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Abstract. NASA’s Vapor In-cloud Profiling Radar (VIPR) is
a tunable G-band radar designed for in-cloud and precipita-
tion humidity remote sensing. VIPR estimates humidity us-
ing the differential absorption radar (DAR) technique. This
technique exploits the difference between atmospheric atten-
uation at different frequencies (“on” and “off” an absorption
line) and combines it with the ranging capabilities of the
radar to estimate the absorbing gas concentration along the
radar path.

We analyze the VIPR humidity measurements during
two NASA field campaigns: (1) the Investigation of Mi-
crophysics and Precipitation for Atlantic Coast-Threatening
Snowstorms (IMPACTS) campaign, with the objective of
studying wintertime snowstorms focusing on east coast cy-
clones; and (2) the Synergies Of Active optical and Active
microwave Remote Sensing Experiment (SOA2RSE) cam-
paign, which studied the synergy between DAR (VIPR) and
differential absorption lidar (DIAL, the High altitude Lidar
Observatory – HALO) measurements. We discuss a com-
parison with dropsondes launched during these campaigns
as well as an intercomparison against the ERA5 reanaly-
sis fields. Thus, this study serves as an additional evalua-
tion of ERA5 lower tropospheric humidity fields. Overall,
in-cloud and in-snowstorm comparisons suggest that ERA5
and VIPR agree within 20 % or better against the dropson-
des. The exception is during SOA2RSE (i.e., in fair weather),

where ERA5 exhibits up to a 50 % underestimation above
4 km. We also show a smooth transition in water vapor pro-
files between the in-cloud and clear-sky measurements ob-
tained from VIPR and HALO respectively, which highlights
the complementary nature of these two measurement tech-
niques for future airborne and space-based missions.

Copyright statement. © 2024 California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

Accurate measurement and understanding of tropospheric
water vapor is crucial for improving our knowledge of cloud
and precipitation microphysical processes, atmospheric ra-
diative transfer, land–atmosphere interactions, and weather
forecasting. Due to its importance, various methods have
been developed and employed to measure water vapor from
the ground, aircraft, and space. Radiosondes provide the
longest record but have limited spatial and temporal cover-
age, with only a few locations and launches per day (e.g.,
Wang et al., 2000). In situ aircraft measurements are re-
stricted to flight level (e.g., Zahn et al., 2014; Singer et al.,
2022), while aircraft remote sensing options are limited to
a few field campaigns (e.g., Johansson et al., 2018). Passive
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microwave or near-infrared spaceborne methods have been
valuable in providing global information (e.g., Andersson
et al., 2007). However, all spaceborne techniques have lim-
itations: imagers only provide integrated column water va-
por, lacking vertical distribution information, while sounders
have broad weighting functions near the Earth’s surface, lim-
iting their vertical resolution. Infrared (or near-infrared) tech-
niques are limited to clear-sky scenes, thus restricting cover-
age in the tropics. Radio-occultation techniques can provide
high vertical resolution water vapor profiles, but their mea-
surement geometry results in an averaging over more than
100 km horizontally. Furthermore, atmospheric ducting ef-
fects associated with the top of the boundary layer limit their
accuracy in this region (e.g., Ao et al., 2012).

That is to say, to date the water vapor profile of the lower
troposphere has not been well-observed from satellites (e.g.,
Teixeira et al., 2021) and is only well-characterized from a
few surface remote sensing super sites (e.g., Wang et al.,
2000). Thus, the 2017 Earth Science Decadal Survey (Na-
tional Academies of Sciences, Engineering, and Medicine,
2018) recommended the development of new technologies
to enhance the measurement of atmospheric thermodynam-
ics, particularly within the planetary boundary layer, the
lowest level of the troposphere. Active water vapor sound-
ing techniques such as differential absorption lidar (DIAL)
(e.g., Browell et al., 1983; Wulfmeyer and Bösenberg, 1998;
Behrendt et al., 2009; Carroll et al., 2022) and differential
absorption radar (DAR) (e.g., Lebsock et al., 2015; Millán
et al., 2016; Roy et al., 2018; Battaglia and Kollias, 2019)
have been proposed as potential solutions to obtain accurate
high vertical resolution water vapor profiles in clear-sky and
cloudy regions using DIAL and DAR respectively (Teixeira
et al., 2021). These techniques exploit the difference between
the backscatter signals (either a laser or a radar pulse) at dif-
ferent frequencies (“on” and “off” an absorption line) to esti-
mate the gaseous absorption between the instrument and the
scattering target. Previous studies have demonstrated the ef-
ficacy of DIAL and DAR in estimating water vapor profiles
from an aircraft platform (e.g., Nehrir et al., 2017; Roy et al.,
2022).

In this study, we present an analysis of airborne water
vapor estimates obtained with the Vapor In-Cloud Profiling
Radar (VIPR) (e.g., Cooper et al., 2018; Roy et al., 2022)
during two field campaigns. The first is the year 2 deploy-
ment of the NASA Investigation of Microphysics and Pre-
cipitation for Atlantic Coast-Threatening Snowstorms (IM-
PACTS) field campaign (McMurdie et al., 2022). The sec-
ond is the NASA Synergies Of Active optical and Active
microwave Remote Sensing Experiment (SOA2RSE) cam-
paign, which aimed to explore the synergy of DIAL and DAR
measurements. While DIAL signals are sensitive to backscat-
ter from both aerosols and molecules and attenuate rapidly
in cloudy scenes, the much-longer-wavelength DAR signals
are only sensitive to the larger particles in cloudy and pre-
cipitating scenes. Here we present the first ever demonstra-

tion of complementarity of these two active water vapor pro-
filing techniques. We validate VIPR measurements of wa-
ter vapor against colocated dropsonde measurements and the
ERA5 reanalysis fields (Hersbach et al., 2020). This paper
is organized as follows: Sect. 2 describes the VIPR mea-
surements and aircraft campaigns, Sect. 3 discusses the re-
trieval methodology and datasets used in the comparisons,
Sects. 4 and 5 cover the profiling and partial column results,
and Sect. 6 describes the DAR and DIAL synergy.

2 VIPR and the IMPACTS and SOA2RSE campaigns

VIPR is a G-band differential absorption radar (DAR) that
was developed at NASA’s Jet Propulsion Laboratory as a
proof-of-concept instrument. This all-solid-state radar op-
erates on the flank of the 183 GHz water vapor line, in a
band where radar operation can be made with permission of
transmission regulation authorities, and utilizes frequency-
modulated continuous-wave (FMCW) mode to significantly
increase detection sensitivity compared to pulsed systems.
Earlier iterations of the VIPR system have been deployed in
different scenarios: on a ground-based platform to demon-
strate its ability to accurately profile water vapor in cloud
and precipitating scenes (Roy et al., 2018) (a simplified block
diagram of this iteration of VIPR can be found in Cooper
et al., 2021); as part of a multi-frequency radar deployment,
to investigate the sensitivity of a G-band radar to cloud liquid
and ice microphysics when combined with lower frequency
radars (Lamer et al., 2021); and, onboard a DHC-6-300 Twin
Otter aircraft, to evaluate its performance from an airborne
platform (Roy et al., 2021).

Subsequently, VIPR was modified to use two identical re-
flectors as separate primary apertures for the transmitting and
receiving, in contrast to the previous configuration where a
single primary reflector was used. This modification was im-
plemented to facilitate the integration of VIPR into NASA’s
P-3 aircraft, which utilizes radomes to safeguard the in-
struments against environmental factors. A picture of VIPR
mounted on the bomb bay of the P-3 can be found in Cooper
(2022).

More significantly, VIPR also underwent modifications
to expand its frequency coverage to approximately 158.6–
174.8 GHz, as compared to the previous configuration of
167–174.8 GHz. The broader bandwidth enabled the addition
of a third radar frequency further away from the water va-
por line center, which was implemented to mitigate retrieval
biases associated with frequency-dependent hydrometeor ex-
tinction and backscatter (Roy et al., 2021). Table 1 summa-
rizes the major radar system parameters used in this work.
Since the Twin Otter airborne measurements, VIPR was re-
configured to operate over a wider bandwidth and to use two
separate 38 cm diameter reflector antennas (one for transmit
and one for receiver), instead of the previous single 60 cm
diameter antenna shared between transmit and receive using

Atmos. Meas. Tech., 17, 539–559, 2024 https://doi.org/10.5194/amt-17-539-2024



L. F. Millán et al.: DAR clouds and storm measurements 541

Figure 1. Flight tracks of the P-3 VIPR measurements during the 2022 IMPACTS deployment (solid lines). Flight trajectories were chosen
to intersect snowstorm systems. Flight tracks of the P-3 VIPR and HALO measurements during the SOA2RSE deployment (dashed lines),
Flight trajectories were aimed towards a range of clear-sky and cloudy conditions over the western Atlantic Ocean. The map displays the
east coast of the USA. The border with Canada is shown with a dashed line. Different flight dates are color-coded.

Table 1. VIPR system parameters.

Parameter Value

Frequencies 158.6, 167.12, 174.74 GHz
Transmit power 120–210 mW
3 dB beam width 0.3◦

Antenna gain 55 dB
Beam polarization Circular
Receiver noise figure 8 dB
Pulse duration 1 ms
Number of pulses per frequency 492∗

Radar duty cycle 80 %
Chirp bandwidth 10 MHz
Native range resolution 15 m
Noise-equivalent reflectivity −31, −36, −29 dBZ
at 1 km range

∗ 246 chirp-up pulses and 246 chirp-down pulses.

a quasioptical duplexing subsystem. The wider tuning band-
width allows three frequencies to be transmitted instead of
two, while the use of separate antennas is compatible with
the use of radomes that are necessary for VIPR’s flights on
higher-flying aircraft. As a consequence of the wider-tuning
feature, VIPR’s transmit power for the measurements shown
here was lower than those made previously.

The IMPACTS field campaign, sponsored by NASA, was
an Earth Ventures Suborbital (EVS) field campaign aimed
at studying high-impact winter snowstorms, particularly cy-
clones that affect the US east coast (McMurdie et al., 2022).
The primary observation platforms for the IMPACTS cam-
paign were the ER-2 and P-3 aircraft. The second deploy-
ment of the IMPACTS campaign was conducted from NASA
Wallops during January and February 2022. As part of the
P-3 payload, VIPR was deployed during four flights, as out-

lined in Table 2 and depicted in Fig. 1 (solid lines). Most of
the VIPR measurements were obtained during flights along
the east coast northward of NASA Wallops, with the ex-
ception of the 17 February flight, which targeted an in-land
snowstorm system.

Following the IMPACTS field campaign, VIPR conducted
four additional flights to assess its synergy with the High Al-
titude Lidar Observatory (HALO) instrument (Carroll et al.,
2022) as part of the SOA2RSE campaign, which was spon-
sored by NASA’s Earth Science Technology Office (ESTO).
The purpose of SOA2RSE was to demonstrate the synergies
of the DIAL and DAR measurement approaches for the first
time. These flights were aimed towards a range of clear-
sky and cloudy conditions over the western Atlantic Ocean
near NASA Wallops Flight Facility. See Table 2 and Fig. 1
(dashed lines) for details. Overall, these flights (IMPACTS
and SOA2RSE) encompass around 44 h of VIPR data.

2.1 VIPR measurements and noise subtraction

A full description of the VIPR implementation is provided
elsewhere (Cooper et al., 2018, 2021; Roy et al., 2020, 2022).
In short, VIPR is a frequency-modulated continuous-wave
(FMCW; see Fig. 2) radar measuring reflectivity profiles
inside clouds and precipitation at three frequencies (158.6,
167.12, and 174.74 GHz). The fundamental VIPR measure-
ment at each frequency, f , is a power spectrum as shown
in Fig. 3. These power spectra are converted to profiles of
measured reflected power, Pm(r,f ), at each range bin, r , us-
ing the standard FMCW signal processing approach (e.g.,
Cooper et al., 2011). The measured power is the combina-
tion of the actual echo power, Pe(r,f ), and the noise power,
Pn(r,f ), that is, Pm(r,f )= Pe(r,f )+Pn(r,f ).
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Table 2. VIPR IMPACTS and SOA2RSE flights details and objectives.

Flight date VIPR on Duration Sondes Objectives
UTC h number

IM
PA

C
T

S

2022-01-14 19:38 5.3 11 (11)∗ To target precipitation bands offshore of Cape Cod and in the Gulf of
Maine

2022-02-13 11:48 3.3 3 (3) To target a frontal boundary across the mid-Atlantic region (mid-level
frontogenesis was the primary forcing for clouds and precipitation)

2022-02-17 16:26 8.1 0 (0) To sample a developing storm over the Midwest (over southern Lake
Michigan and Indiana)

2022-02-25 15:28 3.6 8 (4) To target a warm-frontal system in eastern New York (snow and
mixed-precipitating bands)

SO
A

2 R
SE

2022-03-04 13:22 7.3 12 (7) To explore the synergy of DIAL and DAR, targeting a frontal system
warm and cold sector

2022-03-07 15:50 4.9 2 (0) To explore the synergy of DIAL and DAR, targeting stratocumulus
clouds and fair weather conditions for VIPR calibration

2022-03-08 12:58 7.3 12 (7) To explore the synergy of DIAL and DAR, targeting multiple transects
of convective system

2022-03-09 15:30 3.8 3 (2) To explore the synergy of DIAL and DAR, targeting multiple transects
of convective system

∗ The number in brackets indicates the number of sondes under cloudy/precipitating conditions as measured by VIPR.

The first step in our data analysis is to estimate Pn(r,f ) in
each radar range bin so that we can then estimate Pe(r,f ) as
Pe(r,f )= Pm(r,f )−Pn(r,f ). Noise in the VIPR profiles
take two forms: (1) thermal noise, which is a characteristic
of VIPR’s receiver and the scene brightness temperature, and
(2) phase noise that is carried by the radar’s transmit signal,
and hence is more prominent with brighter reflectivity scat-
terers. The thermal noise can be modeled as PnT = kTsysB,
whereK is Boltzmann’s constant, Tsys is the system tempera-
ture, andB is the detection bandwidth. Phase noise originates
in the radar’s local oscillator used to generate the G-band sig-
nals, and it causes range side lobes that spread throughout the
observed power spectrum.

Through the IMPACTS and SOA2RSE flights, Pn(r,f ) is
dominated by phase noise, with two distinct forms: a surface-
dominated phase noise and broadband phase noise (result-
ing from multiple echoes originating from clouds and pre-
cipitation that are distributed in range). See Cooper (2022)
for more details. To illustrate this, Fig. 4a shows a curtain
plot of the raw radar reflectivities at 167.12 GHz during a
40 min acquisition over the Atlantic Ocean on 14 January
2022. The surface can clearly be seen around 6 km range as
a bright reflection practically at a constant range through-
out this curtain. A periodic (in range) clutter signal associ-
ated with this reflection is visible above and below the sur-
face. These range side lobes that appear in clear-sky profiles
arose from surface-dominant phase noise. As the extent of
the clouds and attenuation increases (towards the end of the
acquisition), the intensity of the surface reflection and the in-
tensity of this periodic clutter also diminishes. In these pro-
files, the bright clouds produce their own broadband phase

noise that overpowers the phase noise contribution from the
surface reflection. That is, the phase noise power from the
clouds is broadband, not lobed as for phase noise from a sur-
face reflection, because the clouds extend continuously over
a broad range so that there is no dominant lobed-noise con-
tribution from a single range (Cooper, 2022).

To illustrate this further, Fig. 5a shows three slices of this
curtain. In all three slices the transmit/receive leakage sig-
nal can clearly be seen at the aircraft altitude (i.e., at zero
range). Additionally the surface return can be seen around
6 km. The first slice (S1, navy line) shows a clear-sky sce-
nario where the clutter induced by the surface return can
clearly be seen above and below the surface, that is, the peri-
odic signal with an amplitude of 1 dB and a period of 300 m.
The second slice (S2, light blue line) portrays a partly cloudy
scene with clouds close the aircraft and at a range of around
2.7 km. The periodic clutter, caused by the surface return, is
still visible below and above the surface, but its amplitude
has been reduced by the extra attenuation introduced by the
clouds. The third slice (S3, green line) shows a cloud extend-
ing from the aircraft up to a ∼ 4.8 km range. In this slice, the
additional cloud attenuation has significantly attenuated the
surface return leaving no discernable periodic phase noise
from the surface reflection, but instead causing a broadband
noise increase evident below the surface.

Two potential noise subtraction approaches can be applied
to the VIPR reflectivities: one associated with the surface-
dominant phase noise and the other due to broadband cloud
induced phase noise. Both can mask reflections from signif-
icantly weaker targets at other ranges. To decide which type
of noise subtraction to use, we first model the phase noise
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Figure 2. Schematic of FMCW radar ranges. The received chirp
is offset in time from the transmit chirp, resulting in an instanta-
neous frequency difference for a point target of δf , for most of the
detection interval, which is proportional to the range of the target
according to δf = 21Fchirpr/cTchirp, where 1Fchirp is the chirp
bandwidth and Tchirp is the chirp duration. Hence, the IF signal of
the receiver mixer in an FMCW radar will have a frequency shift
proportional to the range to target. For scenes with hydrometeors
at multiple ranges, the IF will contain a linear superposition of fre-
quencies representing the different ranges. Signal processing tech-
niques are then used to convert the IF time-domain signal to a range-
resolved power spectrum.

Figure 3. Power spectrum examples at 167.12 GHz for a clear-sky
and a cloudy scene. The labels highlight features in the chirp up
power spectrum, while mirror features can be found in the chirp
down power spectrum. The surface return can be seen around 3.6
or 4.4 MHz depending on the chirp direction. Surface phase noise
sidelobes are clearly seen in the clear-sky case. The power spectra
at 158.6 and 174.7 GHz are similar, with the former being affected
by less water attenuation and the latter by more.

associated with the surface following the model described by
Cooper (2022). In short, at a given separation in intermedi-
ate frequency (IF) between the carrier and the target location,
1fIF, the point-target phase noise can be simulated as

ϕ(1fIF)= A+10log10(F )+B1fIF+C exp

(
−1f 2

IF
D2

)
, (1)

where A is 58 dBc (i.e., decibels relative to carrier), B is
−7 dBMHz−1, C is −3 dB, and D is 0.2 MHz. Lastly, F is
the interference modulator factor given by

F = 4sin2
(

2πR
c
1fIF

)
, (2)

where R is the range to the target location related to the IF
following fIF = 2KR/c, where K is the chirp rate in Hzs−1

and c is the speed of light.
Once we have estimated the surface phase noise, we per-

form a fast Fourier transform (FFT) on the signal below the
surface to identify its frequency components. We then ana-
lyze the resulting frequency spectrum to see whether a com-
ponent matches the simulated periodicity of the modeled
phase noise surface return (as computed by Eq. 1). If such
a match exists we estimate the range-dependent phase noise
using the observed sub-surface measured power. We then use
the fact that the phase noise is symmetric about the surface to
subtract the phase noise from the atmospheric ranges. If the
FFT analysis does not match such component, we instead
proceed to subtract the broadband phase noise derived from
the opposite chirp direction as described by Roy et al. (2018).

Figure 5b–d show examples of this point-target phase
noise model (light gray lines). As shown, on Slice 1 (a clear-
sky scenario), the modeled phase noise originating from
the surface agrees with the observed noise below the sur-
face, providing confidence in the point-target noise model.
In Slice 2 (a partly cloudy case) and Slice 3 (a cloudy case),
the noise below the surface is well represented by the integra-
tion of the point-target models. These point-target curves ex-
hibit a periodicity that is inversely proportional to the range
of the carrier tone, along with an amplitude variation in the
intermediate frequency. Note how the surface return point-
target phase noise model reproduces the behavior discussed
in Fig. 4, where the amplitude of its periodic clutter decreases
as the surface return gets more attenuated. For instance, in
Slice 3 the surface return point-target phase noise model is
orders of magnitude smaller than the surface return point-
target phase noise model displayed in Slice 1.

Figure 4b shows the same curtain as in the top panel after
the noise subtraction. As expected, the contrast between the
noise floor and the hydrometeor targets increases improving
the dynamic range of VIPR, which improves the detection of
weak clouds, such as in Slice 2 around 2.7 km in range. As
a reference, Fig. 4 also displays which noise was subtracted
throughout the flight.
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Figure 4. Uncalibrated VIPR 167.12 GHz reflectivities measured during the first ∼ 40 min of the 14 January flight with no noise subtrac-
tion (a), with noise subtraction (b), and with noise subtraction and confidence flag (c). The noise subtraction is indicated by the pink/green
bar (for phase noise and thermal noise, respectively).

Figure 5. (a) Radar reflectivities at the three slices indicated in Fig. 4, depicting scenarios with clear-sky (S1, navy line, featuring a bright
reflection around 6.5 km), a partly cloudy scene (S2, light blue), and a cloudy scene (S3, green). (b–d) Phase noise model simulations for
each of these slices. The integrated phase noise model is depicted in dark gray, while phase noise model examples at different ranges are
shown in light gray.
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2.2 Radar detection confidence flag

We create a hydrometeor confidence flag to identify ranges
at which the observed reflectivity is associated with an atmo-
spheric target as opposed to noise. This flag is based upon
the phase noise model described in the previous section.

The simulated phase noise model as measured by VIPR,
ϕM, is given by the sum of the point-target phase noise con-
tributions (Cooper, 2022), that is,

ϕM =

surface∑
carrier

ϕ(1fIF). (3)

As shown in Fig. 5b–d (dark gray lines), the summed
phase noise agrees with the observed noise below the sur-
face for the three slices. These slices covered different hy-
drometeor burdens: a clear-sky scenario, a partly cloudy, and
a cloudy case for Slices 1, 2, and 3 respectively.

To be considered a radar detection, the returns need to be
at least 3 dB greater than the envelope of the integrated phase
noise model and to have a signal-to-noise ratio greater than 3.
In those cases, the confidence flag is set to one (otherwise it is
set to zero). In this context, the detection envelope refers to a
curve following the local maxima of the phase noise model to
avoid the local minima associated with the periodicity of the
surface-reflection phase noise. While we might lose details
about thin clouds, these criteria are designed to effectively
filter out any spurious returns caused by phase noise rising
above the noise floor. See for example the curtains b and c in
Fig. 4 by the end of the acquisition (after minute 37, bottom
right corner) in the 2 km closest to the surface.

2.3 Calibrated radar reflectivity

After noise subtraction we calculate the calibrated radar re-
flectivity as

Ze(r,f )= Pe(r,f )C(f )r
2, (4)

where C(f ) is a calibration factor, and Ze(r,f ) is the re-
flectivity of a cloudy volume in conventional meteorologi-
cal units of decibels of mm6 m−3. VIPR calibration was per-
formed in a ground-based setting using a metallic spherical
reflector suspended between two poles by a nylon thread. In
simple terms, the calibration factor sets an absolute scale of
echo power based on the well-known scattering cross sec-
tion of the calibration sphere. Details of this procedure can
be found in Cooper et al. (2021) and in Roy et al. (2021).

Errors sources in this calibration factor include the follow-
ing: (1) inaccurate knowledge of the radar’s parameters (such
as potential drifts in transmit power and receiver noise be-
tween the ground calibration and airborne deployment), (2)
uncertainties in the water vapor attenuation assumed for the
beam path between the instrument and calibration sphere, (3)
positioning of the calibration sphere with respect to the beam
center, and (4) possible scattering effects of the suspending

nylon thread. Based on previous calibration efforts this cal-
ibration method suggests an accuracy of 1 to 2 dB (Cooper
et al., 2021; Roy et al., 2021), although it may be slightly
larger as discussed in Sect. 5.

The calibration we use was performed prior to aircraft
installation on 28 September 2021 and also immediately
following the removal of VIPR from the P-3 aircraft on
15 March 2022. The re-calibration was done because part
way through the campaign, VIPR’s low-noise amplifier
(LNA) failed and was replaced.

3 Retrieval methodology and datasets used for
comparisons

3.1 Water vapor profiling retrieval

The DAR retrieval methodology is fully discussed elsewhere
(Roy et al., 2018, 2021, 2022; Battaglia and Kollias, 2019).
For completeness, here we provide a recap of a simplified
retrieval to provide a heuristic understanding of the minimal
DAR physics. The DAR profiling technique begins by com-
bining the observed reflectivities to form the observed ab-
sorption coefficient at the two different ranges r1 and r2 =
r1+R:

γ (r1, r2,f )=
1

2R
ln
[
Ze(r1,f )

Ze(r2,f )

]
, (5)

where Ze(r,f ) is the measured reflectivity (after noise sub-
traction) given by

Ze(r,f )= Zeff(r,f )e
−2τ(r,f ), (6)

where Zeff(r,f ) is the effective unattenuated reflectivity for
a given target, and τ(r,f ) is the one-way optical depth from
the radar to the range r .

Thus, Eq. (5) can be rewritten as

γ (r1, r2,f )=
1

2R
ln
[
Zeff(r1,f )

Zeff(r2,f )
e−2β(r1,r2,f )R

]
, (7)

where

β(r1, r2,f )=
τ(r1,f )− τ(r2,f )

R
(8)

=
1
R

r2∫
r1

[∑
ρj (r)κj (r,f )+βp(r,f )

]
dr (9)

is the average absorption coefficient between r1 and r2, ρj (r)
is the density of the j th gas, κj (r,f ) is the correspond-
ing mass extinction cross section (which varies due to pres-
sure and temperature variations along the radar path), and
βp(r,f ) is the particulate extinction coefficient. Note that the
observed absorption coefficient, γ (r1, r2,f ), is not affected
by absolute calibration. That is, the DAR profiling retrieval
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546 L. F. Millán et al.: DAR clouds and storm measurements

is self calibrated. Our calibration procedure described above
is instead only relevant to the absolute-dBZ mapping of the
clouds and precipitation using VIPR.

This equation can be simplified by separating the water
vapor components from the other gases:

β(r1, r2,f )=ρv(r1, r2)κv(f )

+βdry(r1, r2,f )+βp(r1, r2,f ), (10)

where ρv is the water vapor density, κv(f ) is the water va-
por mass extinction coefficient, and βdry(r1, r2,f ) is the dry-
air absorption coefficient, where the overline indicates taking
the average between r1 and r2.

Thus Eq. (7) can be rewritten as

γ (r1, r2,f )=ρv(r1, r2)κv(f )+
1

2R
ln
[
Zeff(r1,f )

Zeff(r2,f )

]
(11)

+βdry(r1, r2,f )+βp(r1, r2,f ), (12)

which implies that the average humidity between r1 and r2
can be extracted by performing a least square fit to this equa-
tion, where the last three parameters can be assumed to vary
weakly with frequency and contain information about the
relative reflectivity of the two ranges in question: the dry
air gaseous absorption and the particulate extinction respec-
tively. In principle, all three have a weak frequency depen-
dence.

As shown by Roy et al. (2018), when using two radar tones
at different frequencies, the humidity can be estimated di-
rectly using

ρv(r1, r2)=
γ (r1, r2,f2)− γ (r1, r2,f1)

κv(f2)− κv(f1)
, (13)

which assumes that the last three terms in Eq. (7) are a
frequency-independent offset. However, this may not be nec-
essarily true in regions where the particle size distributions of
hydrometeors vary significantly in range, such as near cloud
boundaries or in regions with phase changes. In those situa-
tions, the range-dependent differential scattering of hydrom-
eters can be erroneously attributed to water vapor, resulting
in measurement bias. If more than two frequencies are used,
the retrieval can partly disentangle the differential extinction
from the water vapor from the hydrometeor scattering and
absorption effects as shown by Battaglia and Kollias (2019)
and Roy et al. (2022).

The uncertainty in γ (r1, r2,f ) can be computed using
standard error propagation techniques (Roy et al., 2018;
Battaglia and Kollias, 2019). This uncertainty can then be
used to estimate the humidity uncertainty. In this study, from
the 15 m native VIPR reflectivity resolution, we use steps of
300 m (i.e., R = 300 m) to derive the in-cloud profiles, which
have an associated precision of around 5.5 gm−3. This re-
sults in a water vapor profile with 300 m vertical resolution
sampled every 15 m. These oversampled estimates are then
averaged to a 300 m vertical grid to smooth out the retrievals,

improving the precision by a factor of
√

20 (i.e., to around
1.23 gm−3). These types of water profiles are taken every
1.9 s, which is the time that it takes VIPR to cycle through
the three frequencies for the programmed number of pulses
per frequency. This temporal resolution results in an approxi-
mate along-track resolution of 320 m assuming a 607 kmh−1

average P-3 speed.

3.2 Partial column water vapor retrieval

As shown by Roy et al. (2022), when using two radar
tones at different frequencies, the partial column water va-
por (pCWV) can be estimated using

pCWV=
cos(θi)
2〈1kv〉

σ 0
m(f1)

σ 0
m(f2)

, (14)

where θi is the beam pointing angle relative to the local nadir,
σ 0

m(f ) is the measured surface normalized radar cross sec-
tion at a given frequency, and

〈1kv〉 =

∫ Rs
0 ρv(r

′)1kv(r
′)dr ′∫ Rs

0 ρv(r ′)dr ′
, (15)

where 1kv(r)= kv(f2,T (r),p(r))− kv(f1,T (r),p(r)) is
the local differential absorption cross section for water va-
por per unit mass, which changes with temperature, T (r),
and pressure, p(r), along the radar path. Thus by assuming
a given temperature and pressure profile, and the shape of a
water vapor profile, pCWV can be inferred. That is, the nor-
malization of Eq. (15) ensures that the pCWV retrieval only
depends on the humidity profile shape assumed.

As with the profile retrieval, when using only two frequen-
cies the inferred pCWV may be subject to biases induced
by frequency-dependent attenuation contributions from the
cloud and precipitation hydrometeors along the radar path. If
more than two frequencies are used, the retrieval can distin-
guish the differential extinction from the water vapor from
the hydrometeor absorption effects as shown by Roy et al.
(2020).

Note that for these retrievals accurate relative calibration
factors are needed. The pCWV precision at the native VIPR
resolution is ∼ 5 kgm−2, which corresponds to the time that
it takes VIPR to cycle trough the three frequencies, that is,
1.9 s (approximately 320 m).

3.3 Ancillary retrieval information

Both the profiling and the pCWV retrievals require ancil-
lary pressure and temperature information. This information
is obtained from the Modern-Era Retrospective Analysis for
Research and Applications version 2 (MERRA-2) reanaly-
sis (Gelaro et al., 2017), which provides fields every 3 h on
a 0.625 by 0.5◦ longitude–latitude grid with a vertical reso-
lution better than 1 km in the lower troposphere. In the re-
trievals, we simply find the closest grid point to the VIPR
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measurement in the 12:00 UTC MERRA-2 fields. Note that,
as shown by Roy et al. (2018), the retrieved humidity is
weakly dependent on the assumed pressure and only accrues
a 10 % error for an 8 K temperature deviation. For the pCWV
retrievals the retrieval also assumes the normalized shape of
the humidity profile (Roy et al., 2022), which is also derived
from MERRA-2. This profile shape is needed to quantify the
absorption line broadening, which depends on temperature
and pressure. The assumed water vapor profile shape is then
scaled by a multiplicative factor to match the observed ratios
of the radar surface reflectivity. While we use MERRA-2 for
ancillary information, we later use ERA5 as an independent
reanalysis dataset against which the retrievals are compared
as detailed in Sect. 3.5.

All retrievals shown here only use radar returns classified
as confident using the flag described in Sect. 2.2. In this ar-
ticle we only show results from the chirp-up estimates. We
acknowledge that the chirp-down estimates are nearly iden-
tical but display some signs of distortion, the cause of which
is under investigation. If we were to average both chirp-up
and chirp-down measurements, the improvement in estimate
precision would be a factor of

√
2. However, considering the

magnitude of the possible systematic biases and differences
between the datasets discussed in Sect. 4, such averaging is
deemed unnecessary.

3.4 Dropsondes

Dropsondes were deployed from the P-3 using the Advanced
Vertical Atmospheric Profiling System (AVAPS) operated by
NASA Langley Research Center (Hock and Franklin, 1999).
The AVAPS Global positioning System (GPS) dropsondes
measure pressure, temperature, humidity, wind speed, and
wind direction as the parachuted dropsonde descends to-
wards the surface. The AVAPS system has been used in many
field campaigns (e.g. Wang et al., 2015; Sorooshian et al.,
2019; McMurdie et al., 2022; Reid et al., 2023). The drop-
sondes used in the flights used in this study were the NCAR
Research Dropsonde NRD41 manufactured at NCAR. Typi-
cal uncertainties are ±0.5 hPa, 0.2 ◦C, 3 %, and 0.5 ms−1 for
pressure, temperature, humidity, and wind respectively.

The NRD41 and RD41 dropsonde family uses a heated
humidity sensor, which has minimal biases measuring wa-
ter vapor inside clouds and thus is well suited for compar-
isons of humidity measurements in cloudy environments. In
addition, the direction of the profile during descent contains
no significant risk for icing of the sensors. Prior to take-off
of each research flight, the humidity sensors of all dropson-
des were properly reconditioned to minimize any calibration
drifts that may have happened between production and use
of the dropsondes. No correction needed to be applied for
the time response of the dropsonde humidity sensors during
IMPACTS and SOA2RSE, because the temperature range for
these observations was sufficiently warm and the humidity
sensor sufficiently fast.

The dropsondes were processed through the Atmospheric
Sounding Processing ENvironment (ASPEN, Martin and
Suhr, 2023), to apply all required quality control and cor-
rection algorithms. Dropsonde data collected during IM-
PACTS and SOA2RSE were not transmitted to the WMO
Global Telecommunication System and were not assimilated
in models. Therefore, the reanalysis comparisons shown in
the subsequent sections are not influenced by the dropsonde
data and represent a truly independent analysis of the atmo-
sphere in this region.

3.5 ERA5 reanalysis fields

We use data from the European Center for Medium-range
Weather Forecasts (ECMWF) global reanalysis fifth gener-
ation (ERA5) hourly fields (Hersbach et al., 2023) for in-
tercomparison with the VIPR retrievals. ERA5 combines a
high-resolution atmosphere modeling system with observa-
tions via a 4-D variational data assimilation. Extensive con-
ventional and satellite observations of humidity are assimi-
lated such as radiosondes as well as radiances from the Mi-
crowave Humidity Sounder and the Microwave Humidity
Sounder 2 instruments on board NOAA-18, NOAA-19, and
FY-3C, along with radiances from the Meteorological Opera-
tional (MetOp) satellites. ERA5 provides an hourly record of
the ocean, land, and atmospheric state with a ∼ 31 km hor-
izontal resolution and 137 levels covering from the surface
to 0.01 hPa (Hersbach et al., 2020). To ease comparison, we
identified the nearest ERA5 humidity field spatially and tem-
porally.

To the best of our knowledge, limited comparisons have
been made between ERA5 humidity fields and other datasets.
A study by Gamage et al. (2020) compared ERA5 with unas-
similated sondes launched from Payerne, Switzerland. That
comparison suggests that below ∼ 1.5 km ERA5 relative hu-
midity is too dry (up to 20 % RH), while between 1.5–5 km
ERA5 is 8 % RH wetter. Comparisons with COSMIC-2 wa-
ter vapor suggest that these datasets agree overall within
6 %–12 %, with larger difference in regions with frequent
convection (Johnston et al., 2021). Thus, our study serves as
an additional validation albeit limited for ERA5 lower tropo-
spheric humidity fields.

4 Vapor profile results

Figure 6 shows the curtain plots of the radar reflectivities
at 167.12 GHz through the IMPACTS and SOA2RSE flights
(after applying the confidence flag and subtracting the ap-
propriate noise). The effects of attenuation by a combina-
tion of liquid hydrometeors and water vapor are clearly seen
in these reflectivities. For example, noticeable attenuation is
observed throughout much of the flight on 14 January below
2 km due to precipitation. Similar attenuation is observed be-
low regions with a heavy hydrometeor burden, as seen dur-
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Figure 6. Calibrated radar reflectivities at 167.12 GHz for the IMPACTS (left) and the SOA2RSE (right) flights. Dropsondes launches are
indicated by dashed vertical lines. Dashed magenta lines depict the melting layer derived by interpolating the ERA5 reanalysis fields to the
VIPR measurement times and locations.

ing the 17 February flight, especially around 420 min into the
flight.

Figure 7 shows the curtain plots of the VIPR water va-
por estimates for the IMPACTS flights and Fig. 8 for the
SOA2RSE flights. To reduce noise, these curtains show 1 min
averages of the VIPR retrievals, that is, up to 30 profiles that
are taken every∼ 2 s. Assuming a flight speed of 607 kmh−1,
this corresponds to an along-track averaging distance of
∼ 10 km. Note that the average is performed on the water
vapor retrieval instead of the radar reflectivities because the
mapping of radar reflectivity ratios into water vapor is non-
linear. For intercomparison and to help with the interpreta-
tion, these figures also show the curtain plots of the ERA5
water vapor estimates.

Overall, VIPR and ERA5 are in good qualitative agree-
ment. Both datasets depict moisture bands (i.e., high mois-
ture regions) associated with snow bands on the 14 January,
17 February, and 25 February flights; a dry layer (mois-
ture< 3 gm−3) between 40 and 100 min into the 13 Febru-
ary flight; and a strong humidity gradient at around 3–4 km
throughout much of the 8 and 9 March flights. Figures 7
and 8 insets demonstrate VIPR’s ability to capture high-
resolution humidity variations within clouds and precipita-
tion. While some of these variations may be due systematic
biases, the presence of structured variability strongly sug-
gests real water vapor variations.

To round up the VIPR/ERA5 intercomparison, Fig. 9
presents percentage differences between VIPR measure-
ments and ERA5 reanalysis fields. During IMPACTS, VIPR
and ERA5 agree within 20 % except in the moisture bands on
the 17 February flight, where ERA5 seems underestimate the
VIPR estimates by up to 50 %, as well as at the cloud/snow-
storm edges (top and bottom) where VIPR retrieval artifacts
could be the culprits of such differences. During SOA2RSE,
ERA5 displays up to a 50 % underestimation of the VIPR es-
timates above ∼ 4 km. This underestimation is corroborated
by the dropsonde comparison as discussed below.

Figure 10 shows a comparison with dropsondes for both
VIPR measurements and ERA5 reanalysis fields to further
explore their validity. Dropsondes were selected to demon-
strate varying retrieval performances, particularly highlight-
ing biases between the two and three frequency retrievals
(see below). We included at least one dropsonde from each
flight with cloudy measurements. VIPR measurements and
ERA5 reanalysis fields are averaged for 10 min around the
dropsonde release time, that is, 5 min before and 5 min after
(allowing averaging up to 300 profiles, that is, approximately
100 km along track). This averaging, if random measurement
errors are dominant over systematic errors (which is not gen-
erally the case), would in principle result in a water vapor
retrieval precision as good as ∼ 0.07 gm−3 (1.23/

√
300).

The 10 min average was chosen to reduce noise, especially
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Figure 7. VIPR humidity measurements and ERA5 reanalysis fields for the IMPACTS flights shown in Fig. 6 left. Dropsondes launches
are indicated by dashed vertical lines. Dashed magenta lines depict the melting layer. The insets showcase VIPR’s ability to capture high-
resolution humidity variations within the snowstorms. For these insets the raw VIPR data were smoothed using a 300 m running average in
the vertical, as well as a 1 min running average in the horizontal.

when comparing it against the radiosondes dropped during
SOA2RSE, where the clouds were scattered, in contrast to
the continuous cloud cover during IMPACTS.

Two VIPR estimates are shown: one using three radar
tones that should alleviate the hydrometeor influence (Roy
et al., 2021) and one using only two radar tones (167.12 and
174.74 GHz). The influence of hydrometeors is clearly dis-
cernible in the two-tone estimates (green lines in Fig. 10) for
14 January sondes 3 and 6, 13 and 25 February sonde 1, and
all comparisons in March. In these cases, there is an over-
all high bias which can be attributed to frequency-dependent
attenuation caused by hydrometeors being incorrectly at-
tributed to water vapor. Note that the three-tone estimates
(blue lines) effectively mitigate these biases and agree much
better with the dropsondes through all comparisons shown
in Fig. 10. These results clearly indicate that the DAR re-
trievals should be considered most accurate when using the
three-frequency approach outlined in Roy et al. (2021) and
demonstrated with data for the first time here.

Another distinct problem with both retrievals (using two
or three radar tones) is a scattering effect most evident near

cloud boundaries which can result in significant errors of
either sign. This is particularly evident in the 13 February
sonde 1 and the 4 March sonde 6. In these cases, even though
we average over 10 min around the dropsonde, there were not
enough valid retrievals to offset the artifacts.

Figure 11 displays scatterplots between VIPR, ERA5, and
dropsondes color-coded by height. Note that we only com-
pare the altitudes at which they were at least 150 VIPR water
vapor estimates (less than half of the maximum number for
the 10 min window). The ERA5 comparisons are separated
into cloudy and clear-sky regions as determined by VIPR.
Thus, the cloudy comparisons allow a direct intercompari-
son of ERA5 and VIPR against dropsondes. IMPACTS and
SOA2RSE flights are compared separately since they flew
over completely different cloud regimes.

The VIPR comparisons (for either the IMPACTS or
SOA2RSE flights) when averaged over 10 min suggest a
reasonably good agreement with the dropsondes (with a
root mean square deviation, RMSD, better than 0.55 gm−3,
and an overall bias better than 0.05 gm−3). Similarly,
ERA5 agrees extremely well against the dropsondes during
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Figure 8. VIPR humidity measurements and ERA5 reanalysis fields for the SOA2RSE flights shown in Fig. 6 right. Dropsondes launches
are indicated by dashed vertical lines. Dashed magenta lines depict the melting layer. The insets showcase VIPR’s ability to capture high-
resolution humidity variations within the clouds. For these insets the raw VIPR data were smoothed using a 300 m running average in the
vertical, as well as a 1 min running average in the horizontal.

the IMPACTS-cloudy scenarios (RMSD= 0.13 gm−3 and
bias=−0.08 gm−3). However, the ERA5 does not agree
nearly as well with the sondes during the SOA2RSE-cloudy
scenes (RMSD= 0.69 gm−3 and bias=−0.48 gm−3), with
ERA5 displaying clear underestimations for values above
4 km. We speculate that the decreased fidelity of the ERA5
estimates in the SOA2RSE campaign (in contrast with the
IMPACTS ones) results from the fact that these flights took
place in more subtropical latitudes characterized by isolated
convection that is less well constrained by synoptic-scale
dynamics in the data assimilation system than the large-
scale mid-latitude snowstorms targeted during the IMPACTS
flights. Specifically we speculate that the model’s convective
parameterization may not be producing enough convective
transport of moisture out of the planetary boundary layer into
the lower free troposphere during these flights.

To explore this further, Fig. 11g–i summarize the biases
versus altitude between VIPR, ERA5, and the dropsondes.
During IMPACTS, VIPR water vapor estimates agree within
10 % with the dropsondes through most heights. ERA5 also
agrees within 10 % (or better) during the cloudy scenes. Dur-

ing SOA2RSE, VIPR water vapor estimates agree within
20 % with the dropsondes through most heights. However,
there are some spikes around 6 and 7 km that can be miti-
gated by either using the median instead of the mean or by
removing water vapor estimates that are more than 3 standard
deviations from the mean when averaging over the 10 min
period used in these comparisons. ERA5 agrees within 20 %
with the dropsondes below 4 km. However, above ∼ 4 km
ERA5 displays an underestimation of up to 50 % in cloudy
conditions, thus corroborating the VIPR comparison shown
in Fig. 9.

Under clear-sky scenarios, ERA5 shows overall good
agreement against the dropsondes (with RMSD better than
0.72 gm−3, and an overall bias better than −0.05 gm−3) but
displays large excursions from the one-to-one line, as large
as 350 % in some instances. During IMPACTS, these excur-
sions translate to biases of up to 250 % around 2.5 km and up
to ∼ 100 % around 3.5 km.

Overall, the cloudy and clear-sky comparisons indicate
good agreement between ERA5 and the dropsondes at the
core of the snowstorms but not at the edges. That is, ERA5 is
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Figure 9. Percentage differences between the ERA5 and VIPR humidity estimates for the IMPACTS (right) and the SOA2RSE (left) flights.
Dropsondes launches are indicated by dashed vertical lines. Dashed magenta lines depict the melting layer.

presumably failing to simulate the extent of the snowstorms
likely due to its temporal and horizontal resolution that, even
though they are the finest among the current reanalyses, they
are still too coarse to resolve the rapidly changing snow-
storm’s extent. During SOA2RSE, ERA5 agrees within 20 %
with the dropsondes below 5 km but shows an overestimation
of up to 80 % at higher altitudes.

5 Partial column results

Figure 12 shows the scatter between VIPR and dropsondes
pCWV estimates for two sets of VIPR reflectivities: one us-
ing the sphere calibration factors described in Sect. 2.3 and
the other employing a modified set of calibration factors (dis-
cussed below). For this comparison, the VIPR measurements
were temporally averaged by 10 min, 5 min before and af-
ter the dropsonde launch. This amounts to averaging around
300 individual estimates, equivalent to ∼ 100 km (assuming
an average P-3 speed of 607 kmh−1), with a theoretical error
of around 0.3 kgm−2 (i.e., 5/

√
300). These comparisons en-

compass clear-sky and cloudy scenes demonstrating the all-
sky capability of DAR.

A key difference between profiling with DAR and mea-
suring the pCWV is that pCWV requires accurate relative
calibration of the radar frequencies. Figure 12a shows the

scatter between the dropsondes and the VIPR pCWV esti-
mates that use the sphere calibration factors as described in
Sect. 2.3. The best-fit line has a slope of 0.84, an RMSD of
5.8 kgm−2, and a correlation coefficient (R) of 0.78 with a
bias of 0.46 kgm−2. Although these results suggest a reason-
able agreement between the two datasets, they are biased by
the estimates from the 14 January flight (yellow dots), which
are the only estimates in Fig. 12 using the calibration fac-
tor estimated on 28 September 2021 prior to the LNA fail-
ure. By simply changing the sphere calibration factor of the
167.12 GHz tone from 8.9 to 12.9, the agreement against the
dropsondes (see Fig. 12b) improved considerably. Similarly,
by adjusting the sphere calibration factor (post LNA failure)
of the 158.6 GHz tone from 10.7 to 12.2, the estimates for
the rest of the flights aligned much better with the one-to-
one line.

The modifications to the sphere calibration factors were
found by trial and error. We emphasize that this recalibration
procedure only ensures that the frequencies are calibrated
among each other and should not be considered absolute cal-
ibrations. Absolute calibration is not required for any DAR
water vapor estimation but would be important in any effort
to derive cloud microphysical properties. We are continuing
work to investigate sources of ground-calibration uncertainty
and improve its reliability.
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Figure 10. Profile comparisons between dropsondes, VIPR measurements, and ERA5 reanalysis fields. VIPR and ERA5 measurements were
averaged over 10 min around the dropsonde time. Two VIPR estimates are shown: one using three radar tones to alleviate hydrometeor
influence and one using only two radar tones (167.12 and 174.74 GHz). Error bars (i.e., the averaged random uncertainties) are shown for
the three radar tone retrievals, but they are barely visible due to the temporal averaging. Note that ERA5 and the dropsonde humidities were
interpolated to the VIPR vertical grid. The legends display the flight date, sonde number, and the minutes into the flight when the sonde was
dropped.

After applying the modified calibration factors (Fig. 12b),
there is a noticeable improvement in the comparison metrics.
The best-fit line slope increases to 1.03, and the RMSD de-
creases to 1.54 kgm−2. The correlation coefficient improves
to 0.98, while the bias becomes 0.62 kgm−2.

Note that the RMSD is much larger than the analytical
VIPR uncertainty, 0.3 kgm−2, presumably due to a combina-
tion of factors: (1) the sondes can be quickly advected away
from the drop location (with horizontal displacements of up
to ∼ 22 km at the surface), which may introduce collocation
errors. (2) During the 10 min window, used for this compar-
ison, even the dropsondes disagree among each other due to
the quickly changing nature of the snowstorms scenes. For
example, the second, third, and fourth dropsondes during the
14 January flight were dropped in a 10 min span and have
an RMSD (with respect to their mean value) of 1.5 kgm−2.
Similarly, the first four dropsondes and the last four dropson-
des of the 25 January flight were dropped in a 8 and 13 min
span, respectively, and have RMSDs of 1.5 and 1.3 kgm−2,

which may explain the RMSD values shown in the VIPR–
sonde comparison (Fig. 12b).

Figure 12c shows the scatter versus the ERA5 pCWV esti-
mates. These estimates are derived from the nearest fields to
the VIPR times and locations. That is, for each VIPR mea-
surement, we identified the nearest field, and then we aver-
aged them in the same fashion as the VIPR pCWV estimates
to allow for a direct comparison. ERA5 shows an excellent
agreement with the sonde measurements, with a best-fit line
slope of 0.96, an RMSD of 1.8 kgm−2, a correlation coeffi-
cient of 0.98, and a bias of 1.0 kgm−2.

To conclude the pCWV comparison, Fig. 13 displays joint
histograms of VIPR and ERA5 pCWV estimates (at the
VIPR native temporal resolution, i.e., 1.9 s). The regression
analyses suggest either an underestimation by the ERA5 re-
analysis or an overestimation by the VIPR measurements for
both IMPACTS and SOA2RSE flights. Given that the VIPR
measurements are not expected to differ significantly from
the measurements obtained around the dropsonde sites (as
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Figure 11. (a–f) Dropsonde humidity measurements scattered against VIPR and ERA5 estimates. The ERA5 comparisons are separated
between cloudy and clear-sky regions as measured by VIPR. (g–i) Average biases between VIPR, ERA5, and the dropsondes launched
during the IMPACTS (dark blue) and the SOA2RSE flights (light blue). The dashed vertical gray lines indicate the ±20 % difference, while
the dashed–dotted vertical gray lines indicate the ±10 % difference. Note that VIPR and ERA5 humidities were averaged over 10 min
around the dropsonde launch (approximately 100 km along track). All the available dropsondes were used on these comparisons: 22 and 29
dropsondes during IMPACTS and SOA2RSE respectively.

seen in Fig. 12b), we hypothesize that the slight disagree-
ment is likely due to an ERA5 underestimation. We note that
the VIPR precision error, which is approximately 5 kgm−2

at this resolution, accounts for most of the RMSD. Further,
other VIPR systematic effects maybe at play, such as drift
in its sensitivity or non-ideal surface scattering (e.g., non-
random speckle averaging).

6 DAR and DIAL synergy

During the SOA2RSE flights the High Altitude Lidar Ob-
servatory (HALO) water vapor DIAL (Carroll et al., 2022)
flew in conjunction with VIPR on the same P-3 aircraft to
study the synergy of the DIAL and DAR techniques. HALO
uses four wavelengths spread among different strength ab-

https://doi.org/10.5194/amt-17-539-2024 Atmos. Meas. Tech., 17, 539–559, 2024



554 L. F. Millán et al.: DAR clouds and storm measurements

Figure 12. Dropsonde pCWV measurements scattered against the VIPR pCWV estimates using the sphere calibration (a), a modified cali-
bration (b), as well as against the ERA5 pCWV (c). The gray line is the one-to-one line. The solid black line displays a linear fit. The root
mean square deviation, the linear fit equation, and the bias are shown for each comparison. Measurements from different days are shown in
different colors. The VIPR errors are around 0.3 kgm−2 (i.e., 5/

√
300), which are smaller than the symbol size. There are 51 points on these

comparisons, one per each available dropsonde (22 during IMPACTS and 29 during SOA2RSE).

Figure 13. Two-dimensional normalized histograms derived from
VIPR and ERA5 pCWV during IMPACTS (a) and SOA2RSE
flights (b). These histograms were computed at the native VIPR res-
olution (i.e., no averaging). The gray line is the one-to-one line. The
solid black line displays a linear fit. The root mean square deviation,
the linear fit equation, the bias, and the maximum number of counts
are shown for each comparison.

sorption features in the 935 nm water vapor line complex
to provide water vapor sensitivity across the vastly different
regimes in the troposphere and lower stratosphere. HALO
also uses the high spectral resolution and backscatter mea-
surements at 532 and 1064 nm, respectively, for cloud and
aerosol profiling (Hair et al., 2008; Carroll et al., 2022). The
HALO water vapor retrievals presented here have a reso-
lution of 300m×∼ 6km vertical and horizontal resolution,
respectively. The data are reported on a 15 m vertical grid
and archive files subsampled from 0.5 s (2 Hz) to every 10 s
(∼ 1.2 km) to keep file sizes manageable. HALO water va-
por profiles during SOA2RSE exhibit precision uncertain-
ties better than 0.125 gm−3 in regions of high moisture (i.e.,
≥ 4 gm−3) and better than 0.05 gm−3 elsewhere.

Figure 14 showcases the synergy of the lidar and radar
measurements as well as the DIAL and DAR measurements.
The top panels display the high spectral resolution lidar
aerosol backscatter at 532 nm for the SOA2RSE flight on 8
and 9 March, while the middle panels show the VIPR radar
reflectivities at 167.12 GHz. As shown, as the clouds thicken
the lidar becomes insensitive to largest particles, while VIPR
becomes sensitive to them. The bottom panels display cur-
tain plots of the HALO and VIPR water vapor estimates for
the flights on 8 and 9 March. (Similarly, Fig. A1 displays the
4 March flight; note that there were no cloudy measurements
on the 7 March flight.)

The combined use of HALO and VIPR enables the esti-
mate of high-resolution water vapor profiles in both clear-
sky and in-cloud conditions. For example, on the 8 March
flight, HALO can see in between the clouds (see around 90,
200, and 275 min into the flight), revealing elevated water va-
por values (∼ 8 gm−3) in the planetary boundary layer (the
first 1 km of the atmosphere), while next to it, VIPR indicates

Atmos. Meas. Tech., 17, 539–559, 2024 https://doi.org/10.5194/amt-17-539-2024



L. F. Millán et al.: DAR clouds and storm measurements 555

Figure 14. Panels (a) and (b) show 532 nm high-spectral-resolution lidar aerosol backscatter for the SOA2RSE flight on 8 and 9 March.
Panels (c) and (d) show calibrated radar reflectivities at 167.12 GHz (also shown in Fig. 6), and (e) and (f) show VIPR and HALO humidity
measurements. VIPR measurements are delimited by a black contour. Dashed magenta lines depict the melting layer.

such elevated values up to around 3 km within the mid-level
convection (see also Fig. 8, 8 March ERA5 panel).

To underscore the synergy of these techniques, Fig. 15 dis-
plays the normalized histograms of the water vapor values
retrieved by either DIAL/HALO or DAR/VIPR. As shown,
DAR/HALO displays a skewed right distribution with mode
at 0.4 gm−3 (attributed to a majority of clear-sky measure-
ments), while DAR/VIPR exhibits a multimodal broad distri-
bution with modes at 0.8 and 4.4 gm−3. This synergy could
provide insights into lower tropospheric clear-sky and in-
cloudy turbulent transport processes enabling comparisons
and improvements of regional models as well as large eddy
simulations.

7 Conclusions

The VIPR G-band radar was deployed on the P-3 aircraft
as part of the IMPACTS and SOA2RSE campaigns, encom-
passing a total of eight flights and collecting approximately
44 h of data. This provided the opportunity of evaluating the
VIPR DAR water vapor estimates under two complete differ-
ent weather regimes, that is, inside snowstorms (IMPACTS
flights) and during calm weather (SOA2RSE flights).

Figure 15. Normalized histogram of the humidity retrievals dur-
ing the SOA2RSE 8 and 9 March flights using either DAR/VIPR
or DIAL/HALO. The numbers in brackets represent the number of
samples per instrument.
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For the first time, VIPR operated using three radar tones
(158.6, 167.12, and 174.48), which allowed disentangling
the differential extinction from the water vapor from the hy-
drometeor scattering and absorption effects. By using three
frequencies instead of only two (as in previous VIPR config-
urations), biases were mitigated, ensuring more accurate and
reliable water vapor estimations.

In this study, VIPR and ERA5 averaged to 10 min along
track were intercompared and validated against dropsondes.
These comparisons can be broken in three categories:

– In-cloud profile comparisons. During IMPACTS, VIPR
and ERA5 agree within 20 % except at the mois-
ture bands where ERA5 seems to underestimate the
VIPR humidity measurements by up to 50 %. During
SOA2RSE, ERA5 displays up to a 50 % underestima-
tion of the VIPR estimates above ∼ 4 km.

A scatterplot comparison against dropsondes sug-
gests an overall good agreement with VIPR dur-
ing both IMPACTS and SOA2RSE (with RMSD bet-
ter than 0.55 gm−3 and an overall bias better than
0.05 gm−3) and an overall good agreement with
ERA5 during IMPACTS (RMSD= 0.13 gm−3 and
bias=−0.08 gm−3). During SOA2RSE, ERA5 shows
a clear underestimation for water vapor (RMSD=
0.69 gm−3 and bias=−0.48 gm−3), in particular for
estimates above ∼ 4 km. Breaking down this into bi-
ases versus altitude suggests that, during IMPACTS,
VIPR humidity estimates agree within 10 % with the
dropsondes through most heights, while ERA5 agrees
within 10 % (or better). During SOA2RSE VIPR water
vapor estimates agree within 20 % with the dropsondes
through most heights, while ERA5 agrees within 20 %
with the dropsondes below 4 km, but it displays an un-
derestimation of up to 50 % above it, thus corroborating
the VIPR and ERA5 intercomparison.

Through these comparisons, it became evident that the
VIPR retrieval may introduce some artifacts at the edges
of clouds and snowstorms. Biases resulting from these
artifacts can be mitigated either by using the median in-
stead of the mean or by excluding water vapor estimates
that deviate more than 3 standard deviations from the
mean when averaging over the 10 min period employed
in these comparisons.

– Clear-sky (ERA5 only) profile comparisons. During
both IMPACTS and SOA2RSE, ERA5 shows overall
good agreement against the dropsondes (with RMSD
better than 0.72 gm−3, and an overall bias better than
−0.05 gm−3) but displays large excursions from the
one-to-one line. These excursions translate to large bi-
ases (up to 250 %) at particular heights. Since ERA5
agrees with the dropsondes in the in-cloud regimes,
these clear-sky biases suggest that ERA5 is presumably
failing to simulate the extent of the snowstorms. During

SOA2RSE, ERA5 agrees with the dropsondes within
20 % below 5 km but displays an overestimation of up
to 80 % above this altitude.

– pCWV comparisons. Overall, VIPR and ERA5 display
a good agreement with the dropsonde pCWV estimates,
with VIPR displaying an RMSD of 1.5 kgm−2 and a
bias of 0.6 kgm−2, while ERA5 displays an RMSD of
1.8 kgm−2 and a bias of −1 kgm−2. These relatively
high RMSD values are presumably due to the nature
of the snowstorm scene. That is, dropsondes launched
within 10 min of each other also display an RMSD of
around 1.5 kgm−2 with respect to their mean value. A
direct comparison between the VIPR and ERA5 pCWV
estimates indicates a possible ERA5 underestimation, in
particular during the IMPACTS flights.

Lastly, the SOA2RSE campaign offered, for the first time,
the opportunity to show the synergistic abilities of combin-
ing DIAL and DAR water vapor measurements, enabling the
estimate of high-resolution water vapor profiles in both clear-
sky and in-cloud conditions. Observations of water vapor in
the planetary boundary layer from space are crucial for ad-
vancing our understanding of the dynamics in this critical at-
mospheric layer (National Academies of Sciences, Engineer-
ing, and Medicine, 2018). These airborne campaigns consti-
tute an essential step toward transitioning DAR and DIAL to
an orbital platform.

Appendix A

Figure A1. As Fig. 14 but displaying the 4 March flight.

Atmos. Meas. Tech., 17, 539–559, 2024 https://doi.org/10.5194/amt-17-539-2024



L. F. Millán et al.: DAR clouds and storm measurements 557

Code availability. The retrieval code used in this work will be made
available upon request.

Data availability. The VIPR radar reflectivities and humidity esti-
mates are available upon request.

Author contributions. LFM performed the analyses and wrote the
manuscript. KBC, RD, JVS, and RRM developed the VIPR instru-
ment. KBC and RD estimated the calibration factors and installed
VIPR on the P-3. KBC developed the noise subtraction techniques.
MDL, JVS, and LFM collected the VIPR data. AN was the PI for
SOA2RSE. RABG and AN collected the HALO data. AN and JEC
processed the HALO data. CER, KLT, and HV launched the drop-
sondes. All authors commented on the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors wish to thank the P-3 aircraft and
ground support crew for making the IMPACTS and SOA2RSE
flights a success. The HALO authors acknowledge the contribution
of Brian Carroll in serving as the flight scientist and preliminary
processing of HALO data for the SOA2RSE mission.

Financial support. This research was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Administration (grant
no. 80NM0018D0004). Support for the SOA2RSE mission was pro-
vided by the NASA Earth Science Technology Office and the NASA
Earth Science Division Weather and Atmospheric Dynamics focus
area.

Review statement. This paper was edited by Cuiqi Zhang and re-
viewed by two anonymous referees.

References

Andersson, E., Hólm, E., Bauer, P., Beljaars, A., Kelly, G. A.,
McNally, A. P., Simmons, A. J., Thépaut, J.-N., and Tomp-
kins, A. M.: Analysis and forecast impact of the main humid-
ity observing systems, Q. J. Roy. Meteor. Soc., 133, 1473–1485,
https://doi.org/10.1002/qj.112, 2007.

Ao, C. O., Waliser, D. E., Chan, S. K., Li, J.-L., Tian,
B., Xie, F., and Mannucci, A. J.: Planetary boundary
layer heights from GPS radio occultation refractivity and
humidity profiles, J. Geophys. Res.-Atmos., 117, D16117,
https://doi.org/10.1029/2012jd017598, 2012.

Battaglia, A. and Kollias, P.: Evaluation of differential ab-
sorption radars in the 183 GHz band for profiling water
vapour in ice clouds, Atmos. Meas. Tech., 12, 3335–3349,
https://doi.org/10.5194/amt-12-3335-2019, 2019.

Behrendt, A., Wulfmeyer, V., Riede, A., Wagner, G., Pal, S.,
Bauer, H., Radlach, M., and Späth, F.: Three-dimensional ob-
servations of atmospheric humidity with a scanning differen-
tial absorption Lidar, in: SPIE Proceedings, edited by: Picard,
R. H., Schäfer, K., Comeron, A., and van Weele, M., SPIE,
https://doi.org/10.1117/12.835143, 2009.

Browell, E. V., Carter, A. F., Shipley, S. T., Allen, R. J., But-
ler, C. F., Mayo, M. N., Siviter, J. H., and Hall, W. M.:
NASA multipurpose airborne DIAL system and measure-
ments of ozone and aerosol profiles, Appl. Optics, 22, 522,
https://doi.org/10.1364/ao.22.000522, 1983.

Carroll, B. J., Nehrir, A. R., Kooi, S. A., Collins, J. E., Barton-
Grimley, R. A., Notari, A., Harper, D. B., and Lee, J.: Dif-
ferential absorption lidar measurements of water vapor by the
High Altitude Lidar Observatory (HALO): retrieval frame-
work and first results, Atmos. Meas. Tech., 15, 605–626,
https://doi.org/10.5194/amt-15-605-2022, 2022.

Cooper, K. B.: Modeling broadband phase noise from extended tar-
gets in a 170 GHz cloud-imaging radar, in: Passive and Active
Millimeter-Wave Imaging XXV, edited by: Robertson, D. A. and
Wikner, D. A., SPIE, https://doi.org/10.1117/12.2621073, 2022.

Cooper, K. B., Dengler, R. J., Llombart, N., Thomas, B., Chat-
topadhyay, G., and Siegel, P. H.: THz Imaging Radar for Stand-
off Personnel Screening, IEEE T. Thz. Sci. Techn., 1, 169–182,
https://doi.org/10.1109/tthz.2011.2159556, 2011.

Cooper, K. B., Monje, R. R., Millán, L., Lebsock, M.,
Tanelli, S., Siles, J. V., Lee, C., and Brown, A.: Atmo-
spheric Humidity Sounding Using Differential Absorption Radar
Near 183 GHz, IEEE Geosci. Remote S., 15, 163–167,
https://doi.org/10.1109/lgrs.2017.2776078, 2018.

Cooper, K. B., Roy, R. J., Dengler, R., Monje, R. R., Alonso-
Delpino, M., Siles, J. V., Yurduseven, O., Parashare, C., Mil-
lán, L., and Lebsock, M.: G-Band Radar for Humidity and
Cloud Remote Sensing, IEEE T. Geosci. Remote, 59, 1106–
1117, https://doi.org/10.1109/TGRS.2020.2995325, 2021.

Gamage, S. M., Sica, R. J., Martucci, G., and Haefele, A.: A 1D
Var Retrieval of Relative Humidity Using the ERA5 Dataset
for the Assimilation of Raman Lidar Measurements, J. Atmos.
Ocean. Tech., 37, 2051–2064, https://doi.org/10.1175/jtech-d-
19-0170.1, 2020.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-
ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,
S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-
K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-
tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-
2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/jcli-d-16-
0758.1, 2017.

https://doi.org/10.5194/amt-17-539-2024 Atmos. Meas. Tech., 17, 539–559, 2024

https://doi.org/10.1002/qj.112
https://doi.org/10.1029/2012jd017598
https://doi.org/10.5194/amt-12-3335-2019
https://doi.org/10.1117/12.835143
https://doi.org/10.1364/ao.22.000522
https://doi.org/10.5194/amt-15-605-2022
https://doi.org/10.1117/12.2621073
https://doi.org/10.1109/tthz.2011.2159556
https://doi.org/10.1109/lgrs.2017.2776078
https://doi.org/10.1109/TGRS.2020.2995325
https://doi.org/10.1175/jtech-d-19-0170.1
https://doi.org/10.1175/jtech-d-19-0170.1
https://doi.org/10.1175/jcli-d-16-0758.1
https://doi.org/10.1175/jcli-d-16-0758.1


558 L. F. Millán et al.: DAR clouds and storm measurements

Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Fer-
rare, R. A., Mack, T. L., Welch, W., Izquierdo, L. R., and
Hovis, F. E.: Airborne High Spectral Resolution Lidar for
profiling aerosol optical properties, Appl. Optics, 47, 6734,
https://doi.org/10.1364/ao.47.006734, 2008.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-
N.: ERA5 hourly data on pressure levels from 1940 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.

Hock, T. F. and Franklin, J. L.: The NCAR GPS Dropwindsonde, B.
Am. Meteorol. Soc., 80, 407–420, https://doi.org/10.1175/1520-
0477(1999)080<0407:tngd>2.0.co;2, 1999.

Johansson, S., Woiwode, W., Höpfner, M., Friedl-Vallon, F., Klein-
ert, A., Kretschmer, E., Latzko, T., Orphal, J., Preusse, P., Unger-
mann, J., Santee, M. L., Jurkat-Witschas, T., Marsing, A., Voigt,
C., Giez, A., Krämer, M., Rolf, C., Zahn, A., Engel, A., Sinnhu-
ber, B.-M., and Oelhaf, H.: Airborne limb-imaging measure-
ments of temperature, HNO3, O3, ClONO2, H2O and CFC-12
during the Arctic winter 2015/2016: characterization, in situ val-
idation and comparison to Aura/MLS, Atmos. Meas. Tech., 11,
4737–4756, https://doi.org/10.5194/amt-11-4737-2018, 2018.

Johnston, B. R., Randel, W. J., and Sjoberg, J. P.: Evaluation of Tro-
pospheric Moisture Characteristics Among COSMIC-2, ERA5
and MERRA-2 in the Tropics and Subtropics, Remote Sens.-
Basel, 13, 880, https://doi.org/10.3390/rs13050880, 2021.

Lamer, K., Oue, M., Battaglia, A., Roy, R. J., Cooper, K. B.,
Dhillon, R., and Kollias, P.: Multifrequency radar observa-
tions of clouds and precipitation including the G-band, At-
mos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-
14-3615-2021, 2021.

Lebsock, M. D., Suzuki, K., Millán, L. F., and Kalmus, P. M.: The
feasibility of water vapor sounding of the cloudy boundary layer
using a differential absorption radar technique, Atmos. Meas.
Tech., 8, 3631–3645, https://doi.org/10.5194/amt-8-3631-2015,
2015.

Martin, C. and Suhr, I.: NCAR/EOL Atmospheric Sounding Pro-
cessing ENvironment (ASPEN) software, https://www.eol.ucar.
edu/content/aspen, last access: 8 August 2023.

McMurdie, L. A., Heymsfield, G. M., Yorks, J. E., Braun, S. A.,
Skofronick-Jackson, G., Rauber, R. M., Yuter, S., Colle, B.,
McFarquhar, G. M., Poellot, M., Novak, D. R., Lang, T. J.,
Kroodsma, R., McLinden, M., Oue, M., Kollias, P., Kumjian,
M. R., Greybush, S. J., Heymsfield, A. J., Finlon, J. A., Mc-
Donald, V. L., and Nicholls, S.: Chasing Snowstorms: The In-
vestigation of Microphysics and Precipitation for Atlantic Coast-
Threatening Snowstorms (IMPACTS) Campaign, B. Am. Mete-

orol. Soc., 103, E1243–E1269, https://doi.org/10.1175/bams-d-
20-0246.1, 2022.

Millán, L., Lebsock, M., Livesey, N., and Tanelli, S.: Differen-
tial absorption radar techniques: water vapor retrievals, Atmos.
Meas. Tech., 9, 2633–2646, https://doi.org/10.5194/amt-9-2633-
2016, 2016.

National Academies of Sciences, Engineering, and Medicine::
Thriving on Our Changing Planet: A Decadal Strategy for Earth
Observation from Space, The National Academies Press, Wash-
ington, DC, https://doi.org/10.17226/24938, 2018.

Nehrir, A. R., Kiemle, C., Lebsock, M. D., Kirchengast, G.,
Buehler, S. A., Löhnert, U., Liu, C.-L., Hargrave, P. C.,
Barrera-Verdejo, M., and Winker, D. M.: Emerging Technolo-
gies and Synergies for Airborne and Space-Based Measure-
ments of Water Vapor Profiles, Surv. Geophys., 38, 1445–1482,
https://doi.org/10.1007/s10712-017-9448-9, 2017.

Reid, J. S., Maring, H. B., Narisma, G. T., van den Heever, S., Giro-
lamo, L. D., Ferrare, R., Lawson, P., Mace, G. G., Simpas, J. B.,
Tanelli, S., Ziemba, L., van Diedenhoven, B., Bruintjes, R., Bu-
choltz, A., Cairns, B., Cambaliza, M. O., Chen, G., Diskin, G. S.,
Flynn, J. H., Hostetler, C. A., Holz, R. E., Lang, T. J., Schmidt,
K. S., Smith, G., Sorooshian, A., Thompson, E. J., Thornhill,
K. L., Trepte, C., Wang, J., Woods, S., Yoon, S., Alexandrov, M.,
Alvarez, S., Amiot, C. G., Bennett, J. R., Brooks, M., Burton,
S. P., Cayanan, E., Chen, H., Collow, A., Crosbie, E., DaSilva,
A., DiGangi, J. P., Flagg, D. D., Freeman, S. W., Fu, D., Fukada,
E., Hilario, M. R. A., Hong, Y., Hristova-Veleva, S. M., Kuehn,
R., Kowch, R. S., Leung, G. R., Loveridge, J., Meyer, K., Miller,
R. M., Montes, M. J., Moum, J. N., Nenes, A., Nesbitt, S. W.,
Norgren, M., Nowottnick, E. P., Rauber, R. M., Reid, E. A.,
Rutledge, S., Schlosser, J. S., Sekiyama, T. T., Shook, M. A.,
Sokolowsky, G. A., Stamnes, S. A., Tanaka, T. Y., Wasilewski,
A., Xian, P., Xiao, Q., Xu, Z., and Zavaleta, J.: The Coupling
Between Tropical Meteorology, Aerosol Lifecycle, Convection,
and Radiation during the Cloud, Aerosol and Monsoon Processes
Philippines Experiment (CAMP2Ex), B. Am. Meteorol. Soc.,
104, E1179–E1205, https://doi.org/10.1175/bams-d-21-0285.1,
2023.

Roy, R. J., Lebsock, M., Millán, L., Dengler, R., Rodriguez
Monje, R., Siles, J. V., and Cooper, K. B.: Boundary-layer
water vapor profiling using differential absorption radar, At-
mos. Meas. Tech., 11, 6511–6523, https://doi.org/10.5194/amt-
11-6511-2018, 2018.

Roy, R. J., Lebsock, M., Millán, L., and Cooper, K. B.: Valida-
tion of a G-Band Differential Absorption Cloud Radar for Hu-
midity Remote Sensing, J. Atmos. Ocean. Tech., 37, 1085–1102,
https://doi.org/10.1175/jtech-d-19-0122.1, 2020.

Roy, R. J., Lebsock, M., and Kurowski, M. J.: Spaceborne dif-
ferential absorption radar water vapor retrieval capabilities in
tropical and subtropical boundary layer cloud regimes, Atmos.
Meas. Tech., 14, 6443–6468, https://doi.org/10.5194/amt-14-
6443-2021, 2021.

Roy, R. J., Cooper, K. B., Lebsock, M., Siles, J. V., Millan, L.,
Dengler, R., Monje, R. R., Durden, S. L., Cannon, F., and Wil-
son, A.: First Airborne Measurements With a G-Band Differ-
ential Absorption Radar, IEEE T. Geosci. Remote, 60, 1–15,
https://doi.org/10.1109/tgrs.2021.3134670, 2022.

Singer, C. E., Clouser, B. W., Khaykin, S. M., Krämer, M.,
Cairo, F., Peter, T., Lykov, A., Rolf, C., Spelten, N., Af-

Atmos. Meas. Tech., 17, 539–559, 2024 https://doi.org/10.5194/amt-17-539-2024

https://doi.org/10.1364/ao.47.006734
https://doi.org/10.1002/qj.3803
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.1175/1520-0477(1999)080<0407:tngd>2.0.co;2
https://doi.org/10.1175/1520-0477(1999)080<0407:tngd>2.0.co;2
https://doi.org/10.5194/amt-11-4737-2018
https://doi.org/10.3390/rs13050880
https://doi.org/10.5194/amt-14-3615-2021
https://doi.org/10.5194/amt-14-3615-2021
https://doi.org/10.5194/amt-8-3631-2015
https://www.eol.ucar.edu/content/aspen
https://www.eol.ucar.edu/content/aspen
https://doi.org/10.1175/bams-d-20-0246.1
https://doi.org/10.1175/bams-d-20-0246.1
https://doi.org/10.5194/amt-9-2633-2016
https://doi.org/10.5194/amt-9-2633-2016
https://doi.org/10.17226/24938
https://doi.org/10.1007/s10712-017-9448-9
https://doi.org/10.1175/bams-d-21-0285.1
https://doi.org/10.5194/amt-11-6511-2018
https://doi.org/10.5194/amt-11-6511-2018
https://doi.org/10.1175/jtech-d-19-0122.1
https://doi.org/10.5194/amt-14-6443-2021
https://doi.org/10.5194/amt-14-6443-2021
https://doi.org/10.1109/tgrs.2021.3134670


L. F. Millán et al.: DAR clouds and storm measurements 559

chine, A., Brunamonti, S., and Moyer, E. J.: Intercompari-
son of upper tropospheric and lower stratospheric water va-
por measurements over the Asian Summer Monsoon during
the StratoClim campaign, Atmos. Meas. Tech., 15, 4767–4783,
https://doi.org/10.5194/amt-15-4767-2022, 2022.

Sorooshian, A., Anderson, B., Bauer, S. E., Braun, R. A., Cairns,
B., Crosbie, E., Dadashazar, H., Diskin, G., Ferrare, R., Flagan,
R. C., Hair, J., Hostetler, C., Jonsson, H. H., Kleb, M. M., Liu,
H., MacDonald, A. B., McComiskey, A., Moore, R., Painemal,
D., Russell, L. M., Seinfeld, J. H., Shook, M., Smith, W. L.,
Thornhill, K., Tselioudis, G., Wang, H., Zeng, X., Zhang, B.,
Ziemba, L., and Zuidema, P.: Aerosol–Cloud–Meteorology In-
teraction Airborne Field Investigations: Using Lessons Learned
from the U. S. West Coast in the Design of ACTIVATE off
the U. S. East Coast, B. Am. Meteorol. Soc., 100, 1511–1528,
https://doi.org/10.1175/bams-d-18-0100.1, 2019.

Teixeira, J., Piepmeier, J. R., Nehrir, A. R., Ao, C. O., Chen, S. S.,
Clayson, C. A., Fridlind, A. M., Lebsock, M., McCarty, W.,
Salmun, H., Santanello, J. A., Turner, D. D., Wang, Z., and Zeng,
X.: Toward a Global Planetary Boundary Layer Observing Sys-
tem: The NASA PBL Incubation Study Team Report, NASA
PBL Incubation Study Team, 134, Document ID: 20230001633,
https://ntrs.nasa.gov/citations/20230001633 (last access: 19 Jan-
uary 2024), 2021.

Wang, J., Rossow, W. B., and Zhang, Y.: Cloud Vertical Structure
and Its Variations from a 20-Yr Global Rawinsonde Dataset,
J. Climate, 13, 3041–3056, https://doi.org/10.1175/1520-
0442(2000)013<3041:cvsaiv>2.0.co;2, 2000.

Wang, J. J., Young, K., Hock, T., Lauritsen, D., Behringer, D.,
Black, M., Black, P. G., Franklin, J., Halverson, J., Molinari, J.,
Nguyen, L., Reale, T., Smith, J., Sun, B., Wang, Q., and Zhang,
J. A.: A Long-Term, High-Quality, High-Vertical-Resolution
GPS Dropsonde Dataset for Hurricane and Other Studies, B. Am.
Meteorol. Soc., 96, 961–973, https://doi.org/10.1175/bams-d-13-
00203.1, 2015.

Wulfmeyer, V. and Bösenberg, J.: Ground-based differential absorp-
tion lidar for water-vapor profiling: assessment of accuracy, res-
olution, and meteorological applications, Appl. Optics, 37, 3825,
https://doi.org/10.1364/ao.37.003825, 1998.

Zahn, A., Christner, E., van Velthoven, P. F. J., Rauthe-Schöch,
A., and Brenninkmeijer, C. A. M.: Processes controlling wa-
ter vapor in the upper troposphere/lowermost stratosphere: An
analysis of 8 years of monthly measurements by the IAGOS-
CARIBIC observatory, J. Geophys. Res.-Atmos., 119, 11505–
11525, https://doi.org/10.1002/2014JD021687, 2014.

https://doi.org/10.5194/amt-17-539-2024 Atmos. Meas. Tech., 17, 539–559, 2024

https://doi.org/10.5194/amt-15-4767-2022
https://doi.org/10.1175/bams-d-18-0100.1
https://ntrs.nasa.gov/citations/20230001633
https://doi.org/10.1175/1520-0442(2000)013<3041:cvsaiv>2.0.co;2
https://doi.org/10.1175/1520-0442(2000)013<3041:cvsaiv>2.0.co;2
https://doi.org/10.1175/bams-d-13-00203.1
https://doi.org/10.1175/bams-d-13-00203.1
https://doi.org/10.1364/ao.37.003825
https://doi.org/10.1002/2014JD021687

	Abstract
	Copyright statement
	Introduction
	VIPR and the IMPACTS and SOA2RSE campaigns
	VIPR measurements and noise subtraction
	Radar detection confidence flag
	Calibrated radar reflectivity

	Retrieval methodology and datasets used for comparisons
	Water vapor profiling retrieval
	Partial column water vapor retrieval
	Ancillary retrieval information
	Dropsondes
	ERA5 reanalysis fields

	Vapor profile results
	Partial column results
	DAR and DIAL synergy
	Conclusions
	Appendix A
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

