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Abstract. This study presents advancements in the pro-
cessing of satellite remote sensing data, focusing mainly
on aerosol optical depth (AOD) retrievals from the Geo-
stationary Environment Monitoring Spectrometer (GEMS).
The transformation of Level-2 (L2) data, which includes
atmospheric-state retrievals, into higher-quality Level-3 (L3)
data is crucial in remote sensing. Our contributions lie in two
novel improvements to the processing algorithm. First, we
improve the inverse-distance-weighting algorithm by incor-
porating quality flag information into the weight calculation.
By assigning weights that are inversely proportional to the
number of unreliable grids, the method can provide more ac-
curate L3 products. We validate this approach through simu-
lation studies and apply it to GEMS AOD data across various
regions and wavelengths. The use of quality flags in the algo-
rithm can provide a more accurate analysis of remote sens-
ing. Second, we employ a spatiotemporal merging method to
address both spatial and temporal variability in AOD data,
a departure from previous approaches that solely focused on
spatial variability. Our method considers temporal variations
spanning previous time intervals. Furthermore, the computed
mean fields show similar spatiotemporal patterns to previ-
ous studies, confirming their ability to capture real-world
phenomena. Lastly, utilizing this procedure, we compute the
mean field estimates for GEMS AOD data, which can pro-

vide a deeper understanding of the impact of aerosols on cli-
mate change and public health.

1 Introduction

In satellite remote sensing missions, observed data are
processed at different levels. Using retrievals from the
atmospheric-state (Level 2; L2), L2 aerosol optical depth
(AOD) products are regridded to Level-3 (L3) products
through the processes of gap filling and filtering out noises
(Cressie, 2018). We first introduce the theoretical back-
ground of the mean field algorithm used to generate L3 data
applied to AOD retrievals from the Geostationary Environ-
ment Monitoring Spectrometer (GEMS) instrument. We con-
sider an oversampling method for generating L3 AOD data,
an inverse-distance-weighting (IDW) algorithm, and a modi-
fied mean field algorithm while accounting for spatiotempo-
ral variability in AOD data in the algorithm.

Aerosols play a critical role in radiative forcing, climate
change, and air quality (Brauer et al., 2015; Charlson et al.,
1992; Stocker, 2013; Kaufman et al., 2002). They directly
change the planetary albedo by reflecting solar radiation and
absorbing terrestrial radiation, affecting the radiation bal-
ance. Indirectly, as cloud condensation nuclei, aerosols mod-
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ify cloud properties and increase cloud droplet concentration,
impacting solar radiation and cloud albedo (Alexander et al.,
2013). Aerosols affect human health and air quality, espe-
cially in regions affected by long-range transport or regions
with heavy aerosol emissions due to rapid industrialization
and a high population density. These effects are linked to
cardiovascular, respiratory, and allergic diseases, as well as
increased mortality rates (Pöschl, 2006; Tager, 2004).

Additionally, high aerosol concentrations can severely re-
duce visibility, leading to hazardous weather conditions, such
as haze, smog, and dust storms (Charlson, 1969; Chen and
Tsai, 2001). Thus, understanding the multifaceted impacts
of aerosols is crucial for addressing issues concerning cli-
mate change, public health, and environmental visibility. The
distribution of aerosols is characterized by its complexity,
leading to increased uncertainty in determining the radiative-
forcing effects of aerosols (Chen et al., 2022). Analyzing the
spatiotemporal distribution of aerosols remains crucial for
developing air pollution control policies and understanding
the climate impacts of aerosols. Although accurate aerosol
optical properties (AOPs) and their vertical profiles can be
obtained from ground-based measurements with a high tem-
poral resolution, the AOPs only represent local-scale vari-
ability with limited spatial coverage. Unlike ground-based
instruments, the monitoring of AOPs on regional and global
scales has been conducted using satellite measurements.

A previous study by Park et al. (2023) focused on AOD
retrievals by considering spatial variability. Specifically, Park
et al. (2023) used the IDW algorithm to regrid L2 products
and estimated the mean field of L3 products by considering
spatial variability. Compared to this previous work, our con-
tributions are as follows. First, we integrate quality flag in-
formation into the IDW algorithm to rule out unreliable grid
points. In this study, we employ the IDW algorithm to com-
pute mean field estimates for AOD data. The IDW method
is a widely used gap-filling algorithms that imputes miss-
ing observations through a linear combination of neighbor-
ing observations. Integrating quality flags (QFs) as weights
into the IDW algorithm allows for a quantitative assessment
of the influence of data from various quality levels on the
final product. It can mitigate the impact of low-quality data
and lead to a lower mean squared error (MSE) when imple-
menting the IDW algorithm, as demonstrated in Sect. 4. By
considering variability in L2 AOD products, we can obtain
more reliable L3 AOD products in this step. Second, we use
the spatiotemporal merging method (Kikuchi et al., 2018)
to obtain L3 AOD mean field estimates. Numerous studies
have demonstrated that aerosol optical depth (AOD) exhibits
significant spatiotemporal variability due to natural and an-
thropogenic factors. This is particularly evident in regions
like northwestern China, where understanding spatiotempo-
ral dynamics is essential for effective atmospheric-pollution
management and control as aerosol concentrations are heav-
ily influenced by seasonal and graphical variations (Zhang,
2023). Moreover, the characteristics of the data collection

device, the satellite, play a crucial role. The AOD data an-
alyzed in this study were obtained from the Geostationary
Environment Monitoring Spectrometer (GEMS). When col-
lecting data using such devices, it is imperative to consider
spatiotemporal variability to ensure the high quality of the
aerosol data. For instance, a study conducted in East Asia op-
timized the spatiotemporal ranges used for validating satel-
lite products, such as total ozone and NO2, by leveraging
long-term data from both ground-based and satellite obser-
vations (Park et al., 2020). Incorporating quality flag infor-
mation can reduce the influence of low-quality data on the
IDW algorithm, resulting in a lower MSE, as demonstrated
in our simulation study. Nevertheless, it remains crucial to
identify and exclude pixels with unreliable AOD values as
they can introduce substantial uncertainties into mean field
estimates. In our analysis, we apply a filter with a cloud radi-
ance fraction (CRF) exceeding 0.4 to remove pixels, ensur-
ing that the included AOD values are not significantly im-
pacted by cloud contamination. We observe that our method
can provide smoother AOD surfaces than the simple averag-
ing method that does not consider spatiotemporal variability.

The outline of the remainder of this paper is as follows. In
Sect. 2, we describe the GEMS data used in our analysis. In
Sect. 3, we describe our method for computing the mean field
of L3 AOD products. In Sect. 4, we conduct simulation stud-
ies to validate our method. We apply the proposed method
to GEMS data in Sect. 5. We conclude with a discussion in
Sect. 6.

2 GEMS data

The GEMS is the first ultraviolet–visible (UV–Vis) hy-
perspectral satellite instrument aboard Geostationary Korea
Multi-Purpose Satellite-2B (GEO-KOMPSAT-2B), launched
on 19 February 2020. Its mission is to monitor air quality
across Asia (5° S–45° N, 75–145° E) using high temporal res-
olutions (1 h) and high spatial resolutions (3.5× 7.7 km2 for
Seoul, South Korea) using hyperspectral measurements in
the 300–500 nm range.

The GEMS aerosol retrieval algorithm (AERAOD) re-
trieves AOD, single scattering albedo (SSA), and aerosol
layer height (ALH) using GEMS L1 data from six wave-
lengths (354, 388, 412, 443, 477, and 490 nm). This algo-
rithm solves the issues regarding the limited degree of free-
dom for signal problems in the GEMS wavelength range
by utilizing two-channel inversion to retrieve initial guesses
for AOD and SSA and then input them into the optimal-
estimation method. This retrieval method was tested for sen-
sitivity to aerosol absorption in the UV–Vis region and using
Ozone Monitoring Instrument (OMI) Level-1 data (Kim et
al., 2018; Go et al., 2020a, b). Initially developed from syn-
thetic OMI data by Kim et al. (2018) and Go et al. (2020b),
the operational version was later improved by Cho et al.
(2023) using real GEMS Level-1 data. An update to the
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Table 1. Description of the variables for GEMS L2 aerosol retrieval
algorithm (AERAOD) data.

Group Variable

Data fields
AOD at wavelengths of 354, 443, and 550 nm
16-bit quality flag

Geolocation fields

Longitude
Latitude
Solar zenith angle
Viewing zenith angle

aerosol algorithm, version 2.0, was released in November
2022 and included the reprocessing of earlier data.

In this study, the following variables are used for calculat-
ing L3 AOD mean fields (Table 1).

In addition to the solar zenith angle (SZA) and view-
ing zenith angle (VZA), due to the unavailability of cloud
fraction in the GEMS AOD product, we utilize the GEMS
L2 cloud product as a masking criterion. The GEMS L2
cloud product is obtained from the GEMS cloud retrieval
algorithm (Kim et al., 2024). With the same hyperspectral-
measurement range, temporal resolution, and spatial resolu-
tion as the GEMS aerosol retrieval algorithm (AERAOD),
the GEMS cloud retrieval algorithm retrieves the effective
cloud fraction (ECF) and provides the cloud radiance fraction
(CRF) via the CRF conversion process (Choi et al., 2024).

To filter out pixels biased toward high cloud fraction, we
leverage CRF at wavelengths corresponding to the AOD
product.

3 Methodology

We apply a three-stage procedure to calculate the mean field
of the L3 AOD products. First, we regrid L2 AOD prod-
ucts using the IDW method with neighboring spatial infor-
mation to obtain the L3 AOD products. Then, we merge the
L3 AOD products by considering spatiotemporal variability
in the products, following Kikuchi et al. (2018). Specifically,
we merge the L3 AOD products using the previous time T
products from the target products of interest. Lastly, we pro-
duce the mean field of the L3 AOD products by taking a
simple mean of the spatiotemporally merged L3 data. The
outline of the method is illustrated in Fig. 1.

3.1 Inverse distance weighting

In this section, we describe the inverse-distance-weighting
(IDW) algorithm used to obtain L3 AOD products. Several
methods, including the nearest-neighbor method (Lotrecchi-
ano et al., 2021), the linear interpolation method (Abdul-
lah et al., 2019; Shepard, 1968), and the spline interpolation
method (Kuhlmann et al., 2014), have been proposed to in-
terpolate air quality mass. The IDW algorithm (Zimmerman

et al., 1999) is one of the most popular linear interpolation
methods due to its computational simplicity. Our goal is to
obtain the L3 AOD products for each longitude–latitude lo-
cation.

Let (x0,y0) be the target longitude–latitude lo-
cation for calculating the L3 AOD product. Sup-
pose (x1,y1), . . ., (xn,yn) represent the neighboring
longitude–latitude locations of (x0,y0), endowed with
their corresponding L2 AOD products, denoted by
AOD(x1,y1), . . .,AOD(xn,yn). To calculate the L3 AOD
product in our application, we use grid points within
the fourth-order neighbor of (x0,y0). This means that,
for the given (x0,y0), we use the locations that satisfy
xi ∈ (x0− r,x0+ r) and yi ∈ (y0− r,y0+ r). Specifically,
we set the resolution to 0.1° for the East Asia region and
0.05° for the Korean Peninsula region. Then, for the fixed
observed time point t0, the IDW estimate is

AODIDW(x0,y0, t0)=

n∑
i

λiAOD(xi,yi, t0), (1)

where the weight of each location is defined as

λi =
1/dpi∑n
i 1/dpi

, (2)

where di is the Euclidean distance from (x0,y0) to (xi,yi)
and p is the power parameter. Therefore, Eq. (1) is based on
the weighted average of the L2 AOD values from neighbor-
ing locations; a larger weight is assigned to grid points close
to the location of interest x0.

Depending on the choice of p, the IDW estimates yield
different outcomes. As p approaches 0, Eq. (2) indicates
equal weight, and the IDW estimate approaches a simple av-
erage from neighboring locations. On the other hand, as p
approaches ∞, the larger weight is concentrated on the lo-
cations near x0, and the IDW estimate converges to the esti-
mate obtained through the nearest neighbor. Although the op-
timal choice of p can vary depending on the study (Liu et al.,
2006), p= 2 is the most commonly used value since when
p= 2, the weight for the distance between grid points decays
faster to avoid discontinuity (Webster and Oliver, 2007). Fol-
lowing this convention (Isaaks and Srivastava, 1989), we also
use p= 2 in our analysis.

Enhanced inverse distance weighting with quality flag
information

A quality flag is an indicator that contains data quality infor-
mation for each grid point. Such indicators are widely used
for data cleaning and selection. In our study, we have quality
flag information in the L2 AOD products (coded as a 16-bit
unsigned integer value). The quality flag used in our study is
described in Table 2.

To incorporate quality flag information into the anal-
ysis, we convert the 16-bit integer value into a binary

https://doi.org/10.5194/amt-17-5221-2024 Atmos. Meas. Tech., 17, 5221–5241, 2024



5224 S. Kim et al.: Improved mean field estimates using spatiotemporal variability

Figure 1. Illustration of the proposed estimation of the mean field methods with a window size of T = 3. All times mentioned in the text are
in UTC.

Table 2. Quality flag information. OE: optimal estimation. SFC: surface reflectance. AK: averaging kernel. AMI: Advanced Meteorological
Imager.

Bits Definition Note Description

0 Reliable Good
(0: good; 1: issues)
AOD> 0.2 and ALH AK> 0.2

1 Less reliable Suspect AOD< 0.2 or ALH AK> 0.2

2 Out-of-bounds SSA or AOD at 443 nm Bad AOD<−0.05, AOD> 3.6, SSA< 0.82, or SSA> 1.0

3 OE fitting error Bad Fitting error during optimal estimation

4 Normalized radiance above the threshold Bad High normalized radiance

5 Surface albedo above the threshold Bad High surface albedo

6 Cloud masking Cloud Presence of clouds

7 Solar zenith angle above the threshold (69°) or viewing Bad SZA> 69° or VZA> 69°
zenith angle above the threshold

8 Sun glint angle below the threshold over water Bad Sun glint angle< 35°

9 High terrain height Suspect Terrain height> 35°

10 Previous L2 SFC information (minus 5 d) is used Suspect Absence of L2 SFC information

11 OMI climatology used for surface albedo Suspect Absence of L2 SFC information

12 Previous irradiance used Suspect Absence of L1C irradiance

13 AMI cloud masking used Cloud Cloud masking using AMI L2 cloud products

14 Less reliable surface albedo Suspect Less accurate AERAOD surface albedo

15 Interpolated radiance used Suspect L1C radiance QF= 2

value. For instance, the number 196 can be expressed as
000000011000100, which indicates that the features of bit 2,
bit 6, and bit 7 are contained. According to Table 2, pixels
with an algorithmic quality flag of 196 are likely to have the
features of an AOD value smaller than −0.05 or larger than
3.6. In addition, they may have an SSA value smaller than
0.82 or larger than 1.0 in the presence of clouds, when the
solar or viewing zenith angle is above the threshold. Table 3
provides further details about the quality flags.

Then, we define an uncertainty metric ui corresponding
to a weight λi used in the IDW method. The calculation of
the uncertainty metric, denoted as ui , is based on a quality
flag that is represented by a 16-bit unsigned integer. As men-
tioned, this integer is first converted into a binary format. We
then add all the problematic bits with a value of 1 to compute
ui . With this quality flag information, the IDW weight used
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Table 3. Process of converting the number 196, denoting the algorithm quality flag, into 16-bit unsigned integer values and binary values.
The first equation shows that the decimal number 196 can be expressed as 196= 27

+ 26
+ 22, which indicates that it can be converted into

the binary number 000000011000100 as written in the second line. To show which bits have issues based on the converted binary number,
we enumerate bits 0 to 16 on the third line. The process shows that bit 2, bit 6, and bit 7 have issues.

196 = 27 26 22

196 = 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
Bit = 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

for our method is expressed as

λi =
1/dpi u

q
i∑

i1/d
p
i u

q
i

, (3)

where ui =
∑

(bit values of the quality flag)+ 1. Since the
high values of ui imply low quality of the data, we take the
inverse of ui in the weights of the IDW algorithm. In Eq. (3),
q is a power parameter that controls the amount of qual-
ity flag information. The larger the q value, the higher the
penalty assigned to the grid with a large ui value. In Sect. 4,
we observe that incorporating quality flags into the weight
can improve the accuracy of the IDW method. Furthermore,
we validate the choice of quality flags from the simulation
study.

3.2 Spatiotemporal merging algorithm

In this section, we describe a merging algorithm (Kikuchi
et al., 2018) that can account for spatiotemporal variability
in L3 AOD products. Using spatiotemporal information, we
can adjust the weights to produce a more robust and accurate
L3 AOD mean field output.

3.2.1 Spatiotemporal variability in AODIDW

It is crucial to consider the spatiotemporal variability in the
IDW estimates when computing the mean field of L3 AOD
products (Kikuchi et al., 2018). However, we only have a
single IDW estimate, AODIDW(x,y, t), at a specific loca-
tion and time. Since we do not have repeated measures of
AODIDW(x,y, t), the spatiotemporal variability should be
computed using neighboring information. Let (x0,y0, t0) be
the location and time of interest and (xi,yi, ti) be the neigh-
boring location i. Then, spatiotemporal variability is defined
as a root-mean-square difference (RMSD) of AODIDW esti-
mates and is expressed as

σIDW(x0,y0, t0)

=

√√√√ 1
N

N∑
i

(AODIDW(xi,yi, ti)−AODIDW(x0,y0, t0))
2, (4)

whereN is the number of neighboring pixels within r , which
denotes the distance between the point of interest and its
neighboring set and previous time T from (x0,y0, t0). In this

work, we consider the fourth-order neighboring grids and a
window size of T = 3, meaning that r = 0.1, 0.2, 0.3, and
0.4° and that t = 0, 1, 2, and 3.

3.2.2 Hourly merged AOD estimates

Using the spatiotemporal variability discussed in Sect. 3.2.1,
we compute hourly combined AOD products. The procedure
is summarized as follows. First, we obtain AODpure by filter-
ing out unreliable grid points. Then, we compute AODmerged
at the location of interest by interpolating AODpure. From
this, we can retrieve reliable AOD products.

3.2.3 Computing AODest

We first introduce AODest(x0,y0, t0), which is a weighted
average of the IDW estimates obtained in Sect. 3.1. The AOD
estimate for a target grid (x0,y0, t0) is given as

AODest(x0,y0, t0)=

n∑
i

wiAODIDW(xi,yi, t0) , (5)

where

wi =

1
σ 2

IDW(xi ,yi ,t0)

1
σ 2

est(xi ,yi ,t0)

and

1
σ 2

est(x0,y0, t0)
=

n∑
i

1
σ 2

IDW(xi,yi, t0)
. (6)

Here, n denotes the number of effective pixels within r and
past time T from (x0,y0, t0), whose AODIDW values are
greater than or equal to 0. In Eq. (5), AODest is the weighted
average of AODIDW, and weights are defined by the inverse
of the spatiotemporal variability discussed in Sect. 3.2.1.
Note that the inverse of the variability quantifies the accuracy
and reliability of the IDW estimate for each grid;wi indicates
the sum of the accuracies over the neighboring region of the
target point.

3.2.4 Estimating the error variance

Our goal is to filter out grid points with high variability. Note
that the spatiotemporal variability in Eq. (4) increases as the
distance between grids increases. Utilizing this relationship,
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we estimate the spatial and temporal variabilities separately
through a regression model. The combined variability, de-
noted as σ0, for the currently considered grid point (x0,y0, t0)

is then calculated as the mean of the spatial and temporal
variabilities.

Before estimating the variability, we categorize the values
of AODIDW into different classes. This is because the pattern
of spatiotemporal variability varies depending on the magni-
tude of the AOD values (Kikuchi et al., 2018). Specifically,
we categorize AODIDW values into six bins corresponding
to 0.1, 0.25, 0.5, 0.75, 0.9, and 1.0. Note that previous work
(Kikuchi et al., 2018) used 12 classes. However, we use six
classes because certain classes are rarely observed; using 12
classes can lead to unreliable computation.

Let σdist(x0,y0, t0) be the spatial variability and
σtime(x0,y0, t0) be the temporal variability in the IDW
estimate at (x0,y0, t0). We first compute the average of the
spatiotemporal variability σIDW(xi,yi, ti) based on r and
the class. Then, we regress the averaged values obtained for
each component of the vector r = (0.1°, 0.2°, 0.3°, 0.4°) on
a design matrix [1,r,r2

], which is a second-order design
matrix for r pertaining to each class. Lastly, we obtain the
spatial variability σdist(x0,y0, t0) from the intercept estimate
of the quadratic regression model fitting. We can obtain the
temporal variability σtime(x0,y0, t0) in a similar manner. We
first compute the average of the spatiotemporal variability
σIDW(xi,yi, ti) based on the time point and class. We regress
them on a design matrix [1, t, t2] for each class and obtain
σtime(x0,y0, t0) from the intercept estimate of the quadratic
regression model fitting.

Finally, we compute the error variance by taking the aver-
age of σdist and σtime, given as

σ0(x0,y0, t0)=
σdist(x0,y0, t0)+ σtime(x0,y0, t0)

2
. (7)

The calculated error variance contains a measurement error
caused by sensor noise that varies over time and space.

3.2.5 Computing AODpure

Here, we obtain AODpure by filtering out uncertain AODIDW
values. For this, we introduce the estimated error in
AODpure, which is defined as

σpure(x0,y0, t0)

=


√
σ 2

0 (x0,y0, t0)+ σ
2
est(x0,y0, t0),

if AODIDW(x0,y0, t0) is observed,

missing, otherwise .

Here, σ 2
est is the error variance of AODest from Eq. (6) and

σ 2
0 is the combined error variance from Eq. (7). To filter out

uncertain AODIDW values, we consider an upper threshold

of AODIDW, expressed as

AODpure(x0,y0, t0)

=


AODIDW(x0,y0, t0), if AODIDW(x0,y0, t0)

≤ AODest(x0,y0, t0)+ 2.58σpure(x0,y0, t0),

missing, otherwise .

(8)

Assuming a Gaussian distribution, if AODIDW(x0,y0, t0) ex-
ceeds the upper threshold of the 99 % confidence interval, we
consider the value to be unreliable and thus exclude it from
the mean field calculation.

3.2.6 Computing AODmerged

Based on Sect. 3.2.5, we calculate the total variability within
the neighboring grids of the target grid. Then, we use the
ratio of the inverse of this total variability to assign weights
for calculating a weighted average of AODpure, resulting in
AODmerged, given as follows:

AODmerged(x0,y0, t0)

=


n∑
i

wiAODpure(xi,yi, t0),

if AODIDW(x0,y0, t0) is observed,

missing, otherwise,

(9)

where

wi =

1
σ 2

pure(xi ,yi ,t0)

1
σ 2

merged(x0,y0,t0)

and

1
σ 2

merged(x0,y0, t0)
=

n∑
i

1
σ 2

pure(xi,yi, t0)
.

This merging process not only utilizes the reliable value
(AODpure) but also incorporates the reliability (σpure) as a
weight, resulting in a more trustworthy gap-filling outcome.
In fact, in the study by Kikuchi et al. (2018), the root mean
squared error (RMSE) of AODmerged was notably lower
(0.11) compared to the RMSE of AODIDW (0.20).

4 Simulation

In this section, we conduct a simulation study to validate the
choice of quality flags. The data generation procedure is sum-
marized as follows.

4.1 Generating simulation data

1. For our simulation study, we constructed a 70× 70 lat-
tice over a 1× 1 square domain with a grid spacing
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of 0.1°. Each grid within this lattice represents a loca-
tion in our simulated dataset. In total, the lattice com-
prises 4900 grid cells, covering an area of 7°× 7°. Con-
sequently, each unit grid on the lattice represents an
area of 0.1°× 0.1°. We generate each element of X ∈
R4900× 2 from Unif(0,1), i.e., uniform distribution with
support from 0 to 1. This means that we have 4900 lo-
cations, each containing two pieces of coordinate infor-
mation: longitude and latitude. We use β1× 2 = (1,1) as
a true coefficient vector.

2. For each location, we simulate a zero-mean Gaussian
process W from N(0, (τM′QM)−1), where M is ob-
tained by taking the first k eigenvectors of the Moran
operator (Hughes and Haran, 2013) using smoothness
parameter τ . Here, Q= diag(A1)−A is a precision ma-
trix calculated from the adjacency matrix A. Note that 1
is an all-ones vector.

3. We simulate AOD datasets from Y= Xβ +W ∈
R4900× 2. In our simulation, Xβ represents the fixed ef-
fect, while W ∈ R4900 accounts for spatial correlation in
AOD products.

4. To generate missing data for the simulated Y that re-
semble the GEMS L2 product, we apply the observed
missing pattern from the GEMS AOD data to the sim-
ulated Y from step 3. Specifically, we apply the miss-
ing data pattern observed in the GEMS AOD data for
the 7°× 7° region in East Asia, with a grid spacing of
0.1°, collected on 1 April at 04:45 UTC. This selected
dataset aligns with the 70× 70 lattice in our simulation
and has approximately 20 % of its values missing, effec-
tively replicating the realistic missing data characteris-
tics found in the actual GEMS AOD observations.

5. For a realistic simulation that incorporates the physi-
cal implications of quality flags, we adapt the observed
quality flags from the GEMS AOD data to the simulated
Y from step 3. Similar to step 4, we use the quality flag
from the same data (i.e., data from the 7°× 7° region
in East Asia (with a grid spacing of 0.1°), collected on
1 April at 04:45 UTC) for the simulated Y.

We repeat steps 1–3 100 times to generate different realiza-
tions of Y. Then, for each simulated Y, we apply the identical
missing patterns (step 4) and quality flags (step 5) obtained
from the real dataset. Figure 2 illustrates an example of a
simulated dataset.

4.2 Sensitivity analysis of q

Here, we investigate the performance of the IDW method
with regard to GEMS data by varying q in Eq. (3). Specif-
ically, we consider q values of 0.5, 1, and 1.5 in our experi-
ment. We first examine whether there is a significant differ-
ence in IDW estimates with difference choices of q. Figure 3

indicates that the IDW estimates are comparable with var-
ious q values. Table 4 also shows that the summary statis-
tics of AODIDW are quantitatively similar across different q
choices. Therefore, we conclude that the IDW algorithm is
robust regardless of the q value used. To simplify the calcu-
lation, we set q = 1 in our analysis.

4.3 Quality flag simulation

As explained in Sect. 4.2 and Eq. (3), quality flag indica-
tors weigh the uncertainty in the IDW algorithm. To improve
the accuracy of the IDW algorithm, it is necessary to find
the optimal bit combination of the quality flag by performing
simulation studies. Therefore, we first identify bits that show
substantially lower mean squared errors (MSEs) and then
combine these specific bits into groups. Here, the MSE is
calculated between the simulated AOD dataset and the IDW
results, given by

1
n

n∑
i=1

(AODi − IDWi)
2 ,

where AODi is the simulated AOD value at location i and
IDWi is the IDW result at location i. Note that we refer to
these bit combinations of quality flags as “cases”. For exam-
ple, we may find that bits 0, 1, and 2 have a significantly low
MSE. This means that we can create various combinations of
these bits, such as 0 · 1, 0 · 2, or even 0 · 1 · 2, and each com-
bination can be denoted as a particular “case”.

Before finding the optimal case of the quality flag through
a simulation study, we examine whether the result differs de-
pending on the value of r in the IDW algorithm. Note that
this simulation study defines the unit of r as one unit grid
and not as the distance based on coordinates, as described in
Sect. 3.1. After careful consideration and analysis, we have
chosen to set the neighboring order to 3 for our study be-
cause varying the order of the neighbors did not yield any sig-
nificant differences in the mean squared error (MSE). How-
ever, to provide a comprehensive understanding of the im-
pact of the order on the interpolation process, we have in-
cluded additional IDW results with increasing order sizes in
Appendix A. These supplementary results demonstrate that
larger order sizes can potentially lead to oversmoothing. Fig-
ure 4 shows the generated AOD simulation data, with panel
(b) indicating the data incorporating the missing value pat-
tern and panel (b) visualizing the result of applying the IDW
algorithm to the data.

We then follow the following procedure. After selecting
specific bits with a lower MSE than bits fixed with an order
of 3, we repeat the experiment to account for diverse uncer-
tainty term calculations by considering various cases in the
IDW algorithm. We then find the optimal case that obtains
the highest accuracy by comparing the accuracies among the
cases. Here, MSE values are evaluated between the simula-
tion and the imputed data, treating the simulated data as real
data.
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Figure 2. Panel (a) illustrates the simulated AOD dataset, and panel (b) shows the missing pattern (white color). Panel (a) shows the simulated
AOD values, while panel (b) shows the missing patterns.

Figure 3. Comparison of the IDW estimates obtained on 1 April 2023 at 07:00 UTC. Each panel illustrates AODIDW with q = 0.5 (a),
q = 1 (b), and q = 2 (c).
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Table 4. Summary statistics of AODIDW values for different q values obtained on 1 April 2023 at 07:00 UTC.

Exponent (q) Mean Standard deviation Min 25 % quantile Median 75 % quantile Max

q = 0.5 0.6139 0.5534 0.0 0.2003 0.4895 0.8654 3.5928
q = 1 0.6121 0.5539 0.0 0.1966 0.4876 0.8642 3.5928
q = 2 0.6173 0.5524 0.0 0.2081 0.4935 0.8673 3.5928

Figure 4. Panel (a) shows the simulated AOD values, while panel (b) shows the simulated data incorporating the missing pattern, indicated
by the gray color. Panel (c) illustrates the result of applying the IDW algorithm to simulated data when r = 3.

Table 5. Six candidate cases for selecting quality flags based on the
combinations of bits 0, 2, and 6.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Bits All 0 2 6 0, 2, 6 Nothing

To select the quality flag bit for making the combination
case, we first calculate the MSE for each quality flag bit. Fig-
ure 5 displays the MSE values as boxplots for each bit. Al-
though the boxplots indicate the results for bits 0 through 15,
bit 2 and bit 6 exhibit significantly lower MSEs than other
bits. The medians for the two bits are 0.122 and 0.123, re-
spectively. Bit 2 indicates whether SSA or AOD is outside
a specific value range, while bit 6 shows the presence of
clouds. We then compile six different candidate cases, in-
cluding bit 2 and bit 6. Table 5 summarizes these six candi-
date cases.

To find the optimal quality control case that yields the low-
est MSE among the six candidate cases, we calculate the
MSE for each case using two different τ values, τ = 1 and
τ = 6, and present boxplots in Fig. 6. In Fig. 6a and b, each
case shows a different MSE, while case 5, which contains
bits 0, 2, and 6, shows the lowest median (0.387) in Fig. 6a.
Therefore, for our real application, we use the quality flag for
case 5 (bits 0, 2, and 6) when calculating the uncertainty term
for the IDW algorithm.

We examine whether the optimal case for the IDW algo-
rithm changes depending on the smoothing parameter τ of
the simulation data. Figure 6a and b show the average MSE,
represented as boxplots, with different smoothing parame-

ters. We find that while the overall magnitude of the MSE
value differs, the hierarchy of the MSEs across the cases re-
mains unchanged. This suggests that the algorithm’s perfor-
mance is robust regardless of the smoothing parameter used.

5 GEMS data application

5.1 Spatial resolution of output product

A geostationary satellite instrument, such as the GEMS, ob-
serves a fixed position. Therefore, if we use grids that are too
small, the output will have many missing values; an appro-
priate grid size should be selected to ensure adequate cov-
erage of the mean fields. Furthermore, we need to consider
the effective range, accuracy, and computation time needed
to obtain mean fields when choosing a grid size. If we use
too fine a spatial resolution, computational costs will expo-
nentially increase. On the other hand, grid sizes that are too
large can lead to inaccurate output results. Accordingly, in
our study, we set the mean field spatial resolution of the
longitude–latitude grid to 0.1°× 0.1° and 0.05°× 0.05° for
the East Asia and Korean Peninsula regions, respectively.

5.2 Level-2 aerosol optical depth data

As evidenced by various studies (Kaufman et al., 2005; Loeb
and Manalo-Smith, 2005; Matheson et al., 2005), AOD ex-
hibits a positive correlation with cloud fraction (CF), imply-
ing that proximity to clouds can result in a statistical increase
in AOD measurements. Additionally, a dependency of AOD
on solar and viewing zenith angles was observed (de Miguel
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Figure 5. Boxplots illustrating the interquartile ranges of the IDW algorithm results from 100 repetitive simulation datasets, including bits
0 through 15, for the uncertainty metric σ(i). The boxes represent the interquartile ranges, extending from the first quartile (Q1) to the third
quartile (Q3), with a horizontal line inside each boxplot denoting the median of the repeated simulations. The boundary of the lower whisker
represents the minimum value of the MSE. In contrast, the boundary of the upper whisker represents the maximum value of the MSE across
the repeated simulations. We find that bit 2 and bit 6 have a lower MSE than other bits.

Figure 6. Panel (a) shows the simulation results when τ = 1, while panel (b) shows the results when τ = 6. Despite the value of the smoothing
parameter τ , we find that the hierarchy of the MSE values between the cases is identical.

et al., 2011), highlighting the complexities involved in ac-
curate AOD estimation under varied atmospheric conditions.
To address these complexities, this study involved masking
data based on three variables, given below. Cloud radiance
fraction is incorporated within the GEMS L2 cloud product,
while the others are incorporated within the GEMS L2 AOD
product. These variables are meticulously designed to ac-
count for variability and uncertainties in satellite data (Choi
et al., 2024), addressing factors such as solar and viewing
zenith angles and cloud radiance fraction. This methodol-
ogy ensures a more precise and reliable estimation of AOD,
which is crucial for understanding atmospheric dynamics
and environmental monitoring. Unreliable values are treated

as missing values when we apply the IDW algorithm. The
thresholds are as follows:

– cloud radiance fraction≥ 0.4

– solar zenith angle≥ 70°

– viewing zenith angle≥ 70°.

In our study, we set two spatial domains for the mean field
outputs – one with latitude (30–43° N) and longitude (123–
131° E) corresponding to the vicinity of the Korean Peninsula
and the other with latitude (32–43° N) and longitude (115–
131° E) including the vicinity of the Shandong Peninsula in
China.
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5.3 Mean field estimates of the GEMS L3 AOD product

Figures 7 and 8 compare the spatiotemporally merged prod-
ucts with the simply averaged products. For spatiotemporally
merged L3 AOD products, we apply the procedure described
in Sect. 3. On the other hand, we take the mean of the IDW
estimates for simply averaged L3 AOD products. As men-
tioned in Kikuchi et al. (2018), grid points with AOD val-
ues exceeding 1.0 are extremely rare. Therefore, to focus on
the majority of values for detailed characterization, we set
the threshold to 1.0. In Fig. 7, we observe that more missing
values occur in the area of latitude (20–30° N) and longitude
(130–140° E) for the spatiotemporally merged products com-
pared to that for the simply averaged products. This can also
be verified by the ratio of missing values for each product
shown in each figure. This is due to the fact that a spatiotem-
poral merging procedure only considers reliable AOD esti-
mates, while a simple averaging method does not. Therefore,
the simply averaged products can be regarded as more un-
reliable, although they have fewer missing values. In Fig. 7,
we also observe that the spatiotemporal merging method can
provide smoother mean field outputs; for example, there is a
significant difference in the area of latitude (35–45° N) and
longitude (125–135° E). Similar trends are also observed in
Fig. 8. Mean field estimates at all three wavelengths for the
East Asia and the Korean Peninsula regions are provided in
Appendix B and C, respectively.

As described in Sect. 3, we obtain AODpure from AODest
by considering both the spatiotemporal variability σ0 and the
estimation uncertainty σest. This procedure allows us to ob-
tain more reliable AOD estimates. Furthermore, we can use
more robust AOD estimates when computing the mean field,
resulting in a smoother output.

5.4 Qualitative evaluation of the mean field products

Directly evaluating the accuracy of the L3 AOD mean field
products is challenging because there are no true values for
these products. Therefore, we compare our results with pre-
vious studies using qualitative aspects.

In Fig. 9a, we observe that our mean field products ob-
tained at a 550 nm wavelength on 1 April are similar to the
springtime global distribution of AOD at the same wave-
length. Furthermore, high values due to dust are observed
near the Taklamakan Desert, and high values due to biomass
burning are observed in Southeast Asia during spring. This
indicates that the computed mean fields can effectively cap-
ture real-world phenomena. In addition, we observe that the
overall trends in AOD values are similar to those from Mod-
erate Resolution Imaging Spectroradiometer (MODIS) data
(Tian et al., 2023), although there are some discrepancies
among values pertaining to the vicinity of the Taklamakan
Desert and certain areas in Southeast Asia.

Table 6. Comparison of gradients between merging algorithms.

Axis Simply averaged Spatiotemporally
mean field merged mean field

Longitude 0.00481 0.00416
Latitude 0.00488 0.00424
Both 0.00783 0.00685

5.5 Quantitative evaluation of the mean field products

To measure the smoothness of the mean field products, we
compute the second-order gradients of the AOD estimates
from the longitude and latitude. Specifically, we compute
gradients at each pixel point based on its neighboring AOD
values, following previous studies (Fornberg, 1988; Quar-
teroni et al., 2007; Durran, 1999). Then, we compare the
absolute mean of the gradients from the simple and spa-
tiotemporal averaging methods. Table 6 indicates that gra-
dients in both directions are smaller in the spatiotemporal
merging method. Considering that AOD exhibits significant
spatiotemporal variability, our method provides more realis-
tic mean field products than the simple averaging method.

6 Conclusions

In remote sensing, data are processed according to differ-
ent levels. For example, the L2 dataset, which contains
atmospheric-state retrievals, is converted into the L3 dataset.
Specifically, we focus on AOD retrievals from the GEMS
instrument through gap filling and noise filtering. We im-
prove the quality of L3 AOD mean field products by consid-
ering quality flag information and spatiotemporal variability
(Kikuchi et al., 2018). Specifically, the contribution of our
work is summarized as follows.

First, we improve the performance of the IDW algorithm
by including quality flag information in the weight calcula-
tion. We assign weights that are inversely proportional to the
number of poor-quality indicators. To validate the choice of
different quality flags, we conduct simulation studies. We ob-
serve that including bits 0, 2, and 6 from the quality flags
significantly improves the accuracy of the IDW algorithm.
We apply this novel approach to GEMS AOD data covering
various regions and wavelengths.

Second, we apply a spatiotemporal merging method
(Kikuchi et al., 2018) to GEMS AOD data. Unlike previous
work (Park et al., 2023) that only considered spatial variabil-
ity, our method also accounts for temporal variability from
previous time points. We observe that our mean field prod-
ucts exhibit similar trends to the previous studies, indicating
that the products are reliable.

Although our current study has made notable progress in
enhancing the accuracy of AOD mean field estimation, sev-
eral avenues for future research remain. One potential direc-
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Figure 7. Daily mean field estimates of the GEMS L3 AOD product obtained on 1 April 2023 at a wavelength of 354 nm. (a) Simply averaged
output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.5031, and the missing ratio for panel (b) is 0.5733.

Figure 8. Monthly mean field estimates of the GEMS L3 AOD product obtained on April 2023 at a wavelength of 354 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.1485, and the missing ratio for panel (b) is 0.1489.

Figure 9. Mean field estimates of the GEMS L3 AOD product obtained in April 2023 at a wavelength of 550 nm. (a) Daily mean field output
for 1 April 2023. (b) Monthly mean field output for April 2023.
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tion involves integrating additional data, such as cloud infor-
mation and distinctions between oceanic and terrestrial re-
gions, to further refine our results by considering the impact
of cloud cover on aerosol retrievals. Our method can account
for variability due to cloud contamination by utilizing quality
flag information in the IDW estimates. Note that we cannot
use physical mechanisms (e.g., aerosols produced by wild-
fires) in the interpolation step due to limited data sources. De-
veloping extensions of our approach by incorporating phys-
ical mechanisms may provide interesting future research av-
enues. Additionally, with the available information on qual-
ity flags, one direction for future work could involve de-
veloping methodologies for adaptively weighting or select-
ing quality flag bits by employing statistical variable selec-
tion methodologies. Validating our AOD mean field prod-
ucts against ground-based measurements or other satellite
datasets could also offer valuable insights into their reliabil-
ity and consistency, thereby helping to identify any potential
biases or uncertainties. Lastly, conducting a sensitivity analy-
sis to choose hyperparameters (e.g., the order of neighboring
grids and time windows) would be useful for improving the
performance of the method.

Appendix A: Sensitivity analysis for the radius of the
IDW algorithm

We compare the results of applying the IDW algorithm with
varying orders of neighboring grids used for a weighted aver-
age. Observing the visualization, we find a remarkable differ-
ence in the imputed area as fewer missing values remain with
an order of 9 compared to an order of 3. However, the MSE
values are 0.255 and 0.25, respectively, showing no signifi-
cant difference in numbers. Despite the negligible difference
between the two window sizes, we determined that the win-
dow size should be 3 since an order of 9 could cause over-
smoothing.

Figure A1. Panel (a) shows the simulated AOD values, while panel (b) shows the simulated data incorporating the missing pattern, indicated
by the gray color. Panel (c) illustrates the result of applying the IDW algorithm to the simulated data with an order of 9.
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Appendix B: Mean field estimates of the GEMS L3
AOD product for East Asia

In this section, we include daily and monthly mean field es-
timates of the GEMS L3 AOD products at all three wave-
lengths for East Asia.

Figure B1. Daily mean field estimates of the GEMS L3 AOD product obtained on 1 April 2023 at a wavelength of 354 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.5031, and the missing ratio for panel (b) is 0.5733.

Figure B2. Daily mean field estimates of the GEMS L3 AOD product obtained on 1 April 2023 at a wavelength of 443 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.5000, and the missing ratio for panel (b) is 0.5710.
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Figure B3. Daily mean field estimates of the GEMS L3 AOD product obtained on 1 April 2023 at a wavelength of 550 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.4908, and the missing ratio for panel (b) is 0.5619.

Figure B4. Monthly mean field estimates of the GEMS L3 AOD product obtained in 1 April 2023 at a wavelength of 354 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.1485, and the missing ratio for panel (b) is 0.1489.
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Figure B5. Monthly mean field estimates of the GEMS L3 AOD product obtained in April 2023 at a wavelength of 443 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.1490, and the missing ratio for panel (b) is 0.1494.

Figure B6. Monthly mean field estimates of the GEMS L3 AOD product obtained in April 2023 at a wavelength of 550 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.1483, and the missing ratio for panel (b) is 0.1487.

Atmos. Meas. Tech., 17, 5221–5241, 2024 https://doi.org/10.5194/amt-17-5221-2024



S. Kim et al.: Improved mean field estimates using spatiotemporal variability 5237

Appendix C: Mean field estimates of the GEMS L3
AOD product for the Korean Peninsula region

In this section, we include daily and monthly mean field es-
timates of the GEMS L3 AOD products at three wavelengths
for the Korean Peninsula region.

Figure C1. Daily mean field estimates of the GEMS L3 AOD product obtained on 1 April 2023 at a wavelength of 354 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.0263, and the missing ratio for panel (b) is 0.0386.

Figure C2. Daily mean field estimates of the GEMS L3 AOD product obtained on 1 April 2023 at a wavelength of 443 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.0255, and the missing ratio for panel (b) is 0.0406.

https://doi.org/10.5194/amt-17-5221-2024 Atmos. Meas. Tech., 17, 5221–5241, 2024



5238 S. Kim et al.: Improved mean field estimates using spatiotemporal variability

Figure C3. Daily mean field estimates of the GEMS L3 AOD product obtained on 1 April 2023 at a wavelength of 550 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.0194, and the missing ratio for panel (b) is 0.0309.

Figure C4. Monthly mean field estimates of the GEMS L3 AOD product obtained in April 2023 at a wavelength of 354 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.0, and the missing ratio for panel (b) is 0.0.
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Figure C5. Monthly mean field estimates of the GEMS L3 AOD product obtained in April 2023 at a wavelength of 443 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.0, and the missing ratio for panel (b) is 0.0.

Figure C6. Monthly mean field estimates of the GEMS L3 AOD product obtained in April 2023 at a wavelength of 550 nm. (a) Simply
averaged output. (b) Spatiotemporally merged output. The missing ratio for panel (a) is 0.0, and the missing ratio for panel (b) is 0.0.

Data availability. The GEMS Level-2 products are available
at https://nesc.nier.go.kr/en/html/datasvc/data.do?pageIndex=
1&outputInnb=41&atrb=AERAOD443 (National Institute of
Environmental Research Environmental Satellite Center, 2023a),
which provides direct access to the latest 7 d observation data.
For access to previous observations, readers may wish to
use the application programming interface (API), available at
https://nesc.nier.go.kr/ko/html/index.do (National Institute of
Environmental Research Environmental Satellite Center, 2023b).
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