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Abstract. CO2 storage (Fs) is the cumulation or depletion in
CO2 amount over a period in an ecosystem. Along with the
eddy covariance flux and wind-stream advection of CO2, it
is a major term in the net ecosystem CO2 exchange (NEE)
equation. The CO2 storage dominates the NEE equation un-
der a stable atmospheric stratification when the equation is
used for forest ecosystems over complex terrains. However,
estimating Fs remains challenging due to the frequent gusts
and random fluctuations in boundary-layer flows that lead
to tremendous difficulties in capturing the true trend of CO2
changes for use in storage estimation from eddy covariance
along with atmospheric profile techniques. Using measure-
ments from Qingyuan Ker Towers equipped with NEE in-
strument systems separately covering mixed broad-leaved,
oak, and larch forest towers in a mountain watershed, this
study investigates gust periods and CO2 fluctuation magni-
tudes and examines their impact on Fs estimation in relation
to the terrain complexity index (TCI). The gusts induce CO2
fluctuations for numerous periods of 1 to 10 min over 2 h.
Diurnal, seasonal, and spatial differences (P < 0.01) in the
maximum amplitude of CO2 fluctuations (Am) range from
1.6 to 136.7 ppm, and these differences range from 140 to
170 s in a period (Pm) at the same significance level. Am
and Pm are significantly correlated to the magnitude of and
random error in Fs with diurnal and seasonal differences.
These correlations decrease as CO2 averaging time windows

become longer. To minimize the uncertainties in Fs, a con-
stant [CO2] averaging time window for the Fs estimates is
not ideal. Dynamic averaging time windows and a decision-
level fusion model can reduce the potential underestimation
of Fs by 29 %–33 % for temperate forests in complex terrain.
In our study, the relative contribution of Fs to the 30 min NEE
observations ranged from 17 % to 82 % depending on turbu-
lent mixing and the TCI. The study’s approach is notable as it
incorporates the TCI and utilizes three flux towers for repli-
cation, making the findings relevant to similar regions with a
single tower.

1 Introduction

The accurate estimation of the net ecosystem exchange
(NEE) of carbon dioxide (CO2) in forest ecosystems is cru-
cial for a comprehensive understanding of the global carbon
cycle. The eddy covariance (EC) technique has been widely
used in forest ecosystems due to its capacity to directly mea-
sure the NEE with measurement conditions satisfying the
underlying theory. The EC technique is based on a simpli-
fied mass conservation equation (after Reynolds averaging),
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where Vm is the volume of dry air in the control volume; c
is the CO2 mixing ratio; t is the time; h is the measurement
height; u, v, and w denote the velocity components in the
x, y, and z directions, respectively; and an overbar denotes
Reynolds averaging. This equation conceptualizes the NEE
within a control volume from the ground to the measurement
height (h) while ignoring the horizontal turbulence term di-
vergence (Feigenwinter et al., 2004). In this equation, term I
is the CO2 storage (Fs) representing the change in the aver-
age CO2 concentration (hereafter [CO2]). Terms II, IIIa, IIIb,
and IV represent the vertical turbulent flux (Fc); the vertical
advection; the interface vertical mass advection, such as the
evaporation process (Webb et al., 1980); and the horizontal
advection, respectively.

Most flux measurements typically lack solutions for terms
III and IV and can only estimate the NEE by summing Fc and
Fs, and a significant number of sites even ignore Fs. Fs in the
vertical gas column within a canopy can be substantial, re-
quiring attention in NEE estimates (Aubinet et al., 2000). Fs
contributes ∼ 60 % to nocturnal turbulent flux underestima-
tion in forest ecosystems with “ideal” topography (McHugh
et al., 2017). During atmospherically stable periods such as
the early morning, sunset, and nighttime transitions, Fs has
an especially significant impact on the NEE. For 30 min
ecosystem carbon flux measurements, ignoring Fs would
cause the NEE to be underestimated (Zhang et al., 2010).
The Fs value typically ranges from −2 to −5 µmol m−2 s−1

in the early morning, and it is about 1–3 µmol m−2 s−1 after
sunset for temperate forests. The effect of Fs on the NEE of
forest ecosystems decreases with an increase in the timescale
(Li et al., 2020). However, neglecting the Fs value can lead
to misunderstanding the CO2 exchange processes, such as
ecosystem respiration and photosynthesis, and their relation-
ship with key control factors such as solar radiation, temper-
ature, and moisture (McHugh et al., 2017). Therefore, it is
imperative not to overlook Fs to ensure more precise NEE
estimates of forest ecosystems, particularly in complex ter-
rain.

Despite the challenges inherent in monitoring forest condi-
tions, understanding the carbon flux of forest ecosystems in
complex terrain or with heterogeneous underlying surfaces

remains an area of great interest. Topography complexity
plays a complex role in the transportation of momentum, en-
ergy, and mass in the atmospheric boundary layer, with direct
impacts on airflow patterns, spatiotemporal characteristics,
and gas concentration fluctuations (Sha et al., 2021; Finnigan
et al., 2020). Differences in airflow along a slope, lateral CO2
discharge downhill, and spatiotemporal variations in soil res-
piration result in the CO2 outflow from slopes and valleys
lagging behind the flat tops of mountains (de Araújo et al.,
2010). At night, under stable atmospheric stratification, cold
air moves from the valley forest canopy to the ground and
then flows to low-lying areas, causing a “carbon pooling” ef-
fect. The gradient of [CO2] below the EC sensors fluctuates
significantly, and the cold-air discharge above the canopy
reduces CO2 storage, leading to an underestimation of for-
est ecosystem respiration (Yao et al., 2011; de Araújo et al.,
2008, 2010).

According to the theoretical definition, Fs estimates are
derived by averaging the [CO2] of the control volume at the
beginning and the end of the EC averaging period (30 min
or 1 h) and dividing this by the EC averaging period (Finni-
gan, 2006). The estimation of Fs at numerous sites frequently
employs a vertical profile system. This approach operates un-
der the assumption that Fs represents the integration of the
time derivative of the vertically determined column-averaged
[CO2]. It is noteworthy that the column-averaged [CO2] may
not accurately represent the average [CO2] of the control vol-
ume in cases of inadequate air mixing, leading to insufficient
sampling. A previous study showed that relying solely on
tower-top measurements can lead to the underestimation of
Fs by up to 34 % compared to using an eight-level profile ap-
proach (Gu et al., 2012). The NEE magnitude with Fs based
on a 2 min [CO2] averaging time window (instantaneous-
concentration approach) was found to be 5 % higher than that
with Fs based on a 30 min window (averaging-concentration
approach), particularly during the nighttime in the growing
season (Wang et al., 2016). A proper measuring system that
improves horizontal representativeness can reduce the bias
in Fs to 2 %–10 % (Nicolini et al., 2018). Most research has
examined how the vertical and horizontal gas concentration
sampling point distribution affects the uncertainty in Fs es-
timation (Bjorkegren et al., 2015; Wang et al., 2016; Yang
et al., 2007, 1999), with a small number of studies examin-
ing the effect of [CO2] sampling frequency on Fs (Finnigan,
2006; Heinesch et al., 2007). Certain studies have experi-
mentally validated new concepts, such as correlating the gas
sampling point concentration with the horizontal distribution
(Nicolini et al., 2018). Some studies have approached the true
value theoretically, such as through defining the control vol-
ume represented by flux measurements (Metzger, 2018; Xu
et al., 2019). However, the number of complete column sam-
ples required to describe the column-averaged [CO2] of each
30 min or 1 h Fs estimate is still undetermined.

Previous studies have emphasized the significance of Fs
to the NEE and the influence of [CO2] dynamics on Fs es-
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timates in complex terrain. To overcome any disparities be-
tween sensors and obtain precise changes in the [CO2] gra-
dient above and below the forest canopy, individual gas ana-
lyzers are extensively utilized to measure [CO2] levels verti-
cally (Siebicke et al., 2011). However, a single gas analyzer
introduces time delays when monitoring multi-point [CO2]
curves. Accurately determining the Fs estimates can be chal-
lenging due to the spatial and temporal resolution of [CO2]
measurements (Wang et al., 2016). The random error in the
Fs estimates using one complete column sample is consid-
erably high due to short-term [CO2] fluctuations (Nicolini et
al., 2018). The calculation of Fs using time-averaged [CO2]
profiling leads to significant information loss at a high fre-
quency, resulting in a substantial underestimation bias. Fur-
thermore, time-averaged [CO2] profiling is employed to rep-
resent the [CO2] average within the control volume due to
resource constraints. This leads to the systematic bias and
random error in Fs estimates being irreconcilable. This is-
sue necessitates further efforts to characterize [CO2] fluctu-
ations across different sites and to demonstrate the mecha-
nisms influencing Fs magnitudes, Fs uncertainties, and their
contributions to NEE observations in complex terrain. Thus,
this study aims to bridge this gap by introducing a statistical
method to estimate Fs values and their uncertainties.

This paper employs an innovative EC experimental setup
with three flux towers (Qingyuan Ker Towers) to monitor
three typical types of temperate forest stands located in com-
plex terrain in northeastern China. This study introduces a
decision-level fusion model based on weighting the underes-
timation bias and random error in Fs to obtain more accurate
results. The objectives of this study were to (1) compare di-
urnal, seasonal, and spatial differences in [CO2] fluctuations,
Fs, and its uncertainty; (2) examine the variation in Fs un-
certainty with different [CO2] averaging time windows; and
(3) investigate the response of Fs and its uncertainty to [CO2]
fluctuations, wind above the canopy, and terrain complex-
ity, quantifying the impact of Fs on the NEE estimates under
these conditions.

2 Materials and methods

2.1 Study site and instrumental setup

This study was conducted in temperate forests in a water-
shed based on Qingyuan Ker Towers (Zhu et al., 2021; Gao et
al., 2020), situated in northeast China (41°50′ N, 124°56′ E).
The region experiences a temperate continental monsoon cli-
mate, with an average annual temperature of 4.3 °C and an-
nual rainfall of 758 mm from 2010 to 2021 (Li et al., 2023).
Qingyuan Ker Towers consist of three 50 m high EC towers
(Fig. 1) that observe a mixed broad-leaved forest (MBF), a
Mongolian oak forest (MOF), and a larch plantation forest
(LPF).

Figure 1. Overview of the study area. Panel (a) depicts the topogra-
phy of the study site, with black curves indicating elevation contours
and marginal distributions represented as a gray graph, averaged
over rows and columns. Panel (b) features an aerial photograph of
Qingyuan Ker Towers captured in the growing season (Gao et al.,
2020).

Basic information regarding Qingyuan Ker Towers in this
study is presented in Table 1. The CPEC310 integrated sys-
tem from Campbell Scientific, comprising an EC155 closed-
path infrared gas analyzer (IRGA) and a CSAT3A sonic
anemometer, was employed to monitor the three-dimensional
wind speed and CO2 and H2O concentrations (10 Hz). An
atmospheric profiling system (AP200, Campbell Scientific,
Inc., Logan, UT, USA) was utilized to measure the CO2 and
H2O concentrations with eight height levels. Each level was
measured for 15 s (with 10 s for the flushing of the manifold
and 5 s for logging the average), leading to a measurement
cycle of 2 min. Due to calibration, filter changes, and rugged
weather, 10 % of CPEC310 data and 3 % of AP200 data were
missed in our study period.

2.2 Calculation of storage flux

Averaging [CO2] in a time window was utilized to calculate
the Fs values, in addition to data on the air pressure, CO2 and
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Table 1. Basic information about Qingyuan Ker Towers.

Forest Mixed broad-leaved Mongolian oak Larch plantation

Experiment period 1 Jan 2020–31 Dec 2021 1 Jan 2020–31 Dec 2021 1 Jan 2020–31 Dec 2021
Elevation (m) 634 669 721
Slope (°) 14.8± 2.1 19.1± 2.9 16.2± 5.3
Canopy height (m) 21.5± 1.8 13.9± 0.6 19.5± 0.6
Leaf area index 3.0± 0.5 3.1± 0.8 3.9± 0.6
Eddy covariance system CPEC310 CPEC310 CPEC310
Eddy covariance sensor height (m) 46 46 36
Atmospheric profiling system AP200 AP200 AP200
Profile heights (m) 0.5, 2, 6, 11, 16, 21, 26, 36 0.5, 2, 6, 11, 16, 21, 26, 36 0.5, 2, 6, 11, 16, 21, 26, 36

H2O molar fractions, and air temperature at different heights
above the ground surface (Finnigan, 2006; Montagnani et al.,
2018; Xu et al., 2019). The molar mixing ratio and mass
mixing ratio are quantities conserved with the variation in
air temperature, air pressure, and water vapor concentration,
whereas the molar fraction is not. This study determined Fs
using the molar mixing ratio obtained from CO2 and H2O
molar fraction observations, applying the ideal gas law and
Dalton’s partial pressure law (Montagnani et al., 2009). The
water vapor molar mixing ratio (χv) in mmol mol−1 is given
by

χv =
cv

1− cv× 10−3 , (2)

where cv is the water vapor molar fraction in mmol mol−1.
The CO2 molar mixing ratio (χc) in µmol mol−1 is given by

χc =
cc

1− cv× 10−3 , (3)

where cc is the CO2 molar fraction in µmol mol−1.
The dry air density (ρd) in mol m−3 is calculated as fol-

lows:

ρd =
P(

T + 273.15
)
×

(
R∗+χv× 10−3

·R∗ ·
Md
Mv

) , (4)

where R∗ is the air gas constant (8.31441 Pa m3 K−1 mol−1),
P is the air pressure in pascals, and T is the average air tem-
perature in degrees Celsius. Md and Mv are the dry air and
water vapor molar mass (18.015 g mol−1), respectively. Md
is calculated from the CO2 molar mixing ratio (Khélifa et al.,
2007):

Md = 28.9635+Mc ·
(
χc× 10−6

− 0.0004
)
, (5)

where Mc is the carbon molar mass (12.011 g mol−1).
The Fs values estimated from eight-level profiles are cal-

culated as follows:

Fs = ρd

h∫
0

dχc

dt
dz =̇ρd

8∑
i=1

1χci1hi

1t
, (6)

where χc is the average CO2 molar mixing ratio and 1hi is
the height represented by each level.

When measuring Fs by sampling CO2 at several levels us-
ing a single analyzer, synchronous observations of the CO2
profile are impractical. Consequently, discrete temporal sam-
pling and time averaging become necessary. To ensure the
temporal alignment of Fs with Fc, the average [CO2] mea-
surements within the control volume at the beginning and
end (t) of an averaging period (30 min) are calculated by av-
eraging over a time window (τ min) as follows:

χci =
2
τ

∑
t−
τ

2
< t ≤ t +

τ

2

χci (t) , (7)

where τ = 4, 8, . . . , 28 min. Theoretically, the time window
should be kept as short as possible in comparison to the tur-
bulence flux averaging period to comply with the principle
of Reynolds decomposition. We use large windows here for
CO2 averaging in an attempt to demonstrate the effects of
different window sizes on the accuracy of storage flux esti-
mates.

2.3 Data analysis

To evaluate the impact of [CO2] fluctuations on Fs measure-
ments and corresponding uncertainty, empirical modal de-
composition (EMD) and Fourier spectrum analysis (FSA)
were used to extract the period and amplitude of fluctuations
in the high-frequency [CO2] time series (10 Hz). EMD was
used to decompose the [CO2] time series into intrinsic mode
functions based on local signal properties (Huang and Wu,
2008), which yielded instantaneous frequencies as functions
of time and allowed for the identification of embedded struc-
tures of eddies. EMD is applicable to nonlinear and nonsta-
tionary processes (Huang et al., 1998). The period and ampli-
tude of [CO2] fluctuations above the forest canopies reflected
the eddy size. Subsequently, the maximum period and ampli-
tude of [CO2] fluctuations in the short term (2 h) were indica-
tive of large eddies under the influence of gusts.

Due to the diurnal and seasonal variability in flux measure-
ments, this study defined the transition period and growing

Atmos. Meas. Tech., 17, 5581–5599, 2024 https://doi.org/10.5194/amt-17-5581-2024



D. Teng et al.: Impact of CO2 concentration fluctuations on NEE estimation 5585

season. The solar elevation angle was used to define the tran-
sition period as 1 h before sunrise (sunset) to 2 h after sunrise
(sunset). The growing degree days (GDDs) were calculated
using the base temperature (Tbase) to determine the beginning
and end of the growing season, and the formula for this was
as follows (McMaster and Wilhelm, 1997):

GDD=
1
2
(Tmax+ Tmin)− Tbase, (8)

where Tbase is 6 °C. Considering the persistent need for tem-
perature levels to support vegetation growth, the fourth day
of the first GDD greater than zero (less than zero) over a span
of 5 consecutive days was defined as the starting (ending)
time of the growing season.

The main data processing and analysis steps are outlined
below:

1. EMD and Fourier spectrum analysis of [CO2] high-
frequency time series were used to extract the maxi-
mum amplitude (Am) and corresponding period (Pm) of
[CO2] fluctuations every 2 h. The data were divided into
two subsets based on Pm, with a cutoff of 150 s.

2. CO2 storage fluxes were calculated for different [CO2]
averaging time windows (τ ), ranging from 4 to 28 min
in increments of 4 min.

3. The standardized major axis (SMA) regression model
(Warton et al., 2012) was used to compare the slope dif-
ferences (bias) between Fs_τ and Fs_28 for different Pm
values and the forest stands. The SMA model offers rou-
tines for comparing parameters a and b among groups
for symmetric problems.

4. The normalized root mean square error (NRMSE) and
slope were used to evaluate the relative error and bias
between Fs_τ and Fs_28. The NRMSE is calculated as

NRMSE= 100×

√√√√√√
∑N
i=1

(
F
(i)
s_τ −F

(i)
s_28

)2

∑N
i=1

(
F
(i)
s_28−Fs_28

)2 , (9)

where i indicates the ith observation.

5. The normalized weighting coefficient (w) of Fs_τ was
estimated based on the NRMSE and slope (Wang et al.,
2020). Details are shown in Appendix A1. Then, using
the decision-level fusion model, Fs_comb was calculated
as

Fs_comb = w
∗

1 ·Fs_4+w
∗

2 ·Fs_8+ . . .+w
∗
7 ·Fs_28. (10)

The decision-level fusion model automatically assigned
weights to Fs based on different [CO2] averaging time win-
dows. Its purpose in this study was to balance the relative er-
ror and bias in Fs estimates caused by [CO2] sampling. The
analysis was performed using the EMD and smatr R pack-
ages (Warton et al., 2012; Huang et al., 1998).

2.4 Uncertainty analysis

To improve the accuracy of estimating the uncertainty in Fs
using an individual tower, this work has made modifications
to the 24 h difference method by extending the sampling time
windows and applying meteorological-condition constraints
(Hollinger and Richardson, 2005). This method trades time
for space to estimate the uncertainty in Fs. To determine the
uncertainty in Fs, expressed as σ(εs), in this case, we com-
pared the observations at moment i within a day to the aver-
age of several observations during a similar period and with
similar meteorological conditions. The specific computations
were as follows:

Fs
(i)
=

1
N

∑
t∈�,λt∈3

I (λt ) ·F
(t)
s , (11)

3=


λt |

√√√√√√√√√
(
u
(λt )
∗ − u

(i)
∗

)2

σu∗
+

(
Ta
(λt )− Ta

(i)
)2

σTa

+

(
H (λt )−H (i)

)2
σH

< δ


, (12)

ε(i)s = F
(i)
s −Fs

(i)
, (13)

εs
(i)
=

1
N

∑
t∈�,λt∈3

I (λt ) · ε
(t)
s , (14)

σ(εs)
(i)
=

√
1
N

∑
t∈�,λt∈3

I (λt ) ·
(
ε(t)s − εs

(i)
)2
, (15)

where � is the moment interval (i− 0.5 h, i+ 0.5 h) within
a certain time window (15 d); I is the indicator function; the
set represented by 3 consisted of elements that meet simi-
lar meteorological conditions, including u∗, air temperature
(Ta), and sensible heat flux (H ); σu∗ , σTa , and σH are the
standard deviation of u∗, Ta, and H , respectively; δ is the
threshold of Euclidean distance; and εs is the random error
in Fs.

After estimating the uncertainty in Fs, this study extended
the work conducted by Richardson et al. (2008) to analyze its
relationship with the magnitude of flux measurements (|Fs|),
[CO2] fluctuations (Am and Pm), u∗, and the terrain com-
plexity index (TCI). A comprehensive description of the TCI
can be found in Appendix A2. This relationship can be ap-
proximated using the following equation:

σ (εs)= β0+
∑
i=1
βi · xi, (16)

where the nonzero intercept term β0 indicates the size of the
random uncertainty as xi approaches 0, which varies with the
observation site, with larger values of β0 indicating greater
uncertainty. The slope term βi indicates the sensitivity of the
size of the random uncertainty in xi , with smaller βi values
indicating a probability distribution of uncertainty closer to
white noise.
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Figure 2. Power spectral density of the intrinsic mode function
(IMF) of above-canopy CO2 concentrations in the Mongolian oak
forest on 2 July 2020 (24 h).

3 Results

3.1 Characterization of [CO2] fluctuation and Fs
variations

The high-frequency [CO2] time series above the forest
canopies were decomposed using EMD, and this was fol-
lowed by spectral analysis to extract the fluctuation period
and amplitude of [CO2] on different timescales. As depicted
in Fig. 2, it became evident that the [CO2] above the canopies
displayed short-term fluctuations with periods ranging from
1 to 10 min, and the amplitude of these fluctuations showed
an increasing trend with longer periods. This observation
strongly suggests the presence of large eddies influenced by
gusts above the canopies, and these eddies were responsible
for the increasing amplitude of [CO2] fluctuations as their
size increased.

To examine the spatiotemporal variations in large eddies,
this study compared the Am and Pm values above canopies
across different forest stands. The analysis utilized data from

Figure 3. The maximum amplitude (Am) (a) and corresponding
period (Pm) (b) of short-term CO2 concentration fluctuations in
different forest stands for seasonal and diurnal variations, where
GD, GN, GT, DD, DN, and DT denote the growing-season day-
time, growing-season nighttime, growing-season transition period,
dormant-season daytime, dormant-season nighttime, and dormant-
season transition period, respectively. Columns with different low-
ercase letters are significantly different (P < 0.05) according to
Fisher’s least significant difference test.

daytime, nighttime, and transition periods in both the grow-
ing and the dormant seasons. The averages of Am and Pm
for the above-canopy [CO2] in the three forest stands ranged
from 1.588 to 136.667 ppm and from 2.313 to 2.784 min, re-
spectively (Table 2). Figure 3 demonstrates significant sea-
sonal and diurnal differences (P < 0.01) in Pm, with higher
values during the daytime in the growing season and lower
values during the daytime in the dormant season. Moreover,
Pm was significantly different (P < 0.01) among different
forest stands during the same time period, with the MBF
stand having the highest values, followed by MOF and then
LPF with the lowest values. During the growing season, the
Am values were significantly higher than those during the
dormant season, with both daytime and nighttime values also
exhibiting significant differences (P < 0.01) among different
forest stands. This observation provides evidence of signifi-
cant spatiotemporal variability in the large eddies influenced
by gusts.

To estimate the uncertainty in Fs using an individual tower,
a comprehensive analysis of the diurnal and seasonal dynam-
ics, as well as the functional relationship between Fs and
u∗, was necessary. Significant diurnal variations and seasonal
differences in Fs were observed across the three forest stands,
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Table 2. The means of Am in parts per million (ppm) and Pm in seconds (s) for three forest stands in different periods.

Variable Tower Growing season Dormant season

site DT1 NT2 TP3 DT NT TP

Am
4 MBF6 57.932 139.667 136.717 2.219 5.212 4.944

(ppm) MOF7 36.160 57.945 55.777 2.699 5.175 4.637
LPF8 52.688 58.816 60.147 1.588 2.985 2.456

Pm
5 MBF 154.563 167.024 164.824 158.449 151.428 158.121

(s) MOF 151.986 160.633 159.146 153.091 147.491 153.274
LPF 149.003 143.950 145.696 143.458 138.794 142.009

1 DT represents daytime. 2 NT represents nighttime. 3 TP represents the transition period. 4 Am represents the
maximum amplitude of short-term CO2 concentration fluctuations. 5 Pm represents the corresponding period of
maximum amplitude. 6 MBF represents mixed broad-leaved forest. 7 MOF represents Mongolian oak forest. 8 LPF
represents larch plantation forest.

Figure 4. Median diurnal variation in CO2 storage flux (Fs) based on 28 min CO2 concentration averaging time windows in the three forest
stands during different seasons. GS indicates the growing season and a short period of maximum amplitude (Pm), GL indicates the growing
season and a high Pm, DS indicates the dormant season and a low Pm, and DL indicates the dormant season and a high Pm (the L in the
abbreviations is derived from long and the S from short).

as shown in Fig. 4. During the growing season, the median
diurnal variation in Fs for the three forest stands ranged from
−2.960 to 2.647 µmol m−2 s−1, whereas during the dormant
season, it ranged from −1.306 to 1.012 µmol m−2 s−1. Com-
paring the extent of Fs diurnal variation among the three for-
est stands, MBF exhibited the largest extent during the grow-
ing season, while the extents of the three forest stands were
similar during the dormant season. Notably, it was observed
that the amplitudes for higher Pm values were greater than
those for lower Pm values. This observation indicates that
the larger the eddies, the greater the magnitude of Fs.

Furthermore, a u∗ threshold value was identified for the
variation in Fs with u∗ during the daytime in both the dor-
mant and the growing seasons (Fig. 5). When u∗ fell be-
low the u∗ threshold, the magnitude of Fs (|Fs|) decreased
with increasing u∗. Conversely, when u∗ exceeded the u∗
threshold, |Fs| tended to remain relatively constant. Notably,
a maximum point for |Fs| was observed when u∗ was less
than 0.5 m s−1 during the growing season, whereas this was
not the case during the dormant season. This phenomenon

was particularly evident during the nighttime and transition
periods of the growing season, when |Fs| exhibited an initial
increase followed by a subsequent decrease with u∗. These
observations strongly indicate that the effect of the turbulent
mixing strength on |Fs| over complex terrain is nonlinear and
exhibits diurnal and seasonal differences.

3.2 Effect of [CO2] fluctuations on Fs and its
uncertainty

To investigate the influence of the [CO2] fluctuation periods
on the error in Fs measurement, this study computed the di-
urnal average of the standard deviation σ(εs) of the 30 min
Fs uncertainty (εs) separately for different Pm values and the
seasons. The overall distribution of εs showed a non-normal
distribution with a high peak (kurtosis > 2 and P < 0.05;
results presented in Tables S1–S4 in the Supplement). The
daily variation curves of σ(εs) in various [CO2] averaging
time windows are presented in Fig. 6. It was observed that the
diurnal-variation range of σ(εs) was higher during the grow-
ing season compared to the dormant season, regardless of the
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Figure 5. Magnitudes of CO2 storage flux (|Fs|) determined with different CO2 concentration averaging time windows as a function of the
friction velocity (u∗) and moving-block averages from all 30 min data for the years 2020–2021. Dashed and solid lines indicate the dormant
and growing seasons, respectively.

Pm lengths, indicating a seasonal difference independent of
Pm. Additionally, during the growing season, both MBF and
MOF demonstrated evident diurnal variation in σ(εs), with
the peak occurring at night and the trough during the day-
time. The diurnal-variation range of σ(εs) varied across the
three forest stands, with MBF exhibiting the largest ampli-
tude.

Furthermore, a significantly positive correlation was ob-
served between σ(εs) and |Fs| (P < 0.01), with site, sea-
sonal, and diurnal differences (Fig. 7). The relationship be-
tween σ(εs) and |Fs| was characterized by intercepts and
slopes ranging from 1.99 to 2.82 µmol m−2 s−1 and from
0.24 to 0.28, respectively (results presented in Tables S5–
S6). Both decreased as the [CO2] averaging time window
increased, with the growing season exhibiting larger values
compared to the dormant season (results shown in Tables S5
and S6). These findings suggest that increasing the [CO2]
averaging time window results in a reduction in the random
error in Fs and the correlation coefficient between σ(εs) and
|Fs|. This indicates a decrease in variability in σ(εs) and be-
havior similar to white noise.

To assess the impact of [CO2] fluctuations on the er-
ror and bias in Fs measurement, this study compared the
NRMSE and slopes of Fs based on different [CO2] aver-
aging time windows, with reference to the baseline Fs_28,
across various Pm values, time periods, and sites. As shown
in Fig. 8, the NRMSE decreased and approached conver-

gence as the [CO2] averaging time windows increased. Dur-
ing both the daytime and the nighttime in the growing season,
the NRMSE corresponding to higher Pm was greater than
that corresponding to lower Pm, while the opposite trend was
observed during the dormant season. Additionally, the longer
the [CO2] averaging time window, the greater the relative un-
derestimation of Fs.

A comparison of slopes between Fs_4 and Fs_28 in the
three forest stands revealed interesting patterns, as depicted
in Fig. 9. During the growing season, the slopes correspond-
ing to the lower Pm of [CO2] fluctuations were consistently
lower than those for the higher Pm, indicating that the effect
of Pm on Fs uncertainty decreased with increasing [CO2] av-
eraging time windows. However, for the MBF stand (Fig. 9d
and g), the slopes corresponding to the lower Pm of [CO2]
fluctuations during the dormant-season nighttime were actu-
ally greater than those for the higher Pm, primarily due to
diurnal variations in the daily dynamics of Fs. Overall, the
influence of Pm on Fs uncertainty decreased with increasing
[CO2] averaging time windows. This suggests that averaging
[CO2] reduced the effect of gusts on the random uncertainty
in estimating Fs but led to a systematic underestimation of
Fs.

To analyze the effect of [CO2] fluctuations on |Fs| in com-
plex terrain, this study developed a multiple linear regres-
sion model, considering the interaction effects of turbulent
mixing and terrain complexity on |Fs|, as shown in Fig. 10.
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Figure 6. Diurnal variations in the random uncertainty (σ(εs)) of
CO2 storage flux (Fs) errors (εs) in different CO2 concentration
([CO2]) averaging time windows and their seasonal differences,
where GS indicates the growing season and a short period of maxi-
mum amplitude (Pm) of [CO2] fluctuations, GL indicates the grow-
ing season and a high Pm, DS indicates the dormant season and a
low Pm, and DL indicates the dormant season and a high Pm (the L
in the abbreviations is derived from long and the S from short).

Am exhibited a significant positive correlation with |Fs| in
all time periods (P < 0.05). Conversely, Pm showed a signifi-
cant negative correlation with |Fs| during the dormant-season
daytime, the growing-season daytime, and the transition pe-
riods (P < 0.05). Additionally, their correlation coefficient
decreased with increasing τ . In Fig. 10d and e, a u∗ thresh-
old is observed during the growing-season nighttime. When
u∗ was below the threshold, higher TCI values resulted in
smaller |Fs| values, whereas when u∗ was above the thresh-
old, higher TCI values led to larger |Fs| values. During the
growing-season nighttime and transition periods, u∗ showed
a significant negative correlation (P < 0.05) with |Fs|, and
the correlation coefficient decreased with increasing TCI val-
ues. These observations suggest that the effect of turbulent
mixing on the |Fs| uncertainty is regulated by terrain com-
plexity.

A multiple linear regression model was used to analyze
the effect of [CO2] fluctuations on the random uncertainty in
Fs, σ(εs), in complex terrain. This model considered the in-
teraction effects of [CO2] fluctuations and terrain complexity
on σ(εs), as shown in Fig. 11. As evident from Fig. 11a and

e, Am exhibited a significant positive correlation (P < 0.05)
with σ(εs) during both the dormant season’s nighttime and
the growing season. Throughout the transition period of the
growing season, Pm displayed a significant negative correla-
tion with σ(εs) (P < 0.05). The magnitude of these correla-
tion coefficients decreased with the increasing [CO2] aver-
aging time windows. During the transition period of the dor-
mant season, a TCI threshold was observed, with Pm show-
ing a significant positive correlation (P < 0.05) with σ(εs)

when the TCI was below the threshold and a significantly
negative correlation (P < 0.05) with σ(εs) when the TCI ex-
ceeded the threshold (Fig. 11b and f). The u∗ value showed a
significantly negative correlation with σ(εs) during the day-
time and transition periods of the growing season (P < 0.05),
while in other time periods, u∗ was significantly positively
correlated with σ(εs) (P < 0.05). |Fs| demonstrated a signif-
icant positive correlation with σ(εs) (P < 0.05) in all time
periods, with its correlation coefficient being greater during
the growing season than during the dormant season. These
observations suggest that the relationship between the ran-
dom uncertainty in Fs and [CO2] fluctuations is moderated
by topographic complexity. Increasing the [CO2] averaging
time window reduces the effect of [CO2] fluctuations on the
random uncertainty in Fs.

3.3 Effect of CO2 storage flux uncertainty in NEE
observations

The 30 min Fs_comb was obtained by weighting the bias and
random error in Fs using different [CO2] averaging time win-
dows and Pm values. This study then focused on the mag-
nitude of Fs_comb in relation to the Fc magnitude and its
diurnal, seasonal, and site variations. To assess the signifi-
cance of Fs in NEE observations, the relative contribution
ratio of Fs_comb magnitude (|Fs_comb|/(|Fc|+|Fs_comb|)) was
employed. |Fs_comb|/(|Fc| + |Fs_comb|) showed a decreasing
trend towards convergence with increasing u∗ (Fig. 12). On
average, |Fs_comb|/(|Fc| + |Fs_comb|) ranged from 17.2 % to
82.0 %, with a higher value during the dormant season com-
pared to the growing season. This indicated that as turbu-
lence intensity increased, the contribution of Fs to the NEE
in forests decreased to a constant value. Nevertheless, even
under strong turbulence intensity, Fs still played a significant
role in the NEE observations of forests in complex terrain.

As indicated in Table 3, both Pm and the TCI exhib-
ited a significant positive correlation with |Fs_comb|/(|Fc| +

|Fs_comb|) (P < 0.05), while both Am and u∗ showed a sig-
nificant negative correlation with |Fs_comb|/(|Fc|+|Fs_comb|)

(P < 0.05). Notably, seasonal variations in correlation co-
efficients were observed. The correlation between u∗ and
|Fs_comb|/(|Fc| + |Fs_comb|) was more pronounced during
both the dormant season’s transition period and the growing
season, and it decreased with increasing TCI values during
the dormant season’s daytime and nighttime.
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Figure 7. Random uncertainty σ(εs) in CO2 storage flux (Fs) errors (εs) in different CO2 concentration ([CO2]) averaging time windows
as a function of the Fs magnitude for mixed broad-leaved forest, Mongolian oak forest, and larch plantation forest during the growing and
dormant seasons. GS indicates the growing season and a short period of maximum amplitude (Pm) of [CO2] fluctuations, GL indicates the
growing season and a high Pm, DS indicates the dormant season and a low Pm, and DL indicates the dormant season and a low Pm (the L in
the abbreviations is derived from long and the S from short).

Table 3. Linear regression coefficients of the relative contribution ratio of Fs_comb magnitudes to NEE observations (|Fs_comb|/(|Fc| +
|Fs_comb|)) – driving-factor relationships for the six time periods.

Time period β0 ln(Pm)
g ln(Am)

h u∗
i TCIj u∗ : TCI R2

Total 0.292∗∗∗ 0.048∗∗∗ −0.037∗∗∗ −0.334∗∗∗ 0.790∗∗∗ −1.018∗∗∗ 0.278∗∗∗

GDa 0.299∗∗∗ 0.016 −0.041∗∗∗ −0.183∗∗∗ −0.293∗ 0.239 0.158∗∗∗

GNb 0.370∗∗∗ 0.029 −0.023∗∗∗ −0.386∗∗∗ −0.038 0.081 0.103∗∗∗

GTc 0.161 0.060∗∗∗ −0.014∗∗∗ −0.182 1.056∗∗∗ −1.754 0.186∗∗∗

DDe 0.393∗∗∗ 0.011 −0.020∗∗∗ −0.154∗ 0.306 −0.153 0.040∗∗∗

DNd 0.661∗∗∗ 0.012 −0.026∗∗∗ −0.443∗∗∗ −0.035 0.399 0.088∗∗∗

DTf 0.495∗∗∗ 0.017 −0.036∗∗∗ −0.294∗∗∗ 0.564 −0.852 0.149∗∗∗

a GD represents the growing season’s daytime. b GN represents the growing season’s nighttime. c GT represents the growing season’s
transition period. d DD represents the dormant season’s daytime. e DN represents the dormant season’s nighttime. f DT represents the
dormant season’s transition period. g Pm represents the corresponding period of maximum amplitude. h Am represents maximum
amplitude. i u∗ represents friction velocity. j TCI denotes the terrain complexity index.
∗∗∗ P < 0.001. ∗∗ P < 0.01. ∗ P < 0.05.

To evaluate the impact of Fs_comb on NEEobs (Fc+Fs),
we further evaluated the slope (with intercept terms forced to
zero) and NRMSE of Fc+Fs_comb compared to Fc+Fs_28, as
presented in Tables S7 and S8. Fs_28 in the three forest stands
was underestimated by 28.6 %–33.3 % compared to Fs_comb,

and the NRMSE of Fs_comb versus Fs_28 ranged from 59.2 %
to 67.2 %. NEEobs with Fs_28 was underestimated by 1.9 %–
4.3 % compared to NEEobs with Fs_comb. The NRMSE of
NEEobs with Fs_comb versus Fs_28 in the three forest stands
ranged from 16.0 % to 25.4 %. The analysis suggested that
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Figure 8. Seasonal and diurnal differences in the normalized root mean square error (NRMSE) of CO2 storage flux (Fs) versus the respective
Fs_28 values for different CO2 concentration ([CO2]) averaging time windows. GST indicates the growing season and does not distinguish
the period of maximum amplitude (Pm) of [CO2] fluctuations, GSS indicates the growing season and a low Pm, GSL indicates the growing
season and a high Pm, DST indicates the dormant season and does not distinguish Pm, DSS indicates the dormant season and a low Pm, and
DSL indicates the dormant season and a high Pm (the L in the abbreviations is derived from long and the S from short).

combining the Fs values based on different averaging [CO2]
time windows in the decision-level fusion model could suc-
cessfully weight potential underestimation bias and random
uncertainties.

The influences of Fs on the relationship between NEE ob-
servations and meteorological drivers indicated the effect of
uncertainty in Fs estimates on NEE observations. Our anal-
ysis showed that the correlations between NEE observations
derived from Fc+Fs and both photosynthetic photon flux
density (PPFD) and air temperature are lower compared to
those obtained from Fc alone (Figs. S1 and S2 in the Sup-
plement). Additionally, the estimated light-saturated net CO2
assimilation (Amax) is greater when NEE observations are es-
timated by Fs+Fc, as opposed to when the NEE is estimated
solely by Fc. This suggests that Fs significantly affects the
daytime NEE and can correct the estimation of Amax and
related parameters. The relationship between NEE observa-
tions and PPFD is influenced by the size of the averaging
time window the Fs measurement. A larger averaging win-
dow results in less random uncertainty in the Fs estimation,
thereby increasing the correlation between NEE observations
and meteorological drivers, including PPFD and Ta.

4 Discussion

4.1 Short-term [CO2] fluctuations above the forest
canopy and Fs estimates in complex terrain

Compared to flat and uniform underlying surfaces, complex
terrain and heterogeneous canopies modify the trajectory,
speed distribution, and direction of the airflow. Increased
wind speeds and shifting wind directions also increase tur-
bulent activity above the canopy, facilitating the mixing and
dispersion of CO2. This study found that short-term fluctu-
ations in [CO2] above the canopy exhibited a range of 1 to
10 min (Fig. 2). These fluctuations were characterized by an
average Pm ranging from 2.313 to 2.784 min (Table 2). Our
results are in line with previous research using wavelet anal-
ysis, which reported fluctuation periods of [CO2] within and
above the forest canopy to be between 14 and 116 s (Cava
et al., 2004). These previous observations of the canopy
waves during periods of extreme atmospheric stability (when
z/L� 1) exhibited a dominant period of 1–2 min, which is
consistent with our findings. The period of [CO2] fluctua-
tions was found to be predominantly influenced by turbulent
fluxes and the residence time of CO2 within the canopy. This

https://doi.org/10.5194/amt-17-5581-2024 Atmos. Meas. Tech., 17, 5581–5599, 2024



5592 D. Teng et al.: Impact of CO2 concentration fluctuations on NEE estimation

Figure 9. Seasonal and diurnal differences in the slope of CO2 storage flux (Fs) versus Fs_28 for the different CO2 concentration ([CO2])
averaging time windows. GST indicates the growing season and does not distinguish the period of maximum amplitude (Pm) cases, GSS
indicates the growing season and a low Pm, GSL indicates the growing season and a high Pm, DST indicates the dormant season and does
not distinguish Pm, DSS indicates the dormant season and a low Pm, and DSL indicates the dormant season and a high Pm (the L in the
abbreviations is derived from long and the S from short).

indicated a potential correlation between Pm and the resi-
dence time of CO2 within the canopy. Fuentes et al. (2006)
employed a Lagrangian model and calculated the residence
time of air parcels released near the ground and in the canopy,
finding values ranging from 3 to 10 min and from 1 to 10 min,
respectively. Similarly, Edburg et al. (2011) used the standard
deviation of [CO2] averages to determine the CO2 residence
time at different locations, including at the ground, within
the canopy, and in their gas mixtures, yielding values of 8.6,
3.6, and 5.6 min, respectively. The results of these simulation
experiments are consistent with our study, further supporting
the association between [CO2] fluctuations above the forest
canopy and CO2 residence time.

Tree density and canopy structure also play a role in in-
fluencing the air parcel residence time; on flat terrain, the
air parcel residence time correlates with u∗ (Gerken et al.,
2017), and an increase in the vegetation leaf area leads to
longer residence times when turbulence is not fully penetra-
tive. During the growing season, forests in our study site ex-
hibit a higher leaf area index and greater canopy densities
than during the dormant season (Li et al., 2023), resulting
in higher Pm values of short-term [CO2] fluctuations above
the canopy (Fig. 3). Additionally, at night, stable atmospheric

conditions lead to longer residence times due to suppressed
turbulent mixing, resulting in relatively high nighttime Pm
values compared to daytime and transition periods (Fig. 3).

Complex terrain introduces complex changes into airflow
structures, including gravity-induced waves, drainage, and
nonlinear waves induced by single gusts, leading to dramatic
[CO2] fluctuations. These dynamics contribute to uncertain-
ties in estimating Fs. At night, the difference between in-
coming and outgoing longwave radiation over the valley soil
surface and vegetation canopy gives rise to radiative cool-
ing. Subsequently, the air near the soil surface experiences a
gravity-induced downslope acceleration, potentially causing
katabatic flow. As inertia-driven upslope winds are halted by
katabatic acceleration, a local shallow drainage flow is es-
tablished, reaching a quasi-equilibrium state approximately
1.5 h after sunset (Nadeau et al., 2013). Under stable atmo-
spheric conditions, even gentle slopes (around 1°) can gen-
erate strong gravity-driven waves (Belušić and Mahrt, 2012).
Consequently, advection may complicate the interpretation
of nighttime EC measurements at certain relatively gentle
sites, but this complexity is not evident during daytime mea-
surements (Leuning et al., 2008). Advection plays a role in
depleting the CO2 accumulated within the canopy, resulting
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Figure 10. Linear regression coefficients of the CO2 storage flux
(Fs) magnitude – driving-factor relationships for the seven CO2
concentration ([CO2]) averaging time windows. The predictors of
the multiple linear models are (a) the logarithm of maximum am-
plitude of [CO2] fluctuations (ln(Am)), (b) the logarithm of the cor-
responding period of maximum amplitude (ln(Pm)), (c) the terrain
complexity index (TCI), (d) the friction velocity (u∗), and (e) the
interaction term of the TCI and u∗. (f) β0 represents the intercept
term.

in lower Fs fluxes and establishing an inverse relationship
between storage and advection (van Gorsel et al., 2011). The
occurrence of larger Fs values for high Pm values suggests
weaker advection compared to low Pm values (Fig. 4). In our
study, we observed that the Fs magnitude was relatively large
during nighttime and transition periods, while it was smaller
during the daytime (Fig. 4), which is consistent with the find-
ings reported by Wang et al. (2016).

The terrain unevenness and the complexity of canopy
structure significantly affect the airflow divergence in the at-
mospheric boundary layer. This results in weakened air cir-
culation within the canopy and spatial variation in the pat-
terns and extent of airflow separation (Grant et al., 2015).
During nighttime and transition periods in a closed canopy,
the turbulent coupling state above and below the canopy
gradually decouples, eventually reaching complete decou-
pling as u∗ decreases (Fig. 5). However, this decoupling does
not lead to stable stratification within the canopy. Despite
the occurrence of decoupling and advection in the closed

Figure 11. Linear regression coefficients of the random uncertainty
in CO2 storage flux (σ(εs)) – driving-factor relationships deter-
mined with Eq. (11) for the seven CO2 concentration ([CO2]) av-
eraging time windows. The predictors of the multiple linear models
are (a) the logarithm of maximum amplitude of [CO2] fluctuations
(ln(Am)), (b) the logarithm of the corresponding period of maxi-
mum amplitude (ln(Pm)), (c) the friction velocity (u∗), (d) the ter-
rain complexity index (TCI), (e) the interaction term of the TCI and
ln(Am), (f) the interaction term of the TCI and ln(Pm), and (g) the
magnitude of storage flux (|Fs|). (h) The intercept term is repre-
sented by β0.

canopy, waves are unlikely to exist within the canopy itself
(van Gorsel et al., 2011). As a result, a consistent trend in
the variation in Fs with τ is observed across the three for-
est stands during the growing season, independent of Pm
(Fig. 9). Conversely, in an open canopy where waves are
present, the observations of Fs become more complex. This
complexity could be the primary reason for the variation in
Fs with [CO2] averaging time windows differing between the
three forest stands for low Pm values during the dormant-
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Figure 12. Relative contribution ratio of the CO2 storage flux magnitude (|Fs_comb|/(|Fc| + |Fs_comb|)) determined by the decision-level
fusion model as a function of the friction velocity (u∗) moving-block averages from all 30 min data for the years 2020–2021. GD represents
the growing season’s daytime, GN represents the growing season’s nighttime, GT represents the growing season’s transition period, DD
represents the dormant season’s daytime, DN represents the dormant season’s nighttime, and DT represents the dormant season’s transition
period.

season daytime (Fig. 9). The presence of waves introduces
additional variability into the measurements, leading to dif-
ferences in Fs estimates based on different [CO2] averaging
time windows in these particular conditions.

4.2 Uncertainty in forest ecosystem Fs measurement in
complex terrain

The random uncertainty in Fs shares similarities with NEE
estimation. For example, the magnitude of Fs measurements
is positively correlated with the standard deviation of random
uncertainty in Fs. Additionally, the overall distribution of
Fs measurements exhibits a non-Gaussian distribution with
a high peak, aligning with the statistical properties of NEE
uncertainty (Richardson et al., 2006, 2008). The uncertainty
in the storage term depends a great deal on the setup used,
together with the biological activity of the ecosystem and the
height of the control volume. In addition, various factors con-
tribute to the uncertainty in Fs estimates, including the flux
measurement footprint variations, sampling frequency, the
spatial sampling resolution of CO2 and H2O concentrations,
and instrumental measurement accuracy. The accuracy and
precision requested for the CO2 and H2O concentration mea-
surements are ±1 µmol mol−1 and ±1 mmol mol−1, respec-
tively (Montagnani et al., 2018). The uncertainty arising from
variations in the flux measurement footprint is considerable,
typically on the order of tens of percent, which is an order of
magnitude higher than typical sensor errors (Metzger, 2018).
AP200 adopts buffer volumes to mix the gas. The LI-850 an-
alyzer integrated within AP200 exhibits a sensitivity to water
vapor of less than 0.1 µmol CO2 per mmol mol−1 H2O and a
sensitivity to CO2 of less than 0.0001 mmol mol−1 H2O per
µmol CO2. Efforts to reduce random errors in [CO2] origi-
nating from pressure fluctuations include adding buffer vol-
umes before IRGA pumping tests (Marcolla et al., 2014). The
buffer volumes are fully mixed during gas extraction, and
a weighted average of [CO2] instantaneous measurements

is obtained to minimize the sampling error for each level’s
[CO2] measurement (Cescatti et al., 2016).

The Fs estimates can be influenced by singular eddies that
penetrate the canopy (Finnigan, 2006). Accurate calculation
of Fs requires considering the period of [CO2] fluctuations
with the eddy coherence structure. The spectral energy of the
Fs time series is primarily concentrated between 0.001 and
0.2 Hz (500 and 5 s, respectively). However, even with sam-
pling frequencies of 2 Hz and below, significantly lower Fs
values are obtained (Bjorkegren et al., 2015). The Nyquist–
Shannon sampling theorem dictates that accurate measure-
ments of [CO2] require a sampling period that is no longer
than half the period of [CO2] fluctuations. Consequently, to
monitor short-term changes in [CO2], measurements must
be taken over a period that is no longer than half of the pe-
riod corresponding to the maximum amplitude (or major en-
ergy) of [CO2] fluctuations. In this study, the average Pm for
[CO2] fluctuations fell within the range of 2.313–2.784 min
(Table 2). Therefore, it is crucial to ensure that the sampling
period for [CO2] does not exceed 1.256 to 1.392 min, which
corresponds to half the average Pm range. Monitoring fluc-
tuations in Pm for less than 4 min during a 2 min monitoring
period of [CO2] presents a significant challenge. This is a pri-
mary reason for the systematic bias and random error in the
Fs estimate with a single-profile system being irreconcilable
(Wang et al., 2016). Short-term [CO2] fluctuations are mainly
influenced by boundary-layer turbulence, and sampling er-
rors in incomplete fluctuation cycles are superimposed with
the real advection flux (anisotropy) dispersion in complex
terrain (van Gorsel et al., 2011). This substantially increases
the random uncertainty in Fs based on shorter [CO2] averag-
ing time windows (Figs. 6 and 8). As a result, the deviation
of NEE estimates from the actual value expands.

Fluxes in heterogeneous regions are significantly higher
than in uniform regions. The energy transfer from the ground
surface to large eddies occurs primarily in areas with pro-
nounced heterogeneity, and this energy distribution is uneven
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across the region (Aubinet et al., 2012). Once large-scale
eddies acquire energy, their cascading of energy to smaller-
scale eddies is influenced by topographic features, leading to
variations in these smaller-scale eddies along different flow
streams (Chen et al., 2023). In complex terrain, the bidirec-
tional airflow within forests along slopes can cause the de-
coupling of soil CO2 fluxes from EC measurements above
the forest canopy (Feigenwinter et al., 2008; Aubinet et al.,
2003), leading to significant errors in CO2 flux measure-
ments. Forest soil serves as the primary source of CO2 gas,
and regions of high flux over complex terrain act like chim-
neys, transporting air parcels from the soil surface within
forests (Chen et al., 2019). By increasing the number of gas
concentration sampling points near the ground, the horizon-
tal representativeness can be enhanced, thereby reducing the
bias in the estimation of Fs (Nicolini et al., 2018). In situa-
tions where turbulence is not well developed and CO2 mixing
is inadequate, the trend of Fs with turbulence intensity aligns
with that of advective fluxes, which is the opposite to that of
turbulent fluxes (McHugh et al., 2017). The temporal dynam-
ics and amplitudes of Fs changes are influenced by topogra-
phy complexity and wind conditions above the forest canopy
(Fig. 10). Locations with more complex and sloping topog-
raphy at the flux tower are more likely to generate advective
fluxes that may not be easily observed at a single point.

Estimating landscape CO2 fluxes in complex terrain solely
based on measurements from a single flux tower can intro-
duce significant errors and biases that are not acceptable. The
magnitude of these errors in Fs estimates is dependent on the
height of the forest canopy and the endogenous source/sink
(Chen et al., 2020). To mitigate errors and biases associated
with estimating Fs in complex terrain, we employed a re-
gression modeling approach using the decision-level fusion
model. This method involves computing a weighted average
of Fs based on different [CO2] averaging time windows, ef-
fectively reducing errors and biases in the estimation of Fs
(see Table 5). In fact, from the definition of storage flux, it
can be seen that weighting the storage flux essentially means
weighting the [CO2] in the averaging time window, which
in turn means replacing spatial sequences with temporal se-
quences for weighting. The weighting coefficients used to
construct the model were based on the relative errors and bi-
ases in Fs estimation, with the weighting coefficient decreas-
ing as the represented moment’s length increased. To obtain
more accurate estimates of forest ecosystem Fs in complex
terrain, further research should focus on understanding the
spatiotemporal patterns and dynamics of [CO2].

5 Conclusions

This study investigated the impact of short-term [CO2] fluc-
tuations on the estimation of Fs in temperate forest ecosys-
tems within complex terrain. Additionally, it examined the
Fs uncertainty and the contribution of Fs to the NEE using

data from three flux towers. To enhance Fs uncertainty es-
timation, statistical sampling techniques were applied based
on an individual-tower approach.

The results highlighted the significance of considering
multiple time windows for averaging [CO2] when estimat-
ing Fs, as [CO2] above the forest canopies exhibited fluctu-
ations with periods ranging from 1 to 10 min. Diurnal, sea-
sonal, and spatial variations were observed in the amplitude
and periodicity of [CO2] fluctuations, highlighting the need
for thoughtful sampling strategies. The use of individual gas
analyzers to sample the CO2 in the control volume was in-
adequate, leading to systematic biases and random errors in
the Fs estimates. Increasing [CO2] averaging time windows
mitigated the effect of [CO2] fluctuations on Fs estimates,
reducing both their magnitude and their uncertainty.

The study also revealed that the uncertainty in Fs followed
a non-normal distribution, with its standard deviation pos-
itively correlated with Fs magnitude, which has important
implications for quality control. To improve Fs estimation,
a decision-level fusion model was introduced, integrating Fs
estimates from multiple [CO2] averaging time windows, ef-
fectively reducing the impact of short-term [CO2] fluctua-
tions while considering underestimation bias and random er-
rors. The contribution of Fs to the NEE exhibited diurnal,
seasonal, and spatial variations associated with u∗, contribut-
ing to the NEE observations at rates ranging from 17.2 % to
82.0 % depending on the turbulent mixing and terrain com-
plexity. The influence of terrain complexity on the relation-
ship between [CO2] fluctuations, turbulent mixing, and the
contribution of Fs to the NEE was also evident. The findings
from the three flux towers allowed for the generalization of
these results beyond the study site. These insights provide
crucial scientific support for the practical application of the
eddy covariance technique and advance our understanding of
accurately estimating the NEE in forest ecosystems in com-
plex terrain.

Appendix A

A1 The weight parameters of the decision-level fusion
model

For each 30 min CO2 storage flux (Fs) estimate based on the
CO2 concentration ([CO2]) averaging time window (τ ), the
weight in the decision-level fusion model can be obtained by
weighting the random uncertainty and bias in Fs_τ .

The weight of the random uncertainty for Fs_τ is expressed
as follows:

wτ =

1
σ(ετ )∑
j

1
σ(εj )

, (A1)

where σ(ετ ) is the random uncertainty in Fs_τ , qualified as
the standard deviation.
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The weight of the bias for Fs_τ is expressed as follows:

Wτ =
Kτ∑
jKj

, (A2)

where Kτ is the slope between Fs_τ and Fs_28.
Ultimately, the weight of Fs_τ in the decision-level fusion

model can be calculated using the following equation:

w∗τ = rwτ + (1− r)Wτ , (A3)

where r represents the proportion of the weight of random
uncertainty.

A2 Complex-terrain index

This study employed a novel descriptor called the terrain
complexity index (TCI) to quantify the complexity of the
three-dimensional terrain. For a given unit area, the TCI
equation can be expressed as follows:

TCI= (1−Pd cosαd)
(

1−Z−1
d

)
(Df− 2)−

H
ln(12) , (A4)

where Pd represents the volume of terrain above the lowest
elevation of an area unit (Vu) divided by the product of its
largest vertically projected area (Sv) and the edge length of
the side of the area unit (d), expressed as Pd =

Vu
Svd

; Pd is
defined as 1 when Sv is 0. Given Vu, an increase in Sv cor-
relates with a higher degree of terrain complexity. Notably,
Pd is defined as 1 when the terrain volume is 0 or when
the terrain surface of the area unit is parallel to the hori-
zontal plane and is smooth and homogeneous. αd indicates
the slope of the area unit. Zd denotes the terrain roughness,
which is defined as the ratio of the terrain surface area to
the projected horizontal plane (Loke and Chisholm, 2022).
The value of Zd was in the range of [1, +∞). The larger
the Zd, the more complex the terrain. Df is the fractal di-
mension of the terrain surface area, which ranged from 2 to
3 and describes the complexity in the spatially self-similar
structure of the local surface within the area unit and the
area unit surface (Mandelbrot, 1967; Taud and Parrot, 2005).
Employing the terrain surface area, the box-counting method
was used to estimate the fractal dimension of the unit area.
H represents the Shannon–Wiener index and is expressed as

H =−
n∑
i=1
Pi ln(Pi), capturing the uniformity of the spatial

distribution of the pixel aspects within the area unit (Brown,
1997). When the aspect of each pixel is divided into 30° seg-
ments, Pi denotes the proportion of the ith type of pixel as-
pects within the area unit and n is the total number of pixel
aspect types within the area unit. A largerH indicates a more
complex terrain. When the number of pixel aspect types in
the area unit is kept constant, it is essential to recognize that
greater uniformity in the distribution of all pixel aspects in
the area unit results in a larger H . Similarly, when the uni-
formity of the distribution of pixel aspects in the area unit is

kept constant, a larger H is achieved with an increase in the
observation of the number of pixel aspect types.

To quantify the terrain complexity of the underlying sur-
face around the flux towers, we computed the quartiles of
the TCI for all area units within a sector (divided by 30°)
with a radius of 380 m. A weighted geometric mean was em-
ployed to construct TCIs, which describes the statistical dis-
tribution of the TCI of the sector. TCIs represents the topo-
graphic complexity of the sector and is calculated using the
following equation:

TCIs = (TCI5TCI25TCI50TCI75TCI95)
1
5 , (A5)

where TCI5, TCI25, TCI50, TCI75, and TCI95 are the quar-
tiles of 5 %, 25 %, 50 %, 75 %, and 95 %, respectively. The
TCIs values range from 0 to 1, with higher values indicating
greater terrain complexity.
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