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S1 Forward Model Details

Let F (λ;x) denote the forward model used to simulate the MethaneAIR radiance at wavelength λ. x is the
state vector to be optimized. It consists of a set of sub-vectors;

x =



xco2

xch4

xh2o

xps

xT

xalb

xsqz

xλ
xb


(S1)

Here xco2 and xch4 are the CO2 and CH4 dry-air mole fraction profile scaling factors, xh2o is a H2O column
scaling factor, xps is the surface pressure, and xT is an offset from the a priori temperature profile. xalb consists
of two sets of polynomial coefficients corresponding to each fit window xalb = (xalb,co2,xalb,ch4). These act to
scale the a priori albedo calculated as the Lambertian equivalent reflectance from the MethaneAIR observation
at 1622.5nm.

The forward model consists of the convolution of radiative transfer model (RTM) simulated radiance (I(λ))
with the instrument spectral response function (Γ(λ)), plus a baseline offset intended to account for an additive
bias present in the measured radiance, such as broad-band stray light.

F (λ;x) = I(λ;xco2,xch4,xh2o,xps,xT,xalb) ~ Γ(λ;xsqz) + Pb(λ;xb) (S2)

S1.1 Radiative Transfer Model

Currently there are four radiative transfer options for the solar back-scatter problem in SPLAT, namely (in
order of additional complexity):

1. Absorption Only

2. Stand-alone VLIDORT First Order Model - Adds direct contribution from first order scattering

3. Stand-alone LIDORT Two stream model - Adds two stream diffuse radiation field (Intensity only)

4. VLIDORT v2.8.3 - Full n-stream quadrature and polarization

The stand-alone VLIDORT First-Order and two-stream produce identical results to VLIDORT, but have
been computationally optimized for the simpler assumptions. The choice of RTM can easily be changed and
SPLAT can be configured to run in both forward and inverse modes, enabling it to be used as a single environ-
ment for performing realistic observing system simulation experiments (e.g. Chan Miller et al. (2013)).

The CO2-proxy retrieval described here uses the simplest absorption-only model - this is due to the fact
that the retrieval does not explicitly simulate aerosols, relying on CO2 light-path normalization to account for
aerosol scattering. Since Rayleigh scattering in the CH4 band is small, all scattering can be neglected. Thus
I(λ) can be written as:

I(λ) =
cos(SZA)A(λ)

π
exp

(
−
∑
l

Slτl(λ)

)
(S3)

In the above A(λ) is the Lambertian surface albedo, τl absorption optical depth, SZA the solar zenith angle,
and Sl is the geometry air mass factor. Let pl−1 and pl be the pressure levels at the bottom and top of layer l,
and the pobs the pressure at the point of observation. Then the geometric air mass is

Sl =


1

cos(SZA) . . . pl−1 < pobs (layer above aircraft)
1

cos(SZA) + 1
cos(V ZA) . . . pl > pobs (layer below aircraft)

1
cos(SZA) + 1

cos(V ZA)
pl−1−pobs
pl−pobs else (aircraft in layer)

(S4)

where V ZA is the viewing zenith angle.
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S1.2 Profile Definitions and Optical Properties

In this section we describe the preparation of optical properties in SPLAT. The apriori profile pressure and
temperature levels are a function of the a priori surface and tropopause pressure (pS,0 and pT,0 respectively).
The pressure at level l is defined as

p0,l = al(pS,0 − pT,0) + blpT,0 + cl (S5)

The coefficients al,bl, and cl are those used by the University of Leicester GOSAT CO2-Proxy retrieval
(Parker et al., 2020), and are provided below:

Hybrid Pressure Grid Coefficients
Level al bl cl
0 1.0 1.0 0.0
1 0.9230769230769231 1.0 0.0
2 0.8461538461538463 1.0 0.0
3 0.7692307692307693 1.0 0.0
4 0.6923076923076923 1.0 0.0
5 0.6153846153846154 1.0 0.0
6 0.5384615384615385 1.0 0.0
7 0.46153846153846156 1.0 0.0
8 0.38461538461538464 1.0 0.0
9 0.3076923076923077 1.0 0.0
10 0.23076923076923078 1.0 0.0
11 0.15384615384615385 1.0 0.0
12 0.07692307692307693 1.0 0.0
13 0.0 1.0 0.0
14 0.0 0.5 40.0
15 0.0 0.0 80.0
16 0.0 0.0 50.0
17 0.0 0.0 10.0
18 0.0 0.0 1.0
19 0.0 0.0 0.1

The absorption optical depth at layer l is computed as

τl(λ) =
∑
i

v
[AIR]
l Xi,lσi(λ, pl−1, pl, Tl−1, Tl) (S6)

In the above equation Xi is the mole fraction of gas i and σi(λ, pl−1, pl, Tl−1, Tl) is the corresponding
absorption cross section. Here they are computed from a GGG2020-based pressure/temperature lookup table
on a 4-layer even-pressure sub-grid, and the result is averaged to better account for pressure broadening within

the layer. v
[AIR]
l is the column density within layer l. It is given by

v
[AIR]
l =

NA
Mlgl

(pl−1 − pl) (S7)

where NA is Avogadro’s number, Ml is the mean molecular weight of air in layer l, and gl is the gravitational
acceleration, computed using the latitude-dependent parameterization found in GGG2020, based on equation
I.2.4-(17) in US Standard Atmosphere 1962. This parameterization accounts for centripetal acceleration due to
Earth’s rotation and the variation in gravity due to Earth’s deviation from an ideal sphere.

S1.3 Radiative Transfer Model State Vector Elements

Whilst the initial pressure grid uses the hybrid parameterization in the previous section, surface pressures are
optimized using sigma coordinates. The fitted surface pressure at layer l is

pl =
xps
pS,0

p0,l (S8)
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Thus the surface pressure changes the spectrum in two ways - by adding more mass through its effect on

v
[AIR]
l , and changing the gas absorption cross sections. A temperature offset is also included in the fit. In terms

of the a priori temperature in level l, T0,l

Tl = T0,l + xT (S9)

The main effect of temperature is changing the absorption cross sections. In the retrieval the absorption
cross sections are re-interpolated from their lookup tables each iteration to account for changes from the pres-
sure/temperature state vector elements.

CO2 and CH4 are optimized using scaling factors that operate on the a priori profile of dry-air mole fractions
X0,i,l. For i =CO2, CH4

Xi,l = xi,lX0,i,l (S10)

A single column scaling factor is applied to the apriori H2O mole fraction profile X0,H2O,l

XH2O,l = xH2OX0,H2O,l (S11)

The albedo for fit window w is parameterized using Chebyshev Polynomials of the first kind (Vi).

Aw(λ) = A0

n∑
i=0

xalb,w,iVi

(
2

λ− λw,min
λw,max − λw,min

− 1

)
(S12)

A0 is the albedo derived from the radiance at 1622.5 nm. λw,min and λw,max are the fit window lower and
upper limits, with an additional 2 nm buffer added to allow for ISRF convolution.

S1.4 ISRF and ISRF Squeeze State Variables

The ISRF has been calibrated in-lab with a tuneable laser, stepped at 5 nm increments (Staebell et al., 2021).
To evaluate the convolution at pixel wavelength λp

I ~ Γ(λp) =

∫ λp+δλ

λp−δλ
I(λp)Γ(λp − λ)dλ (S13)

The above integral is evaluated numerically on a 0.01 nm grid. Let λj be the closest wavelength in the
lookup table that is less than λp. The ISRF is evaluated as follows:

Γ(λp − λ) = wjΓ
LUT
λj (xsqz(λp − λ)) + wj+1ΓLUTλj+1

(xsqz(λp − λ)) (S14)

In the above expression ΓLUTλj
represents the function that linearly interpolates over the ISRF at center

wavelength λj . In the above equation, xsqz represents the fitted ISRF squeeze factor (xsqz,co2 or xsqz,ch4
depending on the fit window). wj and wj+1 are the linear weightings between the lookup table center wavelength
nodes.

wj =
λp − λj
λj+1 − λj

(S15)

wj+1 = 1− wj (S16)

S1.5 Wavelength Shift State Variable

Upon simulation, the forward model is linearly interpolated from the 0.01 convolution grid to the wavelength
grid of MethaneAIR. A wavelength shift is included in the spectral fit. Letting λ0,i represent the wavelength of
the ith spectral pixel, then the forward model simulation corresponding to the observation element yi is:

Fi = F (λ0,i + xλ) (S17)
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S1.6 Solving the Inverse Problem

The inverse problem is formulated using Bayesian inference following Rodgers (2000), and we use the same
notation as the reference. Here we fit the forward model, F(x), to an observed m-pixel radiance spectrum
y ∈ Rm

y = F(x) + ε (S18)

If the observed radiance pixel errors ε are distributed by a multivariate normal (N (0,So)), and the a priori
uncertainty of the state variables is distributed N (xa,Sa), the maximum a posteriori solution x̂ (that is the
solution maximizing P (x|y)) is found by minimizing:

J(x) = (y − F(x))TSo
−1(y − F(x)) + (x− xa)TSa

−1(x− xa) (S19)

J(x) is optimized using the Levenberg–Marquardt algorithm, following the approach used by the OCO2
full-physics algorithm (Crisp et al., 2021). Here the change in state vector on the i + 1th iteration, dxi+1, is
given by:

dxi+1 =
(

(1 + α)Sa
−1 + Ki

TSo
−1Ki

)−1 (
Ki

TSo
−1(y − F(xi)) + Sa

−1(xa − xi)
)

(S20)

Ki is the Jacobian of the forward model at the ith iteration (Ki = ∂F(xi)
∂x ). α is the Levenberg-Marquardt

damping parameter, here initialized at 100. For large values, the algorithm approximates the gradient descent
method. As the solution approaches the optimum, the parameter can be relaxed, approaching a Gauss-Newton
step, accelerating convergence. The parameter is based on the following metric measuring forward model
nonlinearity, computed as the ratio of actual cost function reduction relative to the situation where the forward
model is assumed linear:

R =
J(xi)− J(xi+1)

J(xi)− Jlin(xi,dxi+1)
(S21)

Jlin(x,dx) = (y − (F(x) + Kdx))TSo
−1(y − (F(x) + Kdx)) + (x− xa)TSa

−1(x− xa) (S22)

Values of R > 0.75(< 0.25) are considered convergent(divergent), and α is scaled by a factor of 0.5(10). The
convergence criteria are based on the error variance derivative. For the ith iteration this is:

dσ2
i = dxi+1

T Ŝ−1dxi+1 (S23)

≈ dxi+1
T
(
Ki

TSo
−1(y − F(xi)) + Sa

−1(xi − xa)
)

(S24)

This essentially measures the ratio of the state vector update to the a posteriori uncertainty. These will be
approximately equal when dσ2

i = n, where n is the dimension of the state vector. Here pixels are considered
converged when dσ2

i < 0.02n.

S1.7 Tuning of the A Priori Covariance

Here we tune the regularization of the MethaneAIR retrieval by scaling the a priori covariance matrix. In terms
of the cost function J(x) this is achieved by introducing the regularization parameter γ:

J(x) = (y − F(x))TSo
−1(y − F(x)) + γ−2(x− xa)TSa

−1(x− xa) (S25)

For the observations to be useful for estimating methane emissions, to first order the appropriate choice of γ
is guided by the need to generate a 1:1 response to boundary layer CH4 concentrations. The vertical sensitivity
of the retrieval is quantitatively expressed through the column averaging kernel aCH4, which represents the
fractional change in retrieved methane vertical column N̂CH4 relative to a perfect observing system where
departures from the prior are perfectly fitted. Following Connor et al. (2008) the column averaging kernel
element for the lth layer is related to the CH4 profile component of the state vector xCH4 by

aCH4,l =
1

hl

∂N̂CH4

∂xCH4,l
=

1

hl
hTACH4 (S26)

Here ACH4 corresponds to the block of the retrievals averaging kernel covered by the profile scale factors.
h is the column operator that maps the retrieved scale factors to the methane column (i.e. NCH4 = hTxCH4).
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Similar expressions exist for the CO2 averaging kernel. The a priori covariance matrices for CH4 and CO2 largely
control the averaging kernel responses. Here we use those from the UoL GOSAT retrieval algorithm (Figure
S1, Parker et al. (2020)). Early testing on 15 × 3 (across×along track) pixel aggregates suggested that CH4

was under-regularized relative to CO2 (not shown here), likely due to the lower spectral information content for
MethaneAIR relative to GOSAT. As a result, the original CH4 matrix was reduced by a factor of 9 to produce
unit boundary layer column averaging kernel values. After the scaling, the uncertainty is still loose relative to
that expected from nature, with standard deviations >300 ppbv in the boundary layer (Figure S1).

CH4 CO2

Figure S1: A priori error covariance matrices for CH4 and CO2 used by the MethaneAIR retrieval. The
covariance matrices have been decomposed into layer standard deviation profiles (left) and correlation matrices
(right).

In this paper, retrievals were performed at native and 5×1 pixel aggregations. To maintain a uniform surface
response γ must be re-tuned due to the noise increase from the lower pixel aggregation. If γn corresponds to
the tuned value for the n-pixel aggregate, it can easily be shown that to obtain the same averaging kernel for
an m pixel aggregate, γm should be scaled as follows;

γ2m =
m

n
γ2n (S27)

To show this, the averaging kernel A is related to the retrieval gain matrix G by

G =

(
KTSo

−1K +
1

γ2
Sa

−1

)−1

KTSo
−1 (S28)

A = GK (S29)

Where K is the jacobian of the forward model, let So,n be the observation error covariance for an n-pixel
aggregation. By the central limit theorem So,n = m

n So,m. Matching the averaging kernel requires matching the
gain.

Gn =

(
KTS−1

o,nK +
1

γ2n
Sa

−1

)−1

KTS−1
o,n (S30)

=
n

m

(
n

m
KTS−1

o,mK +
1

γ2n
Sa

−1

)−1

KTS−1
o,m (S31)

substituting equation S27

Gn =
n

m

(
n

m

(
KTS−1

o,mK +
1

γ2m
Sa

−1

))−1

KTS−1
o,m

=

(
KTS−1

o,mK +
1

γ2m
Sa

−1

)−1

KTS−1
o,m

= Gm (S32)
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To tune the regularization we perform a set of retrievals, where γ2 is systematically varied over a range
of 10−4 to 104 using a 5 × 1 aggregated MethaneAIR observation from the return leg of RF06. We select an
observation with relatively low signal to ensure that signal-dependent artifacts caused by over-regularization
are minimized. In this case, the solar zenith angle was 46◦, and albedo 0.17, making it within the lowest 5
percentile of albedos observed during the return leg. The resulting dependence of the CO2 and CH4 averaging
kernels is shown in Figure S2 (middle, right). As γ2 increases, the column averaging kernels tend towards 1,
with both species having 1:1 responses for γ2 ≥ 10. This confirms the original tuning performed on the 15× 3
pixel aggregates, as based on Equation S27 we would expect to loosen the regularization by a factor of 9. In all
cases, there remains a steep drop off in the averaging kernel sensitivity above 200 hPa. This corresponds to the
airmass above the aircraft, and occurs because light is only traversing the layers above once.

L Curve CO2 Avg. Kernel CH4 Avg. Kernel

Figure S2: L-Curve and CO2/CH4 column averaging kernels for the test pixel used to tune the MethaneAIR
regularization factor for the 5× 1 pixel aggregation (see text).

Selecting values of γ larger than 10 marginally improves the vertical sensitivity at the cost of worsening
the measurement precision. The appropriate trade-off point can be determined heuristically using the L-curve
method (Hansen, 1993), which compares the two components of J(x) (Equation S25) (i.e. the norm of the
spectral residuals versus the norm of the difference between the retrieved and a priori state) at different γ.
Figure S2 (left) shows the L-curve for the test pixel. At high regularization (low γ), increasing γ reduces the
spectral fit residuals without significant increases in the regularization norm, indicating over-regularization.
At the other extreme (high γ), increasing γ mostly increases the regularization norm, reflecting the situation
where measurement noise starts dominating the retrieved state. The trade-off point where the retrieval does not
under/overfit the spectrum can be estimated as the point of maximum curvature between these two extremes.
From Figure S2 this occurs within γ2 = 0.1 − 10. In consideration of this and the averaging kernel boundary
layer response, we select γ2 = 10 for the 5 × 1 observation and scale to γ2 = 50 for the native resolution
(Equation S27).

Figure S3 shows the CO2 and CH4 degrees of freedom for signal (DoFS) for all pixels for the RF06 return
leg as a function of albedo. The DoFS are the trace of the averaging kernel CO2/CH4 sub-matrices, and are
a measure of the individual pieces of profile information that can be constrained by the retrieval. Figure S3
shows that there is a steep drop off in the DoFS curve for CO2 starting at ∼ 0.10 albedo. Below this value the
retrieved CO2 column will increasingly be dominated by the prior. The drop-off in CH4 DoFS occurs at smaller
signal levels, indicating that the retrieval is limited by the CO2 light path constraint. The majority of scenes
corresponding to the prior-dominated signal levels correspond to those over water.
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x103x103

CO2 CH4

Figure S3: CO2 and CH4 degrees of freedom for signal as a function of scene albedo for the return segment
used to determine albedo XCH4 (see main text). Color maps represent observation density.
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Figure S4: Determination of plume mask parameters from plume-free synthetic MethaneAIR retrievals at
native resolution. The left panel shows the falsely detected plume mass for different levels of TV smoothing as
a function of the minimum pixel cluster threshold. The right panel shows the minimum pixel threshold required
to exclude all falsely detected plume mass as a function of smoothing weight (blue line). The plume XCH4

threshold versus smoothing weight is also shown (orange line).
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S2 Implications for MethaneSAT

S2.1 Estimation of MethaneSAT Precision

Here we provide an estimate of the MethaneSAT XCH4 precision via a linear sensitivity analysis. The precision
of the state vector x, is characterized by the measurement error covariance Ŝm. Ŝm is determined via the retrieval
model gain (G, Equation S28), and radiance error described by the observation error covariance matrix So:

Ŝm = GSoG
T (S33)

Here So is computed using the SNR model provided by Ball Aerospace to define the MethaneSAT instrument
requirements in the mission design phase. We scale these values to match an SNR of 190 for an input radiance
of 1.4×1013 photons cm−2 s−1 sr−1 nm−1, based on preliminary MethaneSAT calibration measurements which
show the instrument outperforming the initial noise requirements. The linear sensitivity analysis uses the
Jacobian computed from xa, thus making the assumption that this is a good approximation for the Jacobian at
the final fit iteration. To estimate XCH4 precision (σXCH4), we must do one final round of error propagation
via the column operator k = ∂XCH4

∂x :

σ2
XCH4

= kT Ŝmk (S34)

k accounts for the errors in both the retrieved CH4 and CO2 vertical columns:

k = XCO2,0
∂

∂x

(
NCH4

(x)

NCO2(x)

)
(S35)

= XCO2,0

(
1

NCO2

∂NCH4

∂x
− NCH4

N2
CO2

∂NCO2

∂x

)
(S36)
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Figure S5: Estimated XCH4 precision via the linear sensitivity analysis (described in text) as a function of
Lambertian albedo. Lines correspond to different solar zenith angles.

Figure S5 shows the XCH4 precision estimated via the linear sensitivity analysis, as a function of albedo
and solar zenith angle. The calculation used a sampled GGG2020 a priori profile from RF06 over the Permian,
and with a viewing zenith angle of 0 degrees. The precision curves look similar at other viewing zenith angles as
the precision is primarily determined by the radiance, which itself is primarily a function of solar zenith angle
and surface reflectance. For a typical surface albedo of 0.3, the random measurement error is less than 35 ppb
for solar zenith angles below 30 degrees, and 40 ppb below 50 degrees.
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S2.2 Impact of Colocated CO2 Emissions

The CO2 proxy approach relies on knowledge of the true CO2 dry air total column mole fraction (XCO2). Here
we focus on errors induced by the a priori (XCO2,0). To isolate this error source, we assume that the retrieval
perfectly retrieves the CH4 and CO2 vertical densities (NCH4

and NCO2
respectively), then the true (XCH4)

and retrieved ( ˆXCH4) CO2 dry air total column mole fractions can be written

XCH4 =
NCH4

NCO2

XCO2 (S37)

ˆXCH4 =
NCH4

NCO2

XCO2,0 (S38)

= XCH4
XCO2,0

XCO2
(S39)

Thus the error scales with the ratio of the a priori and true XCO2. If there is little XCO2 variability within
a scene, this will not cause a significant error because the a priori error in the XCO2 background is usually
within 1% of the truth (Laughner et al., 2023), leading to a small scaling bias. However, if there is CO2 variation
within the scene, it may induce errors of similar magnitude to the CH4 enhancements above the background
due to surface emissions. To illustrate this, we use the extreme example of a gas flare, a point source of both
species. Let E represent the rate of gas flowing through the flare in mol C h−1. The emissions of CH4 and CO2

(ECH4
and ECO2

) may be written

ECO2
= E ×DRE (S40)

ECH4
= E(1−DRE)FC (S41)

Here FC represents the mole fraction of C that is methane, and DRE is the destruction removal efficiency of
the flare. In order to simulate realistic values, we use DRE and FC values obtained from a recent aircraft survey
of gas flares of major US oil and gas basins (Plant et al., 2022). We simulate XCH4 and XCO2 enhancements
using the same WRF LES simulations described in the main text, and assume background XCH4 and XCO2

of 1900 ppb and 400 ppm, respectively. We use Equation S39 combined with the WRF-LES XCH4 and XCO2

of to estimate the retrieved XCH4, under the assumption that XCO2,0 is equal to the 400 ppm background.
Figure S6 shows an example realization plume from a vent releasing 1000 kg/h of methane unlit, with Permian
gas composition, at 3 DREs ranging from 0-100%.

Figure S6: Retrieved XCH4 from a gas flare simulated with WRF-LES for 3 different destruction removal
efficiencies (top row). When unlit, the flare emits 1000 kg/h methane (see text). The bottom row shows errors
induced by co-emitted CO2.

For the 0 and 50% DRE cases, the XCH4 error is small relative to the enhancement. When combustion
is 100% efficient, the CO2 enhancement reduces the retrieved XCH4 below the background. To quantify how
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this would impact emissions estimates, we can compare the integrated mass enhancements for the true and
retrieved XCH4 . Figure S7 shows the ratio of the retrieved IMEs, computed from the ensemble of WRF LES
realizations. The individual curves correspond to the gas compositions of the mean Permian, Eagle Ford, and
Bakken formation, which represent 80% of US oil and gas flaring activity (Plant et al., 2022).

0.0 0.2 0.4 0.6 0.8 1.0
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Figure S7: Fraction of integrated CH4 mass detected (after considering error due to co-emitted CO2) as a
function of destruction removal efficiency for 3 different basin compositions.

Figure S7 shows that the fraction of detected emissions precipitously declines at high DREs. Whilst well
over 80% of total emissions are detected for a 95% DRE, this drops to 28-58% by a DRE of 98%, the nominal
value used by the EPA GHGRP (GHGRP). However, the current assumed rate likely underestimates current
flare efficiencies, with Plant et al. (2022) estimating a US-average flaring efficiency ∼ 91.1% based on their basin
surveys. We can use their reported flaring distributions to estimate the fraction of emissions missed due to the
CO2 proxy normalization error. We calculate the total true (Etrue) and observed (Eobs) flaring emissions for
each basin as follows:

Etrue = funlit + (1− funlit)
∫ 1

0

p(DRE)(1−DRE)dDRE (S42)

Eobs = funlit + (1− funlit)
∫ 1

0

p(DRE)(1−DRE)fobs(DRE)dDRE (S43)

funlit is the fraction of unlit flares within the basin (4.9%, 4.1%, and 3.2% for the Permian, Eagle Ford,
and Bakken respectively), fobs is the fraction of detected emissions (Figure S7), and p(DRE) is the probability
distribution of the flare DREs. Here we use the log-normal distribution parameters provided by Plant et al.
(2022). From this we estimate that the error caused by co-emitted CO2 causes gas-flaring emissions in the Eagle
Ford, Bakken, and Permian basins by 16%, 13%, and 8% respectively.

Whilst under current conditions, it appears the majority of flaring emissions can be detected with the CO2

proxy method, the potential of improved flaring efficiencies spurred by recent global agreements may require
this to be revisited. We have also not studied co-emitted area sources, which may be important for certain
targets (e.g. cities). For such cases, we are currently exploring the use of un-normalized CH4 columns or proxy-
normalization from O2 retrieved from the nearby singlet-delta band. This may work because of the spectral
proximity to the CH4 band; however, requires an evaluation through observing system simulation experiments.
For co-emitted area sources, we are also considering performing a full-physics CO2 retrieval, at a coarser spatial
resolution due to computational constraints. The retrieved CO2 could be used in place of the prior in the higher
spatial resolution CO2 proxy product.
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S2.3 Impact of MethaneSAT vs. MethaneAIR spatial resolution differences

S2.3.1 Cloud contamination

Reflectance Reflectance + Cloud Mask
shadow + low signal 

cloud

Figure S8: Example scene (Bakken Formation, RF09) used to assess the dependence of cloud contamination
on instrument spatial resolution. The left panel shows the greyscale reflectance at 1622.5 nm. The right panel
overlays the cloud (red) and cloud shadow/low signal (green) masks from the MethaneAIR cloud detection
algorithm.

Instruments with finer spatial resolution can better resolve areas between clouds, yielding a greater fraction
of useable data. To assess the reduction in coverage due to the coarser resolution of the satellite we use
observations from RF09 (Figure S8). The flight was conducted over the Bakken formation, at a time when
there was significant low-altitude cumulus clouds present, clearly seen from the reflectance map in Figure S8.
This provides an ideal test case to assess resolution differences. Figure S8 (right panel) shows the corresponding
cloud and low-signal masks for the same scene. From these, approximately 67% of the observed area is cloud-free.
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Figure S9: Fraction of clear pixels as a function of spatial pixel size, using the cloud-flagged data from RF09.
See text for method details. The pixel size used in the x-axis is the length of the equivalent square pixel
corresponding to the aggregate pixel used in the calculation.

To assess the effect of spatial resolution, we aggregate pixels in square n×n blocks, and for these aggregates,
compute the fraction of the aggregate that is covered by clouds. We define a new cloud mask for the aggregate
pixels based on a threshold cloud fraction. Figure S9 shows these at two cloud fraction maximums (1% and
10%) as a function of pixel size. At MethaneAIR spatial resolution, an additional 18% and 10% of pixels are
lost to cloud contamination for the 1% and 10% thresholds, respectively. At the largest pixel size (∼ 5× 5 km2,
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approaching the spatial resolution of TROPOMI), significantly more pixels are lost (51% and 32% respectively).
For MethaneSAT, the amount of pixels lost to cloud contamination will be further mitigated by its flexible target
selection strategy, which factors forecasted cloud cover into its decision tree (Benmergui, 2019).

S2.3.2 Inhomogeneous Illumination

The ISRF used in the MethaneAIR retrievals is derived from calibration measurements whereby the instrument
slit is homogeneously illuminated. Large sub-pixel differences in radiance can induce changes to the ISRF
and shifts in the wavelength-to-pixel mapping (Noël et al., 2012; Landgraf et al., 2016). Not accounting for
these ISRF changes typically yields changes in retrieved columns of up to a few percent (e.g. TROPOMI CO,
Landgraf et al. (2016); GeoCarb CO2, CH4, and CO, Nivitanont et al. (2019)).

(a) (b)

(c) (d)

Albedo [1606nm] Wavelength Shift Anomaly

RR

[nm]

[# points]

Figure S10: Example scene from RF09 demonstrating the effect of inhomogeneous illumination on the retrieved
wavelength grid. (a) MethaneAIR retrieved albedo at 1606nm. (b) Retrieved wavelength shift (with median
shift subtracted) (c) Reflectance ratio (RR) (see text) (d) relationship between RR and retrieved wavelength
shift, observations filtered for CH4 DoFS > 1.

In the 1.6 micron band, the two main situations yielding significant inhomogeneous illumination are the
edges of clouds and water bodies, again making RF09 a useful dataset for this purpose. Figure S10 shows an
example of this from a scene in RF09. The river in the image (Figure S10(a)) induces a retrievable wavelength
shift at its edges (Figure S10(b)), clearly demonstrating that inhomogeneous illumination is occuring in the
data.

The inhomogeneity can be quantified by dividing each pixel in the along-track direction into a lower and
upper half (indexed l and u respectively). The pixel is divided in the along-track direction because this is the
direction that strongly impacts the ISRF. A reflectance ratio metric (RR) can be used to predict these ISRF
changes.

RR =
Al −Au

0.5(Al +Au)
(S44)

Al and Au are the albedos for the lower and upper halves of the pixel respectively. Figure S10(c) shows RR
estimated from the example scene. Since the scene is at the retrieved resolution, we have estimated RR via
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linearly interpolating the albedos between pixels in the along track direction. Figure S10(d) shows that there is
a strong relationship between the retrieved wavelength shift and RR, indicating that it is a reasonable metric
for indicating ISRF changes from inhomogeneous illumination.

50th
25-75th

5-95th

1-99thMethaneSAT pixel size

Figure S11: Distributions of RR as a function of spatial resolution computed from reflectance data from RF09.

We now use RR to assess how inhomogeneous illumination depends on pixel size. Figure S12 shows the
distribution of RR for different pixel resolutions using the same RF09 dataset from Section S2.3.1. These
are computed from aggregate pixels in increasing n × n blocks in the same manner as Section S2.3.1. At the
size of a MethaneSAT pixel, distributions of RR are similar to MethaneAIR, indicating that has a similar
susceptibility to its effects. At larger pixel sizes the spread of the RR increases in a quasi-symmetrical manner,
whilst the median value is close to 0. This suggests that overall the errors associated with inhomogeneous
illumination will be quasi-random. However spatially systematic biases will be correlated, as shown in Figure
S10(b) where wavelength shifts on the east/west banks of the river are positive/negative respectively. Similar
systematic effects on the retrieved CH4 and CO2 columns are also likely, as demonstrated by previous work
(e.g. TROPOMI CO, Landgraf et al. (2016)), caused ultimately by changes in the ISRF. In MethaneAIR these
are partially mitigating by the fitting of the ISRF squeeze factors. For MethaneSAT, these squeeze parameters
may not be required due to improved thermal control. In this case deviations in retrieved wavelength shift can
be used as an quality filter for pixels impacted by significant inhomogeneous illumination.
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S2.3.3 Sub-pixel CH4 gradients

Satellite retrievals assume that the concentration of the retrieved species is homogeneously distributed horizon-
tally across the pixel being retrieved. As spatial resolution coarsens, heterogeneity in methane within a pixel
becomes more pronounced. This will be especially pronounced in observations of plumes over point sources -
In these cases, not accounting for the sub-pixel distribution of methane will yield a systematic underestimate
in the retrieval, as ”smearing” the actual enhancement over the entire pixel area effectively makes absorption
more efficient. This can be argued simply from Beers law, where confining the CH4 to a fraction of the pixel
yields smaller overall radiance changes due to greater saturation in the absorption line depths.

To quantify this effect, we performed a simple OSSE where we confine a boundary layer methane enhance-
ment to a fraction of the total pixel. We use a GGG2020 a priori profile sampled from RF04 over the Permian
(20210730, 15:40:35) for the background conditions. We simulate two radiances, corresponding to the back-
ground, and one with the enhancement, confined in the lowest four model layers (681-918 hPa). A retrieval is
then performed on the the combined radiance, which is weighted based on the plume area fraction.

Pixel Mean XCH4 Enhancement [ppb]

Figure S12: Fractional error in the retrieved XCH4 enhancement, after errors in sub-pixel horizontal hetero-
geneity in CH4 are accounted for (see text).

Figure S12 shows the fractional error in the retrieved XCH4 enhancement as a function of the fractional
area of the pixel covered by the plume. The color of the curves corresponds to the pixel-mean enhancement.
The figure shows that the error increases sizeably when the plume only fills ∼ 0− 15% of the pixel. The error
is more pronounced the larger the plume enhancement, with errors as large as 50% at plume area fractions of
1% for a 100 ppb pixel-average enhancement.

To create a simple estimate of the magnitude of these errors induced by sub-pixel heterogeneity on Methane-
SAT, we use the values in Figure S12 with an example WRF-LES plume (Figure S13). We aggregate the data
to the approximate distribution of MethaneSAT (140 × 400 m2. Let δ1, . . . , δn represent the XCH4 values of
the n WRF-LES pixels in an aggregate MethaneSAT pixel. We estimate the XCH4 concentration within the
plume as:

δplm = max(δ1, . . . , δn) (S45)
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ppb ppb

ppb ppb

Figure S13: Example induced by sub-pixel XCH4 heterogeneity estimated using WRF LES. (Top Right) The
XCH4 enhancement due to a 1000 kg/h plume simulated with WRF LES. (Top Left): The same plume
aggregated to approximate MethaneSAT resolution. (Bottom Left): Retrieved plume factoring in error from
subgrid XCH4 variability (Bottom Left): Retrieval bias due to subgrid XCH4 variability

The plume fraction (fplm) is then

fplm =
nδplm∑n
i=1 δi

(S46)

In this manner, the plume is maximally concentrated in the smallest possible area of the pixel. This creates
an upper bound for the estimate based on the curves in Figure S12. The resulting error is shown in Figure
S13 (bottom right). The error peaks close to the source, but is only around 1 ppb, much smaller than the
peak enhancement (> 70ppb). This suggests sub-pixel heterogeneity is not a huge issue at MethaneSAT native
resolution.
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