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Abstract. Clouds are a crucial regulator in the Earth’s en-
ergy budget through their radiative properties, both at the
top of the atmosphere and at the surface; hence, deter-
mining key factors like their vertical extent is of essen-
tial interest. While the cloud top height is commonly re-
trieved by satellites, the cloud base height is difficult to es-
timate from satellite remote sensing data. Here, we present
a novel method called ORABase (Ordinal Regression Auto-
encoding of cloud Base), leveraging spatially resolved cloud
properties from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument to retrieve the cloud base
height over marine areas. A machine learning model is built
with two components to facilitate the cloud base height re-
trieval: the first component is an auto-encoder designed to
learn a representation of the data cubes of cloud properties
and to reduce their dimensionality. The second component
is developed for predicting the cloud base using ground-
based ceilometer observations from the lower-dimensional
encodings generated by the aforementioned auto-encoder.
The method is then evaluated based on a collection of col-
located surface ceilometer observations and retrievals from
the CALIOP satellite lidar. The statistical model performs
similarly on both datasets and performs notably well on the
test set of ceilometer cloud bases, where it exhibits accurate
predictions, particularly for lower cloud bases, and a narrow
distribution of the absolute error, namely 379 and 328 m for
the mean absolute error and the standard deviation of the
absolute error, respectively. Furthermore, cloud base height
predictions are generated for an entire year over the ocean,

and global mean aggregates are also presented, providing in-
sights into global cloud base height distributions and offering
a valuable dataset for extensive studies requiring global cloud
base height retrievals. The global cloud base height dataset
and the presented models constituting ORABase are avail-
able from Zenodo (Lenhardt et al., 2024).

1 Introduction

Clouds play a key role in the Earth’s energy budget through
their interactions with incoming shortwave and outgoing
longwave radiation fluxes. It is thus critical to adequately
quantify cloud radiative properties and their changes under
global climate change. However, cloud radiative properties
remain a large uncertainty in estimating anthropogenic cli-
mate change and possible impacts in the future (Boucher et
al., 2013; Forster et al., 2021). Radiative properties of clouds
are related to numerous quantities that can be used to char-
acterise them. For instance, the cloud base height (CBH)
is a crucial radiative property due to its impact on the sur-
face longwave radiation. Furthermore, the cloud geometrical
thickness (CGT), defined as the difference between the cloud
top height (CTH) and the CBH, links to the adiabatic cloud
water content, allowing the quantification of the cloud’s sub-
adiabaticity. Additionally, deriving the CBH is of practical
use for pilots, providing crucial information during flights.

However, while the CTH can be rather easily obtained
through passive satellite observations, the CBH retrieval re-
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mains problematic due to the fact that it is only indirectly
accessible to satellites and due to retrieval errors related to
satellite remote sensing, such as instrument shortcomings or
noisy measurements. Since the difference between the CTH
and the CBH quantifies the vertical extent of a cloud, one
way to retrieve the CBH from passive satellites is by making
heavy assumptions about the vertical distribution of the cloud
water path inside the cloud profile. It is thus a challenging
retrieval with passive satellite data that provide information
about the cloud top (e.g. cloud top temperature (CTT), pres-
sure (CTP), or height (CTH)) or about the entire column (e.g.
cloud optical thickness (COT)) assuming the cloud’s adia-
baticity. For example, Noh et al. (2017) rely on a semiem-
pirical approach to link the CGT to the CTH and the cloud
water path (CWP – includes both ice and liquid water paths).
In a different approach, Böhm et al. (2019) retrieve the CBH
from triangulation of a multi-angle spectroradiometer. How-
ever, in this case, assumptions were required regarding the
distribution of convective clouds. On the other hand, active
satellite remote sensing retrieves information with a verti-
cal resolution, which greatly helps in resolving the clouds’
vertical distributions. However, active satellite measurements
can display attenuated signals close to the surface (Tanelli et
al., 2008; Marchand et al., 2008), particularly in the pres-
ence of thick clouds or precipitation, rendering the retrieval
of the CBH difficult even for radar and lidar. Among oth-
ers, Mülmenstädt et al. (2018) and Lu et al. (2021) present
methods focusing on low clouds which use the CBHs from
active satellite retrievals of neighbouring thin clouds consid-
ered to be representative of the surrounding cloud field. Ac-
tive remote sensing additionally suffers from the sparse sam-
pling that is confined to a narrow swath below the satellite.
Finally, Goren et al. (2018) combine information from both
passive and active satellite remote sensing and rely upon an
adiabatic cloud model to derive the CBH. The retrieval of
the CBH using satellite remote sensing data relies on a num-
ber of simplifying assumptions and is, consequently, prone
to errors. Subsequently, uncertainties in the estimation of the
CBH propagate into uncertainties in the overall cloud radia-
tive effect (CRE) (Kato et al., 2011; Trenberth et al., 2009).

The method presented here, called ORABase (Ordinal Re-
gression Auto-encoding of cloud Base), leverages passive
satellite retrievals of cloud properties in combination with
marine surface observations to derive the CBH of a cloud
scene using a machine learning (ML) model. The CBH re-
trieval method relies on level-2 satellite data, namely of three
different cloud properties, which are CTH, COT, and CWP.
A convolutional neural network (CNN, LeCun et al., 1989;
LeCun and Bengio, 1995) model following the auto-encoder
(AE; Kramer, 1991; Hinton et al., 2006) framework is trained
in a self-supervised way to reconstruct the previously men-
tioned cloud properties. This type of artificial neural net-
work has been widely used in computer vision (Krizhevsky
et al., 2012; LeCun et al., 2010) but also more recently in var-
ious applications in climate science (Reichstein et al., 2019;

Watson-Parris et al., 2022). Thereafter, an ordinal-regression
(OR; Winship and Mare, 1984) model is fitted to predict the
CBH corresponding to the cloud properties, learning from
ground-based marine CBH retrievals. These different steps
constituting the method are summarised in Fig. 1 and are
detailed in Sect. 2. The objective of the developed method
is primarily to produce CBH retrievals with reduced uncer-
tainty and, additionally, to provide extended spatial and tem-
poral coverage compared to surface observations. Indeed, we
hypothesise that the spatial pattern of the cloud field carries
information about the CBH and that the CNN can exploit the
potential non-linear relationship between the CBH and the
satellite observations. Furthermore, as more accurate CBH
retrievals are obtained from ground-based remote sensing ob-
servations which are only available at isolated locations, we
capitalise on these retrievals to develop a satellite-based re-
trieval algorithm capable of generalising to global distribu-
tions. We sensibly reduce the scope of the study by focus-
ing on lower clouds, particularly due to the fact that ground-
based CBH observations display higher accuracy compared
to satellite-based retrievals in those cases and because it is
the lowest cloud which often matters most for, for example,
the surface radiation budget. We also restrict the retrievals to
marine regions to remove the impact of orography on surface
observations, especially for these same low-level clouds.

Section 2 firstly introduces the datasets and the collocation
between ground-based observations and satellite retrievals.
Secondly, the ML method constituting ORABase is de-
scribed. In Sect. 3, we evaluate our predictions against other
methods, including Noh et al. (2017) and other products from
active satellite measurements like the 2B-CLDCLASS-lidar
product (Sassen et al., 2008). Section 4 presents the global
dataset of the CBH which is derived from the ML approach.
We discuss the benefits and remaining challenges of our
method in Sect. 5. Further details about the spatial distribu-
tion of the observations and the ML method are included in
Appendices A–E. Additional links to available data outputs
and codes are listed in the corresponding sections.

2 Data and methods

2.1 Surface observations

The CBH labels used in this study are part of a global ma-
rine meteorological observation dataset maintained by the
UK Met Office (Met Office, 2006; Table 1), which provides
ongoing observational data from 1854 onwards. The obser-
vations are conducted from measuring stations that were lo-
cated on ships, buoys, or platforms. As a consequence, this
study largely relies on observational data representing the ar-
eas along the corresponding ship routes (Fig. 2a). Despite
their coarse resolution, the reported cloud base observations
provide valuable information about clouds in remote marine
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Figure 1. Schematic of the cloud base height retrieval method. (1) Collocation of surface-based cloud base height observations and satellite
retrievals. (2) Auto-encoder training on satellite cloud properties. (3) Encoding of collocated samples using the trained encoder. (4) Prediction
of the cloud field base height.

areas. The distribution of CBH observations and correspond-
ing bins are shown in Fig. 2.

At the beginning of meteorological and weather reports,
surface-based cloud observations were retrieved manually
or visually by human observers, but they have been grad-
ually replaced by automated systems. In the surface obser-
vation dataset used in this study, the CBH is derived using
a ceilometer, an instrument based on a laser pointing up-
right and measuring the backscatter from the cloud base,
and is then reported following the current standards from the
World Meteorological Organisation (WMO; WMO, 2019).
The CBH observations are sorted into bins of increasing
width (from 50 to 500 m bin width) corresponding to the al-
titude (Fig. 2b) as the data transfer through radio limits the
amount of transferable information, and precision close to
the surface is of importance, notably for aircraft. Since the
actual measured CBH values are not available in the dataset,
it is impossible to directly quantify a possible bias stemming
from this binning process. In general, here, we can suspect
that the available CBH retrievals represent an accurate or un-
derestimated assessment of the effective CBH as, for exam-
ple, a ceilometer measuring a CBH of 2490 m will report this
to be in the 2000 m bin in the available dataset. Using, for ex-
ample, the central value of each bin could be another way to
compute averages to potentially alleviate this unknown bias,
but this is not presented here. However, the method presented
in the following sections predicts the CBH in corresponding
bins; thus, it is left to the user to use these as they see fit for
further analysis.

2.2 Satellite data

In this study, we use products from the Moderate Resolution
Imaging Spectroradiometer (MODIS, Platnick et al., 2017)

from the AQUA satellite as input data that are later combined
with the CBH labels derived from the surface-based obser-
vations to train the prediction model. We choose MODIS
satellite retrievals as they provide a large amount of data
with kilometre-scale resolution and daily overpasses, with
the spatial coverage of one granule representing an area of
2330 km× 2000 km. We make use of the CUMULO dataset
(Zantedeschi et al., 2022) since it provides already prepro-
cessed satellite data from the A-train with daily full coverage
of the Earth for the years 2008 and 2016. In particular, out
of the available variables, we use two aligned products (see
Table 1), namely the MODIS Level-2 Cloud product (here-
after MYD06; Platnick et al., 2017), which provides relevant
cloud properties, and the MODIS Level-2 Cloud Mask prod-
uct (hereafter MYD35; Ackerman and Frey, 2017), which al-
lows us to filter scenes and screen for clouds.

The MYD06 product contains various cloud top properties
(temperature, pressure, height) and cloud optical and micro-
physical properties (optical thickness, effective radius, wa-
ter path). Level-2 data are derived from calibrated radiances
through various algorithms and physical relations detailed in
Platnick et al. (2017). The cloud top quantities are derived
from radiance data of several channels. Wavelengths in the
CO2 absorption range are particularly used to identify the
cloud top pressure (CTP) and thus the CTH of high clouds
because of the opacity of CO2. For thicker or low boundary
layer clouds, since the CO2-slicing technique fails, the CTH
is retrieved using the 11 µm brightness temperature band and
is combined with simulated brightness temperatures based
on vertical profiles from GDAS using surface temperature
together with monthly averaged lapse rate data (Baum et
al., 2012). The use of monthly averaged lapse rate data sep-
arately for different regions greatly helped reduce the bias
in retrieved CTHs for low clouds in collection 6 compared
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Table 1. Dataset description. The surface observations are provided by a worldwide station network available from the UK Met Office (Met
Office, 2006; see Sect. 2.1). The MODIS data are derived from collection 6.1 of the datasets (Platnick et al., 2017; Ackerman and Frey, 2017;
see Sect. 2.2).

Data product Description Variables Resolution Usage

Global marine meteorological Surface observations Cloud base height (m) Latitude/longitude Labels
observations coordinates 0.1°
(Met Office, 2006) Hourly/daily observations

MODIS Atmosphere L2 Cloud top properties, Cloud top height, CTH (m) 1 km pixel resolution Input
Cloud product (MYD06) cloud optical and Cloud optical thickness, COT (a.u.) Daily overpass features
(Platnick et al., 2017) microphysical properties Cloud water path, CWP (g m−2)

MODIS Atmosphere L2 Cloud pixel flag Cloud mask 1 km pixel resolution Used for
Cloud Mask product (MYD35) Daily overpass cloud scene
(Ackerman and Frey, 2017) filtering

Figure 2. (a) Spatial distribution of cloud base retrieval counts (1° grid) and (b) distribution of the retrieved cloud base height before and
after the collocation and filtering process for observations from the years 2008 and 2016.

to collection 5 of MYD06, but some spatial and regional
biases remain. These biases directly impact the spatial and
temporal distribution of CTH in the data and thus what the
model could learn from. The cloud optical thickness (COT)
and cloud effective radius (CER) are simultaneously derived
from multispectral reflectances, cloud masks, CTP data, and
surface type characteristics. The cloud water path (CWP) is
additionally retrieved as part of the cloud optical property
algorithm described in Platnick et al. (2017). The retrieval
of these cloud properties additionally requires inputs such as
temperature, water vapour, and ozone profiles from NCEP
GDAS (Platnick et al., 2003; Baum et al., 2012), which can
lead to potential uncertainties, in particular in remote marine
regions, where only sparse observations are available for as-
similation.

In general, the MYD06 level 2 product offers the advan-
tage that the statistical model can be built relying on cloud

properties, and it can thus allow the study of relationships
between the CBH and other cloud properties. Calibrated radi-
ances, one step ahead in the data-processing pipeline, would
also provide insightful information but would require inputs
of larger dimensionality since key information about clouds
would be scarcer. Furthermore, using MYD06 level-2 data
allows us to compare our method to others which, in most
cases, use cloud properties to retrieve the CBH. From the en-
tirety of available MYD06 retrievals, we select three cloud
properties in particular, namely the CTH, COT, and CWP.
The CTH is used as it provides key information about the
CBH in the cloud field, as seen in Böhm et al. (2019). Verti-
cally integrated cloud quantities like the COT and CWP fur-
ther help the statistical model by providing key information
about the cloud’s vertical extent, lacking in the cloud top
properties, making them commonly used for retrieving the
CBH (e.g. Noh et al., 2017). The CWP as computed from
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COT and CER and, in consequence, the CBH are built on
adiabatic assumptions (Grosvenor et al., 2018) and there-
fore cannot be used to constrain subadiabaticity, as also high-
lighted in Mülmenstädt et al. (2018).

2.3 Dataset collocation

We proceed to collocate our two data sources over the
2 years of available MODIS MYD06 data. To obtain
the cloud properties of the cloud scene corresponding to
the surface retrieval of CBH, we select a square tile of
128 km× 128 km from the closest MODIS granule available,
centred around the observation location. Here, closest means
that the MODIS granule contains the (latitude, longitude) co-
ordinate of the CBH observation and the full extent of the
tile it is centred around and that the satellite retrieval was
made during a 1 h time window before or after the CBH ob-
servation time. The spatial and temporal thresholds used to
collocate the surface observations and the satellite retrievals
are chosen for several reasons. Mainly, we want the satel-
lite cloud properties to be representative of the cloud scene
for which the CBH observation was made. Additionally, we
want to recover a satisfying number of samples during the
collocation process. Further arguments regarding the sensi-
tivity of the retrieval method to the tile size are described in
the following (see Sect. 2.5).

The extracted tile corresponding to the surface observa-
tion is then filtered. A first filter is applied to missing values
in the different cloud property fields to primarily avoid re-
trievals of poor quality. This is predominantly the case for
the COT and CWP fields for which the retrieval fails more
frequently, sometimes entirely. Another filtering is concor-
dantly done using the MYD35 product for cloud cover (min-
imum of 30 % of cloudy pixels) to ensure that the cloud field
is substantial enough for the collocated surface observation
to be representative. Additional comments on the sensitivity
of the CBH retrieval to this threshold are presented in the
following section covering the downstream task of CBH pre-
diction. Throughout the quality-filtering process, the missing
data are one of the major factors impacting the number of re-
tained samples. In Fig. 2, we can see that it seems to impact
the clouds with higher CBHs.

The overall filtering and collocation processes yield
around 21 000 samples. This only represents around 1 % of
the initial CBH observations, mainly due to the collocation
process both in time and space with the MODIS overpasses.
Missing values and cloud cover filters are an additional factor
in the reduced number of collocated samples. The presented
collocated dataset is the basis upon which to build our cloud
scene CBH retrieval.

2.4 Auto-encoder

To circumvent the lack of labelled samples from which the
relevant features are extracted and to learn useful lower-

dimensional representations of the data, we add a dimension-
ality reduction step to our method through an unsupervised
learning model. AEs offer a wide application spectrum, rang-
ing from preprocessing to the generation of new outputs. AEs
are commonly used in unsupervised learning settings for re-
ducing the dimension of the input data to leverage the la-
tent representations learned by the model to perform cluster-
ing, classification, or regression in a lower-dimensional space
(Baldi, 2012). We use classical AEs for their simplicity and
versatility, but other approaches to unsupervised latent repre-
sentation learning, such as variational AE and its many vari-
ants, can be used in a similar fashion. In general, AEs learn
to encode the given input data to produce a latent represen-
tation of a lower dimension. From the latent representation,
the input data are then reconstructed. The learning process is
driven by what is called the reconstruction loss, which min-
imises the difference between the input and the reconstructed
output.

Here, we use a convolutional AE architecture which is
based on a CNN backbone in order to leverage the spatial
structure of our input data (Pu et al., 2016). We rely on the
widely employed CNN architectures U-Net (Ronneberger et
al., 2015) and VGG (Simonyan and Zisserman, 2015), where
the convolution layers are based on 3× 3 filters, stacked in
blocks, followed by maximum-pooling layers and mirrored
for the decoder part of the model using transposed convolu-
tion layers (Zeiler et al., 2010). We adapt the size of the input
to fit our chosen tile size (128), and we adapt the latent space
size to 256 and use the improved leaky rectified linear units
(LReLUs; Maas et al., 2013) over the original ReLU (Nair
and Hinton, 2010) as activation functions. The detailed pa-
rameterisation of the model is described in Appendix C. The
model code was developed following implementations from
the packages PyTorch (Paszke et al., 2019) and torchvision
(torchvision maintainers and contributors, 2016) and is in-
cluded in the related Zenodo archive (Lenhardt et al., 2024).
The main goal of the AE training is then to minimise the
loss function during the optimisation or learning process and
to reproduce the input data with the highest fidelity. For the
loss function which, in this case, is only the reconstruction
error, we use the common mean-squared error (MSE), which
can be written for a batch of samples as follows:

Lreconstruction =
1
Ni

∑
b∈Bi

||b−Dθ (Eθ (b))||
2
2 , (1)

where, with the tiles used for training the AE being noted as
B =

{
bn ∈ R

3×128×128}
n∈[1,N ],Bi represents a batch of sam-

ples of size Ni , and θ represents the combined parameters of
the encoder E and decoder D models. The MSE considered
here between the inputs and outputs of the AE is unitless as
the inputs are standardised before processing to ensure that
each of the channels are on similar scales and to ensure a
more stable model training.
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However, this self-supervised step requires a large amount
of data that the AE can learn from. Therefore, we select 1
full year of data of MODIS granules from the CUMULO
dataset (from the year 2008; see Sect. 2.2) and randomly
sample tiles following the same criteria as during the col-
location process (see Sect. 2.3). We sample a maximum of
20 tiles from a single granule, and this is done for only 1
single year of data in order to avoid possible spatial and tem-
poral auto-correlations in the data used for training and test-
ing leading to a non-representative performance of the mode
(Kattenborn et al., 2022). Further details on the study of the
generalisation performance of the model for new observa-
tions in space and time are given in Appendix B. Overall,
the built dataset consists of around 500 000 samples which
are then split for training, validation, and testing based on
their retrieval date. For further testing, we additionally create
a test dataset based solely on data from the year 2016, which
include tiles not only over the ocean but also over land, indi-
cating potential generalisation skill for unseen data including
orography influence. The reconstruction error during train-
ing and validation is shown in Fig. 3, along with examples
of reconstructed samples. The spatially averaged reconstruc-
tion errors per cloud property channel are displayed in Fig. 4
for each of the training, validation, and testing datasets pre-
viously mentioned. The trained model reaches an MSE of
0.19 on the test set of 2008 and of 0.24 on the global test
set of 2016. The presented model is trained on tiles of size
128× 128, but some arguments regarding the choice of the
tile size are made in the following section in the context of
the downstream task of CBH prediction.

2.5 Cloud base height ordinal regression

Once the AE’s optimisation process is completed, the next
step is to predict the corresponding CBH for the observed
scene. As seen in Fig. 2, the retrieved CBH observations are
binned into different categories following WMO standards
(WMO, 2019). This leads to a prediction problem at the in-
tersection of regression (i.e. predicting numerical values) and
classification (i.e. predicting the object class) called ordinal
regression (OR). The labels from the target variable are de-
fined by classes following a certain order, in this case the
increasing CBH. A wide array of methods stem from this
field, with diverse applications in, for example, computer
vision using neural networks (e.g. Niu et al., 2016; Shi et
al., 2023; Lazaro and Figueiras-Vidal, 2023). Different meth-
ods exist to tackle such problem setups either via modifi-
cation of the target variable, ordinal binary decomposition,
or threshold modelling (Gutiérrez et al., 2016; Pedregosa et
al., 2017). Threshold models were shown to be able to per-
form better than the ones designed for regression or multi-
class classification on OR tasks (Rennie and Srebro, 2005).
Here, we consider two alternative frameworks in the case of
threshold models which differ in terms of how they penalise
threshold violations: immediate-threshold (IT; Eq. D1) and

all-threshold (AT; Eq. D2). The overall training process of
the model aims to optimise a set of weights to project the
input data to a one-dimensional plane, subsequently divid-
ing the constructed representation using learnable thresholds.
These two implementations of threshold models are available
from the mord Python package (based on Pedregosa, 2015),
and further details on threshold OR models are added in Ap-
pendix D.

To help evaluate the prediction model, we rely on a set
of different metrics pertaining either to the regression aspect
of the problem or to its classification and/or ordinal nature.
First, the macro-averaged mean absolute error (MA-MAE) is
used as it weights each class separately before averaging the
subset MAEs, making it useful in the case of OR problems
with imbalanced datasets (Baccianella et al., 2009). Using a
macro-averaged metric prevents us from choosing a trivial
model which might always predict the dominating class. Ad-
ditionally, the macro-averaged root-mean-square error (MA-
RMSE) is also used to investigate the skill of the prediction
models. To assess the ordering of the predicted retrievals with
respect to the labels, the ordinal classification index (OC;
Cardoso and Sousa, 2011) and its updated version, the uni-
form ordinal classification index (UOC; Silva et al., 2018),
are computed. A version of the latter not requiring an extra
hyperparameter, the area under the UOC (AUOC; Silva et
al., 2018), is also reported. These different metrics are able
to capture the proper ranking order of the predictions com-
pared to the labels using the confusion matrix and also the
overall accuracy of the prediction model. Nevertheless, one
caveat is that these indexes developed for ordinal classifica-
tion assume each class to be equally distant from one another,
which is not the case here since the CBH retrievals are re-
ported in bins of variable width. However, a purely ordinal
classification index will drop all information on the scale of
the response (1500 m misclassified as 600 m treated the same
as 200 m misclassified as 50 m since only the order matters),
which might be not entirely appropriate for this problem. In
an effort to address this limitation, the indexes are adapted
to mimic the spacing between the different CBH bin classes
by incorporating classes that are all spaced by 50 m, rang-
ing from 50 m up to 2500 m. In this manner, the CBH class
difference is more suited to the actual nature of the retrieval.

However, several aspects of the ordinal-regression model
need to be investigated first. To this extent, we first divide our
global collocated dataset (Sect. 2.3) into training, validation,
and testing datasets but simultaneously ensure that each class
is relatively equally represented in each split. The following
aspects and sensitivities of the model to the input data param-
eters are assessed using the training and validation datasets:
the potential benefit of using the spatial context through the
AE, the input tile size, and the cloud cover threshold. More-
over, the spatial generalisation skill of the model is studied by
splitting the collocated dataset between the Northern Hemi-
sphere and the Southern Hemisphere. For each of these, the
performance for the AT variant of the OR model is reported
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Figure 3. (a) Training and validation losses during model optimisation. (b, c) Examples of tiles (first and third rows) with the corresponding
reconstructions (second and fourth rows) for the different cloud property channels.

Figure 4. Spatial distribution of channel reconstruction errors aggregated on a 5° grid for the 2008 training, validation, and test datasets and
for the 2016 test datasets.
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as it performs significantly better than the IT variant across
experiments and evaluation metrics.

2.5.1 Spatial context

In order to evaluate the actual effect of the spatial context
with respect to the input cloud properties, the prediction skill
of the model trained based on the AE encodings is compared
to a collection of three baseline methods: two trivial methods
(predicting the majority bin and predicting the bin minimis-
ing the MAE across the training dataset) and an OR method
relying on the flattened cloud properties of a 9× 9 tile cen-
tred around the observation. Both of the trivial methods re-
sult in always predicting the CBH bin of 600 m. The third
method yields a similar dimensionality as the AE encodings
(three channels× 9× 9= 243) and thus helps to show how
the AE potentially leverages some spatial information about
the cloud scene. Across all metrics, the method using the
9× 9 tile input is outperformed by the OR method based
on the AE encodings and even by the trivial choice of the
majority bin. It is, in particular, noticeable with an increase
in the MA-RMSE by 400 m and in the MA-MAE by 140 m
compared to the OR predictions made with the AE. On the
other hand, considering the predictions made with the trivial
method leads to an increase in the MA-MAE of 50 m but a
decrease in MA-RMSE as most of the labels are actually con-
centrated around the 600 m bin. The mean bias of the trivial
method is lowered closer to 0 m as it leads to a more substan-
tial underestimation of the high CBHs and overestimation of
the low CBHs. To conclude the comparison with these two
other baselines, the information spatially encoded by the AE
over the whole tile size area is useful in producing CBH re-
trievals of better quality compared to a baseline OR model
with a reduced spatial context or a trivial method predicting
a singular bin.

2.5.2 Tile size

A prediction model is fitted to the input data using encod-
ings produced with tailored AE models trained as detailed in
the previous section but with varying square input tile sizes
of 16, 64, and 128. With the subsequent prediction models,
the retrievals made with a tile size of 128 showcase the low-
est MA-MAE (0.8 % and 2.7 % decreases compared to tile
sizes of 16 and 64, respectively) and MA-RMSE (around a
5 % decrease compared to both other tile sizes), while no
clear sensitivity arises from the OC, UOC, or AUOC. Ex-
amining the performance for each class separately indicates
reduced errors (MAE and RMSE) for higher CBHs (above
1000 m) using the larger tile size of 128 and on par perfor-
mance across tile sizes for lower CBHs. In the context of the
presented CBH retrieval, the larger spatial information pro-
vided through the input tile seems to be useful for the sub-
sequent CBH prediction task, leveraged with the help of the
AE as shown previously.

2.5.3 Cloud cover

The collocated dataset is first filtered again with cloud cover
thresholds of 10 %, 20 %, and 30 %. Each threshold respec-
tively leads to datasets of 25 042, 23 034, and 21 065 sam-
ples, which are then further split into training, validation, and
testing. For the validation set, while the decreases in MA-
MAE (4.5 %) and MA-RMSE (10 %) with the 10 % com-
pared to the 30 % cloud cover threshold indicate a poten-
tial benefit of lowering the threshold, investigating the MAE
and class-wise MAEs creates a different picture: the benefit
seems to marginally concern the higher CBH classes while
hindering the performances of low CBHs, which, overall,
explains the trend in RMSE notably. Considering the con-
fusion matrices generated for each cloud cover threshold ad-
ditionally shows that a lower cloud cover threshold results in
a slightly increasing distribution shift of the predicted CBH
classes towards higher CBHs, displaying a prediction clus-
ter around 1000 m. Overall, the benefit of additional avail-
able samples when lowering the cloud cover threshold does
not seem to directly lead to convincingly improved perfor-
mance. Here, the main axis of improvement probably lies
in the widening of the collocation process to ensure broader
spatial and temporal coverage of the training dataset.

2.5.4 Spatial generalisation

Furthermore, in a similar way as for investigating the spa-
tial generalisation ability of the AE, we split our collocated
dataset between the Northern Hemisphere and the Southern
Hemisphere. This way, we ensure a minimal number of sam-
ples in each spatial split (17 615 and 3450 for the North-
ern Hemisphere and the Southern Hemisphere, respectively)
even though the spatial distribution patterns of the retrievals
greatly differ. As a result, the lower number of samples in the
Southern Hemisphere leads to some overfitting, with met-
rics systematically worsening when testing on the North-
ern Hemisphere. However, the Northern Hemisphere training
displays fair generalisation skill with equal or improved met-
rics when testing on the Southern Hemisphere, for example
an 8 % decrease in MA-RMSE; a 1 % decrease in OC; and
stable MA-MAE, UOC, and AUOC. The class-wise perfor-
mances for the two splits reveal the overall generalisation dif-
ficulty for higher CBHs (above 600 m) when training on the
Southern Hemisphere as the labels relative to these classes
are mostly present in the Northern Hemisphere (Fig. A3 in
the Appendix). The ability of the model to generalise from
the Northern Hemisphere labels reassures us of the overall
skill of the model once trained on all the labels available.

In the following section, we present the results of the
developed method alongside comparisons to previous re-
trieval approaches. In particular, we compare our retrieval to
a method assuming an adiabatic cloud model (adapted from
Goren et al., 2018; see Appendix E for implementation) and
to the method from Noh et al. (2017). The former relies on
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the CTH retrieved from CALIPSO’s Cloud-Aerosol LIdar
with Orthogonal Polarization (CALIOP; Hunt et al., 2009)
and CloudSat (Stephens et al., 2008) but also relies on the
CWP and CTT retrievals from MODIS MYD06. However,
in our own comparison study, we used all necessary vari-
ables, including the CTH, from MODIS MYD06. The lat-
ter method relies on piecewise linear relationships between
MODIS CWP and the geometric thickness of the uppermost
layer from CALIPSO and CloudSat stratified by MODIS
CTH. The application of the method presented in Noh et
al. (2017) is, however, done with CTH retrievals from the
Suomi National Polar-orbiting Partnership (SNPP) VIIRS.
The comparison to our method presented here is done by us-
ing the MODIS-, CALIPSO-, and CloudSat-derived parame-
ters from Noh et al. (2017) but also using the MODIS-derived
CTH to produce the final CBH estimate. In both cases, since
these methods can be applied pixel-wise when a MODIS re-
trieval is available, we computed the retrieved CBH values
and averaged them over the cloud scene.

3 Results, evaluation, and comparison to previous
retrieval approaches

3.1 Cloud base height retrieval, evaluation, and
comparison to previous retrievals

In this section, we present the results of the retrieval, eval-
uate it using the ground-based observations, and investigate
how our method fares by comparing it to a method assuming
an adiabatic cloud model (adapted from Goren et al., 2018;
see Appendix E for implementation) and to the method from
Noh et al. (2017). The analysis is performed for the collo-
cated scenes where ground-based observations are available.
To be able to compare the relevant metrics for the different
methods, we proceed to a binning of the data following the
WMO standard presented in Sect. 2.1. In Table 2, we report
several metrics including the MAE, the mean error (bias),
the RMSE, and the standard deviation of the absolute error.
The latter helps us characterise the spread and uncertainty
in the overall predictions with respect to the surface obser-
vations. We additionally report the adapted version of the
AUOC mentioned in Sect. 2.5. Furthermore, we do not report
quantities such as the correlation coefficient or the regression
line on the two-dimensional histograms of Figs. 5 and 6 as
the stratified and categorical aspects of the data would make
reporting these not clearly informative. We refer to the over-
all conceived method including the AE (see Sect. 2.4) and the
OR prediction model in the AT variant (see Sect. 2.5), listed
in Table 2 as ORABase.

We first note that the OR method with an immediate-
threshold setup fails at adequately predicting the cloud scene
base height compared to all the other retrieval products, pro-
ducing large errors (double-fold in comparison to the all-
threshold setup). On the other hand, ORABase performs well

Figure 5. Joint histogram over the test set of the surface observa-
tions and the predicted cloud scene base height from ORABase with
the ordinal-regression all-threshold model. The 1 : 1 boxes are high-
lighted in orange in the figure.

with satisfying error measures and uncertainty in the pre-
dictions, on par with if not better than the two retrievals
from Goren et al. (2018) and Noh et al. (2017). Compared
to the method from Noh et al. (2017), our method succeeds
in decreasing the error on average, displaying a reduction
of 100 m for the MAE. The method also effectively dimin-
ishes the uncertainty in the CBH retrievals, bringing the ab-
solute error standard deviation 200 m lower. Our method thus
provides accurate retrievals with comparatively low general
uncertainty levels. Even though, on average, the predictions
exhibit a slight positive bias, we find that the CBH values
above 2000 m are systematically underestimated (Fig. 5).
In consideration of the low representation of such observa-
tions in the dataset, due to data filtering and surface obser-
vations being less reliable for higher clouds, the method still
struggles to properly quantify the cloud scene base height of
these samples. These samples also make up for most of the
measurement uncertainty in the labels considering the fact
that ceilometers face challenges for retrieving cloud signals
higher up in the boundary layer. Focusing on lower cloud
scene base height retrievals, the predictions demonstrate even
lower errors: the MAE is lowered to 379 m, while the ab-
solute error standard deviation is narrowed down to 328 m.
Achieved accuracy levels and uncertainty measures attest to
a certain trustworthiness of the cloud scene base height es-
timates, particularly in the context of product requirements
– for example, the ones outlined by the Joint Polar Satellite
System (JPSS; Goldberg et al., 2013; 2 km accuracy thresh-
old). However, the cloud scene base height retrieval method
presented here does not aim to constitute a product on its own
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Figure 6. Joint histogram of (a) surface observations and 2B-CLDCLASS-lidar retrievals and (b) ORABase predictions and 2B-CLDCLASS-
lidar retrievals for the collocated cloud scenes during the year 2008. The 1 : 1 boxes are highlighted in the figure in orange.

as it is not operational in terms of the processing of new daily
data available from the MODIS instrument; rather, it is oper-
ational in terms of the provision of robust estimates of CBH
for lower-level clouds. Therefore, it is expected and reason-
able that the accuracies and uncertainties presented here are
below such thresholds. However, the available method code
(Lenhardt et al., 2024) easily allows the processing of new
data for users in addition to the available dataset for the year
2016.

We performed further sensitivity studies on our retrieval
method, trying to improve the quality of the predictions.
However, an attempt to balance the dataset by oversampling
the higher CBH values (cloud base retrievals falling into the
2500 m bin) did not yield better results overall but also posed
a higher risk of overfitting to these specific samples. Fur-
thermore, any spatial information about the location of the
satellite retrieval was not included so as to prevent possi-
ble overfitting to the latitude and longitude coordinates of
the observations present in the training data. Since the obser-
vations are sparsely distributed, especially in the Southern
Hemisphere (see the figures in Appendix A), the goal is to
avoid any kind of induced spatial bias and sensitivity in the
model’s predictions. Accordingly, we can then ensure proper
generalisation skill to new spatial areas but not only based on
known retrieval distributions at similar locations. As a con-
sequence, the choice was made to evaluate the potential gen-
eralisation skill of the prediction model by establishing a ge-
ographic distribution of the mean predicted cloud scene base
height for a whole year’s worth of MODIS overpasses. This
is discussed in more detail in Sect. 4. On the other hand, the
temporal aspect of the model’s generalisation skill was in-
trinsically ensured by building a test set that was temporally
distinct from the training set, including collocated samples
from only the last months of 2016.

3.2 Comparison to spaceborne radar–lidar retrievals of
the CBH

The combined datasets which are part of CUMULO (Zant-
edeschi et al., 2022), particularly the radar and lidar re-
trievals, facilitate the joint evaluation of our method with
both ceilometer surface observations and active satellite re-
trievals. Specifically, we leverage the 2B-CLDCLASS-lidar
product (Sassen et al., 2008), which is derived from the
combination of CloudSat’s Cloud Profiling Radar (CPR;
Stephens et al., 2008) and CALIPSO’s Cloud-Aerosol LIdar
with Orthogonal Polarisation (CALIOP; Hunt et al., 2009).
The base height of the lowest cloud layer retrieved by the in-
struments in each scene is considered to be the scene CBH
and is then averaged over the available pixels along the track,
preserving the same spatial extent as the associated cloud
properties from the MODIS instrument. For the collocated
samples of the year 2008, we thus jointly retrieve the ob-
tained CBH from the 2B-CLDCLASS-lidar product, only
considering cases where a surface observation was in the
vicinity of the satellite track (inside a disc with a ∼ 60 km
radius around the surface observation; see Sect. 2.3). For the
samples fulfilling these conditions, we then compare how the
different retrievals fare. In Fig. 6, the joint histograms for the
surface observations, the 2B-CLDCLASS-lidar retrieval, and
the method’s corresponding predictions are documented, rep-
resenting a total of around 800 samples.

Investigating the joint histogram between the surface ob-
servations and the 2B-CLDCLASS-lidar retrievals (Fig. 6a)
allows us to identify shortcomings of the active satellite re-
trievals, particularly close to the surface (Tanelli et al., 2008;
Marchand et al., 2008). Indeed, the CBHs closer to the sur-
face are not well captured by the 2B-CLDCLASS-lidar re-
trievals, as partially expected, due to thick clouds attenu-
ating the lidar signal and due to ground clutter and a lack
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Table 2. Performance based on the test set of different CBH retrieval methods. OR models are either built with the immediate-threshold
(IT) or all-threshold (AT) variant. The method on which the rest of the study is based has been highlighted in bold, and its corresponding
performance based on the training set is added in the last row.

Method MAE Bias RMSE Absolute error AUOC
(m) (m) (m) standard deviation

(m)

Goren et al. (2018) 457 −262 689 515 0.92
Noh et al. (2017) 578 −35 860 638 0.92
OR (IT) + AE 991 +595 1296 836 0.93
ORABase 447 +58 614 420 0.89
ORABase training 456 +80 620 420 0.89

of sensitivity to small droplets near the cloud base for the
radar signal. A similar explanation can eventually be ar-
ticulated as a whole for the collocated retrievals, consider-
ing the fact that the mean bias between the two retrievals
is greater than +600 m. Concurrently, it is fruitful to com-
pare the 2B-CLDCLASS-lidar retrievals with the predictions
from the developed method (Fig. 6b). As seen previously,
ORABase struggles at higher CBHs, but, here, it agrees rea-
sonably well with the active satellite retrievals, especially for
retrievals between 500 m and 1500 m. Focusing on retrievals
under 1.5 km, the prediction model achieves similar perfor-
mance compared to that presented in Table 2, with an MAE
of 488 m and an RMSE of 576 m, even though the subset here
is much smaller.

Furthermore, we created a more extensive dataset using
only 2B-CLDCLASS-lidar retrievals and the cloud scene
predictions with the aim of obtaining a more complete view
of the relationship between these two retrievals. To this ex-
tent, we collated around 160 000 samples of aligned cloud
scene base height predictions and the 2B-CLDCLASS-lidar
retrievals over the year 2016. For this dataset, the perfor-
mance metrics exhibit similar values as for the previously
presented subset, displaying even lower values for the MAE
and the absolute error standard deviation (around a 50 m de-
crease for both). Similarly to the previous collocated subset,
limiting the evaluation to lower cloud base retrievals yields
performance metrics close to a 450 m MAE and a 270 m ab-
solute error standard deviation, both of these being mainly
impacted by agreeing retrievals in the 500 to 1500 m range.

4 Global distribution

To further evaluate the method, we also apply the prediction
model on global MODIS data for the whole year of 2016.
The sampling process yields approximately 700 000 CBH re-
trievals for the corresponding cloud property tiles. We then
spatially aggregate the predictions to a regular grid of 5° and
compute the annual mean per grid cell along the annual me-
dian absolute deviation (MAD). The MAD constitutes a use-
ful metric to quantify the variability while removing the ef-

fects of outliers. For more robust evaluations and statistics,
only ocean grid cells with more than 100 CBH retrievals
over the year are displayed, thus impacting mostly coastal
and polar regions where filtering for ocean-only scenes or the
original number of satellite retrievals leads to a higher rate
of displaying removal. The spatial distribution of the mean
cloud base (Fig. 7a) is similar to the outlined global distri-
butions from other studies using different instruments and
methods (Böhm et al., 2019; Lu et al., 2021; Mülmenstädt et
al., 2018). The illustrated global quantities were established
using MODIS overpasses which happen at a practically con-
stant local time (13:30, early afternoon for AQUA). The
MAD pattern exhibits similar characteristics (Fig. 7b), even
though variability increases slightly in the vicinity of land
masses. These interpretations still remain valid when looking
at relative deviations. Typical features are lower cloud bases
towards polar regions and the mid-latitudes and higher ones
in the tropical regions. One can further observe regions like
the Pacific coast of South America or the Namibian coast,
which display lower cloud bases concurrently with lower
variability (also highlighted in Lu et al., 2021). It is, however,
impossible to follow up the study for nighttime retrievals as
some MODIS cloud properties are not retrieved then.

5 Conclusion

Here, we have presented a novel method named ORABase,
which retrieves the cloud scene base height over marine ar-
eas from MODIS cloud properties, specifically CTH, COT,
and CWP. This method can produce robust CBH estimates
for cloud scenes, particularly for lower cloud bases (MAE
of 379 m and absolute error standard deviation of 328 m for
up to 2 km cloud bases) based on the assumption of a ho-
mogeneous cloud base across the considered cloud field. The
statistical model was built on surface observations of cloud
bases with ceilometers (Sect. 2.1) and then evaluated in com-
parison to other methods using passive satellite instruments
(Sect. 3.1) and active satellite retrievals (Sect. 3.2). Analysis
of the yearly averaged CBH (Sect. 4) helped to make further
sense of the predicted cloud bases and variability. The global
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Figure 7. Spatial distribution of (a) mean and (b) median absolute
deviations of predicted cloud base height for the MODIS data of the
year 2016 aggregated on a 5° grid.

dataset for the year 2016 is available from Zenodo (Lenhardt
et al., 2024).

Using the spatially resolved information of cloud fields of
CTH, COT, and CWP through the described CNN-AE re-
sults in more accurate CBH retrievals compared to the ac-
tive retrievals of the 2B-CLDCLASS-lidar product, produc-
ing better performance metrics compared to the other prod-
ucts and methods considered in this study. The combination
of a CNN-based AE to reduce the dimensionality of the spa-
tial patterns of cloud properties with a simple OR model
leads to a better CBH retrieval compared to previous pre-
sented methods. The OR modelling helps in bridging the gap
between regression and classification, facilitating the use of
the binned cloud base observations provided by the surface
observation dataset. Overall, ORABase achieves low error
in the retrievals, around 400 m, and concurrently achieves
a narrow absolute error distribution, more precisely around
400 m absolute error standard deviation. Both of these per-
formance metrics are additionally reduced when focusing on
cloud bases lower than 2 km. Application to data over land
areas has not been processed yet but would certainly require
adding surface observations from land during the training
process (e.g. Böhm et al., 2019; Lu et al., 2021; Mülmenstädt
et al., 2018). Application of the presented retrieval method
to other instruments could also be considered. Incorporating
TERRA MODIS data would help constrain the annual mean
estimates presented in Fig. 7 by partially removing the po-
tential bias of the single daily overpass arising from using
only AQUA data presented in this study. The aspect enabling
potential application of the retrieval method to different in-
struments outside of the two MODIS sensors would be the

standardisation process for the input cloud properties before
the use of the AE, which is done based on means and stan-
dard deviations computed from AQUA-only granules. Care-
fully investigating the characteristics of the distribution of the
cloud properties from another instrument to ensure proper
scaling when using the trained AE would then be necessary.
Further tests could be done in addition using a coarser reso-
lution for the input cloud properties.

Furthermore, classical semi-supervised pipelines like the
one presented here, characterised by a small labelled dataset
and a vast unlabelled dataset, necessitate a kind of colloca-
tion or matching process which often proves to be cumber-
some and generates only a limited number of labels. How-
ever, future avenues of research could consider directly mod-
elling unmatched datasets, as in, for example, Lun Chau et
al. (2021) with multi-resolution atmospheric data, by making
use of other quantities present in the observations as mediat-
ing variables to model the link between observed and unob-
served variables.

In essence, the main benefit of producing better cloud base
estimates is to gain accuracy in the overall retrieval of cloud
geometry, impacting, in particular, radiation estimates (Kato
et al., 2011) like the surface downwelling longwave radiation
(Mülmenstädt et al., 2018). ORABase can thus prove to be
useful by helping to produce CBH with enhanced confidence
at a global scale.
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Appendix A: Cloud base height retrieval distribution

Figure A1. Spatial distribution of cloud base height retrievals (Met Office, 2006) for the years 2008 and 2016 on a 5° grid. The overall
percentage of each label in the total observations is indicated in brackets. Only grid cells with more than 50 retrievals are displayed.

Figure A2. Mean cloud base height from retrievals (Met Office, 2006) for the years 2008 and 2016 on a 5° grid. Only grid cells with more
than 50 retrievals are displayed.
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Figure A3. Spatial distribution of the collocated cloud base height retrievals (Met Office, 2006) and the satellite cloud properties used for
training the prediction model for the years 2008 and 2016 on a 5° grid. The overall percentage of each label in the total dataset is indicated
in brackets.

Figure A4. Mean cloud base height from the collocated retrievals (Met Office, 2006) and the satellite cloud properties used for training the
prediction model for the years 2008 and 2016 on a 5° grid.
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Appendix B: Spatio-temporal correlation study

We create five different datasets to evaluate how capable the
chosen AE architecture is of generalising to new data while
trying to remove some possible autocorrelation biases which
might inflate the performance scores. We also use this study
to analyse how the AE model behaves when trained with our
input data. We define two splits for space and time in order
to build the training and testing datasets, namely the south-
western (SW) quadrant and the period from March to Oc-
tober, respectively. The granules used to build the datasets
span across the whole year of 2016. The random data split is
the basis for the training of the model and consists of tiles
sampled in the aforementioned quadrant and time period.
These tiles are then split randomly between training, vali-
dation, and testing datasets. This split represents the com-
mon way of splitting data when building an ML model. In
contrast, we build three other datasets which vary through
their respective spatial and time spans. The spatial split is
built considering tiles spanning across a distinct time period,
here between November and February, regardless of their
spatial location. The temporal split is built considering tiles
located anywhere but in the southwestern quadrant regard-
less of the time at which the retrieval occurred. Finally the
spatio-temporal split combines the previous two conditions
in order to build a dataset in which the tiles come from an
independent location and time compared to the ones used
for training. Additionally, we create a global data split us-
ing data from a different year, here 2008, without any spatial
restriction for the tiles. Furthermore, only a limited number
of tiles were extracted from each granule, while only gran-
ules from non-consecutive days were used in order to limit
possible correlation between the extracted scenes.

Table B1. Name, time period, spatial extent, and number of samples for each of the five described data splits.

Data split Time period Spatial extent n

Random March–October 2016 SW quadrant Training: 14 691
Validation: 4198
Testing: 2099

Spatial March–October 2016 Global except SW quadrant 107 736

Temporal January–February and November–December 2016 SW quadrant 12 420

Spatio-temporal January–February and November–December 2016 Global except SW quadrant 30 659

Global December 2008 Global 7111

We then train an AE model using the training data from the
first data split (random). Each test data split is then used to
evaluate the trained model through the reconstruction errors
divided by the reconstruction error mean of the random split
(noted as the reconstruction error ratio; Fig. B1). The spa-
tial distribution of the mean reconstruction errors is shown
in Fig. B2. We detail in Table B2 the average channel recon-
struction error for each of the splits.

Table B2. Average channel reconstruction error for each of the five
described data splits.

Data split Channel Average

CTH COT CWP

Random 0.117 0.369 0.333 0.273
Spatial 0.171 0.344 0.276 0.263
Temporal 0.114 0.253 0.150 0.172
Spatio-temporal 0.202 0.332 0.286 0.274
Global 0.154 0.318 0.221 0.231

Average 0.152 0.323 0.253 0.243
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Figure B1. Reconstruction error ratios of an AE for different test datasets. The quartiles are indicated with the bar plot inside each violin
plot, while the mean is indicated with an orange circle. Extreme values were removed before plotting. Each sample’s reconstruction error is
divided by the mean reconstruction error of the random data split and defines the reconstruction error ratio presented here.

Figure B2. Distribution of mean channel reconstruction errors aggregated on a 5° grid.
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We first notice that the reconstruction power of the model
is consistent regardless of the test split considered, with mean
reconstruction error ratios ranging from 0.63 to 1.0, divid-
ing the split’s reconstruction error by the random data split’s
mean reconstruction error. Ratios around 1 or below indicate
that the model’s performance is not inflated when consid-
ering a random data split, highlighting that the model did
not learn from only possible spatial and/or temporal corre-
lations between samples present in the training set. The dis-
tribution of the error is also very similar throughout the test
splits, with most of the samples located below an error ratio
of 0.5. However, one of the main aspects with regard to the
performance of the model across test splits is the presence
of a heavy tail in the distribution, showcasing that, for some
samples, the reconstruction error can be greater than 3 times
the mean error. Looking at the spatial patterns of the recon-
struction error, we note that, overall, the error comes from the
COT and CWP predictions, with the average reconstruction
errors across test sets being 0.15, 0.32, and 0.25 for CTH,
COT, and CWP, respectively (Table B2). For the CTH, the
error is concentrated in the zones with frequent convection
around the Equator and could be explained by local convec-
tion cells exhibiting a larger spread in CTH values. Another
source of error could be that higher CTH values are also less
represented in the training data. On the contrary, the error for
COT and CWP prevails in high-latitude regions. Overall, the
performance skill of the AE model seems to hold through
the different test data splits. One could argue that the training
dataset already retains enough variability in the data, which
could explain why the model still performs well regardless
of the test set split. However, this consistent skill also shows
that the performance reported in Appendix C based on the
test set can be trusted to hold for other datasets and supports
the data generation process to train the AE (see Sect. 2.4).
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Appendix C: Auto-encoder architecture

Table C1. Auto-encoder model specifications.

Layer Hyperparameters Output shape

Input (None, 3, 128, 128)

Encoder

Conv2d (kernel= 3, stride= 2) (None, 3, 64, 64)

ConvBlock × 5 Conv2d (kernel= 3, stride = 1) (None, 256, 2, 2)
LReLU
Conv2d (kernel= 3, stride= 1)
LReLU
Conv2d (kernel = 3, stride = 1)
BatchNorm2d
LReLU
MaxPool2d (kernel = 2, stride = 2)

Flatten + linear (None, 256)

Decoder

Linear + unflatten (None, 256, 2, 2)

ConvTranspose2d (kernel= 2, stride= 2) (None, 256, 4, 4)

ConvTransposeBlock × 5 Conv2d (kernel= 3, stride= 1) (None, 3, 128, 128)
LReLU
Conv2d (kernel= 3, stride= 1)
LReLU
Conv2d (kernel= 3, stride= 1)
BatchNorm2d
LReLU
ConvTranspose2d (kernel= 2, stride= 2)

Table C2. Auto-encoder model training specifications.

Hyperparameter Value

Batch size 64
Epochs 80
Optimiser Stochastic gradient descent (SGD), momentum= 0.9, learning rate= 0.0001
Metric MSE
Early stopping Patience= 20
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Appendix D: Ordinal regression

We define our labels y, which can take values of K

(nine classes): {50m,100m, . . .,2500m}. We introduce K −
1 thresholds αy to define the separation of our K classes;
here, the thresholds actually correspond to the classes too.
For each labelled sample (s,y), the output of our model
is z= z(s). The correct interval for this sample is then(
αy−1,αy

)
. During the fitting process, the goal is to find

the set of parameters of our model z and the correspond-
ing thresholds α, which minimises a certain cost function.
We consider a generic non-negative penalisation function
f (·) (e.g. hinge loss, squared-error loss, Huber loss). There
are then different ways to represent threshold violations and
thus to penalise the predictor. While the immediate-threshold
setup only considers the thresholds of the correct interval, the
all-threshold setup takes into account all the threshold viola-
tions. In the case of an immediate-threshold setup, the loss
function would look like the following:

L(z,y)= f
(
z−αy−1

)
+ f

(
αy − z

)
. (D1)

Here, we can see that the loss is not aware of how many
thresholds are actually violated. In the case of an all-
threshold setup, the loss function is a sum of violations across
all thresholds:

L(z,y)=

K−1∑
i=1

f (t (i,y)(αi − z)) , (D2)

where t (i,y)=−1 if i < y or +1 if i ≥ y. Thus, predictions
are encouraged to violate the lowest number of thresholds.

We give in Fig. D1 an example of what the loss function
would look like in the case of K = 6 and using a hinge pe-
nalisation.

Figure D1. Threshold-based setup loss function representation for a hinge penalisation, K = 6, and target label y= 5. (a) Immediate-
threshold and (b) all-threshold setup loss functions. Figure adapted from Rennie and Srebro (2005).
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Appendix E: Cloud base height retrieval method
assuming adiabatic cloud

The algorithm shown below is adapted from Goren et
al. (2018). We use the retrieved CTH, CTT, CTP, and CWP
from MODIS MYD06 (Platnick et al., 2017). Pseudo code
for cloud base height retrieval algorithm assuming adiabatic
cloud, adapted from Goren et al. (2018).

Code availability. The code used for the method and
for producing the plots is available on Zenodo at
https://doi.org/10.5281/zenodo.10517686 (Lenhardt et al., 2024).

Data availability. The global dataset of the cloud base height
predictions for the year 2016 is available on Zenodo at
https://doi.org/10.5281/zenodo.10517686 (Lenhardt et al., 2024).
The dataset is available as a CSV file – with corresponding
coordinates, MODIS granules, times of retrieval, and predicted
cloud base heights – or in a NetCDF file as daily aggregates on
a regular grid with a resolution of 1° or 5°. The meteorological
observations from the UK Met Office (Met Office, 2006) are
available through the CEDA archive at https://catalogue.ceda.ac.
uk/uuid/77910bcec71c820d4c92f40d3ed3f249. The files from the
CUMULO dataset (https://doi.org/10.48550/arXiv.1911.04227,
Zantedeschi et al., 2022) are available at https://www.dropbox.
com/sh/i3s9q2v2jjyk2it/AACxXnXfMF5wuIqLXqH4NJOra?dl=0
(Zantedeschi et al., 2020).
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