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Abstract. In satellite remote sensing applications, enhanc-
ing the precision of level 2 (L2) algorithms relies heavily
on the accurate estimation of the surface reflectance across
the ultraviolet (UV) to visible (VIS) spectrum. However, the
mutual dependence between the L2 algorithms and the sur-
face reflectance retrieval poses challenges, necessitating an
alternative approach. To address this issue, many satellite al-
gorithms generate Lambertian-equivalent reflectivity (LER)
products as a priori surface reflectance data; however, this
often results in an underestimation of these data. This study
is the first to assess the applicability of background surface
reflectance (BSR), derived using a semi-empirical bidirec-
tional reflectance distribution function (BRDF) model, in an
operational environmental satellite algorithm. This study pi-
oneered the application of the BRDF model to hyperspectral
satellite data at 440 nm, aiming to provide more realistic pre-
liminary surface reflectance data. In this study, the Geosta-
tionary Environment Monitoring Spectrometer (GEMS) data
were used, and a comparative analysis of the GEMS BSR and
GEMS LER retrieved in this study revealed an improvement
in the relative root mean squared error (rRMSE) accuracy of
3 %. Additionally, a time series analysis across diverse land
types indicated a greater stability exhibited by the BSR than
by the LER. For further validation, the BSR was compared
with other LER databases using ground-truth data, yielding

superior simulation performance. These findings present a
promising avenue for enhancing the accuracy of surface re-
flectance retrieval from hyperspectral satellite data, thereby
advancing the practical applications of satellite remote sens-
ing algorithms.

1 Introduction

Surface reflectance, the fraction of solar radiation reflected
by the Earth’s surface, is a key parameter in meteorology, en-
vironmental studies, and climate research (Dickinson, 1983).
Because surface reflectance is utilized in remote sensing sys-
tems to derive various geophysical, chemical, and biologi-
cal variables (Veefkind et al., 2006; Noguchi et al., 2014),
accurate satellite observations of land surface reflectance
are essential for developing accurate satellite remote sens-
ing algorithms. Ultraviolet (UV) to visible (VIS) surface re-
flectance is of great importance for atmospheric component
retrieval algorithms and related studies, especially as an input
to various level 2 (L2) algorithms, including aerosols, clouds,
ozone, and gas tracers (Lin et al., 2015; Lorente et al., 2018).

However, it is difficult to determine the calculation prece-
dence between these L2 algorithms and the surface reflec-
tion algorithms. Surface reflectance is the fundamental input
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data for other L2 algorithms, and L2 data are also essential
for surface reflectance retrieval algorithms. In the retrieval of
surface reflectance, aerosol optical depth (AOD) and atmo-
spheric gas products (such as ozone, total precipitable wa-
ter (TPW), and nitrogen dioxide (NO2)) are fundamental pa-
rameters. Simultaneously, surface reflectance is crucial for
the retrieval of these atmospheric constituents and forms an
essential component of their product. This reciprocal rela-
tionship has a significant effect on the accuracy of the cal-
culated data. Therefore, a background field for AOD and at-
mospheric products should be established when calculating
surface reflectance, or conversely, a background field for sur-
face reflectance should be developed when calculating AOD
and atmospheric substances. Therefore, several studies have
calculated and applied alternative surface reflectance data to
overcome this dilemma.

Most satellite algorithms that focus on observing the UV–
VIS region, such as the Total Ozone Mapping Spectrom-
eter (TOMS) (Herman and Celarier, 1997), Global Ozone
Monitoring Experiment (GOME) (Koelemeijer et al., 2003),
and Ozone Monitoring Instrument (OMI) (Kleipool et al.,
2008), produce a priori surface reflectance products called
Lambertian-equivalent reflectivity (LER). The LER archive
is a climatology database calculated using the minimum re-
flectance method under the assumption of a Lambertian sur-
face. The minimum reflectance technique uses the lowest ob-
served ground reflectance for the same pixel within the com-
positing period. This technique assumes that the minimum
value of the surface reflectance generated during the synthe-
sis period minimizes the effects of the atmosphere and clouds
and adopts it as a stable value in a clear sky. This method has
the advantage of being simple to implement but has a lim-
itation in that it cannot consider realistic surface reflection
properties and can easily underestimate the actual surface re-
flectance. Occasionally, overcalculations can occur because
of a failure to reflect the characteristics of changes in the
indicators in real time. Therefore, to identify a more real-
istic surface signal, the GOME-2 (Tilstra et al., 2017) LER
products have introduced the MODE-LER method alongside
the MIN-LER approach. While the MIN-LER method selects
the minimum reflectance observed during the synthesis pe-
riod as well known, the MODE-LER method identifies the
most frequently occurring reflectance value. This approach
provides a more representative measure of typical surface
reflectance, especially in regions with highly variable sur-
face conditions. Although the MODE-LER method offers
more improvements compared to the minimum reflectance
method, it remains a climatological dataset and cannot fully
parameterize the anisotropic reflectance properties of sur-
faces, which change in real time.

Underestimated and overestimated surface reflectance
arising from neglecting surface anisotropy can significantly
compromise the accuracy of other satellite-derived products
such as AOD (Kaufman et al., 1997), formaldehyde (HCHO)
(De Smedt et al., 2018; Howlett et al., 2023), and NO2 and

SO2 (Leitão et al., 2010; McLinden et al., 2014). For in-
stance, an underestimated surface reflectance may result in
an overestimation of the AOD (Mei et al., 2014), affecting
the accuracy of aerosol concentration estimate. Conversely, if
the surface reflectance is overestimated, the opposite effects
would occur (Chen et al., 2021; Wang et al., 2019). Li et al.
(2012) found that a variation of 0.05 in the surface reflectance
in the blue channel can lead to an underestimation of approx-
imately −0.17 in the range where the AOD is less than 0.4.
Veefkind et al. (2000) indicated that an error of 0.01 in the
surface reflectance in the UV region results in an AOD er-
ror of 0.1. Furthermore, Platnick et al. (2001) and Letu et al.
(2020) observed that errors in cloud retrieval can also occur,
affecting cloud properties such as cloud fraction and optical
thickness. According to Lorente et al. (2018), clear-sky air
mass factors (AMFs) are up to 20 % higher and cloud radi-
ance fractions are up to 40 % lower if surface anisotropic re-
flectance is considered. Furthermore, biases may arise in the
estimation of trace gas concentrations, affecting the reliabil-
ity of the NO2 and SO2 measurements, which are sensitive to
AMFs (Lin et al., 2014). According to Noguchi et al. (2014),
neglecting surface reflectance anisotropy can lead to AMF
errors of more than 10 %, particularly in areas with high
NO2 concentrations near the surface. These issues highlight
the critical role of accurate surface reflectance data in ensur-
ing the reliability of satellite-derived atmospheric and sur-
face properties. Therefore, several studies have claimed that
anisotropic effects, such as the bidirectional reflectance dis-
tribution function (BRDF), should be considered in satellite-
based cloud and trace gas retrieval (Lin et al., 2015; Vasilkov
et al., 2017).

Therefore, increasing recognition of the importance of
considering surface anisotropy in surface reflectance re-
trieval has led to various research efforts. These efforts have
resulted in institutions producing and providing products
that account for the BRDF effects based on existing LER
databases. This is exemplified by the geometry-dependent
surface Lambertian-equivalent reflectivity (GLER) (Vasilkov
et al., 2017; Qin et al., 2019) and the directionally depen-
dent Lambertian-equivalent reflectivity (DLER) (Tilstra et
al., 2021, 2024). The National Aeronautics and Space Ad-
ministration (NASA) provides a GLER database reprocessed
with the Moderate Resolution Imaging Spectroradiometer
(MODIS) BRDF based on the OMI LER (Qin et al., 2019).
This dataset provides the reflectance considering the BRDF
effects at 440 and 466 nm by applying the MODIS BRDF
products to the existing LER database. An advantage of
this dataset is its direct applicability to OMI observation
scenes, enabling its use in calculating the reflectance for ev-
ery scene observed by the OMI. The wavelength range pro-
vided by MODIS BRDF used in GLER retrieval is from 459
to 479 nm, which encompasses the 466 nm output from OMI
GLER, allowing for direct application of these data. How-
ever, the 440 nm wavelength falls outside the range covered
by MODIS, making it impossible to use these data directly.
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To address this, the ratio of LER at 466 and 440 nm was used
to apply the MODIS BRDF data to the calculation of GLER.
Concerns arise from this method because it may overlook the
BRDF dependency on certain wavelengths, assuming linear
behavior across wavelengths.

In addition, the Satellite Application Facility on Atmo-
spheric Composition Monitoring (AC SAF) and the Euro-
pean Space Agency (ESA) provided a DLER database that
considers the viewing geometry from GOME-2 (Tilstra et
al., 2021) and the TROPOspheric Monitoring Instrument
(TROPOMI) (Tilstra et al., 2024). DLER data, similar to
existing LER data, are reproduced based on reflectance ac-
cumulated over several years. What differs from LER is
that it takes into account the BRDF effect according to
the satellite’s viewing angles. The DLER database intro-
duced by Tilstra et al. (2021) considers anisotropic fea-
tures at various viewing angles as an advantage of polar and
sun-synchronous orbit satellites. For example, GOME-2 and
TROPOMI DLER calculations were performed using the re-
gression coefficients calculated for the five and nine view
containers, respectively, allowing them to simulate BRDF ef-
fects influenced by the satellite’s viewing angles. Therefore,
unlike GLER, which may overlook the BRDF effects that
change with wavelengths, DLER can simulate BRDF effects
for all individual wavelengths. However, these data are con-
structed from climatology, such as the LER database, and are
not updated annually but are provided only once a month,
making it difficult to reflect the changing land surface char-
acteristics in real time. In addition, there are limitations to
reflecting the characteristics of indicators that change every
time with a single fixed coefficient, and it is difficult to con-
sider the influence of other geometric conditions (such as the
solar zenith angle).

In this study, we suggest the retrieval of an alterna-
tive pseudo-BRDF-adjusted surface reflectance called back-
ground surface reflectance (BSR). This approach reflects
both the high temporal resolution of GLER and the advan-
tages of DLER’s own BRDF consideration, while solving the
limitations of both. This algorithm concept has now been ap-
plied to various satellites to retrieve surface albedo, which
must simulate multiple angles (Schaaf et al., 2002; Lee et
al., 2018) and cloud detection (Kim et al., 2017; Yeom et
al., 2020). However, UV–VIS satellites, particularly hyper-
spectral satellites, have not yet been investigated. Therefore,
in this study, we propose, for the first time, the application
of the BRDF model to hyperspectral satellite data for more
realistic preliminary surface reflectance data. In this study,
we focused on 440 nm, which is used as an input from NO2,
clouds, and aerosols. This algorithm consists of two main
steps: (1) atmospheric correction and (2) BRDF modeling
and BSR retrieval. The purpose of this study is to enhance the
accuracy of satellite-derived prior surface reflectance data by
addressing BRDF effects through a method that incorporates
the strengths of both GLER and DLER while addressing their
limitations. This is crucial for improving the reliability of at-

mospheric and surface property retrievals from hyperspectral
satellite data. A detailed description of each step of the pro-
posed algorithm is provided in Sect. 3. Section 2 covers the
data and study area, and Sect. 4 presents the results and dis-
cussion.

2 Materials and study area

2.1 Geostationary Environment Monitoring
Spectrometer (GEMS)

A Geostationary Environment Monitoring Spectrometer
(GEMS) is a hyperspectral spectrometer mounted on GEO-
KOMPSAT-2B (GK-2B) that covers the UV–VIS region
(300–500 nm) with a full width at half maximum (FWHM)
0.6 nm. It maintains a spatial resolution of 7× 8 km for gas
products and 3.5× 8 km for other products per pixel at Seoul
(Choi et al., 2018; Kim et al., 2020). The primary objective
of GEMS is to provide air quality (AQ) components, such as
ozone, aerosols, and gas tracers, at high temporal and spa-
tial resolutions. In this study, GEMS-derived level 1C data
(radiance and irradiance) (Kang et al., 2020, 2021) were em-
ployed, enabling measurements of both hourly radiance and
daily irradiance. Land/sea mask, snow cover, angular compo-
nents (solar and viewing geometry), and terrain height data
served as additional auxiliary data within GEMS L1C. Fur-
thermore, for atmospheric correction purposes, three GEMS
L2 products were utilized: cloud (CLD) (Kim et al., 2024),
aerosol (AERAOD) (Cho et al., 2024), and total column
ozone (TCO) (Baek et al., 2023).

CLD data from GEMS were employed to identify and ex-
clude cloudy pixels during the atmospheric correction pro-
cess. The GEMS CLD product is an optical quantity ob-
served at UV–VIS wavelengths, which may differ from the
physical properties of real clouds; therefore, it does not pro-
vide official detection data like those from multi-spectral sen-
sors such as MODIS (Frey et al., 2008) and GK-2A (Lee
and Choi, 2021). Cloud detection data, often referred to as
a “cloud mask”, classify whether clouds are present within
a given pixel. Instead, GEMS utilizes thresholds based on
variables such as effective cloud fraction (ECF) and cloud
centroid pressure (CCP) to classify pixels as clear sky or
cloudy. Most GEMS field algorithms use ECF data to mit-
igate cloud effects, with thresholds varying from 0.2 to 0.4.
Within the quality flag of GEMS CLD algorithm theoreti-
cal basis documents (ATBDs) (Choi et al., 2020), pixels are
classified as clear sky when ECF is less than 0.2 or CCP
is equal to 1013 hPa. CCP indicates the location of clouds,
with values closer to 1013 hPa signifying clouds closer to
the ground. While ground-level clouds can be ignored in al-
gorithms calculating atmospheric aerosols and gases, they
can significantly affect algorithms calculating ground re-
flectance. Therefore, in this study, we adopted the following
criteria to exclude clouds very close to the ground: (1) pixels
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are classified as clear sky if ECF is less than 0.2 and (2) pix-
els are classified as cloudy if CCP is greater than 1000 hPa
even if ECF is less than 0.2.

The GEMS AERAOD data provided AOD values for three
wavelengths (354, 443, and 550 nm). The GEMS AOD at
443 nm shows high accuracy with a strong positive correla-
tion coefficient (r) of about 0.89 and a low root mean squared
error (RMSE) of 0.15 after validation with the AERONET-
observed AOD (Cho et al., 2024). In this study, we utilized
550 nm AOD data to perform atmospheric correction. Most
satellite AOD algorithms calculate the 550 nm AOD due to
its significant scattering in the atmosphere and its widespread
use in various chemical models. Additionally, the Second
Simulation of a Satellite Signal in the Solar Spectrum – Vec-
tor (6SV) radiative transfer model (RTM) used for atmo-
spheric correction in this study is designed to input the AOD
value at 550 nm.

The GEMS TCO product was used to access the entire col-
umn of ozone data for atmospheric calibration. GEMS TCO
showed a high correlation coefficient (r) of 0.97 and a low
RMSE of 1.3 DU (Dobson unit) when compared to Pandora
TCO measurements, which is approximately the same as or
better than comparisons with the Ozone Mapping and Pro-
filer Suite (OMPS) and TROPOMI (Baek et al., 2023).

2.2 Study area

This study focuses on of this study encompasses northeast
Asia, which extends from 20 to 45° N latitude and 100 to
140° E longitude. The temporal scope of the study spans
1 year, specifically from 1 January to 31 December 2021.
This spatial and temporal framework provides a comprehen-
sive basis for analyzing and understanding the atmospheric
and environmental dynamics within this region over a speci-
fied period.

2.3 Copernicus Atmosphere Monitoring Service
(CAMS) near-real-time data

Surface reflectance can only be calculated for pixels that are
classified as clear in the CLD data and when both AOD
data and TCO data are available. However, the processing
method for pixel quality in the GEMS AOD product dif-
fers from that of other products, which can result in missing
calculations in certain areas, even in clear skies. To address
this issue, we used additional AOD from the Copernicus At-
mospheric Monitoring Service (CAMS). The CAMS AOD
data were available in a daily, 0.25° grid format provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). When a pixel was classified as clear in the CLD
algorithm but lacked in GEMS AOD data, interpolation was
performed using the CAMS AOD.

2.4 Radiometric Calibration Network (RadCalNet)
ground measurement data for validation

Radiometric Calibration Network (RadCalNet), an acronym
for radiometric calibration networks, serves as a pivotal re-
source for Earth observation satellites by measuring and
furnishing land surface reflectance values at five strategi-
cally positioned measurement points worldwide (Bouvet et
al., 2019). The primary objective of RadCalNet is to facili-
tate the calibration process, and it has already been proven
to be instrumental in validating ground reflectance data
for prominent satellites, such as Landsat (Voskanian et al.,
2023) and Sentinel (Gao et al., 2021). The land surface re-
flectance data provided by RadCalNet encompassed surface
reflectance observed at 10 nm wavelength intervals ranging
from 400 to 2500 nm at 30 min intervals spanning from 01:00
to 07:00 UTC. Among the five designated measurement sites,
Baotou (BTCN) and Baotou Sand (BSCN) are located in the
Baotou region of China and fall within the coverage area of
the GEMS satellite. Because the BTCN site is primarily used
for calibrating high-resolution optical satellite imagery, the
BSCN site, which is located in a desert area, was used for val-
idation in this study. Consequently, for this study, data from
the BSCN site were meticulously collected and employed to
verify ground reflectance, contributing to the robustness of
the research findings.

3 Background surface reflectance (BSR) retrieval
algorithm

Figure 1 depicts a comprehensive flowchart of the BSR re-
trieval algorithm, which comprises two primary steps: (1) at-
mospheric correction and (2) BRDF modeling and BSR re-
trieval. The top-of-canopy (TOC) reflectance from GEMS
represents the actual surface reflectance derived through at-
mospheric correction when AOD, CLD, and O3T products
are available. To evaluate the applicability of the BSR derived
in this study, validations were performed against the GEMS
TOC data as reference data. Additionally, a comparison was
made with the LER data generated using the minimum re-
flectance method which is used for a variety of LER datasets
(Kleipool et al., 2008; Koelemeijer et al., 2003; Tilstra et
al., 2017) and was first introduced in the work of Eck et
al. (1987). GEMS BSR and LER were validated against the
GEMS TOC data to compare their accuracy, followed by
a direct comparison between BSR and LER. The detailed
methodology and underlying assumptions are provided in the
subsequent subsections.

3.1 Atmospheric correction

Atmospheric correction plays a pivotal role in satellite re-
mote sensing by rectifying distortions caused by atmospheric
effects, which can vary based on different geometries and at-
mospheric conditions. These atmospheric effects introduce
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Figure 1. Flowchart of the GEMS BSR algorithm.

significant uncertainties when the Earth’s surface is observed
using satellite imagery. Thus, atmospheric correction is cru-
cial for accurately determining surface reflectance. In most
satellite data-processing methods, atmospheric correction is
achieved using radiative transfer models (RTMs). Top-of-
atmosphere (TOA) reflectance can be calculated using the
atmospheric correction coefficients derived from the RTM;
it is possible to calculate the TOC reflectance from the TOA
reflectance. The Second Simulation of a Satellite Signal in
the Solar Spectrum – Vector (6SV) RTM (Vermote et al.,
2006) was employed for atmospheric correction, which was
utilized in MODIS, the Visible Infrared Imaging Radiome-
ter Suite (VIIRS) (Roger et al., 2016), and the Geostation-
ary Operational Environmental Satellite (GOES) (Peng and
Yu, 2020) data. The 6SV RTM divides the wavelength into
intervals of 2.5 nm and computes the scattering and absorp-
tion effects in the atmosphere caused by aerosols and their
geometric components. By employing the three atmospheric
correction coefficients (xap, xb, and xc) derived from the
6SV RTM, the TOC reflectance can be calculated from the
TOA reflectance. The surface reflectance was then calculated
from the TOA reflectance, as expressed in Eq. (1). The at-
mospheric correction coefficients xap, xb, and xc can be
computed using Eqs. (2), (3), and (4), where they represent
the inverse of the transmittance, scattering term of the atmo-
sphere, and spherical albedo, respectively. In these equations,
ρs(θs,θv,φ), ρA(θs,θv,φ), θs, θv, φ, T ↑(θs), T ↓(θv), Tg, and
S denote TOC reflectance, TOA reflectance, solar zenith an-
gle (SZA), viewing zenith angle (VZA), relative azimuth an-
gle (RAA), atmospheric transmittance (sun to target), atmo-

spheric transmittance (target to sun), total gas transmittance,
and spherical albedo, respectively.

ρs (θs,θv,φ)=
xap · ρA (θs,θv,φ)− xb

1+ xc (xap · ρA (θs,θv,φ)− xb)
(1)

xap =
1

Tg (θs,θv)T ↑ (θs)T ↓ (θv)
(2)

xb =
ρa (θs,θv,φ)

T ↑ (θs)T ↓ (θv)
(3)

xc = S (4)

Although the RTM offers high accuracy in surface re-
flectance calculations, its computational complexity and time
requirements are significant. To address this challenge, sur-
face reflectance algorithms often use pre-simulated lookup
tables (LUTs) generated using RTMs under various condi-
tions. During LUT configuration, careful selection of input
variables is crucial, as they directly impact the accuracy of at-
mospheric correction and surface reflectance calculations. In
alignment with the characteristics of GEMS, six input vari-
ables were chosen for LUT construction: SZA, VZA, RAA,
TCO, AOD, and terrain height. Table 1 outlines the range
and intervals of these input variables for LUT construction
with reference to previous studies on LUT-based surface re-
flectance calculations (Peng and Yu, 2020; Lee et al., 2020).
Nevertheless, even with detailed interval adjustments, rapid
changes at high angles can lead to discontinuities and degra-
dation of the surface reflectance. Therefore, to ensure smooth
and accurate results when calculating the surface reflectance
based on the LUT, real-time interpolation was performed for
all input components (SZA, VZA, RAA, TCO, AOD, and
terrain height).

3.2 BSR retrieval through BRDF modeling

The computation of surface reflectance through atmospheric
correction presents a significant limitation: its effectiveness
is restricted to cloud-free regions and is influenced by the
observational geometry at the time of measurement. Conse-
quently, there is a critical need for a methodology capable
of simulating the surface reflectance across diverse angular
conditions to accurately compute the BSR. Thus, prior stud-
ies that required the simulation of surface reflectance at var-
ious angles, such as albedo calculations, have characterized
the anisotropic properties of surfaces by utilizing the BRDF
model (Gao et al., 2003; Wen et al., 2018). BRDF models
can be classified into three categories: physical, empirical,
and semi-empirical. Although a physical model can express
the inherent physical meaning of each parameter mathemati-
cally, its versatility is limited because of its computationally
intensive nature. The empirical model utilizes observation-
based empirical formulas, making it suitable for situations
with limited observations; however, it requires a substantial
number of observations and does not elucidate the underlying
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Table 1. The 6SV-based LUT input variables and their intervals.

Input parameter (unit) Minimum Maximum Increment

SZA (degree) 0 80 0–70(5), 70–80(2)
VZA (degree) 0 80 5
RAA (degree) 0 180 10
TCO (DU) 250 350 50
Terrain height (km) 0 3.5 0.5
AOD 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5
Aerosol type Continental

physical background. Consequently, semi-empirical BRDF
models are widely employed in satellite remote sensing.

In this algorithm, the semi-empirical Roujean bidirectional
reflectance distribution function (BRDF) model (Roujean et
al., 1992) was utilized for BRDF modeling. The Roujean
BRDF model defines surface reflectance as a combination
of isotropic, geometric, and volumetric scattering compo-
nents. It comprises two physical kernels (f1 and f2) and
three empirical coefficients (K0, K1, K2; BRDF parame-
ters) that describe the mechanism of each component, as
shown in Eq. (5). The two physical kernels of the Roujean
BRDF model were defined under the assumption of irregu-
larly spaced rectangular protrusions on a flat ground surface,
neglecting all shadow interactions. The two physical kernels
are calculated based on the angular component at the time
of the observation (formulas are detailed in Roujean et al.,
1992).

R(θs,θv,φ)=K0+K1 · f1 (θs,θv,φ)+K2 · f2 (θs,θv,φ) (5)

The observed surface reflectance can be decomposed into
two kernels and three variables, as described by Eq. (5).
Since the two kernels can be computed from the angular
components, the BRDF parameters which characterize the
anisotropic reflection based on multiple observations col-
lected over a synthesis period can be calculated using the
least squares method. This method assumes a relatively sta-
ble anisotropic reflection behavior of the surface over short
periods in the absence of significant disturbances such as for-
est fires or floods. Therefore, these variables can be applied
within a short time frame, enabling the simulation of surface
reflectance under clear-sky conditions across all angular con-
figurations within the target scene. Consequently, once the
BRDF parameters are computed by providing solely the an-
gular component of the observed target scene, the BSR at any
angle can be simulated.

In this algorithm, the target scene refers to the day follow-
ing the completion of BRDF synthesis. Figure 2 illustrates
the synthesis period of 15 d and the retrieval cycle used for
BRDF modeling in the algorithm. The BRDF synthesis pe-
riod spans 15 d and encompasses all observed hourly data
within this time frame. This enabled the application of the
resulting BRDF composites to the subsequent day, allowing

for the simulation of hourly BSR based solely on the angular
components observed the following day. These BRDFs were
generated in a daily cycle, with the synthesis period shifted
by 1 d. This methodology enables comprehensive reconstruc-
tion of the surface reflection characteristics at various angles,
offering valuable insights into the directional reflectance be-
havior of the surface.

Insufficient observations lead to uncalculated BRDF pa-
rameters, resulting in missing BSR values, which are crucial
for other L2 algorithms. To address this, a gap-filling process
utilizing the “age” variable in BRDF modeling was imple-
mented. This method uses previously calculated BRDF pa-
rameters up to 5 d of age to fill gaps when current parameters
are unavailable. In this process, the age variable was defined
and utilized, indicating how many days old the BRDF pa-
rameters used for gap filling are. For example, if BRDF pa-
rameters from 3 d ago are used, the age variable is assigned
a value of 3. If the BRDF parameters are not be calculated
the next day and the same date’s BRDF parameters are used,
the age variable is assigned a value of 4. Conversely, if new
BRDF parameters are calculated, the age variable is reset to
0. If the age variable exceeds 5, the parameters are no longer
used. To summarize, the age variable indicates the number
of days since the last valid BRDF calculation, reset to 0 after
5 d or once the BRDF parameter is calculated.

3.3 GEMS LER assumption

The GEMS LER was derived from the Rayleigh-corrected
reflectance, which was computed by assuming a Rayleigh
atmosphere to eliminate aerosol effects during atmospheric
correction. This calculation utilized the same LUT as the
TOC reflectance calculation with the AOD set to zero. It was
assumed that the formulas for calculating the LER and 6SV-
based atmospheric corrections were nearly identical. Equa-
tions (6) and (7) summarize these formulas, where ρ6SV and
ρLER represent the 6SV-based TOC and LER calculation for-
mulas (Kleipool et al., 2008), respectively. In this study, ρ6SV
was designated as the Rayleigh-corrected reflectance for the
scene. The GEMS LER was determined to be the minimum
reflectance over a 15 d period to match the BRDF synthesis
period. A 15 d synthesis period was also found by Park et al.
(2023) to be an effective balance between minimizing cloud
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Figure 2. Schematic of the 15 d composite period and retrieval cycle for BRDF modeling.

contamination and maintaining consistent surface reflectance
in the application of the minimum reflectance method. The
resulting GEMS LER was used for additional gap filling in
cases where the GEMS BSR was consistently missing de-
spite utilizing the age variable.

ρ6SV =
ρ′s

1+ ρ′sS
with ρ′s =

ρA(θs,θv,θφ)
Tg

− ρa
(
θs,θv,θφ

)
T ↓ (θs)T ↑ (θv)

(6)

ρLER =
ρA

(
θs,θv,θφ

)
− ρa

(
θs,θv,θφ

)
T ↓(θs)T ↑(θv)+ S

(
ρA

(
θs,θv,θφ

)
− ρa

(
θs,θv,θφ

)) (7)

4 Results

4.1 BSR validation with TOC reflectance

4.1.1 Quantitative validation of GEMS BSR and LER

The purpose of the BSR data was to simulate reflectance as
similarly as possible to the TOC reflectance calculated based
on actual observation conditions in advance and use the TOC
reflectance as an input for other L2 products. Therefore, ver-
ification was performed by comparing the TOC calculated
after the L2 products (CLD, AOD, and TCO) utilized for
the TOC reflectance calculation were produced with the BSR
simulated in advance as a reference value. We have produced
TOC reflectance and BSR data for 1 year, from 1 January to
31 December 2021, and performed BSR verification based
on these data.

The BSR validation was limited to instances of high qual-
ity, with the quality criteria defined based on the number of
observations and RMSE during the BRDF modeling. The
number of observations refers to the number of valid pix-
els used within the same pixel for BRDF modeling, whereas
the BRDF RMSE signifies the RMSE between the actual
observed reflectance and simulated reflectance. In this con-
text, the simulated reflectance represents the value that em-
ulates the reflectance back to the angular component of the
actual observation condition based on the BRDF parameters

derived through BRDF modeling. The GK-2A AMI albedo
product establishes the standard for good-quality BSR, re-
quiring seven or more observations and a BRDF RMSE
of 0.07 or lower (Lee et al., 2020). In addition, MODIS
albedo considers an RMSE value within 10 % of the channel-
specific reflectance distribution as indicative of good quality
(Roman et al., 2013). Consequently, the BSR quality crite-
rion in this study was defined as requiring seven or more ob-
servations and a BRDF RMSE of 0.03 or lower, given that
the GEMS 440 nm BSR typically reaches a maximum value
of 0.3. All subsequent quantitative analyses were conducted
exclusively using good-quality data.

Figure 3 presents a comparison between GEMS BSR and
GEMS LER using the GEMS TOC reflectance as a refer-
ence, encompassing all hourly data from January to Decem-
ber 2021. The comparison revealed that the GEMS BSR sim-
ulated the TOC values more closely than the GEMS LER. To
quantify this comparison, we evaluated the RMSE, relative
RMSE (rRMSE), and bias. The rRMSE was computed by di-
viding the RMSE by the average reference data value, which
served as an indicator of overall relative accuracy. For the
GEMS BSR, the RMSE was 0.015, the rRMSE was 19.38 %,
and the bias was 0.002. Conversely, for GEMS LER, the
RMSE was 0.017, the rRMSE was 22.17 %, and the bias was
−0.009. These results suggest that the GEMS BSR exhib-
ited a lower rRMSE of 3 % and a lower bias value of 0.007
(based on the absolute value), indicating superior simulation
performance compared to the minimum reflectance.

Table 2 presents a quantitative comparison between
GEMS BSR and LER for each season. The seasons are
represented as DJF, MAM, JJA, and SON, corresponding
to December–January–February, March–April–May, June–
July–August, and September–October–November, respec-
tively, and denote winter, spring, summer, and fall, respec-
tively. The RMSE, rRMSE, and bias values for BSR are
0.012, 0.016, 0.017, and 0.012 for RMSE; 18.89 %, 20.5 %,
21.73 %, and 18.19 % for rRMSE; and−0.002, 0.007, 0.004,
and −0.002 for bias, respectively, in the order of winter,
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Figure 3. Assessment of GEMS BSR and LER accuracy relative to GEMS TOC reflectance.

spring, summer, and fall. For the GEMS LER, the RMSE
values were 0.013, 0.017, 0.019, and 0.013, respectively; the
rRMSE values were 21.9 %, 20.85 %, 24.16 %, and 20.08 %,
respectively; and the bias values were −0.006, −0.009,
−0.009, and −0.007 for each season, respectively. BSR ex-
hibited lower RMSE, rRMSE, and bias values than LER, in-
dicating the superior simulation performance of BSR in all
seasons. Both data sources show the highest RMSE in sum-
mer compared to the other seasons. However, the difference
in rRMSE compared to RMSE did not change much across
the seasons because the reflectance in winter and fall was rel-
atively lower than that in spring and summer.

4.1.2 Qualitative validation of GEMS BSR and LER

After completing the quantitative analysis, we conducted a
qualitative comparison between the GEMS TOC, BSR, and
LER to evaluate their spatial distribution. Figure 4 illustrates
this qualitative analysis, with each row displaying the GEMS
TOC, BSR, LER, and the difference between BSR and LER
relative to TOC for the same date and time. Figure 4a–d rep-
resent the calculations for 20 February at 02:45 UTC, 1 May
at 03:45 UTC, 9 August at 02:45 UTC, and 10 November
2021 at 05:45 UTC.

TOC reflectance is applicable only under clear-sky con-
ditions and can be computed only in areas where all nec-
essary inputs, such as AOD and TCO, are available, result-
ing in numerous areas with missing data. The difference be-
tween the BSR and LER data in terms of TOC was exam-
ined only for areas where the GEMS TOC was calculated.
For BSR, a mixed trend of underestimation and overestima-
tion was observed; however, in July, most areas exhibited
higher reflectance than TOC. In contrast, the LER showed
a consistent trend of underestimation in most areas, except
for October, which aligns with our expectations. However, in
October, LER exhibited a similar trend to BSR, but with a

stronger magnitude, indicating that even applying minimum
reflectance can result in higher values than those from BRDF
modeling. This again highlights the importance of consider-
ing the BRDF when calculating land surface reflectance.

A qualitative analysis was also conducted between the
BSR and LER for areas where TOC reflectance was not
calculated. The greatest difference between the two sources
was observed in July (summer), compared with the spring,
summer, and fall results in February, April, and October, re-
spectively. In July, the LER consistently simulated lower re-
flectance than the BSR across the entire region, particularly
in the central and eastern parts of the country. These areas
experience frequent cloud cover and fog throughout the year,
making it challenging to obtain clear-sky pixel counts dur-
ing all seasons. However, this challenge is exacerbated in
summer months when clouds are more prevalent. If clouds
are not detected in the cloud product, high reflectance can
be inputted into the BRDF model and mistakenly interpreted
as clear-sky reflectance, leading to simulation errors. Con-
versely, the minimum reflectance technique tends to adopt
the lowest reflectance value during the synthesis period, even
in the presence of clouds and shadows, resulting in a lower
reflectance.

4.2 Analyzing surface reflectance variation across land
types

4.2.1 Time series consistency analysis by land types

To assess the simulation performance based on the time se-
ries of the BSR, we analyzed the time series stability across
four land types (grassland, cropland, shrubland, and urban)
using MODIS land cover data. The dataset utilized in this
study is derived from the MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 0.05Deg CMG V061 (MCD12C1)
product (Strahler et al., 1999). The classification follows

Atmos. Meas. Tech., 17, 5601–5618, 2024 https://doi.org/10.5194/amt-17-5601-2024



S. Sim et al.: Retrieval of pseudo-BRDF-adjusted surface reflectance from GEMS 5609

Table 2. Seasonal quantitative comparison of GEMS BSR and LER with GEMS TOC reflectance as reference (DJF means December–
January–February, MAM means March–April–May, JJA means June–July–August, and SON means September–October–November).

Period DJF MAM JJA SON

Reflectance data BSR LER BSR LER BSR LER BSR LER
RMSE 0.012 0.013 0.016 0.017 0.017 0.019 0.012 0.013
rRMSE(%) 18.89 21.9 20.5 20.85 21.73 24.16 18.19 20.08
Bias −0.002 −0.006 0.007 −0.009 0.004 −0.009 −0.002 −0.007

Figure 4. Qualitative comparison of GEMS TOC, BSR, and LER. (a) GEMS TOC; (b) GEMS BSR; (c) difference between BSR and TOC;
(d) GEMS LER; (e) difference between LER and TOC.

the International Geosphere-Biosphere Programme (IGBP)
scheme within the MODIS land cover dataset. Specifically,
we employed the land cover data from the year 2021. Fig-
ure 5 illustrates the time series of GEMS TOC, BSR, and
LER analyzed for each land type, where panels (a)–(d) corre-
spond to grassland, cropland, shrubland, and urban areas, re-
spectively. These values were averaged over all good-quality
pixels for each land type based on MODIS land cover. In this
analysis, the LER was excluded if it did not meet the criteria
for good-quality BSR to mitigate the impact of clouds.

The blue squares in Fig. 5 represent the reference TOC val-
ues, the green circles represent the LER values, and the red
circles represent the BSR values. The analysis indicated that
for all four land types, both BSR and LER exhibited stable
time series distributions, mirroring the TOC trend. However,
when compared with the TOC distribution, the BSR appeared
to track the trend slightly better than the LER across all land
types. This was most evident between May and October, as
LER consistently simulated a lower reflectance than TOC. In
addition, in the shrublands during this period, LER tended to

consistently adopt nearly identical values, whereas TOC and
BSR showed variability in reflectance.

However, for grassland, the trend was opposite to that of
LER, with BSR consistently simulating a higher reflectance
than TOC during the summer months. While there was a
clear tendency for the BSR to simulate higher reflectance,
this was similar to the observed range of the TOC reflectance
distribution and was not considered a significant error. There-
fore, this analysis confirms that the BSR tends to follow the
TOC reflectance more reliably than the LER over time.

4.2.2 Surface reflectance influence on AOD variability
in cropland and urban areas

Li et al. (2012) provided quantitative figures for the vari-
ability in the AOD output with reflectance changes in
the blue channel. The analysis focused on different AOD
ranges (AOD< 0.4, 0.4<AOD< 0.8, 0.8<AOD< 1.2,
1.2<AOD< 1.6, 1.6<AOD< 2.0) according to the degree
of ground reflectance change (ranging from 0.001 to 0.05).
To quantitatively evaluate the advantage of BSR over LER in
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Figure 5. Time series distribution of TOC, BSR, and LER by land type. (a) Grassland; (b) cropland; (c) shrubland; (d) urban.

terms of AOD, we reanalyzed the results of Li et al. (2012)
using the findings of this study. The analysis was limited
to the AOD value of 0.4, and the variability was analyzed
and converted into percent error using a quadratic regression
equation based on the change in AOD value corresponding
to the change in ground surface reflectance as presented in
the study. In this context, the amount of AOD change refers
to the difference in AOD values when using BSR and LER
data compared to when using TOC, assuming that the AOD

output value when using TOC is 0.4. The percent error of
AOD can be calculated using Eq. (8), where AODreference is
the AOD value when using TOC (AOD is fixed at 0.4 in this
study) and AODobserved is the AOD value when using BSR
and LER. However, as Li et al.’s (2012) study only analyzed
urban and rural areas in China, it also focused on cropland
and urban land types.

Percent errorAOD =
AODobserved−AODreference

AODreference
× 100 (8)
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Figure 6 presents the seasonal RMSE, bias, and AOD per-
cent error results, with Fig. 6a and b representing the results
for cropland and urban areas, respectively. In each panel,
the first to third columns denote the RMSE, bias, and AOD
percentage error based on TOC, respectively. Both RMSE
and bias values were expressed by multiplying the calculated
value by 100. Throughout all seasons, BSR consistently ex-
hibited lower RMSE and bias values than LER. LER tended
to show a negative bias, whereas BSR showed a positive
bias. Interestingly, both datasets demonstrated high RMSE
values in summer, with the BSR tending to overestimate and
the LER tending to underestimate. This inverse behavior is
in line with the trends observed in the previous time series
graphs. Specifically, in the cropland and urban areas, the BSR
maintained a low bias of 0.0022 or less, except in summer. In
contrast, LER exhibited a negative bias of more than 0.084
in most cases, except in winter in the croplands.

Analysis of the AOD percent error revealed that LER
exhibited higher error values than BSR across all seasons.
Due to the high RMSE values observed in summer for both
datasets, the AOD percentage error also tended to increase
during this season. However, excluding summer, BSR con-
sistently demonstrated better AOD percentage error values
than LER, with improvements of up to 7.4 % in spring for
croplands and 10.9 % in winter for urban areas. These find-
ings suggest that the BSR has the potential to generate more
stable AOD outputs than the LER.

4.3 Accuracy evaluation using ground measurements

To conduct a thorough and precise validation of GEMS BSR,
comparisons and validations were performed using RadCal-
Net ground observations. RadCalNet data utilized ground re-
flectance observations from the BSCN sites, and only data
within 15 min of the observation time were used because of
the sensitivity of ground reflectance to temporal changes.
In addition, various LER databases currently available in
the field were used for verification to assess the perfor-
mance of the BSR. These include the OMI LER, GLER,
TROPOMI DLER, GOME-2 LER, and SCIAMACHY LER.
OMI GLER and DLER considered surface BRDF effects
and conducted observations over the study area, mostly be-
tween 03:00 and 05:00 UTC. Therefore, the validation was
limited to data from 03:45–05:45 UTC based on RadCalNet.
For TROPOMI DLER, the BRDF effect on the viewing ge-
ometry can be accounted for using four coefficients. These
coefficients can be derived from the LER and converted into
the DLER using the following Eq. (9): for comparison and
validation, the GEMS VZA at 04:45 UTC was multiplied
by the corresponding coefficients to calculate the TROPOMI
DLER. θv in the formula is the GEMS VZA, and c0 to c4 are
the TROPOMI DLER coefficients.

ρDLER = ρLER+ c0+ c1 · θv+ c2 · θ
2
v + c3 · θ

3
v (9)

Figure 7 illustrates the results of the validation of the LER
databases, including the GEMS BSR, based on RadCalNet
observations. Figure 7a compares OMI GLER, TROPOMI
DLER, and GEMS BSR with the RadCalNet data, whereas
Fig. 7b compares OMI, GOME-2, SCIAMACHY LER, and
GEMS BSR. The RMSE, rRMSE, and bias between each
dataset and RadCalNet are presented in Table 3. The analysis
revealed that the RMSE values of OMI GLER, TROPOMI
DLER, and GEMS BSR were 0.018, 0.009, and 0.007, re-
spectively, with rRMSE values of 21.42 %, 10.57 %, and
8.59 %, respectively, and bias values of−0.008,−0.006, and
0.001, respectively. These results indicate that the GEMS
BSR is more accurate than the OMI GLER and TROPOMI
DLER in terms of RMSE, rRMSE, and bias, with a 13 % im-
provement over the OMI GLER and 2 % improvement over
the TROPOMI DLER based on the rRMSE.

Furthermore, OMI GLER exhibited a significantly wider
distribution than the RadCalNet reflectance occurrence
range, whereas TROPOMI DLER had almost the same re-
flectance adopted multiple times. This suggests that similar
DLER values were calculated multiple times in the same
month because of the nature of the LER database data, as
the GEMS satellite is geostationary and the VZA varies little
at the same observation time. Similar trends were observed
when comparing the three LER databases (OMI, GOME-2,
and SCIAMACHY), with RMSE values of 0.025, 0.013, and
0.014; rRMSE values of 29.82 %, 16.2 %, and 16.81 %; and
bias values of −0.024, −0.012, and −0.01, respectively.

In conclusion, considering BRDF effects, such as BSR,
GLER, and DLER, rather than utilizing LER databases for
alternative land surface reflectance calculations can pro-
vide more realistic reflectance simulations, with GEMS BSR
demonstrating the best performance among the six sources
analyzed.

4.4 Intercomparison between GEMS BSR and LER
database (OMI GLER, TROPOMI DLER)

TROPOMI and OMI performed observations between 03:45
and 05:45 UTC during GEMS observations in the study
area, with the largest number of observations occurring at
04:45 UTC. Therefore, a comparison of the GEMS BSR with
the DLER and GLER was conducted at 04:45 UTC. Consis-
tent with the analysis in the previous section, OMI GLER
was calculated using only the data within 15 min of the
GEMS observations, whereas TROPOMI DLER was calcu-
lated using GEMS VZA. Figure 8 compares GEMS TOC
with GEMS BSR, TROPOMI DLER, and OMI GLER. Fig-
ure 9 presents the intercomparison between BSR and OMI
GLER, as well as BSR and TROPOMI DLER.

Compared to GEMS TOC, BSR, DLER, and GLER, the
rRMSE values were 17.78 %, 22.32 %, and 41.51 %, with bi-
ases of 0.003,−0.002, and −0.025, respectively. The GEMS
BSR tended to exhibit a positive bias, whereas the DLER
and GLER tended to display a negative bias. When analyzing
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Figure 6. RMSE and bias in cropland and urban land types by season, as well as the resulting AOD percent error. (a) Cropland; (b) urban.

Figure 7. Validation of surface reflectance databases using RadCalNet observations. (a) Validation of OMI GLER, TROPOMI DLER, and
GEMS BSR. (b) Validation of OMI LER, GOME-2 LER, SCIAMACHY LER, and GEMS BSR.

the graph distribution, we observed a significant clustering
of values below 0.05 in the OMI GLER data. Owing to the
inherent differences in assumptions between the GLER and
DLER databases and BSR, direct quality verification through
comparison is challenging. However, this suggests that the
BSR is capable of simulating reflectance that closely aligns

with TOC reflectance, indicating its potential for realistic re-
flectance simulation.

Figure 9 shows a density plot and histogram comparing
BSR with OMI GLER and TROPOMI DLER. Panels (a)
and (c) show a comparison with GLER, whereas panels (b)
and (d) show a comparison with DLER. The correlation coef-
ficient (R) for GLER was 0.7, with a root mean square differ-
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Figure 8. Distribution density plot of GEMS BSR, TROPOMI DLER, and OMI GLER based on GEMS TOC observations. (a) GEMS BSR;
(b) TROPOMI DLER; (c) OMI GLER.

Figure 9. Quantitative comparison of GEMS BSR, TROPOMI DLER, and OMI GLER value distributions. (a) Density plot of BSR and
GLER; (b) density plot of BSR and DLER; (c) histogram of BSR and GLER; (d) histogram of BSR and DLER.
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Table 3. GEMS BSR and LER database accuracy evaluation based on RadCalNet ground observation data.

Data GEMS BSR OMI GLER TROPOMI DLER OMI LER GOME-2 LER SCIAMACHY LER

RMSE 0.007 0.018 0.009 0.025 0.013 0.014
rRMSE(%) 8.59 21.42 10.57 29.82 16.2 16.81
Bias 0.001 −0.008 −0.006 −0.024 −0.012 −0.01

ence (RMSD) of 0.035 and a bias of 0.028. For DLER, theR,
RMSD, and bias were 0.81, 0.017, and 0.006, respectively,
indicating a strong positive correlation for both data sources.
The histograms reveal that the distributions of the DLER and
BSR values are quite similar, whereas GLER is more con-
centrated at low ground reflectance compared to BSR. This
suggests that BSR yields results that are more akin to those
of DLER than those of GLER. Although the BSR showed
relatively high values when the GLER and DLER were near
0.05 in the density plot distribution, it was not considered a
significant error owing to its small magnitude.

Figure 10 presents a qualitative comparison of the re-
flectances of GEMS BSR, TROPOMI DLER, and OMI
GLER. The columns represent BSR, DLER, and GLER from
left to right, and rows (a)–(c) represent dates 26 March,
23 June, and 23 September 2021, respectively. From the qual-
itative comparison, we can see that BSR and DLER have
fairly similar distributions of values, whereas GLER tends
to produce relatively low reflectance values in China com-
pared with the other two datasets. However, as mentioned
in the previous analysis, the BSR simulates a slightly higher
reflectance during the summer months, with its values be-
ing relatively higher than those of the other dates. However,
all three datasets had very similar distributions, albeit with
slight differences in their absolute values. This analysis pro-
vides further evidence that the BSR effectively simulates the
reflectance properties of the ground surface, similar to the
DLER and GLER.

5 Conclusion and discussion

This study represents the first practical application of BSR
as an alternative output to resolve the output precedence
dilemma between land surface reflectance and other L2 out-
puts applied to GEMS at 440 nm, evaluating its feasibility
for operational use. This concept, often referred to as BSR,
involves a preliminary simulation of realistic ground re-
flectance before atmospheric correction. This simulation was
based on variables reflecting the BRDF effect on the ground
surface calculated through BRDF modeling. BSR overcomes
the limitation of underestimating ground reflectance that may
occur with the minimum reflectance technique.

Various analytical methods were employed to evaluate the
simulation performance of the BSR. The purpose of the BSR
output was to simulate the TOC reflectance more realistically
in advance using the actual observed values required for at-

mospheric corrections, such as CLD, AOD, and TCO. There-
fore, TOC reflectance was used as a reference for evaluating
the simulation performance of the BSR. The simulation per-
formance of the GEMS BSR was 3 % more accurate than
that of the GEMS LER data in terms of the rRMSE over the
entire study period based on TOC. The bias was −0.007 for
LER and 0.002 for BSR, indicating an improvement in the
underestimation of surface reflectance when BSR is applied.

The stability of the BSR calculation over time was also
verified by analyzing the trend of the reflectance distribu-
tion according to MODIS land cover. For the selected terrains
(grassland, cropland, shrubland, and urban), the BSR tracked
the TOC trend better than the LER. In summer, a tendency
for BSR to be overestimated compared to TOC was observed
in grasslands. In contrast, LER was significantly underesti-
mated compared to BSR in all land types, especially between
May and September, confirming the temporal stability of the
BSR.

Furthermore, after validation with TOC, comparison and
validation were performed with other LER databases avail-
able in the field based on ground observations from RadCal-
Net. The OMI, GOME-2, SCIAMACHY LER, OMI GLER,
and TROPOMI DLER data were used in the analysis. For the
RadCalNet-based land surface reflectance validation, GEMS
BSR exhibited the best simulation performance among the
six databases, with an rRMSE of 8.59 % and a bias of 0.001.
When comparing the results of OMI GLER and LER val-
idation, OMI GLER had an rRMSE of 21.42 % and a bias
of −0.008, while OMI LER had an rRMSE of 29.82 % and
a bias of −0.024. This indicates that accounting for surface
BRDF effects in the calculation of ground reflectance pro-
vides a more realistic reflectance simulation.

A comparison of GEMS BSR with TROPOMI DLER and
OMI GLER based on TOC reflectance revealed that BSR
tended to exhibit a positive bias, whereas DLER and GLER
tended to display a negative bias. Despite the challenges
in directly verifying the quality, the analysis suggests that
BSR can simulate reflectance closely aligned with TOC re-
flectance, indicating its potential for realistic reflectance sim-
ulation. Additionally, the comparison between DLER and
GLER based on BSR showed strong positive correlations,
with BSR exhibiting distributions more similar to those of
DLER. Overall, the BSR demonstrated the capability to ef-
fectively simulate ground surface reflectance properties, sim-
ilar to the DLER and GLER.
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Figure 10. Qualitative comparison of GEMS BSR, TROPOMI DLER, and OMI GLER distributions in March, June, and September. The table
rows correspond to GEMS BSR, TROPOMI DLER, and OMI GLER, in that order. (a) 26 March 2021; (b) 23 June 2021; (c) 23 September
2021.

Although, limitations exist, such as the challenge of cap-
turing sudden changes in surface characteristics such as snow
or ice cover. In addition, to enhance stability, we designed
a method to use CAMS AOD data in the absence of GEMS
AOD, acknowledging the presence of some bias. Despite this
limitation, we prioritized maintaining a stable dataset. Our
research is pioneering in its application to BRDF modeling
and evaluation in hyperspectral observation satellite studies.
We are committed to further refining our approach and will
strive to address these biases in future research to improve
calculation accuracy.

In conclusion, our study demonstrated that BSR can effec-
tively simulate realistic reflectance, surpassing the minimum
reflectance approach used in many existing studies. By com-
bining the high temporal and spatial resolution of GLER with
the BRDF considerations of DLER, we laid the foundation
for improved accuracy in the AQ output. Our findings sug-
gest that the utilization of BSR, a dataset reflecting realistic
reflectance with BRDF effects, can enhance various climate
analysis studies, marking a significant advancement in the
field.

Data availability. The data used in this study are accessible
from the following links: GEMS level 2 data (AERAOD, TCO,
CLD) (https://nesc.nier.go.kr/en/html/datasvc/index.do, NIER,
2024); OMI/Aura global geometry-dependent surface LER
(GLER) (https://disc.gsfc.nasa.gov/datasets/OMGLER_003/
summary?keywords=OMIGLER, last access: 17 September 2024,
NASA,Goddard Earth Sciences Data and Information Services Cen-
ter (GES DISC), https://doi.org/10.5067/AURA/OMI/DATA2032,
Joiner et al., 2019); TROPOMI directionally dependent
Lambertian-equivalent reflectivity (DLER) (https://www.temis.nl/
surface/albedo/tropomi_ler.php, KNMI, 2024); OMI surface LER
database (https://www.temis.nl/surface/albedo/omi_ler.php,
last access: 17 September 2024, KNMI; Kleipool et
al., 2008); SCIAMACHY surface LER database (https:
//www.temis.nl/surface/albedo/scia_ler.php, last access: 17 Septem-
ber 2024, KNMI; Tilstra et al., 2017); GOME-2 surface LER
database (https://www.temis.nl/surface/albedo/gome2_ler.php,
last access: 17 September 2024, KNMI, AC SAF; Tilstra et al.,
2017); CAMS global atmospheric composition forecasts dataset
(https://ads.atmosphere.copernicus.eu/, ECMWF, 2024); and Rad-
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