC9 is located
to the east of the city in a residential area. Table 6 con-
tains summary statistics for each of the sensors in the Cork
network. Some devices had very high PM2.5 maxima, e.g.
201 µgm−3 for CCC11, which were more than double the
maxima of other devices, e.g. CCC8, which had the lowest
overall maximum of 47 µgm−3. Device MTU had the low-
est diurnal maximum value, indicating that this location was
the least affected by local emissions from solid-fuel burning.
However, it measured a significant overall PM2.5 maximum
of 99 µgm−3 and significant spikes in pollution were occa-
sionally observed, likely due to meteorological conditions or
specific localised effects. When looking at all of the parame-
ters listed in Table 6, CCC11 stands out. This sensor has the
highest maximum hourly average PM2.5 concentration in the
network, but the standard deviation (8 µgm−3) is in the mid-
dle of the range, indicating that the location had relatively
stable PM2.5 levels throughout the measurement period with
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Figure 4. Dungarvan AQS locations with two cluster groups indicated. Cluster 1 devices (red triangle markers) are mainly located in central
and residential areas, while Cluster 2 devices (blue cross markers) are mainly located on the edge of the town. (map obtained from Esri,
DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

Figure 5. Diurnal PM2.5 profiles for all AQSs in the Cork network
(January to May and September to December 2021).

less variation than other devices, but it was still susceptible
to occasional spikes in PM2.5.

The meteorological data retrieved from Cork Airport,
which is approximately 4–11 km from each device in the
Cork sensor network, was investigated for the measurement
period in 2021. While data obtained from the airport site in-
dicates the meteorological conditions on a synoptic scale, the
local weather experienced at individual locations within the
city are additionally shaped by factors such as street canyon
effects and local topography. Consequently, the wind direc-
tion measured at the airport site cannot be assumed to mirror
that of all devices in the network. Wind speeds measured at
the airport generally surpass those within the city as it is situ-
ated at a higher elevation than the city. However, the broader
regional wind patterns are expected to exert a predominant
influence on the overall meteorological conditions across the

city, and therefore the relationship with meteorological con-
ditions and local PM2.5 levels can be investigated. The Cork
Airport site recorded southerly winds 59 % of the time and
southwesterly winds 39 % of the time (Fig. S8 in the Supple-
ment).

3.2.1 Concentration similarity index

The matrix of CSI values obtained for the Cork sensor net-
work is shown in Table 7. The values range from 0.52
(CCC12 vs. MTU and CCC9 vs. MTU) to 0.85 (CCC2 vs.
CCC11) with a mean of 0.71. The high maximum CSI indi-
cates a high degree of similarity between those locations in
the network, and overall, Cork locations show a higher de-
gree of similarity compared to those in Dungarvan.

The isolated CSI results for the months of January and
May 2021 were also assessed for the city of Cork. The aver-
age data coverage during both periods was 92 %. The mean
CSI value in January (0.55) was considerably lower than that
observed in May (0.82), Tables S6 and S7 in the Supple-
ment. This result is similar to that found for the Dungarvan
network, again indicating that the large difference in mean
scores between the two months can be attributed to higher
wintertime PM2.5 variation due to residential solid-fuel burn-
ing (sJanuary = 15 µgm−3, sMay = 3 µgm−3).

3.2.2 Clustering

The two clustering algorithms were applied to investigate
the CSI results of the Cork network. The silhouette scores
for each number of assigned clusters (2 to 5) were low, with
two clusters showing the highest mean score (Fig. S9 in the
Supplement). Similarly, with the FCM analysis, two clusters
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Table 6. Summary statistics of hourly averaged PM2.5 obtained for all sensors in the Cork network (January to May and September to
December 2021).

Device label Mean Median Standard Maximum Maximum Hour of maximum
deviation diurnal value diurnal value

(µgm−3) (µgm−3) (µgm−3) (µgm−3) (µgm−3)

MTU 6 4 6 99 9 21
CCC8 7 5 6 47 10 19
CCC3 8 5 7 61 10 21
CCC5 8 5 10 181 14 19
CCC 8 6 7 71 11 20
CCC11 8 6 8 201 13 19
CCC1 8 6 8 92 11 20
CCC2 8 6 8 122 13 20
UCC 9 6 8 108 13 20
CCC4 9 7 8 97 16 19
CCC9 10 7 10 158 17 19
CCC12 10 7 10 117 17 20

Table 7. Concentration similarity indices for the hourly averaged PM2.5 concentrations measured by PurpleAir devices in the Cork AQS
network.

CCC1 CCC2 CCC3 CCC4 CCC5 CCC7 CCC8 CCC9 CCC11 CCC12 MTU UCC

CCC1 1 0.73 0.76 0.68 0.65 0.71 0.66 0.64 0.76 0.67 0.66 0.76
CCC2 1 0.79 0.82 0.65 0.77 0.68 0.73 0.85 0.78 0.61 0.79
CCC3 1 0.73 0.76 0.8 0.8 0.65 0.82 0.7 0.76 0.8
CCC4 1 0.63 0.73 0.64 0.76 0.82 0.78 0.56 0.77
CCC5 1 0.65 0.74 0.7 0.66 0.6 0.69 0.71
CCC7 1 0.68 0.65 0.78 0.7 0.66 0.73
CCC8 1 0.7 0.67 0.6 0.67 0.74
CCC9 1 0.72 0.74 0.52 0.8
CCC11 1 0.79 0.61 0.84
CCC12 1 0.52 0.77
MTU 1 0.62
UCC 1

showed the highest score with the Calinski–Harabasz indices
(Fig. S10 in the Supplement).

The dendrogram produced from the hierarchical clustering
and the membership weights for two clusters from FCM clus-
tering are shown in Figs. 6 and 7, respectively. It is clear that
devices MTU, CCC5, and CCC8 are all grouped together in
one branch, Cluster 2, with the remainder of the devices in
the other branch. The one assignment difference between the
two clustering methods is CCC3, which has a higher mem-
bership weight towards Cluster 2 with the FCM method but
does not branch with that cluster in the dendrogram. How-
ever, its membership weight is close to 0.5. CCC1 also shows
a membership weight close to 0.5, however it is showing a
higher weight towards Cluster 1, as per the hierarchical clus-
tering results. Devices in Cluster 2, except for CCC3, all have
the lowest mean CSI values.

Similar to the Dungarvan results, there appears to be a
spatial component to the cluster groupings, with devices in

Figure 6. Dendrogram output from hierarchical clustering of the
CSI data from the Cork sensor network.

Cluster 2 being mainly on the western side of the city, Fig. 8.
However, the contrast in cluster PM2.5 mean values is not as
stark in the Cork clusters as in those in Dungarvan. Cluster 1
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Figure 7. Membership weights from FCM clustering of the CSI
data from the Cork sensor network.

had a mean PM2.5 of 9 µgm−3, while Cluster 2 had a mean
PM2.5 of 7 µgm−3. Interestingly, device CCC7, located in a
commuter town on the western side of the city boundary, is
grouped in Cluster 1 along with devices mainly in urban resi-
dential type sites instead of being grouped with other devices
on the western edge of the city. This indicates that it has a
more comparable CSI profile to the urban residential sites
than the locations closer to it, further emphasising the impor-
tance of location type over physical proximity.

3.3 Application of the CSI to assess representativeness
of air quality monitoring locations

One key benefit of the CSI metric for AQS networks is that
one sensor can be singled out and its overall degree of sim-
ilarity to measurements from other locations can be deter-
mined. This analysis can be used to assess the spatial rep-
resentativeness of a given location in the AQS network by
quantitatively exploring how similar its PM2.5 profile is to
other locations. If a network sensor is co-located with a ref-
erence instrument, then the CSI values for that sensor can be
used to provide a measure of the representativeness of the
designated monitoring location and how well it informs the
assessment of population exposure to air pollution.

In Dungarvan, the device A6P was co-located with a
PM2.5 instrument (Osiris, Turnkey) deployed as part of the
national air quality monitoring network. The instrument is
not a reference instrument but is certified to provide indica-
tive measurements of PM2.5 (National Ambient Air Quality
Monitoring Network, 2023; Osiris, 2024). A6P had a mean
CSI of 0.63, the fifth-highest of the mean CSI values across
all devices. The similarity indices for A6P are included in
Table 5 and represented spatially in Fig. 9. All CSI values
are below the minimum threshold of 0.85 for two Clarity S-
node devices in the Dungarvan network to be considered very
similar. The most similar devices are found to the northeast
of this location, AJ3 and AYG. Interestingly, the similarity

of PM profiles does not decrease with increasing distance
from A6P. Devices on the furthest western (AZ, A8Z, AP7)
and eastern (AWF, AY9N) edges of the town are within 0.6
to 0.7, yet devices A4, A7, AQ, and A9 are all at or below
0.6 despite being physically closer to A6P. This suggests that
the location type as opposed to physical proximity is more
important when it comes to assessing the similarity of loca-
tions within Irish towns, as A4, A7, AQ, and A9 are all fully
surrounded by residential areas, whereas the other devices
mentioned are in more open areas.

One of the devices in the Cork sensor network, UCC, was
co-located alongside a reference instrument (BAM-1020) at
the national air quality monitoring location on the UCC cam-
pus. The CSI values for the device labelled UCC are shown
in Fig. 10, showing how similar the measurements at this site
are compared to the rest of the locations in the sensor net-
work. The CSI scale on the map has been adjusted for these
values. Similar to the Dungarvan case, there are devices that
show high similarity (CCC4, CCC2, CCC12, CCC1) with
UCC that are not located nearby.

4 Conclusion

A robust framework for comparing data series from individ-
ual air quality sensors in a network has been established,
and a new metric, the concentration similarity index (CSI),
has been developed, optimised, and tested on a co-location
dataset. The CSI allows one to consider the monitoring net-
work in terms of the similarity of the concentration–time
profile of PM2.5 at one location to profiles at the other loca-
tions in the same network. The harmonised dataset with min-
imal unexplained inter-sensor variation underpins the devel-
opment of the CSI method, along with robust tests to ensure
that the function represents an unbiased and fair depiction of
the inter-sensor relationships after deployment in a monitor-
ing network.

The CSI method has been used to analyse data generated
by PM2.5 sensor networks in two locations in Ireland: the
coastal town of Dungarvan and the city of Cork. Cluster-
ing techniques are applied to the CSI matrix, and compara-
ble similarity trends between locations drive the distinctions
made with the clustering algorithm. The resulting groupings
can provide several insights into the PM2.5 profile at each
location, including the likelihood of similarity in pollution
sources, spatial patterns, and temporal trends. An interesting
contrast in the CSI results from the two monitoring networks
was obtained from the clustering analysis. In Dungarvan, the
locations generated clusters that were reflected well when
comparing the individual diurnal profiles and specifically the
diurnal maximum values, indicating that this factor has a ma-
jor influence when relating the concentration–time profiles at
each location to one another in this network. However, for the
Cork network results, this was not as apparent. The clusters
were not aligned based on diurnal peaks, but rather the differ-
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Figure 8. Cork AQS locations with two cluster groups indicated. Cluster 1 devices (red triangle markers) are located in the city centre and
east/northeast, while Cluster 2 devices (yellow circle markers) are mainly located on the western side of the city. (map obtained from Esri,
DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

Figure 9. Dungarvan AQS locations with CSI results indicated in coloured circles (blue is the lowest CSI; yellow is the highest CSI) and the
A6P location indicated by red pin marker. (map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

entiating factor was more nuanced. Both clusters contained
locations with a mix of higher and lower diurnal maxima and
overall maxima. However, both network groupings reflect the
fact that devices may report dissimilar CSI results to other
devices located nearby and that considering location specifi-
cations or types, such as residential areas, is more important
than physical proximity when it comes to understanding and
quantifying the similarities between locations.

The CSI function was also applied to two separate months
in the network datasets, with January chosen to represent a
period of higher PM2.5 levels due to solid-fuel burning emis-

sions and May chosen to represent a period with lower PM2.5
concentrations due to reduced solid-fuel burning. In both
locations, the mean CSI for the network comparisons was
higher in May than in January, indicating that higher PM2.5
levels are a major driver of lower similarity indices between
sensor locations. Combining this with the findings of our pre-
vious study, we provide further evidence that high levels of
localised PM2.5 cause distinct disparities in exposure to poor
air quality in different locations. Furthermore, to properly as-
sess the burden of PM2.5 experienced by a population and to
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Figure 10. Cork AQS locations with UCC CSI results indicated in coloured circles (blue is the lowest CSI; yellow is the highest CSI) and the
UCC location indicated by red pin marker. (map obtained from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

accurately compare the measurements at two locations, the
wintertime PM data must be included in the assessment.

The similarity of PM2.5 measured at designated sites in
the national air quality monitoring network compared to the
rest of the locations in the sensor networks was analysed to
give an estimation of the representativeness of the air pol-
lution measured at the designated monitoring site. The na-
tional monitoring site location in Dungarvan was shown to
be moderately representative of the other AQS network loca-
tions in the town, with CSI values ranging from 0.53 to 0.72.
The CSI values for the Cork comparison ranged from 0.62
to 0.84, also showing a fair representation of the air pollu-
tion experienced in the rest of the network. The CSI function
was also tested via synthetic datasets, which showed that a
positive offset of just 5 µgm−3 resulted in almost halving the
CSI, which was a lower CSI than most of the sensor compar-
isons in both network locations. So, while a CSI of 0.85 was
used as a limit for two sensor measurement sets being very
similar, CSI values between 0.6 and 0.7 are still moderately
similar. In general, the CSI values in the city of Cork for the
reference site comparison were higher (mean= 0.75) than
that of Dungarvan (mean= 0.63), indicating less similarity
between the reference site and devices in the Dungarvan net-
work compared to those in the city of Cork.

While the function was developed and tested on multiple
sensor pairs and further validated with additional co-located
pairs, validation with co-located PM2.5 measurements of the
PMlim, Clim, upper, and Clim, lower parameters for specific ap-
plications is recommended to ensure that the index rep-
resents the dataset accurately. Co-location assessments are
also recommended to ensure minimal inter-sensor variation.
Nonetheless, the differentiation between higher and lower

PM values in the concentration similarity assessment is a
strategic choice that acknowledges the complexity of PM2.5
data, the varying significance of concentration levels, and the
limitations of sensors. It allows for a more accurate repre-
sentation of similarities, while considering real world impli-
cations and measurement uncertainties, and minimises the
potential biases that could arise from an indiscriminate ap-
proach, thus ensuring an impartial and unbiased evaluation.

The analysis and application of the CSI function displays
the potential for AQS networks to be used in conjunction
with a regulatory monitoring system. This study has shown
the potential for sensor networks to assess the need for more
regulatory monitoring in an area and to identify locations
that are being poorly represented by the current system. Fur-
thermore, the CSI method can be used to optimise a sensor
network by carrying out short-term sensor deployments and
identifying areas of similarity or dissimilarity and thus as-
sessing where the best locations for sensors are, based on the
similarity in exposure to air pollution.
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