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Abstract. This comprehensive study analyzed aerosol prod-
ucts from six low-Earth orbit (LEO) and geostationary Earth
orbit (GEO) sensors. LEO sensors like the MODerate reso-
lution Imaging Spectroradiometer (MODIS) and VIsible In-
fraRed Suite (VIIRS) provide one to two daily global mea-
surements, while GEO sensors (Advanced Himawari Imager:
AHI, Advanced Baseline Imager: ABI) offer high-frequency
data (∼ 10 min) over specific regions. The combination of
LEO and GEO capabilities offers expanded coverage of the
global aerosol system if aerosol retrievals are applied con-
sistently across all sensors and packaged in an easy-to-use
product. The Dark Target aerosol retrieval algorithm was ap-
plied to the six sensors, and the resulting Level 2 aerosol op-
tical depth (AOD) products were gridded and merged into a
Level 3 quarter-degree latitude–longitude grid with a 30 min
temporal resolution, providing the necessary consistency and
packaging. Validation of this packaged Level 3 AOD product
against Aerosol Robotics NETwork (AERONET) measure-
ments across global locations showcased the merged prod-
uct’s robustness with a correlation coefficient of 0.83, reveal-
ing a global mean bias of approximately ±0.05, with 65.5 %
of retrievals falling within an expected uncertainty range,
underlining the reliability of the dataset. The new gridded
Level 3 dataset significantly improved daily global cover-
age to nearly 45 %, overcoming the limitations of individual

sensors, which typically range from 12 % to 25 %. Further-
more, this merged dataset approximates the diurnal cycle of
AOD observed by AERONET, thus offering insights into di-
urnal signatures retrieved elsewhere. The resulting dataset’s
high spatiotemporal resolution and improved global cover-
age, especially in regions covered by GEO sensors (Americas
and Asia), make it a valuable tool for diverse applications.
Tracking aerosol transport from phenomena like wildfires
and dust storms is gaining precision, enabling enhanced air
quality forecasting and hindcasting. Additionally, the study
positions the merged dataset as a significant asset for evaluat-
ing and intercomparing regional or global model simulations,
which was previously unattainable in such a gridded format.
The dataset and fusion framework layout in this study have
the potential to include data from recently (future) launched
other GEO (FCI, AMI) and LEO (PACE, VIIRS-JPSS) sen-
sors.

1 Introduction and motivation

Operational satellite remote sensing of aerosol properties
and the dissemination of standard aerosol products are en-
tering their third decade. Beginning with the launch of Terra
in December 1999, the research and applications communi-
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ties have been able to access a robust daily representation
of Earth’s global aerosol system at a variety of georefer-
enced spatial resolutions or on a 1° global grid. In particular,
the Dark Target (DT) aerosol algorithm (Remer et al., 2005;
Levy et al., 2013) has been applied to observations from the
MODerate resolution Imaging Spectroradiometer (MODIS)
on the Terra and Aqua satellites (Kaufman et al., 2002) and
later from the VIsible InfraRed Suite (VIIRS) on board the
Suomi National Polar-orbiting Partnership (S-NPP) satellite
(Sawyer et al., 2020) and now NOAA-20 (formerly known
as JPSS-1). This algorithm introduced the research and ap-
plications communities to consistent, validated daily aerosol
information. The information is provided as spectral aerosol
optical depth (AOD) over dark, cloud-free, non-snowy, non-
glint ocean and land surfaces as well as for ocean scenes
only; there is also information on aerosol particle size (Levy
et al., 2013). The DT standard products have become es-
sential inputs to assimilation systems (Zhang et al., 2008;
Benedetti et al., 2009; Gelaro et al., 2017), are used for cli-
mate model validation (Kinne et al., 2003; Bellouin et al.,
2008; Chin et al., 2014) and estimates of intercontinental
transport of particles (Kaufman et al., 2005b; Yu et al., 2012,
2019), and have provided new insight into aerosol–cloud pro-
cesses (Kaufman et al., 2005a; Koren et al., 2007, 2008; Yuan
et al., 2011a, b). The AOD products are used as a proxy
for particulate matter (PM), an essential air quality param-
eter (Al-Saadi et al., 2005; Gupta and Christopher, 2009a, b;
Xin et al., 2014). Thus, the daily DT AOD aids operational
air quality forecasting and post-event analysis of exceptional
poor-air-quality events.

While the DT aerosol products cover the globe every day
over middle and high latitudes and ever 2 d over the trop-
ics, clouds, glint, and bright surfaces prevent the datasets
from being truly global in coverage. Analysis shows that over
North America and adjoining oceans, only about a third of all
available scenes (∼ 10 km× 10 km) produce an AOD prod-
uct from a MODIS-like instrument on any given day (Re-
mer et al., 2012). Having multiple polar-orbiting views of
the same scene might increase data product availability, but
not much if the two instruments pass close in time, such as
Aqua and S-NPP in North America. However, a sensor in
geostationary orbit (GEO) makes many observations of the
same scenes during the day, which gives more opportunities
to observe that scene in cloud-free and glint-free conditions
and return an AOD value at least once per day. In fact, be-
cause a scene is rarely continually cloudy from sunrise to
sunset, we see that geostationary sampling can find at least
one cloud-free opportunity to make an aerosol retrieval on
any day in its limited region of operations. This increases the
probability of at least one aerosol retrieval sometime during
the day to nearly 100 % (Remer et al., 2012). If the interest
in AOD products is simply to have one good retrieval per
day in a specific region, as offered by polar-orbiting satel-
lites, then aerosol products from geostationary satellites will
be sufficient to increase product availability and meet user

needs. However, even though there will be once-per-day ob-
servations with a GEO satellite, unlike the LEO satellites,
the time of that once-per-day retrieval can vary widely over
daylight hours.

Using one retrieval, taken at any time of the day, to rep-
resent daily conditions assumes that there is no significant
diurnal signal at that site. On a global scale, this may be true.
However, aerosols are dependent on source emissions, cloud
processing, and local weather patterns, all of which have di-
urnal signatures. Previous studies suggest that aerosol diur-
nal signatures exist prominently at the local scale and less
so on regional scales (Kaufman et al., 2000, 2005c; Smirnov
et al., 2002; Zhang et al., 2012; Arola et al., 2013). There-
fore observing diurnal patterns is of interest to many re-
search and applications communities. For example, the air
quality community can use the information for improve-
ments to forecasting and mitigating unhealthy PM levels.
The climate and cloud communities are interested in aerosol
diurnal patterns because of the convolution between how
aerosol and clouds evolve together during the day and how
aerosol influences cloud and precipitation processes. These
previous studies that found no regional diurnal aerosol pat-
terns used ground-based remote sensing observations from
the Aerosol Robotics NETwork (AERONET) (Holben et
al., 1998; Giles et al., 2019). AERONET observations are
site-specific but globally distributed and report AOD every
5–15 min throughout the daylight hours. Using AERONET
there have been several attempts to determine local, regional,
and global aerosol diurnal patterns (Kaufman et al., 2000,
2005c; Smirnov et al., 2002; Zhang et al., 2012; Arola et al.,
2013). Even though hundreds of AERONET stations went
into the studies, the network still sparsely covers the globe
compared to a satellite dataset. While polar-orbiting satellite
sensors such as MODIS and VIIRS have succeeded in filling
in spatial holes to produce global measures of AOD, they are
inadequate for filling in temporal holes to resolve any aerosol
diurnal cycles. One goal of producing aerosol products from
geostationary satellite sensors will be the opportunity to de-
termine possible aerosol diurnal signatures at a range of spa-
tial scales globally.

One caveat to using geostationary satellite observations for
aerosol datasets is the loss of the global picture. By defini-
tion, geostationary satellites are regional instruments hover-
ing over a specific Equator position and imaging a circular
portion of the Earth that covers roughly 1/3 of the global
surface area. Covering the globe with multiple geostation-
ary sensors is not the same as viewing the entire globe us-
ing multiple orbits of a single MODIS-like sensor. Not all
geostationary sensors are identical, as described in Sect. 3.
Even if the sensors are built identically, they may not produce
identical aerosol results (due to changes in sun–satellite ge-
ometry), as was seen with Terra-MODIS and Aqua-MODIS
(Levy et al., 2018). Thus, the ideal strategy to realize the ben-
efits of geostationary aerosol data, namely increased avail-
ability and temporal resolution, without losing the benefits
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of daily global sampling of polar orbiting sensors is to com-
bine the aerosol products from both types of instruments. To
do so, the strategy must be to maintain consistency in aerosol
retrieval as it is applied to multiple sensors while accommo-
dating the unique characteristics of each sensor.

In this paper, we report on a unique global dataset pro-
duced from merging aerosol products from three polar-
orbiting satellites (Terra-MODIS, Aqua-MODIS, S-NPP-
VIIRS) and three geostationary satellites (Advanced Hi-
mawari Imager (AHI) on Himawari-8, Advanced Baseline
Imager (ABI) on GOES-16, ABI on GOES-17). All six
aerosol databases were produced with adapted versions of
the DT aerosol algorithm, thereby maintaining consistency in
the aerosol algorithm. The result is a global gridded dataset
at 0.25° latitude–longitude spatial resolution and 30 min tem-
poral resolution that increases overall AOD availability with
some ability to discern the diurnal cycle. We do not start from
scratch to retrieve aerosol products from satellite-observed
radiances but use already-retrieved aerosol products to cre-
ate a joint global gridded dataset. Note that this is the first
time that the DT aerosol product from multiple sensors has
been gridded to a finer resolution than the MODIS 1° Level 3
operational product.

This dataset addresses two goals. First, it increases spatial
coverage by filling in the holes caused by clouds and glint
in the global aerosol product. Second, the dataset fills in the
temporal holes in the diurnal signature caused by the once-
per-day sampling of the polar-orbiting sensors. It is this syn-
thesis of spatially and temporally rich data and the unique-
ness of a fine-resolution global grid, easily ingested by global
models and gridded data systems, that offers new value to the
aerosol community.

The paper is organized as follows. In Sect. 2, we de-
scribe the DT algorithm and how it is adapted to different
sensors and then describe how these individual datasets are
gridded and integrated into a global grid. Section 3 demon-
strates the increased availability of the aerosol product and
expanded global coverage. This is followed by comparing
retrievals from the geostationary sensors to those from the
polar-orbiting sensors, illustrating global consistency in the
product. The new gridded data are validated compared with
AERONET, and then diurnal signatures are explored region-
ally and globally. We wrap up the paper with a discussion of
the utility of the new product, a discussion of aerosol diur-
nal signatures, and the outlook moving forward. Throughout
the paper we will refer to geostationary instruments as GEO
satellites or sensors and polar-orbiting instruments that fly on
low-Earth orbit satellites as LEO satellites or sensors.

2 Dark Target aerosol retrieval algorithm

The DT algorithm has been documented extensively in the
reviewed literature (Kaufman et al., 1997; Tanré et al., 1997;
Remer et al., 2005; Levy et al., 2013; Sawyer et al., 2020)

and with a detailed description maintained online as an Al-
gorithm Theoretical Basis Document (ATBD, 2023). Here
we provide a summary of the algorithm and then discuss the
need for adjustments to the basic algorithm because of spe-
cific characteristics of new sensors.

The basic DT aerosol algorithm uses a look-up table
(LUT) structure to link measured top-of-atmosphere (TOA)
reflectance to an AOD value given a specific sun–sensor ge-
ometry and assumptions about the aerosol properties and sur-
face beneath. There are separate algorithm structures and
assumptions for retrievals over the ocean versus those over
land. Over ocean, the algorithm uses up to six measured re-
flectances from wavelengths that span the range from 0.5
to 2.3 µm. The ocean surface is modeled as a rough ocean
surface with ancillary data determining the surface wind
speed and a constant spectrally varying value used for water-
leaving reflectance. The algorithm avoids clouds, sun glint,
marine sediments, and other ocean areas that do not con-
form to expected spectral signatures of the ocean surface.
The aerosol properties over the ocean are modeled as indi-
vidual lognormal modes of spherical particles, some in the
fine-mode range and some in the coarse-mode range. There is
also a special nonspherical coarse mode for desert dust (Zhou
et al., 2020a, b). The algorithm finds the best combination of
fine and coarse modes, as well as the number of particles in
each one that produces the TOA reflectances best matching
the corresponding spectral reflectances measured by satellite
for the selected scene. The result is a solution set of spectral
AOD that represents the aerosol loading, the modes chosen,
and the relative weight of each mode.

Over land the algorithm must address the complexity of
a much more complicated surface than over ocean. The al-
gorithm reduces uncertainties in the retrieval by choosing to
retrieve only over “dark surfaces”, mainly dark vegetated sur-
faces. Thus, the DT algorithm avoids clouds, snow, ice, and
non-vegetated deserts and other arid landscapes. Over the
selected dark targets the DT land algorithm parameterizes
the relationships between different wavelengths of surface
reflectance using empirical constructs (Levy et al., 2007).
There is a special empirical relationship used for urban sur-
faces (Gupta et al., 2016). Over land, aerosol properties are
modeled by bimodal representations. One of the bimodal
models is coarse-mode-dominated, while the other three are
fine-mode-dominated but with different absorption proper-
ties. The algorithm assigns specific absorption properties by
region and season and then allows the retrieval to mix the
assigned fine mode and specific absorption with the generic
coarse-mode model. Again, the aerosol loading is adjusted
to match the measured TOA reflectances to results from the
LUT. The primary result is the AOD at 0.55 µm.

Applied to each sensor separately, the results of the DT
algorithm are denoted as Level 2 products. Each retrieval is
tagged with a latitude–longitude, and the retrievals follow the
shape of the instrument’s scan. Level 3 products arise from
aggregating Level 2 aerosol products onto regular spatial
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(e.g., equal latitude–longitude) and temporal grids. The DT
algorithm was initially developed for MODIS on Terra and
then applied to Aqua with no changes, as MODIS-Terra and
MODIS-Aqua were designed as identical twins. Initial stud-
ies (e.g., Remer et al., 2006) suggested that the two MODIS
products were statistically identical on the global scale. With
the implementation of Collection 5 calibration and repro-
cessing that began in September 2006 the DT aerosol results
from the two sensors began to diverge (Levy et al., 2018),
with subsequent updates in calibration (e.g., Lyapustin et al.,
2023) showing improvements. Although an offset remains
(AOD from MODIS-Terra is higher than Aqua by about
10 %) between the two products for the current reprocess-
ing known as Collection 6.1, they agree to within expected
uncertainty.

However, when the DT algorithm was ported to VIIRS, its
first non-MODIS application, changes had to be made to the
algorithm a priori (Sawyer et al., 2020). VIIRS uses differ-
ent wavelengths than MODIS, even if the two sensors cover
the same range, and VIIRS and MODIS have different swath
widths and native pixel resolutions. Thus, the DT algorithm
required calculation of a specific LUT for VIIRS to match the
new wavelengths and required other modifications because
of the change in native pixel resolution (Sawyer et al., 2020).
In this study we port the DT algorithm again to new sensors
(ABI and AHI), which require similar adjustments to the ba-
sic DT algorithm described here. The details of the instru-
ment specifics requiring algorithm adjustment are presented
in Sect. 3.

3 Data and methods

3.1 Satellite aerosol datasets

The LEO sensors used in this study are two for MODIS, one
on Terra, one on Aqua, and one VIIRS (on S-NPP). The three
GEO sensors used are two ABIs (on GOES-16 and GOES-
17) and AHI (on Himawari-08). For the period of this study
(1 April 2019 to 31 March 2020), GOES-16 was located in
the operational GOES-East position (−75 : 2° W), GOES-17
in the GOES-West position (−137 : 0° W), and Himawari-
08 in the Himawari position (140.7° E). From each of these
sensors, we use the Level 2 (L2) AOD retrieved by the DT
algorithm and refer to the products as MODIS-T, MODIS-
A, VIIRS-SNPP, ABI-G16, ABI-G17, and AHI-H08, respec-
tively. Note that our starting point is Level 2, after single-
sensor algorithms have produced aerosol products.

For MODIS, we used DT-retrieved AOD data at nomi-
nal 10km× 10km spatial resolution, specifically the stan-
dard MOD04/MYD04 Collection 6.1 dataset available via
the Level 1 and Atmosphere Archive & Distribution System
Distributed Active Archive Center (LAADS DAAC). VIIRS
AOD data used are retrieved at nominal 6km×6km, and we
used V1.1 (also available from LAADS). Note that since Oc-

tober 2022, there has been a new version (V2.0) of VIIRS
AOD retrievals, but they are not used here. The AOD data
from all three GEO sensors (Gupta et al., 2019) are at nom-
inal 10km× 10km and produced as Version V0. From here
on, we use the term “pixel” to refer to the size of a Level 2
retrieval box, noting that it varies between sensors and varies
across the scan or swath of each sensor. A “native pixel”
refers to the size of the original sensor observations (e.g., the
Level 1 or L1 data).

Although the DT algorithm reports AODs in multi-
ple wavelengths depending on individual sensors’ avail-
able channels (Table 2), we focus on AOD at 0.55 µm
in this analysis. Quality flags (QF= 0, 1, 2, 3) are pro-
duced with each retrieval, where 0 is marginal, 1 is good,
2 is moderate, and 3 is for the best-quality (highest confi-
dence) data. We used each sensor’s variable named “Opti-
cal_Depth_Land_And_Ocean”, which represents the science
team’s recommended method for data filtering of QA= 2 and
3 over land and QA= 1, 2, and 3 over the ocean. Specifically,
scientific datasets (SDSs) in Table 1 from the Level 2 aerosol
products from all six sensors are used in this study.

Table 2 provides details on each sensor, including chan-
nels, resolution, data version, and file specifications used in
the current analysis. It is important to note that each sensor
stores the Level 2 aerosol datasets in files covering differ-
ent time windows. MODIS’s L2 DT aerosol datasets come in
5 min files (known as granules) and VIIRS is in 6 min gran-
ules, whereas all three GEO sensors are in 10 min files that
represent full-disk (FD) observations. The coverage of data
reported in each file from the six sensors also varies. Figure 1
demonstrates an example of spatial coverage from the indi-
vidual sensors on 7 September 2019. The map is produced
by plotting every fifth pixel from MODIS, every 10th from
VIIRS, and every third from GEO for better visuals of cov-
erage from an individual sensor. In this figure, coverage by
the GEO sensor for 10 min is shown, where one single orbit
(about 90–100 min) from the LEO sensor is shown. The two
ABIs cover the western hemisphere with some overlap such
that ABI-G16 has more coverage over the Atlantic Ocean,
whereas ABI-G17 extends its coverage west into to the Pa-
cific Ocean. The AHI full disk mostly covers the Asia Pa-
cific region with some overlap with ABI west in the Pacific
Ocean. The central time of observations from various sensors
corresponds to 12:00 UTC, which conveniently has Aqua and
SNPP filling in over Africa. A few hours earlier or later, the
LEO sensors would overlap with the GEO, and Africa would
have no observations.

3.2 AERONET data

The Aerosol Robotics NETwork (AERONET) is NASA’s
global ground network of Cimel sun photometers that mea-
sure directly transmitted solar light during daylight hours
(Holben et al., 1998; Giles et al., 2019). The direct-sun spec-
tral measurements are used to derive aerosol optical depth
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Table 1. Level 2 aerosols scientific datasets used in the study.

Geolocation/geophysical parameters Description

Latitude Latitude of the center of Level 2 pixel
Longitude Latitude of the center of Level 2 pixel
Sensor_Zenith Satellite/sensor viewing angle
Solar_Zenith Solar zenith angle
Scattering angle Scattering angle
Optical_Depth_Land_And_Ocean AOD at 550 nm over land and ocean with recommended high-quality flags only

Table 2. Satellite and/or sensor used in this study and their spectral bands, resolution, coverage, data version, and other characteristics. The
wavelength and resolution are in micrometers (µm) and kilometers, respectively. The “–” represents a missing band in a particular sensor.

Characteristics MODIS-T MODIS-A VIIRS-SNPP ABI-G16 ABI-G17 AHI-H08

Blue 0.47/0.50 0.47/0.50 0.49/0.75 0.47/1.0 0.47/1.0 0.47/1.0

Green 0.55/0.50 0.55/0.50 0.55/0.75 – – 0.51/1.0

Red 0.65/0.25 0.65/0.25 0.67/0.75 0.64/0.5 0.64/0.5 0.64/0.5

NIR 0.86/0.25 0.86/0.25 0.86/0.75 0.86/1.0 0.86/1.0 0.86/1.0

SWIR 1.24/0.50 1.24/0.50 1.24/0.75 – – –

Cirrus 1.38/0.50 1.38/0.50 1.38/0.75 1.37/2.0 1.37/2.0 –

SWIR 1.64/0.50 1.64/0.50 1.61/0.75 1.60/1.0 1.60/1.0 1.61/2.0

SWIR 2.11/0.50 2.11/0.50 2.25/0.75 2.26/2.0 2.26/2.0 2.25/2.0

Level 2 data resolution 10 km 10 km 6 km 10 km 10 km 10 km

Land–sea mask resolution 1 km 1 km 750 m 0.01° 0.01° 0.01°

Level 2 file length (min) 5 5 6 10 10 10

Coverage Global Global Global Americas–Atlantic Americas–Pacific Asia Pacific

Equatorial overpass time 10:30 LT 01:30 LT 01:30 LT – – –

Operational data version C6.1 C6.1 V2.0 Beta (V0) Beta (V0) Beta (V0)

Product name MOD04_L2 MYD04_L2 AERDT_L2_ AERDT_L2_ AERDT_L2_ AERDT_L2_
VIIRS_SNPP ABI_G16 ABI_G17 AHI_H08

at various wavelengths (340–1020 nm). The typical tempo-
ral resolution of AERONET is about every 15 min but varies
with sun angles. Here we used Version 3.0, Level 2.0 (cloud-
screened and quality-assured) AOD data. The Ångström ex-
ponent is used to interpolate AERONET AODs at 500 and
675 nm to match the satellite AODs at 550 nm. The uncer-
tainty in AERONET AOD is of the order of 0.01–0.02. There
are 387 global AERONET stations collocated with satellite
retrievals. The number of AERONET stations varies with in-
dividual satellites and/or sensors due to regional vs. global
coverage from LEO and GEO sensors.

3.3 Level 2 data gridding and integration

The primary goal of this study is to integrate the highest-
quality AODs retrieved using the DT algorithm from six sen-

sors on a unified high-resolution grid by using every 30 min
of observations. The output is a global gridded aerosol
dataset with spatiotemporal resolutions of a quarter degree
(0.25°× 0.25°) and 30 min. We are not trying to retrieve
AODs using combined spectral radiances (Level 1 data)
from six sensors. Instead we are combining already retrieved
AODs (Level 2 data) from each sensor into a gridded dataset
(Level 3).

The AODs from individual sensors are first gridded us-
ing the method developed for MODIS high-resolution grid-
ded datasets (Gupta et al., 2020). In this method, we start
with Level 2 satellite data files (MYD04, MOD04, etc.; Ta-
ble 2) and first group them into the desired temporal resolu-
tion window (i.e., 30 min in this study; HH:00:00–HH:29:59
or HH:30:00–HH:59:59). In this way, the number of files
that fall in the 30 min window will vary from three for GEO
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Figure 1. An example of spatial coverage by six sensors used in the study using Level 2 data. The data from 7 September 2019, for varying
time periods from each sensor, are plotted. The map only represents every 5th pixel from two MODIS, every 10th pixel from VIIRS, and
every 3rd pixel from GEO sensors. The pixel omission is done to ensure visibility of each sensor’s coverage on the map. We choose to show
one orbit of LEO sensors and one full-disk image of GEO sensors. The purpose of the map is schematic to show relative spatial coverage by
each sensor.

sensors to five for VIIRS and six for MODIS. The result-
ing 30 min files will also have different spatial coverage for
LEO sensors, but the coverage will remain fixed for GEO
sensors. It is important to note that the GEO sensors’ aerosol
dataset coverage will vary even though the field of view re-
mains fixed because portions of the full disk will be in night
and that dark portion advances diurnally. Similarly, the LEO
sensors’ aerosol retrieval coverage may also vary depending
on whether they are observing the daytime or nighttime node
of their orbits.

For a given sensor aggregated over the 30 min, we com-
pute statistics for each of the Level 2 variables denoted in
Table 1 on our global 0.25°× 0.25° grid (or quarter-degree
grid or QDG). The grids are identified by the latitude and
longitude of the center of the grid cell. The gridding uses a
box averaging method (Gupta et al., 2020) which accounts
for the approximate size of the retrieval pixel (see Caveat 1 –
below). The result, for each variable, includes the minimum,
maximum, arithmetic average, standard deviation, and num-
ber of Level 2 pixels for each QDG. In this way, we store
gridded AOD and solar and viewing angle statistics at each
time stamp for any of the six sensors that have data in the
0.25°× 0.25° grid square. The process is applied across the
global grid. Thus, a grid square at a particular time stamp
may hold competing AOD statistics from zero, one, two,
three, or, in highly unlikely events, four different sensors.

For a given time stamp and grid square, AODs from avail-
able sensors are then used to derive a merged AOD. Merged
AOD statistics include the simple mean (representing one

or more sensors), the standard deviation, and the number of
sensors available for the QDG. There are no weighting func-
tions (see Caveat 2). Thus, the final output file from this grid-
ding process contains gridded AOD statistics from the AODs
of individual sensors plus merged AOD statistics calculated
from the individual sensors for 30 min time windows glob-
ally. This way, we generate 48 files per day containing QDG
global AOD datasets. Note that some variables (e.g., solar
zenith angle) are relatively constant throughout the 30 min
and are sensor-independent.

Caveat 1. A caveat of this simple gridding technique is re-
lated to the varying retrieval box sizes (pixels) of the different
Level 2 products from the different sensors. Figure 2 shows
examples of changes in pixel area as a function of satellite
viewing zenith angles for MODIS (top), VIIRS (middle), and
ABIs and AHI (bottom). The pixel area is calculated while
considering Earth’s sphericity and for the data presented in
Fig. 1. The actual change in the pixel area from nadir to
the edge of the swath will vary as a function of latitude. As
demonstrated in the figure, the pixel growth rate for GEO
sensors (ABI and AHI) is much higher (by a factor of 2–20)
than for LEO sensors (by a factor of 2–5). It is important to
note that VIIRS has onboard pixel aggregation (Gladkova et
al., 2016), which mitigates pixel growth at the edge of the
scan so that VIIRS pixels grow less than MODIS pixels at
higher viewing angles. The consequence to the mitigation is
the odd plot for VIIRS in Fig. 2, where three distinct regions
are seen across the VIIRS swath, each following a different
growth rate. MODIS and all GEO sensors do not have on-
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board aggregation to correct for bow-tie distortion (Sayer et
al., 2015). Therefore, we are dealing with varying pixel sizes
for each sensor with the added complexity of bow-tie dis-
tortion affecting each sensor differently. For this reason, a
simple box averaging gridding process in which all the pix-
els with center latitude–longitude falling within the grid box
are averaged can create artificial data gaps in the gridded data
product compared to Level 2 swath data. Therefore, we use a
spatial filling method (Gupta et al., 2020) by calculating pixel
size as a function of viewing angle and filling all the empty
grids within the satellite’s original pixel with the same value.
This additional step brings the spatial coverage of gridded
data to that of Level 2 datasets.

Caveat 2. A second caveat is that in this implementa-
tion, there is no optimized weighting – in that there is no
preference for using gridded AOD retrieved from one sen-
sor over another. Whether there is one sensor, two, three,
or more observing within a 0.25° grid or a 30 m time win-
dow, all individual sensor AODs are given the same weight-
ing in the merge. A future version of this aggregation may
include weights, with the weighting function based on val-
idation (compared to AERONET), expected error based on
uncertainty analysis, and/or another to-be-determined func-
tion.

4 Results and discussion

The gridded AODs from six sensors plus the merged AODs
are processed and stored in 30 min global files following the
method described in Sect. 2. Figure 3 demonstrates an exam-
ple of spatial coverage by each sensor and merged AOD for
30 min gridded AOD data for 26 March 2020 at 23:45 UTC
(23:00–23:59 UTC). The top row shows three AOD maps for
three GEO sensors, whereas the bottom row is for three LEO
sensors. The light gray color on the map shows nighttime
(SZA > 90) during the time of observation. The GEO sen-
sors provide full-disk coverage every 10 min; thus, the 30 min
AOD maps show an average of the three 10 min full-disk
AOD retrievals. The circular data gap over the ocean is due
to sun glint restriction (40° from specular angle) on AOD
retrievals. The 30 min coverage from LEO sensors (Fig. 3,
bottom row) covers only about 1/3 of a satellite orbit, and
the vertical data gaps in the middle of the satellite swath (or-
bit) are due to sun glint restrictions. The middle panel shows
the merged AODs from all the sensors. The merged AOD
maps clearly show that the AOD retrieved from six sensors
is smoothly fused, and qualitatively there is no visible dis-
continuity in the spatial pattern from one sensor to another.
The big circular holes in individual GEO sensors from sun
glint are partially filled with another GEO sensor or an LEO
sensor. Similarly, the glint shields in individual LEO sensors
are also partially filled in by other sensors. In this example,
none of the individual sensors provide complete AOD cover-
age of the daylight portion of the Earth, but the fused dataset

attempts to achieve that target limited by cloud and/or snow
cover. The central map clearly demonstrates the first goal of
this dataset of providing aerosol observations for nearly com-
plete coverage of the daylight portion of the Earth. We will
further evaluate the observed differences in AODs among
sensors and with AERONET below.

We process 1 year of data products into a gridded dataset
and then use this dataset for further analysis, including inter-
satellite comparisons, validation against AERONET, spa-
tiotemporal data availability, LEO–GEO comparisons, and
evaluation of the diurnal cycle at the regional and global
scale.

4.1 Inter-sensor and satellite comparisons

We use the 1-year, half-hourly (HH), 0.25°× 0.25° quarter-
degree (QD), gridded global data from three LEO and three
GEO sensors to first intercompare the AODs from the indi-
vidual sensors with each other. Figure 4 presents the den-
sity scatter plots comparing AODs from LEO and GEO sen-
sors. The top row corresponds to AOD comparisons from
MODIS-T with three GEOs. Similarly, the middle row is for
MODIS-A, and the bottom row is for VIIRS-SNPP. We have
selected AOD data for the first day of each month to man-
age the data volume for these intercomparisons. Based on
a small sample of comparisons with sun photometers across
different sensors, AOD uncertainty for the DT algorithm (ap-
plied to MODIS) varies for land (±0.05± 15 %AOD) and
ocean (±0.03± 10 %AOD), although actual numbers can
vary by sensor due to differences in sensor characteristics
and calibrations (Levy et al., 2010; Gupta et al., 2018, 2019).
In Fig. 4 we draw dotted lines to represent the ±(0.05+
15%AOD) uncertainty envelope, which may best represent
land retrievals while being generous to ocean retrievals. It
is important to note that the aerosol regimes observed by
the three GEOs are different. The ABIs cover the western
hemisphere with relatively moderate AOD values (∼ 0.1 to
0.5), whereas AHI covers Asia with high AODs (0.5 to 1.0).
Meanwhile, ABI-G16 covers the generally wetter and darker
eastern North and South America, while ABI-G17 covers
mostly ocean and the drier and brighter western North Amer-
ica. The significant differences in surface type within any re-
gional boundaries will affect the accuracy of the retrievals.

Another way to compare sensor AOD is to look at regional
mean values. If we consider each GEO-defined disk as a re-
gion, we can compare the mean AOD reported in the GEO-
defined region for each individual sensor. The regional mean
technique combines differences resulting from collocated re-
trievals (captured in Fig. 4) and differences due to sampling
by each individual sensor. For plotting purposes we normal-
ize the AODs of each individual sensor in each grid box by
the values of the merged AOD in that grid box and then cal-
culate the daily regional mean normalized AOD within the
GEO region. Figure 5 shows the time series of daily, regional,
mean AOD normalized by the merged AODs for each GEO
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Figure 2. Pixel area (km2) of Level 2 data as a function of sensor viewing geometry for all six sensors. The corresponding maps (Fig. 1)
show the locations of the individual swath. The actual pixel area for LEO and GEO sensors is expected to vary in different parts of the world
as a function of latitude. The figure uses the same data as visualized in Fig. 1.

region. The normalized values closest to 1 indicate the pri-
mary contribution to merged regional mean AOD. Figure 5
shows that the GEO sensors in their respective region are
the primary contributors to the merged AOD regional mean
and datasets. The LEO sensors’ deviation from the value of 1
is primarily due to the relatively poor spatial–temporal sam-
pling of the these sensors within the specific GEO region.
Note that only LEO sensors are plotted in Fig. 5 for sim-
plicity, although some overlap between GEO sensors exists.
For the regional mean, MODIS-T is consistently higher than
MODIS-A, with VIIRS-SNP in between. The differences
among MODIS-T, MODIS-A, and VIIRS-SNP are consis-
tent with previous studies (Levy et al., 2018; Lyapustin et al.,
2023; Schutgens et al., 2020; Sogacheva et al., 2020); they
represent retrieval differences, mainly due to calibration that
would be found in collocated comparisons, and are not pri-
marily due to sampling.

4.2 Spatial and temporal coverage

Figure 6 shows spatial coverage of the merged AOD prod-
uct for each 30 min gridded data file for a single UTC day,
26 March 2020 (Julian day 86). The individual map shows
the daylight portion of the Earth for a given UTC time with
color-coded available AOD values mapped. In parts of the
world with GEO sensors (Americas, East Asia), aerosol ob-
servations are available throughout the day under the cloud-
free sky. The AOD data the from LEO sensors fill in some
data gaps in these regions. The regions, including Africa, Eu-
rope, and part of Asia, have limited coverage provided by the
LEO sensors alone. The high values of AOD over the Indian
Ocean and Pacific are mainly due to pollution and smoke out-
flow from the continent. Southeast Asia also shows very high
AODs associated with the active fire season.

These 30 min files are then aggregated to calculate daily
mean AODs for each grid and saved as a daily (UTC day)
global file. Daily means are simple averages of all available
30 min AODs for a given grid cell for a given day, and no
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Figure 3. Example of 30 min aerosol optical depth data coverage by each sensor and merged datasets on 26 March 2020 at 23:45 UTC.

additional data filtering is applied. In addition to the aver-
age AOD value, other statistics include the number of 30 min
AOD values for the day, standard deviation, median, mini-
mum, and maximum for each grid. The statistics can help
further quality-control the data suitable to address specific re-
search and/or application needs. Figure 7 shows an example
of daily global coverage for 26 March 2020 from six indi-
vidual sensors and merged datasets. Like 30 min data, daily
AODs from GEO sensors have more complete regional cov-
erage due to high measurement frequency. However, LEO
provides global coverage with data gaps due to less frequent
(one to a few depending on latitude) measurements; addi-
tional data gaps come from clouds, snow or ice surfaces, very
bright surfaces, sun glint over the ocean, and other DT re-
trieval limitations. The merged map (Fig. 7) shows the daily
mean AOD values for the global region with significant im-
provements in spatial coverage compared to any individual
sensor.

We further quantify the spatiotemporal AOD data avail-
ability in the merged datasets and compare them with in-
dividual sensors. Figure 8 (top panel) shows a map of the
average number of hours (per day) for which merged AOD
data are available during the 1-year study period. The av-
erage hours are calculated for each quarter-degree grid cell
using merged datasets. The map is clearly divided into low-
temporal-coverage areas observed only by LEO sensors (i.e.,

Africa and Europe) and high-temporal-coverage areas ob-
served by both LEO and GEO sensors (i.e., Americas, Asia).
For regions only covered by LEO sensors, AOD datasets are
available only between 1 and 3 h d−1. The areas with GEO
sensor coverage have 5.6± 0.25, 5.6± 0.23, and 5.0± 0.28
average (±1 standard deviation) hours per day for ABI-G16,
ABI-G17, and AHI-H08, respectively. Data availability is
highest for regions of GEO sensor overlap (i.e., part of the
Atlantic Ocean, western USA, and the Pacific Ocean). The
regional variability in AOD data availability also depends
on cloud and/or snow cover, length of daylight hours, and
DT AOD retrieval limitations. For example, the white areas
over the Saharan desert and Greenland are due to the DT al-
gorithm not retrieving AODs over highly reflective surfaces
(for any sensor). Another region with low data availability
is around the Intertropical Convergence Zone (ITCZ), where
there is consistent cloud cover throughout the year.

Figure 8 (bottom panel) shows the day-to-day variability
of the available number of grids (%) for daily mean AOD
datasets for six sensors and the merged product. The percent-
age of grids (y axis) is calculated for each day and each sen-
sor by dividing available grids with valid AOD data by the
total possible quarter-degree grids covering the entire globe.
The numbers next to sensor names in the figure legend are
mean percentage grids for which AOD data are available on
any given day. The GEO sensors (i.e., ABIs, AHI) provide
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Figure 4. The intercomparison of AOD (550 nm) from three LEO and three GEO sensors. The QD gridded AOD data from LEO and GEO
sensors for 1 d of each month of the year are selected and used to intercompare coincident LEO and GEO AOD retrievals.

about 13 %–14 % daily spatial coverage at quarter-degree
resolution as their observations are limited to a specific re-
gion. These numbers are about 17 %–18 % for two MODIS
sensors and 25 % for VIIRS-SNPP due to its larger swath
width and higher spatial resolution compared to MODIS.
The advantage of merging six LEO and GEO sensors for the
global AOD dataset is evident in the percentage (44 %) for
the merged AOD dataset. Thus, it is safe to say that com-
bining AODs from six sensors at quarter-degree resolution
can provide AOD datasets covering half of the globe, which
is otherwise restricted to one-fourth or less from any individ-
ual sensor. Another interesting trend in the data availability is
the seasonal cycle; in general, LEO sensors show peak cover-
age in the northern summer months (July–August) when the
broad northern land mass is snow-free, whereas GEO sen-
sors provide almost the same spatial coverage with very little
month-to-month variability as they are more tropically biased
and are mostly missing the Eurasian land mass. The merged

AOD dataset’s daily coverage varies between 40 % and 50 %,
with a minimum in December and a maximum in August.

The daily mean AODs for individual sensors and merged
products are then averaged over a month to calculate monthly
AOD statistics for each quarter-degree grid cell. Figure 9
shows an example of monthly mean AOD maps for March
2020 for each sensor and merged product. The maps from
each GEO sensor show their respective regional coverage,
and the LEO sensor provides global coverage. The six sen-
sors and merged products qualitatively represent the spatial
distribution of aerosols consistently on a monthly scale. The
merged product does have some discontinuities in transition
regions. For example, AHI coverage is limited to half of In-
dia, and a clear line is visible in AOD maps separating AHI
AODs from those obtained by merging AODs from LEO sen-
sors. A similar arc is visible over the Atlantic Ocean, show-
ing boundaries of ABI-G16 coverage. These sensor transi-
tion regions have differences in AODs and may need fur-
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Figure 5. The ratio of regional daily mean AOD for each sensor and coincident merged AODs. The three panels show data time series from
three GEO regions. The black line is the ratio of GEO AODs to merged AODs, whereas red, blue, and green represent the ratio of MODIS-T,
MODIS-A, and VIIRS-SNPP to merged AODs, respectively.

ther quantification if research and applications using merged
AOD datasets are very sensitive to minor errors. The transi-
tion and overlap areas among GEO sensors are not apparent
in monthly maps, and spatial distributions are homogeneous
across sensors.

4.3 Validation against AERONET

The quarter-degree gridded AOD data from all six sensors
and merged products are compared against measurements
from AERONET. The spatiotemporal collocation of satel-
lite AODs with AERONET over global locations is per-

formed using standard validation practices (Ichoku et al.,
2002; Gupta et al., 2018; Wei et al., 2020). We followed
the method detailed by Gupta et al. (2020). In brief, we lo-
cate the 0.25° grid box that contains the AERONET station
and match the satellite-derived AOD for that grid box to the
temporal average of all AERONET-measured AOD within
±15 min of satellite overpass time. This is done for each diur-
nal time step in the satellite database. Thus, we are matching
one gridded satellite AOD to the average of one, two, or three
AERONET measurements time step by time step. The collo-
cated data are then used to perform intercomparison analysis.
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Figure 6. Example of 30 min coverage of merged aerosol data for 1 entire day (26 March 2020, UTC). Each panel shows the daylight portion
of Earth at a specific time (UTC) and available AOD retrieval from the six-sensor merged product.

Figure 10 shows the intercomparison of satellite and
AERONET AOD for the 1-year period over global locations,
and Table 3 gives the standard statistical parameters such as
correlation coefficient (r), root mean square error (RMSE),
mean bias (Bias), slope, intercept, and DT error envelope

(EE=±(0.05+15%×AOD)). In Fig. 10, the top three den-
sity scatter plots are for LEO sensors, the bottom three are
for GEO, and the central one is for the merged product. Ta-
ble 3 shows that the AODs from three LEO sensors each
have a high correlation with AERONET (R= 0.83–0.88),
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Figure 7. Daily average aerosol optical depth (550 nm) on 26 March 2020, retrieved by six LEO and GEO sensors, as well as the merged
quarter-degree product. The daily averages (daytime) are calculated using 48 of the 30 min quarter-degree gridded files.

whereas AODs from the GEO sensors have lower correla-
tion (R= 0.66–0.82). For G17 the correlation is notably low
(R= 0.655), but the correlation there is strongly influenced
by a few outliers with high AOD. The DT algorithm has
a multi-decadal history with the LEO sensors, allowing for
the optimizing of the algorithm for LEO conditions. Apply-
ing the DT algorithm to the GEO sensors is still a work in
progress, as the algorithm is facing the double challenge of
previously unexplored retrieval geometry (Kim et al., 2024)
and bootstrapped calibration updates with no reprocessing
to date. Thus, the AOD retrieved from the LEO instruments
more accurately represents AERONET values than the GEO
products. For the LEO sensors, MODIS-A and MODIS-T
have similar RMSE, regression slope, and EE%, but with an
additional 0.01 bias for MODIS-T as expected (Levy et al.,

2018). Also, as expected VIIRS-SNPP shows a larger bias
with slightly increased RMSE and reduced EE% (Sawyer et
al., 2020). The LEO sensor’s validation statistics are consis-
tent with those performed using Level 2 aerosol products
(Sawyer et al., 2020; Wei et al., 2020; Levy et al., 2018;
Gupta et al., 2020). Among GEO sensors, AHI has the largest
mean bias (0.085) and RMSE (0.239), with the lowest EE
value of 56.03 %. The overestimation by AHI is also clearly
visible in the density scatter plot. The results for AHI are
consistent with our earlier study (Gupta et al., 2019), where
we used 2 months (May–June 2016) of AHI data during
the KORUS-AQ field campaign to validate AHI AODs with
AERONET. In Gupta et al. (2019), we reported the mean bias
(0.09), RMSE (0.20), EE% (55 %), and R (0.84) for AHI.
The MODIS validation during the same period in the re-
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Figure 8. Spatial and temporal AOD data availability for April 2019
to March 2020 using merged datasets. The top map (a) is the mean
number of hours in a year for each grid. Panel (b) is the number of
quarter-degree grids (%) where daily average AOD data are avail-
able from six sensors and in the merged dataset.

gion with AHI coverage also demonstrates similar validation
statistics (Gupta et al., 2019). The current DT algorithm faces
challenges in the Asian region due to complex and varying
surfaces, as well as highly varying aerosol chemical compo-
sition. The point is that validation for GEO sensors combines
sensor- and regional-specific uncertainties in the DT algo-
rithm.

Because the merged product is dominated by the GEO re-
trievals (Fig. 5) and GEO retrievals represent 75 % of the
AERONET collocations, we expect validation statistics to re-
semble those of the GEO instruments, especially ABI-G16
that by itself contributes more than 50 % of the collocations.
The merged AOD has a correlation (r) of 0.83, mean positive
bias of 0.051 with a slope value of 1.1, and an EE value of
65.45 %, mainly driven by the GEO retrievals.

Figure 11 presents the spatial distribution of the correla-
tion coefficient (panel a), EE% (panel c), mean bias (panel b),
and RMSE (panel d) calculated from the merged–AERONET
collocation datasets at individual AERONET stations. The
regional distribution of validation results can be critical for
local and region-specific data applications. It is also impor-

tant to note that atmospheric aerosols, including their types
and sources, are highly variable in space and time. In ad-
dition, DT AODs have shown variability in uncertainties in
different parts of the world due to changes in surface re-
flectance, topography, and varying aerosol properties. The
correlation varies between 0.33 and 0.98, with 60 % of sta-
tions showing a value greater than 0.8. Only about 5 % of
stations have a correlation value of 0.5 or smaller (black dots
in Fig. 11a). The low value of correlation is typically visible
in the western US, parts of South America, and some iso-
lated stations in Asia. These results are consistent with pre-
vious validation studies (Levy et al., 2018; Wei et al., 2020;
Gupta et al., 2019; Sawyer et al., 2020). There is a string
of stations that begin in the Indo-Gangetic Plain and extend
southeastward to Southeast Asia. These stations show overall
poor validation statistics, which drive the poor performance
of AHI in Table 2. In general, the EE% is greater than 80 %
for 29 % of stations, and 58 % of stations have a value greater
than 67 %.

Figure 12 shows the global and seasonal mean diurnal
cycle of AODs from AERONET and the merged product.
The collocated datasets were used for diurnal cycle analy-
sis. AODs from all the AERONET stations for each hour (in
local solar time or LST) and for the season are averaged to
generate these plots. We choose to use LST instead of UTC
time to understand the patterns in AODs from morning to
evening hours globally while keeping solar geometry simi-
lar. The AERONET AOD patterns are very similar in all sea-
sons, with the peak around local noon and lower values in the
morning and evening hours. These patterns in AERONET
AODs are more prominent in northern hemispheric spring
(AMJ) and summer (JAS), where the magnitude of the diur-
nal signature increases by 50 % and 15 %, respectively, from
morning to midday. The AERONET diurnal AOD signatures
are flatter in fall (OND) and winter (JFM). In all four sea-
sons, merged AODs show positive bias against AERONET
AODs, as expected from the scatter plots in Fig. 10. How-
ever, despite the bias, the merged satellite AODs follow the
AERONET diurnal trend throughout the day except during
early morning and late afternoon hours. The mismatch dur-
ing those hours can be related to sampling inconsistency de-
pending on AERONET station locations. It is important to
note that the number of AOD samples used to get the mean
AOD for each 30 min interval varies significantly (secondary
y axis). The sampling is highest around local noon and sig-
nificantly lower at the beginning and end of the day. Thus,
we calculate the mean bias for each season while consider-
ing hours with only significant sampling (at least 1000 pairs;
white dotted points in Fig. 12). The mean bias varies between
0.03 and 0.06, with the highest value in spring (AMJ) and
summer (JAS) and the lowest in fall and winter.

The new merged data not only allow examination of global
mean diurnal patterns but also provide an opportunity to an-
alyze diurnal cycles at specific locations and regions. There-
fore, we have included selected examples of diurnal cycles
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Figure 9. Monthly average aerosol optical depth (550 nm) for March 2020, retrieved by six LEO and GEO sensors, as well as the merged
quarter-degree product. The monthly averages (daytime) are calculated using daily average AOD values (shown in Fig. 7) from quarter-degree
gridded files.

from individual AERONET stations. Figure 13 shows data
from the Cape Fuguei AERONET station in Taiwan. The site
is located on a peninsula so that the DT AODs in this QDB
are dominated by over-ocean retrievals. This example illus-
trates a case where the merged and AERONET AODs ex-
hibit excellent correlation, with significant trends observed
in three out of four seasons. Note the differing AOD scales
in each panel, which highlight the diurnal variability across
seasons. During April–May–June, AODs range from 0.1 in

the morning to 0.6 in the late afternoon, whereas October–
November–December show relatively flat behavior.

Figure 14 presents specific seasonal examples from Vi-
enna (OND), Mexico City (AMJ), Dibrugarh University in
India (OND), and EPA-NCU on the east coast of the United
States (AMJ). Vienna is notable as it demonstrates the capa-
bility of LEO sensors alone to capture limited diurnal cy-
cles, as it is a site not covered by any GEO sensor used
in this study. Despite limited sampling (0–5 matches per
hour), LEO sensors closely track AERONET AODs with a
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Figure 10. Validation of quarter-degree grid (QDG) AODs from six sensors and merged datasets with AERONET measurements across the
globe. The spatial match is done by picking the nearest QDG to the AERONET location, and AERONET AODs are temporally averaged
for ±15 min around the satellite time. (a–c) MODIS-T, MODIS-A, and VIIRS-SNPP. (d) Merged product. (e–g) ABI-G16, ABI-G17, and
AHI-H08.

Table 3. Summary statistics of satellite–AERONET comparison for the global region.

Sensor–satellite Number of pairs EE% Bias RMSE R Slope Intercept

MODIS-T 17 208 68.00 0.020 0.116 0.873 0.96 0.020
MODIS-A 15 359 70.76 0.011 0.110 0.876 0.99 0.004
VIIRS-SNPP 32 931 62.38 0.050 0.149 0.825 1.09 0.019
ABI-G16 141 351 66.00 0.048 0.108 0.791 1.12 0.021
ABI-G17 79 079 72.29 0.031 0.081 0.655 0.92 0.023
AHI-H08 61 630 56.03 0.085 0.239 0.819 1.13 0.022
Merged 272 725 65.45 0.051 0.147 0.833 1.10 0.020
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Figure 11. Summary statistics of satellite–AERONET comparison for individual stations across the globe. The panels show the correlation
coefficient (a), mean bias (b), (c) EE%, and (d) RMSE.

slight negative bias. Mexico City previously stood out as an
AERONET station with a strong diurnal signature in previ-
ous studies (Zhang et al., 2012). Here we also see high diur-
nal variability at Mexico City, with AOD ranging from 0.2 in
the morning to 0.5 in the late afternoon; merged DT AODs
generally track AERONET readings but with some biases
observed. Dibrugarh station exhibits less variability, yet the
two datasets closely correspond. We note Dibrugarh’s loca-
tion at the edge of the AHI disk, but the retrieved product is
still able to match AERONET. At the EPA-NCU AERONET
site, merged data are predominantly influenced by ABI-G16
and show a significant positive bias compared to AERONET
readings.

The merged datasets demonstrate the capability to cap-
ture diurnal cycles with known caveats and limitations. The
diurnal cycle at each AERONET site has a unique feature
and depends on many factors, including aerosol sources, me-
teorological conditions, AOD uncertainties, and sampling
from both satellite and AERONET. These examples have
been handpicked for various reasons including land or ocean
domination, previous history of diurnal cycle, lack of GEO

sensor, and variability in diurnal signatures. Many but not
all collocated retrievals match AERONET as well. We pro-
vide diurnal cycles (the same as Fig. 13) for 157 selected
AERONET sites in the Supplement.

5 Summary and conclusion

For 2 decades, LEO sensors (MODIS on Aqua, MODIS on
Terra, and VIIRS on Suomi-NPP) have been a source of
high-quality aerosol observations with moderate spatial res-
olution from space. More recently, GEO sensors have been
making similar observations with the launch of the AHI in
2014 aboard Himawari-8 and then continued by Himawari-
9, GOES-16, GOES-17, and, more recently, GOES-18. The
LEO sensors (i.e., MODIS, VIIRS) can provide one to two
measurements per day across the globe, but GEO sensors
provide high-frequency (∼ 10 min) data for full-disk imagery
over a particular region.

In this study, we implemented the well-known Dark Target
aerosol retrieval algorithm on three LEO and three GEO sen-
sors and processed 1 year of Level 2 aerosol products from
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Figure 12. Global diurnal cycle in local solar time as a function of
season. The open circle shows hours with a minimum of 1000 sam-
ples to average. The number of samples used to get the average for
every 30 min of data is shown on the secondary y axis. The solid cir-
cles in the morning and evening hours represent lower sampling and
demonstrate more variability. Each panel represents seasons. AMJ:
April–May–June, JAS: July–August–September, OND: October–
Number–December, JFM: January–February–March. These are a
bit different than most meteorological seasonal definitions.

all sensors. The Level 2 aerosol optical depth at 550 nm from
each sensor was then gridded into a quarter-degree grid for
every 30 min of observations. The gridded individual sen-
sors’ AODs were then merged by averaging available AODs
in each quarter-degree grid cell for a given 30 min time win-
dow. This way, we have created a gridded AOD product with
spatial and temporal resolutions of a quarter degree and half
an hour, respectively. The final gridded AODs from indi-
vidual sensors and merged datasets are saved into a 30 min
global file, thus making 48 files per day. The 30 min files
were then used to estimate the daily mean AODs, and daily
AODs were used to calculate monthly mean AOD datasets.
This is the first moderate-resolution gridded AOD dataset
merged from six separate sensors available globally at a tem-
poral resolution that can discern diurnal signatures.

Figure 13. Same as Fig. 12 but for the Cape Fuguei AERONET
station in Taiwan. The vertical bar represents 1 standard deviation
in AOD at 550 nm.

The gridded datasets from individual sensors have been
compared against each other and validated against ground
measurements over global locations, and errors are charac-
terized. The merged product has a global mean bias of about
+0.05, with 65 % of retrievals falling within±(0.05+15%×
AOD) and the majority of retrievals on the positive-biased
side of the stated error bars.

The merge provides excellent global coverage with a high
frequency of AOD measurements in the regions covered by
GEO sensors (Americas and Asia). There are temporal data
gaps in regions with no equivalent GEO sensors (i.e., Eu-
rope and Africa). The LEO sensors fill in some of the spa-
tial data gaps in the GEO sensor’s field of view due to cloud
or retrieval limitations such as viewing angles and sun glint.
The merged product provides almost 45 % global coverage
on any given day, which is a significant improvement from
the 12 %–30 % expected from any individual sensor used in
this study.

Such merged gridded data can assist in tracking the aerosol
transport resulting from wildfires and dust storms, allowing
for better air quality forecasting and hindcasting. The high
spatiotemporal resolution of new AOD datasets will help
evaluate and intercompare regional or global model simula-
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Figure 14. Same as Fig. 12 but for four selected AERONET stations
in different seasons. The vertical bar represents 1 standard deviation
in AOD at 550 nm.

tions and reanalysis products in ways previously unattainable
in a gridded format.

The merged product is able to approximate the diurnal cy-
cle of AERONET AODs, although with a positive bias. We
note an unexpected strong diurnal signature from the global
composite of AERONET AOD during northern spring. In
this global composite mean AERONET AOD begins the
morning with a value of 0.12 and reaches midday with a
value of 0.19, which drops back down to 0.12 at sunset. That
is a diurnal signal of 50 %. Previous studies using AERONET
to determine the diurnal signal for AOD find diurnal signa-
tures of that magnitude for individual sites or groups of simi-
lar sites, but when aggregated into larger composites of mul-
tiple disconnected stations those signatures flatten (Kaufman
et al., 2000, 2005c; Smirnov et al., 2002; Zhang et al., 2012;
Arola et al., 2013).

The Level 2 and merged Level 3 data presented in this
study are prototypes of products proposed in response to
NASA’s Making Earth System Data Records for Use in Re-
search Environments (MEaSUREs) program. The intention
was to use a version of retrieval code, known as the Dark
Target Package (DT-Package), that further homogenizes the
Level 2 retrievals from the three LEO and three GEO sensors

and leads to improved consistency. This effort has generated
a “Version 1.0” product, which covers the years 2019–2022
and is now archived at NASA’s LAADS DAAC. For AOD re-
trievals, the differences between the MODIS (C6.1), VIIRS
(V1.1), and GEO retrievals (V0) used in this study are small;
however, these archived products have improved diagnostic
and quality flags as well as file structures and metadata. The
MEaSUREs Level 3 products are not yet available but will
also have differences, primarily in their diagnostics as well
as file structure and metadata. We expect that the complete
delivery of the GEO–LEO dataset will still be impacted by
most of the same offsets and biases (compared to each other,
and compared to AERONET) as presented here.

The intended MEaSUREs Level 3 products will also
include some updates to both file usability and content.
In addition to the best-quality AOD (the filtered Opti-
cal_Depth_Land_And_Ocean) at 550 nm, these Level 3 data
will also include statistics-based all-quality AOD data (non-
filtered Image_Optical_Depth_Land_And_Ocean). Thus a
user will be able to consider an ensemble approach to esti-
mating AOD. In addition, we will also provide QDG sun-
satellite geometries for each sensor separately. The Level 3
data file will also have AOD values from each sensor at QDG
along with merged AODs.

The adaptation of the unified DT-Package will enable sys-
tematic improvement. For example, Kim et al. (2024) are ap-
plying a new surface reflectance parameterization to the GEO
retrievals that better accounts for the different GEO versus
LEO observing geometry. This will help address some of the
remaining diurnal biases, which will then help characterize
the aerosol effect on radiative forcing, cloud development,
and air quality. We expect that the merged satellite dataset
presented here, and its future updates, will be a major asset in
exploring the sources and consequences of aerosols’ diurnal
variability. This dataset could also evolve to include retrievals
from other current or future sensors capable of accommo-
dating the DT algorithm. Some examples include sensors in
GEO (e.g., the European Flexible Combined Imager – FCI –
or the Korean Advanced Meteorological Imager – AMI) as
well as sensors in LEO with a different overpass time (e.g.,
NASA’s Ocean Color Imager – OCI – on Plankton, Aerosol,
Clouds, ocean Ecosystems – PACE). This GEO–LEO prod-
uct could also include future sensors like the remaining VI-
IRS to be aboard the JPSS Series. These additional assets
will provide better coverage of Africa, Europe, and Asia and
move us even closer to a fully realized global dataset with an
AOD product from sunrise to sunset.

Data availability. The aerosol datasets from six sensors produced
using the Dark Target algorithm have been part of NASA’s
MEaSUREs project (ROSES-2017; https://www.earthdata.
nasa.gov/esds/competitive-programs/measures/leo-geo-synergy,
Levy, 2024) and are publicly available from NASA LAADS
(https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/5019,
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last access: 9 September 2024). The AERONET direct-sun mea-
surement data used in this study are available via the AERONET
website (https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_
aod.html, NASA GSFC, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-17-5455-2024-supplement.
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