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Abstract. Direct measurement of carbon and water fluxes at
high frequencies make eddy covariance (EC) the technique
most preferred to characterize water use efficiency (WUE).
However, reliability of EC fluxes largely hinges on the en-
ergy balance ratio (EBR) and inclusion of low-frequency
fluxes. This study is aimed at investigating the role of the av-
eraging period in representing EC fluxes and its propagation
into WUE dynamics. Carbon and water fluxes were moni-
tored in a drip-irrigated maize field at 10 Hz frequency and
were averaged over 1, 5, 10, 15, 30, 45, 60, and 120 min, con-
sidering daytime unstable conditions. The optimal averaging
period to simulate WUE fluxes for each growth stage is ob-
tained by considering cumulative frequency (Ogive) curves.
A clear departure of EBR from unity was observed during
the dough and maturity stages of the crop due to ignorance
of canopy heat storage, low-frequency flux losses, and an
inadequate averaging period. Deviations in representing wa-
ter (carbon) fluxes relative to the conventional 30 min aver-
age are within ±3 % (±10 %) for 10–120 min averaging and
beyond ±3 % (±10 %) for other time averages. Ogive plots
show that the optimal averaging period to represent carbon,
water, and WUE fluxes is 15–30 min for the sixth leaf and
silking stages and is 45–60 min for the dough and maturity
stages. Dynamics of WUE considering optimal averaging pe-
riods are in the range of µ± σ : 1.49± 0.95, 1.37± 0.74,
1.39± 0.79, and 3.06± 0.69 µmolmmol−1 for the sixth leaf,
silking, dough, and maturity stages, respectively. The error
in representing WUE by conventional 30 min averaging is
marginal (< 1.5 %) throughout the crop period except for the
dough stage (12.12 %). We conclude that the conventional
30 min averaging of EC fluxes is not appropriate for repre-
senting WUE throughout the crop period. Our findings can
help to develop efficient water management strategies by ac-

curately characterizing WUE fluxes from the EC measure-
ments.

Research highlights.
1. The time averages that yield the most effective energy balance

closures were identified as 45 and 60 min.
2. Insufficiently short time averages such as 1 and 5 min, as well

as excessively long-time averages such as 120 min, resulted in
a high relative error in representing carbon and water fluxes.

3. The conventional 30 min averaging period proved insufficient
to capture low-frequency fluxes, necessitating the use of longer
averaging periods.

4. Different time averaging periods must be considered to com-
pute the EC fluxes considering the crop growth stage.

1 Introduction

Water use efficiency (WUE) is an important ecohydrologic
trait relating two important processes of plant metabolism,
namely carbon fixation (via photosynthesis) and water con-
sumption (via transpiration; Kole, 2013). The need to achieve
food security with diminishing water resources under a
changing climate has made WUE the controlling parameter
in the planning and design of irrigation strategies (Tang et
al., 2015). Depending on the scale of investigation, WUE
can be quantified at (i) leaf, (ii) plant, (iii) ecosystem, or
(iv) regional scales (Medrano et al., 2015). Of these, ecosys-
tem WUE has taken precedence in irrigation and agronomy
due to (i) accurate and reliable measurement using microm-
eteorological techniques, (ii) the ability to evaluate the role
of various water conservation techniques in ecosystem pro-
ductivity, and iii) an understanding of the relation between
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carbon and water cycles in response to changes in climate
(Tang et al., 2015; Tong et al., 2014).

Eddy covariance (EC) is a non-destructive micrometeo-
rological technique for direct measurement of water vapour
(H2O) and carbon (CO2) fluxes between vegetation and the
atmosphere at a high temporal frequency (Leclerc and Foken,
2014). The EC method precisely measures the overall trans-
fer of heat, mass, and momentum between the Earth’s surface
(such as vegetation) and the atmosphere. This is achieved
by estimating the covariance of turbulent fluctuations in ver-
tical wind (referred to as eddies) with respect to the spe-
cific flux under consideration such as H2O, CO2, or temper-
ature. EC represents the scalar fluxes of interest (representa-
tive of ecohydrological processes) from a region upwind of
the measurement known as the footprint. At the ecosystem
scale, WUE is estimated as the ratio of net primary product
(NPP, a proxy for photosynthesis) to evapotranspiration (ET,
a proxy for water consumption; Peddinti et al., 2020). WUE
is a key ecohydrologic trait that is used to analyse the role
of climate change, drought, deficit irrigation, and manage-
ment strategies on ecosystem productivity. Currently, EC is
the most accurate and reliable method for estimating carbon
and water exchanges and hence WUE at the ecosystem scale
(Tong et al., 2009). A number of studies have demonstrated
the efficacy of EC in estimating WUE across a wide range
of ecosystems (Tang et al., 2015; Tong et al., 2014; Wang et
al., 2017). Error sources that affect the accuracy of EC fluxes
are grouped into the following: (i) un-representativeness (due
to footprint heterogeneity, unsatisfied underlying theory),
(ii) measurement uncertainties (due to random errors, inter-
ference and contamination, sensor drifts), and (iii) measure-
ment biases in fluxes (tilt, frequency losses, air density fluc-
tuations, etc.). Despite improvements in measurement ac-
curacy, data sampling, and processing techniques, the EC
method still suffers from the drawback of lack of conserva-
tion among the energy terms, resulting in an energy balance
closure (EBC) problem (Charuchittipan et al., 2014; Foken
et al., 2011; Reed et al., 2018). Lack of EBC as observed in
the EC system is reported across diverse ecosystems ranging
from simple bare soil (Oncley et al., 2007) to homogeneous
grasslands (Twine et al., 2000) to heterogeneous croplands
(Peddinti et al., 2020) to complex forest ecosystems (Charu-
chittipan et al., 2014; Wilson et al., 2002). Apart from the er-
rors associated with instrumentation, measurement, and ne-
glected energy sinks, the lack of EBC at the EC sites is also
attributed to the omission of low-frequency secondary circu-
lations in the turbulent flux estimation (Wilson et al., 2002).
This problem can be circumvented by choosing an appro-
priate averaging period during flux estimation, the selection
of which is based on (i) the ensemble block time averaging
method (Finnigan et al., 2003; Malhi et al., 2005; Sakai et
al., 2001) and (ii) the Ogive method (Berger et al., 2001).

A number of studies have highlighted the importance of
the averaging period on quantifying the EC fluxes, with an
objective to obtain an optimal time averaging period un-

der various canopy and surface roughness conditions. While
smaller averaging periods (15–30 min) are suitable for man-
aged croplands, flux estimation of forests and tall canopies
demands longer averaging periods (60–120 min) due to
the presence of large-sized slow-moving eddies (Berger et
al., 2001; Finnigan et al., 2003; Sakai et al., 2001; Sun et
al., 2006). Zhang et al. (2013) concluded that time aver-
aging of EC fluxes has to be done in accordance with the
observation scale. In an analysis of Chengliu riparian for-
est in China, they found that lower time averaging periods
(15 min) are suitable for daily variation in EC fluxes, whereas
higher time averaging periods (60 min) are suitable for long-
term flux computations. A similar observation was made
by Lee et al. (2004) regarding farmlands. In a wheat field
in Yucheng, China, 10 and 30 min averaging periods were
found suitable for diurnal and long-term flux observations,
respectively. Flux observations over a maize crop at the Dax-
ing experimental station in China showed that the optimal
time averaging period has to be considered in accordance
with the crop growth stage (Feng et al., 2017). However, they
observed a marginal (< 3 %) error in representing the fluxes
at conventional 30 min averaging relative to the optimal av-
eraging obtained for each growth stage.

Maize is the third most important cereal crop in India af-
ter rice and wheat and accounts for about 10 % of total food
production in the country (Sharma et al., 2018). In spite of a
huge area under cultivation (9.4 MHa), high production (23×
106 t), and enormous water consumption (18×109 cm3), both
crop productivity (2.5 t ha−1) and crop water productivity
(CWP; 1.83 kg m−3) of Indian maize are far lower than cor-
responding world averages (Sharma et al., 2018). Low CWP
(and thus WUE) of Indian maize can be attributed to (i) a
high dependence (85 %) on erratic, uncertain rainfall; (ii) low
adoption of hybrid varieties; (iii) improper drainage facilities
leading to waterlogging; and (iv) unscientific application of
irrigation water without analysing soil–water–crop interac-
tions (Shankar et al., 2012). Thus, an accurate quantification
of WUE and its temporal variation during the crop cycle is
essential for effective irrigation water management of maize
crop (Medrano et al., 2015).

While the effect of time averaging on carbon and water
fluxes measured at EC sites is reported, the effect on their
interaction term, i.e. WUE, which is crucial in irrigation wa-
ter management, is unexplored. Evaluation of the time aver-
aging period on WUE dynamics is necessary to understand
the contribution of low- and high-frequency photosynthetic
carbon and evaporative water fluxes generated from various
field management strategies. Also, most of the EC flux stud-
ies are confined to data-rich AmeriFLUX, EuroFLUX, and
ChinaFLUX sites, with limited focus on Indian fragmented
croplands. This motivates the present study, and the objec-
tives of this study are as follows: (i) investigate the role of
time averaging of EC fluxes on EBR and WUE dynamics;
(ii) identify the optimal averaging period to evaluate carbon
and water (and thus WUE) fluxes of the maize crop; and
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(iii) investigate the association of carbon, water, and WUE
fluxes between multiple averaging periods. Results of this
study can help in designing efficient management strategies
using EC datasets in response to changes in WUE during the
crop cycle.

2 Materials and methodology

2.1 Site description and instrumentation

Controlled maize plots located at Professor Jaya Shankar
Telangana State Agricultural University (PJTSAU), Hyder-
abad, Telangana, India (17°19′17′′ N, 78°24′35′′ E; 559 m
above sea level), form the study area. The region is composed
of red gravel to sandy loam soils with field capacity and
wilting point in the ranges of 17.92 %–19.56 % and 8.2 %–
9.87 %, respectively. As per the Köppen–Geiger classifica-
tion, the region falls under tropical savanna climate zone
(Aw) characterized by long dry and short wet seasons (Kot-
tek et al., 2006). The mean annual precipitation in the region
is 900 mm with more than 80 % occurring during the mon-
soon months (June–September). Temperatures are high dur-
ing summer (mean± standard deviation of 38.33± 2.12 °C)
and low during winter (30± 2.20 °C) months. Humidity in
the region varies from 35 % in summer to 73 % during the
monsoon season (Central Ground Water Board, 2013). Mean
seasonal wind speed is in the range of 1.5 to 2.7 m s−1 (Ped-
dinti et al., 2020). Hydrogeologically, the study area forms
part of the Deccan plateau, characterized by multiple layers
of solidified flood basalt resulting from volcanic eruptions.
Depth to groundwater ranges from 12 m (pre-monsoon) to
6 m (post-monsoon; Central Ground Water Board, 2013).

Meteorological parameters and turbulent fluxes were ob-
tained for one crop season, i.e. 26 May to 6 September 2019,
using an open path eddy covariance (EC) flux tower. The flux
system is composed of an integrated CO2/H2O open-path
gas analyser and 3D sonic anemometer (IRGASON-EB-NC,
Campbell Sci. Inc., USA) to measure CO2 and H2O concen-
trations at 3 m above the canopy. Raw data were collected
with a logger (CR1000, Campbell Sci. Inc., USA) at a fre-
quency of 10 Hz. Additionally, slow-response meteorologi-
cal variables including precipitation (TE525-L-PTL, Tipping
Bucket, Campbell Sci. Inc., USA), soil heat flux (HFP01SC-
L-PTL, Campbell Sci. Inc., USA), solar radiation (CNR 4,
Campbell Sci. Inc., USA), and soil moisture (CS616-L-PT-L,
Campbell Sci. Inc., USA) were obtained at 10 min intervals.

2.2 Data collection and processing

Table 1 shows the phenological stages of the maize crop in
the study area (Soujanya et al., 2021). Additionally, leaf area
index (LAI) and mean plant height were monitored during
the crop cycle (Table 1). The LAI was measured using the
plant canopy analyser, whereas the plant height was mea-
sured using a ruler from the base of the plant to its crown.

Maize crops in the experimental fields were sown on 25 May
2019 and harvested on 6 September 2019, with a base period
of 104 d.

Data from the EC system at a 10 Hz frequency were
converted to ASCII format using LoggerNet (4.3) software
(Campbell Scientific Inc., Logan, Utah, USA), and further
aggregated to various averaging periods (1, 5, 10, 15, 30,
45, 60, and 120 min). Data post-processing was done using
EddyPro post-processing software (version 7.0.8, LI-COR,
USA). Primary corrections performed on the raw dataset in-
clude tilt corrections, turbulent fluctuations, density fluctu-
ations, frequency corrections, and quality checks. Tilt cor-
rections were done using the double-axis rotation method
for each averaging period. Both the block average method
and the linear trending method were considered to compute
the turbulent fluctuations. The block averaging method was
used for detrending the fluxes at the 1, 5, 10, 30, 45, and
60 min averaging periods. Longer averaging periods (e.g.
120 min) resulted in inconsistency in the obtained fluxes,
which is a weakness of block averaging (Renhua, 2005; Sun
et al., 2006). Hence, the linear trend removal method was
used to compute the fluxes for the 120 min averaging period.
Density fluctuation corrections were done using the Webb–
Pearman–Leuning (WPL) method. Quality checks were per-
formed following a flagging policy proposed by Mauder and
Foken, 2006 (0–1–2 system). A flag set to “0” corresponds
to the best-quality fluxes, “1” corresponds to fluxes accept-
able for general analysis, and “2” corresponds to poor-quality
fluxes that should be removed from the dataset. The result-
ing fluxes may exhibit spikes, discontinuity, randomness, etc.
There is a need to perform secondary corrections on the data
that include flux spike removal (Vickers and Mahrt, 1997),
friction velocity corrections (to filter nighttime observations),
gap filling and uncertainty analysis (Finkelstein and Sims,
2001), skewness and kurtosis removal, spectral corrections,
and frequency corrections. To correct flux estimates for low-
and high-frequency losses due to instrument setup, intrinsic
sampling limits of the devices, and various data processing
decisions, spectral corrections were performed. Additionally,
slow-sensor meteorological data obtained at 1 min intervals
were processed for different time averaging periods using the
EddyPro post-processing software (version 7.0.8, LI-COR,
USA).

2.3 Effect of time averaging on EBR and EC fluxes

Violation of the law of conservation of energy resulting from
the EC-observed energy terms is referred to as energy bal-
ance closure (EBC). The available energy (Rn−G) is gener-
ally higher than the turbulent fluxes (H +LE), resulting in a
positive balance (Eshonkulov et al., 2019) where Rn, G, H ,
and LE correspond to net radiation, soil heat flux, sensible
heat, and latent heat, respectively. Apart from instrument and
measurement issues, this lack of energy closure is thought
to be partly from averaging periods and coordinate systems
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Table 1. Phenological growth stages and physical properties of the maize crop.

S. Growth stage Start date End date Period length Leaf area index Plant height
no. (days) (m2 m−2) (cm)

1 Sixth leaf 26 May 2019 12 June 2019 18 0.61 46.8
2 Silking 13 June 2019 19 July 2019 37 1.56 75.2
3 Dough 20 July 2019 12 August 2019 24 3.46 133
4 Maturity 13 August 2019 6 September 2019 25 3.03 134

(Finnigan, 2004; Finnigan et al., 2003; Gerken et al., 2018).
The energy closure fraction, commonly referred to as the en-
ergy balance ratio (EBR), is used to evaluate the quality of
EC data by examining energy fluxes at the surface (Chen and
Li, 2012), given by

EBR=
H +LE

Rn−G
, (1)

H = ρaCpw′T ′ , (2)

LE = Lvw′ρv′ , (3)

where ρa is the air density, Cp is the specific heat of air, w′

is the wind velocity fluctuation, T ′ is the temperature fluctu-
ation, Lv is the latent heat of vaporization, and ρ′v is the H2O
gas concentration fluctuation.

EBR helps to determine the averaging period required to
calculate H and LE fluxes over a range of landscapes (Chen
and Li, 2012). A high EBR (EBR≥ 0.7) ensures reliabil-
ity of EC observations for use with flux estimation (Barr et
al., 2006; Kidston et al., 2010).

Eddy fluxes are computed as the covariance between the
instantaneous deviation in vertical wind speed (w′) and scalar
component of interest (s′) from their respective means, given
by

F ≈ ρaw′s′ , (4)

where ρa is the mean air density and the overbar represents
the time average of eddy fluxes, which is of interest in the
present study. Depending on the scalar component consid-
ered (i.e. temperature; water vapour, H2O); carbon dioxide,
CO2, concentrations), corresponding eddy fluxes (i.e. sensi-
ble heat, latent heat, carbon flux) are computed as below.

FCO2 ≈ ρaw′CO2
′ (5)

FH2O ≈ ρaw′H2O′ (6)

Ecosystem WUE is then estimated as the ratio of daytime
carbon (net primary product) to water fluxes (evapotranspi-
ration), observed considering daytime unstable atmospheric
conditions (08:00 to 16:00 LT) given by

WUE=
NPP
ET
=
FCO2

FH2O
. (7)

Fluxes originating from real-world sites are composed of
both high-frequency (turbulence) and low-frequency (advec-
tion) fluctuations, with a spectral gap in between. Isolating
the local turbulence component for use with flux studies is
achieved by choosing an appropriate averaging period, T1
(typically 30 min), for fast-response measurements operating
at high frequency, T2 (Sievers et al., 2015). The optimal av-
eraging period (T1) should be long enough to reduce random
error (Berger et al., 2001) and short enough to avoid non-
stationarity associated with advection (Foken and Wichura,
1996). The flux estimates (Eq. 2) are further decomposed
into frequency-dependent contributions known as co-spectra
Cows(f ) between vertical wind velocity (w) and the scalar
of interest (s) for frequencies f (Sievers et al., 2015). For
an accurate estimation of the flux, it is essential that the EC
method is applied under conditions where the flow is station-
ary and all eddies carrying flux are sampled. Given that the
flow remains stationary, an Ogive serves as a check for the
essential requirement to sample all scales carrying the flux.
The Ogive function is proposed to check if all low-frequency
fluxes are included in the turbulent flux measured with the
EC method (Foken et al., 2005; Foken and Wichura, 1996).
It is used to investigate the energy balance losses caused by
low-frequency fluxes. Ogive analysis is performed to inves-
tigate the flux contribution from each frequency range and to
arrive at the most suitable averaging period to capture most of
the turbulent fluxes (Charuchittipan et al., 2014; Desjardins
et al., 1989). The Ogive function thus provides the cumula-
tive sum of co-spectral energy starting from the highest fre-
quency, given by

Ogws(f0)=

∫
∞

f0

Cows(f )df. (8)

The point of convergence on the Ogive plot to an asymp-
tote corresponds to optimal averaging period (T1) for use in
the averaging of high-frequency turbulence fluxes. In other
words, the point at which the Ogive plot flattens out repre-
sents the optimal averaging period. A total of eight averaging
periods, i.e. 1, 5, 10, 15, 30, 45, 60, and 120 min, were con-
sidered to investigate the role of time averaging on EBR, EC,
and WUE fluxes and further to arrive at the optimum aver-
aging period for use with WUE estimation. The biophysical
and physiological characteristics, such as plant height, crop
water requirement, LAI, etc., change with respect to the crop
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growth stage (Chintala et al., 2024) and have a significant ef-
fect on the EC fluxes. Since these factors vary over growth
stages, time averaging of EC fluxes is separated based on
crop growth stage.

2.4 Performance evaluation

The ability of various averaging periods to close the energy
balance and compute the EC fluxes is evaluated using three
goodness-of-fit indicators, namely (a) the coefficient of de-
termination (R2), (b) the root-mean-squared error (RMSE),
and (c) the relative error (RE). While R2 and RMSE aim to
quantify the error in closing the energy balance, RE aims to
compute the error in estimating EC fluxes with a conven-
tional 30 min averaging period relative to the optimal aver-
aging period.

The root-mean-square error (RMSE) measures overall ac-
curacy in closing the energy balance for a given averaging
period by penalizing large errors heavily, given by

RMSE=

[∑n
i=1
(
(Rn−G)i − (H +LE)i

)2
n

]0.5

, (9)

where n is the number of observations.
The coefficient of determination (R2) and the Pearson cor-

relation coefficient (r) are the measures of the strength of the
linear association between turbulent fluxes and available en-
ergy, given by

R2
=


∑n
i=1

[
(Rn−G)i − (Rn−G)

] [
(H +LE)i − (H +LE)

]√∑[
(Rn−G)i − (Rn−G)

]2[
(H +LE)i − (H +LE)

]2


2

, (10)

r =


∑n
i=1

[
(Rn−G)i − (Rn−G)

] [
(H +LE)i − (H +LE)

]√∑[
(Rn−G)i − (Rn−G)

]2[
(H +LE)i − (H +LE)

]2
 . (11)

The relative error (RE) provides the disparity in the fluxes
estimated by conventional (30 min) averaging relative to the
fluxes estimated by the optimal averaging period, given by

RE=

[{
Fopt−F30 min

}
Fopt

]
× 100 , (12)

where Fopt and F30 are the fluxes of interest considering op-
timal and conventional (30 min) averaging periods.

The averaging period corresponding to highR2 (close to 1)
and low RMSE (close to zero) is considered to be the optimal
choice in representing the EC fluxes.

3 Results and discussion

3.1 Diurnal variations in energy balance components

To understand the energy variation in response to rapid
changes in meteorological conditions, we analysed the

diurnal variations in energy balance components. Fig-
ure 1 shows the diurnal variations in available energy
(Rn−G) and turbulent fluxes (H +LE) averaged over
the crop cycle for various time averages. The diurnal
variations in Rn−G and H +LE are bell-shaped, with
peaks occurring at around noon (480.16± 14.15 W m−2,
356.23± 18.51 W m−2; Fig. 1). The energy balance dif-
ference (shaded areas of the figure) is found to be posi-
tive (76.88± 43.14 W m−2) during daylight hours (08:00 to
18:00 LT) and is negative (−24± 11.65 W m−2) for the re-
maining time. The vertical offset between the two curves,
representing the residual of energy balance, is highest around
noon (142.39± 19.42 W m−2) and is consistent between the
averaging periods. For an average site-day, the cumulative
energy balance difference was found to be constant, with
a mean of 1811 W m−2 at all averaging periods. The cu-
mulative energy balance difference crosses the zero line at
around 11:30 LT. The variation is rough at lower averaging
periods due to a high sample size (n= 10 859 at T = 1 min)
and is gradually smoothed towards higher averaging peri-
ods (n= 811 at T = 120 min). The shorter averaging periods
have introduced random uncertainty in the datasets during
coordinate rotation correction. The slope of regression lines
betweenH +LE and Rn−G considering all averaging peri-
ods are in the range of 0.59 to 0.71, with a mean of 0.65. The
intercept ranges from 19.01 to 31.56 W m−2. The best slope
(≥ 0.70) and intercept (≤ 20 W m−2) were achieved with the
45 and 60 min averaging periods, which is consistent with the
literature (Gao et al., 2017; Leuning et al., 2012). We con-
clude that longer averaging periods have good closure over
shorter averaging periods. The strength of the linear associ-
ation between Rn−G and H +LE around the best fit line
explained by r is high (0.80<r ≤ 0.9) at low averaging pe-
riods, i.e. 1, 5, or 10 min, and is very high (r > 0.9) for other
averaging periods (Table 2). However, the departure of the
data from the 1 : 1 line is relatively low for both short and
long averaging periods. Our findings show that the averag-
ing period has a minimal influence on the representation of
the energy balance terms. However, the data scatter around
the 1 : 1 line is high for shorter time averages due to large
sample size and data randomness.

3.2 Effect of averaging period on EBR and EC fluxes

The variation in energy balance ratio (EBR) by averag-
ing period for individual growth stages of the crop is pre-
sented in Fig. 2. We observed a clear departure of EBR
from unity for all growth stages, particularly in the dough
and maturity stages due to ignorance of canopy heat storage,
low-frequency flux losses, and inadequate averaging period
(Meyers and Hollinger, 2004; Rahman et al., 2019). EBR
fluctuates between 0.70 and 0.90 at low (1–30 min) aver-
aging periods and is fairly constant (mean = 0.75) at high
(≥ 30 min) averaging periods. Our reported values of EBR
during the crop growth are within the range of 0.65 to 1.2 typ-
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Figure 1. Diurnal variations in energy balance components (available energy is Rn−G and turbulent fluxes are H +LE) during the crop
cycle with different averaging periods. Insets show scatterplots between the two datasets.

Table 2. Summary of linear regression parameters in closing the energy balance with different averaging periods.

Averaging period Slope R2 Intercept r n RMSE
(W m−2) (W m−2)

1 min 0.63 0.66 30.31 0.81 10 859 98.38
5 min 0.59 0.74 31.56 0.86 10 785 76.47
10 min 0.60 0.80 28.94 0.90 10 753 64.41
15 min 0.63 0.84 26.56 0.92 7150 58.18
30 min 0.66 0.93 20.49 0.96 3554 38.33
45 min 0.70 0.94 19.99 0.97 2355 36.30
60 min 0.71 0.94 19.01 0.97 1765 35.07
120 min 0.67 0.93 20.77 0.96 811 39.95

ically found for most of the crops (Feng et al., 2017; Finni-
gan et al., 2003; Wilson et al., 2002). The mean EBR with a
conventional 30 min averaging period was found to be 0.74,
0.76, 0.71, and 0.74 during the sixth leaf, silking, dough, and
maturity stages, respectively. Low EBR during the crop cy-
cle can also be attributed to the ignorance of energy trans-
port associated with large eddies from landscape hetero-
geneity (Meyers and Hollinger, 2004; Rahman et al., 2019).
However, the EC method assumes that the landscape within
the footprint of measurement is flat and homogeneous. We
did not observe variations in optimal averaging time due to
changes in wind speed and direction; hence meteorological
conditions were not analysed in this study. Changes in day-
time mean carbon and water fluxes by averaging period for
different growth stages of the crop are shown in Fig. 3. Car-
bon fluxes (sink) have a very low mean (1.81 µmolm−2 s−1)

during the sixth leaf stage, a low mean during the silking
(3.48 µmolm−2 s−1) and dough (3.03 µmolm−2 s−1) stages,
and a high mean (15.44 µmolm−2 s−1) during the maturity
stage.

Mean carbon fluxes during the sixth leaf and silking stages
are mostly unaffected by the averaging period. We observed
a gradual increase in water vapour fluxes during the crop cy-
cle from sixth leaf (2.52± 0.13 mmol s−1 m−2) to maturity
(5.02± 0.29 mmol s−1 m−2). From the mean CO2 and H2O
flux dynamics, we observed that the drip-irrigated maize crop
is acting as a carbon sink in the entire crop season, especially
in the latter stages of the crop, i.e. the maturity stage, with
a mean of 15.44 µmolm−2 s−1. This is clearly evident from
the increasing trend of LAI and plant height during the crop
season. Such an increase is highlighted by previous studies
of Guo et al. (2021). At the same time, mean H2O fluxes
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Figure 2. Variations in energy balance ratio (EBR) by averaging period for different growth stages. (solid vertical lines from left to right
correspond to the averaging periods of 1, 5, 10, 15, 30, 45, 60, and 120 min, respectively).

Figure 3. (a) Variations in mean carbon fluxes by averaging period for different growth stages. (b) Variations in mean water fluxes by
averaging period for different growth stages (solid vertical lines from left to right correspond to the averaging periods of 1, 5, 10, 15, 30, 45,
60, and 120 min, respectively).

https://doi.org/10.5194/amt-17-5477-2024 Atmos. Meas. Tech., 17, 5477–5490, 2024



5484 A. R. Karimindla et al.: The role of time averaging of EC fluxes on WUE dynamics of maize

were increased towards the end of the crop growing season
due to increased crop water demand. As the averaging pe-
riod increased, the mean water vapour flux decreased, with
an exception at the 45 min averaging period. The deviation
in representing carbon and water fluxes at different averag-
ing periods, relative to the conventional 30 min averaging
period, i.e. relative error (RE), is presented in Fig. 4. The
RE is obtained by considering daily averages in the devia-
tions for each growth stage. During the sixth leaf and silk-
ing stages, RE in estimating carbon fluxes is high (∼−15 %)
with low averaging periods and gradually diminishes towards
higher averaging periods, with an exception at the very high
(120 min) average period. For the dough and maturity stages,
RE is found to be significant with higher averaging periods
(60–120 min). RE in estimating water vapour fluxes is found
to be insignificant at all averaging periods for the sixth leaf
and silking stages. However, the dough and maturity stages
have shown a large variation in RE considering either too-
short (1, 5 min) or too-long (60, 120 min) time averages. A
high variation in RE for timescales larger than 45 min in-
dicates the effects of submesoscale (non-turbulent) motions.
Hence, the 45 min average period can be considered optimal
in isolating the turbulence components for use with flux rep-
resentation.

3.3 Selection of optimal averaging period

Ogive functions representing the cumulative integral of
the co-spectral energy starting with highest frequency, i.e.
0.016 Hz (T = 1 min), for carbon, water, and WUE fluxes are
presented in Fig. 5. Shorter time periods corresponding to
daytime unstable atmospheric conditions (08:00 to 16:00 LT)
for various growth stages were investigated. Ogive plots of
carbon fluxes for the sixth leaf and silking stages showed
an increasing trend up to 0.011 Hz (15 min) and remained
fairly constant before 0.0055 Hz (30 min). We conclude that
whole turbulent spectrum can be covered by 15 to 30 min
averaging, with negligible flux contribution from longer fre-
quencies. Ogive plots of carbon fluxes for the dough and ma-
turity stages showed a continuous increasing trend without
a defined plateau (horizontal asymptote) in between. This
shows that the conventional 30 min averaging period is in-
adequate to capture the low-frequency fluxes, thus there is
demand for higher averaging periods. We observed a sim-
ilar behaviour with water fluxes (Fig. 5b). The flat part of
the Ogive curve representing the optimal averaging period
was found to vary across the crop cycle. While a 15–30 min
time average is suitable for aggregating the EC fluxes dur-
ing the sixth leaf and silking stages, 45–60 min averaging is
more appropriate for the dough and maturity stages. Similar
to carbon and water fluxes, the Ogive plots for WUE are pre-
sented in Fig. 5c. From this, we observed that the flat part
of Ogive curve is achieved at the 15 min time average period
for the stages of sixth leaf and silking and at the 45 min time
average for the dough and maturity stages, which is similar

to the carbon and water fluxes. This lets us conclude that the
WUE co-spectrum followed a similar behaviour to its indi-
vidual fluxes, i.e. carbon and water fluxes, in achieving opti-
mal time averages. The crop biophysical factors like LAI and
plant height are at a minimum during the sixth leaf and silk-
ing stages, which contributes a low quantity of CO2 and H2O
fluxes (see Fig. 3a and b), whereas they are at a maximum in
the later stages of the crop, i.e. dough and maturity, contribut-
ing to high quantities of CO2 and H2O fluxes (see Fig. 3a
and b). Our results are in accordance with the previous stud-
ies of Fong et al. (2020) on cotton, where the responses in
NPP and ET were related seasonally to plant growth stages.
The previous studies on various crops revealed that the NPP
and ET fluxes were initially low in the early stages and in-
creased towards the maturity stage due to crop phenology
and management practices. To capture these low-quantity
fluxes, low averaging periods, i.e. 15 min, were sufficient,
whereas a 45 min time averaging period can capture high-
quantity fluxes that are prevalent during later growth stages
of the crop. As the crop characteristics are dependent on crop
growth stages, a single time averaging period is not appropri-
ate for capturing the dynamics of CO2 and H2O fluxes as well
their ratio, WUE. This clearly demonstrates that as the plant
achieves its higher stages, the flux contribution from low-
frequency components becomes more predominant. Very low
averaging periods (i.e. 1 min, 5 min) were found to be unsuit-
able to capture low-frequency flux components, which is in
agreement with the literature (Feng et al., 2017).

3.4 Dynamics of water use efficiency

Daily means of water use efficiency (WUE) estimated with
conventional 30 min and growth-specific optimal averag-
ing periods are presented in Fig. 6. Mean WUE fluxes
for the sixth leaf, silking, dough, and maturity stages with
conventional 30 min averaging are 1.48, 1.36, 1.38 and
3.184 µmolmmol−1 respectively. Corresponding fluxes with
stage-specific optimal averaging periods are 1.49, 1.37, 1.39,
and 3.06 µmolmmol−1, respectively. The error in estimat-
ing mean daily WUE fluxes with 30 min averaging is very
low (< 1.45 %) during the sixth leaf and silking stages, low
(8.56 % to 9.04 %) during the maturity stage, and moderate
(11.84 % to 12.12 %) during the dough stage. We conclude
that choice of optimal averaging period is more crucial for
late-stage growth periods of the crop. Distribution of error in
estimating WUE fluxes with various averaging periods rela-
tive to the conventional 30 min average period (RE) is pre-
sented in Fig. 7. A close-to-zero RE with all averaging pe-
riods during the sixth leaf and silking stages shows that the
choice of averaging period has an insignificant role in es-
timating the WUE fluxes, particularly during early growth
stages. A slightly high RE (∼−5.4 %) during the dough
and maturity stages shows that the choice of averaging pe-
riod matters for WUE estimation during late-stage periods.
Hence, the conventional 30 min averaging period can be con-
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Figure 4. (a) Whisker plots showing the distribution of error in estimating carbon fluxes by various averaging periods relative to the conven-
tional 30 min averaging. (b) Whisker plots showing the distribution of error in estimating water fluxes by various averaging periods relative
to the conventional 30 min averaging.

sidered for estimating WUE fluxes during the sixth leaf and
silking stages, whereas the optimal averaging period needs to
be considered for estimating WUE fluxes during the dough
and maturity stages. Correlation charts showing the linear
association considering daily means of carbon, water, and

WUE fluxes at different averaging periods are represented
in Fig. 8. For ease of comparison, data for the entire crop
cycle were considered. Linear association between any two
averaging periods is positive (r > 0.56) for carbon and wa-
ter fluxes. Except for the 120 min time averaging, all other
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Figure 5. (a) Ogive plots of carbon fluxes for different growth stages of the maize crop. (b) Ogive plots of water fluxes for different growth
stages of the maize crop. (c) Ogive plots of water use efficiency for different growth stages of the maize crop. (solid vertical lines from left
to right correspond to the averaging periods of 120, 60, 45, 30, 15, 10, 5, and 1 min, respectively.)

averaging periods are strongly correlated (r > 0.87) with the
30 min averaging period. Surprisingly, poor linear associa-
tion in WUE fluxes was observed between any two averag-
ing periods, which is attributed to a larger variation in in-
dividual WUE fluxes between averaging periods. However,
the corresponding individual carbon and water fluxes have

recorded low variations between time averages. We conclude
that the need for an optimal averaging period is crucial in rep-
resenting WUE fluxes rather than individual carbon and wa-
ter fluxes. Our findings can improve representation of WUE
fluxes using EC data, thereby helping to develop efficient wa-
ter management strategies in response to WUE changes.
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Figure 6. Seasonal variations in daily mean WUE fluxes obtained using conventional 30 min averaging periods (solid lines) and optimal
averaging periods (dotted lines) during the crop cycle.

Figure 7. Whisker plots showing the distribution of error in estimating WUE fluxes by various averaging periods relative to the conventional
30 min averaging.

https://doi.org/10.5194/amt-17-5477-2024 Atmos. Meas. Tech., 17, 5477–5490, 2024



5488 A. R. Karimindla et al.: The role of time averaging of EC fluxes on WUE dynamics of maize

Figure 8. Correlation charts showing the linear association of (a) carbon fluxes, (b) water fluxes, and (c) WUE fluxes estimated by different
averaging periods. The circle size represents the correlation magnitude and the colour intensity from white to black represents the negative
to positive correlations, respectively.

4 Conclusions

This study explores the effect of the averaging period of EC
fluxes on EBR dynamics and WUE in semi-arid Indian con-
ditions. The proposed methodology was applied to a drip-
irrigated maize field for one crop period (May–September
2019). Major findings of this study are as follows.

– EBR was found to vary marginally at low averaging pe-
riods and less significantly during higher averaging pe-
riods.

– With reference to the conventional 30 min averaging pe-
riod, the relative error is within 12 % for the 10–45 min
averaging periods for carbon fluxes and is within 5 %
for the 15–45 averaging periods for water fluxes.

– From Ogive analysis, we found an optimal averaging
period of 15–30 min for the sixth leaf and silking stages
and of 45–60 min for the dough and maturity stages.

– The mean carbon fluxes increased from
1.81 µmolm−2 s−1 (sixth leaf stage) to
15.44 µmolm−2 s−1 (maturity stage), which indi-
cates that the carbon sink is a function of the crop
growth period. In case of water fluxes, they in-
creased from 2.52 mmol m−2 s−1 (sixth leaf stage)
to 5.02 mmol m−2 s−1 (maturity stage). Variations
in carbon and water fluxes directly influence WUE
dynamics.

– The variation in WUE increased subsequently with
the plant growth and achieved its maximum value of
5.17 µmolmmol−1 in between the dough and maturity
stages, which shows that the crop consumed more car-
bon than water as the crop period progressed.

– The correlation between CO2 and H2O fluxes for all av-
eraging periods was found to be high. However, WUE,
which is calculated as the ratio of CO2 and H2O fluxes,

did not follow the same pattern. While 45 and 15 min
averaged WUE exhibits a good correlation, 30 min av-
eraged WUE is not correlated with the other averaging
periods. The averaging period is found to be an influ-
encing factor in controlling WUE, hence it should be
considered with caution during the crop growth.

This study is limited to understanding the role of different
time averaging periods on EC-observed carbon and water
fluxes, as well as EC-derived WUE fluxes contributed by
the homogeneous maize crop, which has a relatively small
flux footprint in unstable atmospheric conditions. The study
findings can help to accurately characterize the WUE of the
maize crop, considering growth stages for effective imple-
mentation of irrigation strategies.
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