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Abstract. The use of depolarization lidar to measure at-
mospheric volume depolarization ratio (VDR) is a com-
mon technique to classify cloud phase (liquid or ice). Pre-
vious work using a machine learning framework, applied
to peak properties derived from co-polarized attenuated
backscatter data, has been demonstrated to effectively detect
supercooled-liquid-water-containing clouds (SLCCs). How-
ever, the training data from Davis Station, Antarctica, include
no warm liquid water clouds (WLWCs), potentially limiting
the model’s accuracy in regions where WLWCs are present.
In this work, we apply the same framework used on the
Davis data to a 9-month micro-pulse lidar dataset collected in
Ōtautahi / Christchurch, Aotearoa / New Zealand, a location
which includes WLWC. We then evaluate the results relative
to a reference VDR cloud-phase mask. We found that the
Davis model performed relatively poorly at detecting SLCC
with a recall score of 0.18, often misclassifying WLWC as
SLCC. The performance of our new model, trained using
data from Ōtautahi / Christchurch, displays recall scores as
high as 0.88 for identification of SLCC, although it generally
underestimates SLCC occurrence. The overall performance
of the new model highlights the effectiveness of the machine
learning technique when appropriate training data relevant to
the location are used.

1 Introduction

Supercooled liquid water (SLW) droplets exist in clouds at
temperatures below 0 °C and above the homogeneous nu-
cleation freezing temperature of around −40 °C (e.g. De-

Mott and Rogers, 1990; Khain and Pinsky, 2018). Hetero-
geneous nucleation of ice in clouds occurs at temperatures
between −40 and 0 °C when SLW droplets interact with ice-
nucleating particles (INPs), such as dust and other aerosols,
or other ice particles (Hoose and Möhler, 2012). Regions
in which INPs are scarce thus favour increased quantities
of SLW clouds (Murray et al., 2012), hereafter referred to
as SLWCs. In mixed-phase clouds (MPCs) between −40
and 0 °C, SLW droplets and ice particles are both present.
In this study, we use the term “supercooled-liquid-water-
containing clouds” (SLCCs) to refer to clouds that may be
either mixed-phase or composed solely of supercooled liq-
uid water droplets.

Previous work has shown that SLWCs and MPCs are com-
mon over the Southern Hemisphere, particularly the South-
ern Ocean, using satellite (Hogan et al., 2004; Hu et al., 2010;
Morrison et al., 2011; Huang et al., 2012) and in situ observa-
tions (Chubb et al., 2013) and that these clouds are underrep-
resented in numerical weather prediction (NWP) (Forbes and
Ahlgrimm, 2014) and climate models (Mason et al., 2015;
Schuddeboom and McDonald, 2021). This uncertainty in
cloud occurrence and cloud phase has a large impact on mod-
els’ radiation budgets (Bodas-Salcedo et al., 2016; Vergara-
Temprado et al., 2018). When SLWCs are underrepresented
in models, too much sunlight warms the Southern Ocean in-
stead of being reflected from cloud tops back to space, caus-
ing an artificial heating of the sea surface. This is the main
contributor to sea surface temperature (SST) biases observed
in many CMIP5 models (Hyder et al., 2018). Understanding
the formation processes of SLWC is therefore an important
topic of research to reduce biases in the radiation budget in
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NWP and global climate models over the Southern Hemi-
sphere.

Moreover, accurate satellite-based classification of cloud
phase is generally limited to regions near cloud top (Blan-
chard et al., 2014; Protat et al., 2014). Recent work has
shown that satellites underestimate low-altitude SLWC due
to attenuation from higher-altitude clouds (Liu et al., 2017;
Alexander and Protat, 2018; McErlich et al., 2021). There-
fore, while satellite-based measurements allow for global
analysis of high-altitude SLWC occurrence, ground-based
remote sensing observations are essential for accurate mea-
surement of low-level clouds that are imperfectly measured
from space.

Lidar is an active remote sensing technique that involves
the transmission of laser pulses into the atmosphere and
the measurement of returned radiation backscatter from liq-
uid drops, ice crystals, aerosols and other atmospheric con-
stituents (Emeis, 2011). In this study we use a micro-pulse
lidar (MPL), which has a depolarization capability that al-
lows for the calculation of the linear volume depolariza-
tion ratio δ, hereafter referred to as VDR, as calculated in
Eq. (1). This value includes contributions from both particle
and molecular backscatter within a volume and differs from
the linear particle depolarization ratio (Lewis et al., 2020).
The utility of the VDR to determine cloud phase was first
identified by Schotland et al. (1971), and it has been used
in numerous studies since to classify liquid water and ice-
phase clouds (Sassen, 1991; Lewis et al., 2020; Ricaud et al.,
2024). The difference in VDR between liquid and ice clouds
occurs because spherically symmetric liquid water droplets
produce little to no depolarization, whereas backscatter from
complex ice crystals tends to be depolarized and thus have
higher VDR. Various studies have derived different thresh-
olds to distinguish liquid- and ice-phase cloud, but most
agree that δ < 0.1 is characteristic of liquid water clouds,
with δ > 0.4 for ice clouds and intermediate values represent-
ing mixed-phase clouds (Sassen, 1991). It should be noted,
however, that horizontally aligned ice crystals can produce
specular reflections and decreased values of VDR, meaning
such clouds can be misclassified as liquid. This is usually
mitigated by orienting the lidar off-zenith (Hogan and Illing-
worth, 2003). Furthermore, multiple scattering from multiple
layers of liquid clouds can sometimes cause cross-polarized
reflection and thus higher VDR, causing some liquid clouds
to be falsely classified as ice.

Ceilometers are simpler automatic lidars that do not have
depolarization capability and only measure the co-polarized
lidar backscatter. A methodology to detect SLCC from
ceilometers, using only co-polarized backscatter, would al-
low SLCC occurrence to be analysed using widely used ex-
isting ceilometer networks, negating the need for polarized
lidar systems. Moreover, application to historical datasets
would allow cloud-phase retrievals to be extended to past
records. Previous work by Hogan and Illingworth (1999)
proposed a method of SLCC detection using ceilometers,

and further studies developed new algorithms (Hogan et al.,
2003; Hogan and O’Connor, 2004; Tuononen et al., 2019)
for scientific and operational usage. Operational networks
of comprehensive observing systems, such as the Atmo-
spheric Radiation Measurement (ARM) Climate Research
Facility (Mather and Voyles, 2013) and Cloudnet (Illing-
worth et al., 2007), use synergistic radar–lidar algorithms to
retrieve cloud properties including cloud phase. Within the
Cloudnet retrieval, liquid water detection is based on em-
pirically derived thresholds of lidar attenuated backscatter
(Hogan et al., 2003; Illingworth et al., 2007) and, in recent
versions, the attenuated backscatter profile shape (Tuononen
et al., 2019; Tukiainen et al., 2020).

More recently, Guyot et al. (2022) implemented a ma-
chine learning classification model applied to lidar observa-
tions collected at Davis Station, Antarctica, and found that
it outperformed the technique of Tuononen et al. (2019).
A reference cloud-phase mask was created from a merged
depolarization lidar and W-band cloud radar product and
used to train an extreme gradient boosting (XGBoost) model
(Chen and Guestrin, 2016) with single-polarization ceilome-
ter backscatter peak properties. The model was named G22-
Davis to reflect the fact that the training data were from
Davis. Guyot et al. (2022) found that G22-Davis outper-
formed previous methods of SLCC detection, with accuracy
scores as high as 0.91 compared to 0.84 for the application of
the Tuononen et al. (2019) approach. However, a key consid-
eration is that at Davis, virtually all liquid water will be in the
supercooled state. No warm liquid water was detected over a
year-long period based on ceilometer observations and the
G22-Davis retrieval at Davis (Guyot et al., 2022). It is there-
fore important to determine whether the G22-Davis model
can be applied to mid-latitude and lower-latitude sites, where
“warm” liquid water clouds with temperatures greater than
0 °C exist. Furthermore, for the G22-Davis technique to be
practical for wider use, it should be evaluated in a variety of
conditions and regions. This provides the central motivation
for this study. The aims of this study are to (i) evaluate the
performance of G22-Davis for our dataset of MPL observa-
tions from Ōtautahi / Christchurch, Aotearoa / New Zealand
(henceforth Christchurch); (ii) using the same methodology
(Guyot et al., 2022), develop a new model for SLWC identi-
fication trained using Christchurch MPL measurements; and
(iii) apply the resulting cloud-phase masks to produce a cli-
matology of SLWC for Christchurch.

2 Datasets and methodology

2.1 Datasets

2.1.1 Christchurch MPL observation campaign

For the Christchurch field campaign, a Droplet Measure-
ment Technologies mini-micro-pulse lidar (MPL) was in-
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stalled and operated from May 2021 to January 2022 on
the roof of the Ernest Rutherford building on the University
of Canterbury campus (43.5225° S, 172.5841° E) at an alti-
tude of 45 m. The MPL is a compact dual-polarization elas-
tic backscatter lidar that operates at a wavelength of 532 nm
and has a range of 30 km. For the Christchurch deployment,
the vertical range resolution was set to 15 m, and the averag-
ing time was set to 30 s. The minimum range and detection
height of the MPL are 100 m. The scanning head of the MPL
enclosure was set to a fixed vertical scanning mode with ele-
vation angle 90°.

Post-processing of the raw MPL data is completed with
version 1.2.1 of the Automatic Lidar and Ceilometer Frame-
work (ALCF), a software package detailed in Kuma et al.
(2021b). While individual ceilometers typically implement
post-processing in their firmware, ALCF provides a consis-
tent noise reduction and calibration method that can be ap-
plied to different ceilometer types, and it has been applied
in previous studies using ceilometer datasets in Antarctica
(Guyot et al., 2022) and the Southern Ocean (Kuma et al.,
2020; Kremser et al., 2021; Pei et al., 2023). First, raw MPL
data were converted with the mpl2nc tool (Kuma, 2020),
which performs after-pulse, overlap and dead-time calibra-
tion and calculates cross- and co-polarized normalized rel-
ative backscatter (NRB) from cross- and co-polarized raw
backscatter counts. ALCF performs noise reduction, abso-
lute calibration and cloud detection from the mpl2nc-derived
NRB, including resampling of the data to a common 5 min
temporal and 50 m vertical resolution. More details on ALCF
methodologies are provided by Kuma et al. (2021b).

2.1.2 AMPS

The Antarctic Mesoscale Prediction System (AMPS) is a
real-time limited-area numerical weather prediction (NWP)
system based on the Polar Weather Research and Forecast-
ing (Polar WRF) model (Powers et al., 2012; Hines and
Bromwich, 2008). The AMPS forecasting system is used
for scientific and logistical purposes in Antarctica and is ex-
tended to cover New Zealand because of Christchurch’s sta-
tus as an Antarctic gateway city, providing access to Scott
Base and McMurdo Station. The AMPS NZ grid has a 6 km
spatial resolution on 21 pressure levels, available in 3-hourly
intervals initialized at 00:00 and 12:00 UTC. Real-time fore-
casts are available online in GRIB1 format and were set to
automatically download during the study period and convert
to NetCDF (NC). Due to occasional download errors, AMPS
data were not available for 29 d of the 9-month study period.
Temperature data were extracted for the nearest-neighbour
grid cell corresponding to the University of Canterbury site.
The two-dimensional time× pressure-level temperature field
was cubic-spline-interpolated to a finer grid size, and the
hydrostatic balance equation, assuming an isothermal at-
mosphere, was applied to resample to a 2 d time× altitude
grid to match the resolution of the ALCF-derived products.

Isotherms at 0 and −40 °C were also determined from the
Polar WRF output.

2.2 Cloud-phase masks

ALCF performs cloud detection using an attenuated vol-
ume backscatter coefficient threshold algorithm (Kuma et al.,
2021b). The cloud mask was determined to be positive
where the attenuated volume backscatter coefficient was
greater than a tunable threshold plus 5 standard deviations
of noise. The default backscatter threshold for ALCF of
2× 10−6 m−1 sr−1 was used during preliminary analysis of
the Christchurch MPL dataset but was found to be too low
and resulted in a significant number of false positive detec-
tions in the lowest 1 km, likely due to the presence of bound-
ary layer aerosols. This is likely due to ALCF being tuned
for usage over the nearly pristine aerosol environment of the
Southern Ocean (Bhatti et al., 2023). Instead, a backscatter
threshold of 4× 10−6 m−1 sr−1 was chosen as a good com-
promise between boundary layer aerosol false positives and
high-altitude cirrus false negatives based on visual inspec-
tion. The ALCF cloud mask product was used as the starting
point of the depolarization ratio reference mask.

2.2.1 MPL depolarization ratio reference mask

Several previous studies to determine cloud phase from po-
larized lidar backscatter retrievals used the linear volume de-
polarization ratio, VDR (Sassen, 1991; Lewis et al., 2020).
The principle is described in Sect. 1. For the cloud-phase ref-
erence mask used in this study, we apply an algorithm simi-
lar to the one described by Lewis et al. (2020) for MPL mea-
surements. In the first step, mpl2nc-derived cross-polar Pcross
and co-polar Pco normalized relative backscatter (NRB) pro-
files are regridded by averaging to match the resolution of
the ALCF and Polar WRF products. VDR δ at altitude z was
calculated by

δ(z)=
Pcross(z)

Pco(z)
(1)

for each bin in the detected cloud layer. Then, VDR was used
to assign a cloud-phase diagnostic (CPD), representing the
likely cloud phase for each altitude bin, as defined in Table 1.
The thresholds to define liquid, mixed-phase and ice were
chosen following a sensitivity test on the values of VDR from
all cloud bins in the dataset. The cumulative frequencies of
VDR, as a function of temperature, are shown in Fig. 1. For
warm bins (above 0 °C and therefore nearly all liquid), Fig. 1
shows that most bins have δ < 0.1. For bins in the mixed-
phase temperature regime (−40 to 0 °C), VDR increases with
decreasing temperature. This is due to the increased presence
of ice at colder temperatures and the corresponding increase
in VDR. For bins less than the homogeneous freezing value
(−40 °C) VDR is much higher and nearly always δ > 0.4.
Therefore, thresholds of 0.1 and 0.4 were chosen to distin-
guish liquid, mixed phase and ice, respectively. The phase
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Figure 1. Empirical cumulative distribution of VDR for clouds in a
range of temperature intervals.

Table 1. Cloud-phase diagnostic (CPD) determined from MPL-
measured linear volume depolarization ratio δ.

CPD Definition

Liquid δ < 0.1
Mixed 0.1< δ < 0.4
Ice δ > 0.4
Undetermined All others

of an entire cloud layer was assigned from the most frequent
CPD of the altitude bins in that layer. Additionally, the WRF-
derived temperature T for an altitude bin was used to distin-
guish supercooled liquid water clouds (SLWCs, T < 0°C)
and warm liquid water clouds (WLWCs, T > 0°C), as well
as to limit SLWC and MPC to T >−40°C.

2.3 Development of a data-driven cloud-phase mask

The method described here follows the process detailed
in Guyot et al. (2022) to develop a data-driven model for
the classification of cloud as SLCC. The first step in the
Guyot et al. (2022) methodology was to extract backscat-
ter peak properties from a single-polarization ceilometer. In
our case, ALCF-derived attenuated volume backscatter coef-
ficient β profiles from the MPL dataset were used in place of
the single-polarization ceilometer backscatter profiles. Since
ALCF applies consistent calibration and resampling, the ex-
pectation is that the model developed here is applicable to
any calibrated lidar data processed with ALCF, using the de-
fault 50 m vertical and 5 min temporal resolution.

Each profile of attenuated volume backscatter coefficient
β was analysed using the signal processing tools in the SciPy
Python library (Virtanen et al., 2020) to identify peaks (lo-
cal maxima). For each peak exceeding a minimum value of
β > 2× 10−5 m−1 sr−1 and minimum width of 50 m, a set

of properties were recorded: the value of backscatter at peak
location (i.e. the peak magnitude) β (m−1 sr−1); peak width
w (m); the peak prominence βprom (m−1 sr−1) defined as the
difference between the peak and its lowest contour line; the
“peak width height” βw (m−1 sr−1) defined as the value of
backscatter where peak width is determined, calculated from
βw = β−(0.5×βprom); the peak altitude z (m) above ground
level; the total number of peaks for a given profile n; and
the peak order within that total number, in the range (0,n).
These peak properties are the same as those used in the orig-
inal study by Guyot et al. (2022), and readers should refer to
Fig. 6 in that study for an illustration of the peak character-
istics. In addition to the peak properties, the WRF-derived
temperature for the peak’s altitude bin was also recorded.
The eight-feature dataset of peak properties was then labelled
with the reference mask classification of the altitude bin as
SLWC, WLWC, MPC or ice cloud (IC).

Guyot et al. (2022) noted the importance of accounting
for lidar extinction in multilayer situations. When multi-
ple cloud layers are present, the returned backscatter from
higher layers is weaker due to attenuation of the lidar sig-
nal from lower layers. Guyot et al. (2022) compared peak
properties for primary peaks (where peak order= 0) and sec-
ondary peaks (where peak order> 0), finding a statistically
significant separation between primary and secondary peak
magnitudes (Guyot et al., 2022, Fig. 3). They found peak
magnitude values of both primary and secondary peaks to
have normal distributions and derived an offset term for di-
rect comparison of primary and secondary peaks. This off-
set was calculated as the absolute difference of the distribu-
tions’ medians and was 4.2×10−5 m−1 sr−1 for their dataset.
This was hypothesized to be the average reduction in lidar
backscatter due to extinction from the lower layer(s). For
our Christchurch MPL dataset, we compared the distribu-
tions of primary and secondary peak properties, which are
shown in Fig. 2. Unlike Guyot et al. (2022, Figure 3), the
attenuated backscatter peak magnitude values are not nor-
mally distributed, and both skew right to greater values of
peak magnitude. That is, in our dataset there are more peaks
with higher values of the backscatter coefficient. This effect
is more pronounced for primary peaks. This disparity with
the distributions of Guyot et al. (2022, Fig. 3) could be be-
cause our dataset is significantly larger (around 30 000 vs.
3700 primary peaks and 5000 vs. 570 secondary peaks) and
therefore more varied, because of an instrumental effect (e.g.
due to the different wavelength of the Davis ceilometer, or
a calibration difference), or due to a difference in environ-
mental conditions (e.g. different aerosol concentrations caus-
ing more backscatter or more attenuation). The difference
in the primary and secondary medians was calculated to be
6.7× 10−5 m−1 sr−1 for our dataset. As shown in Fig. 2, the
peak magnitude value corresponding to the maximum kernel
density estimate (KDE), i.e. the mode, is the same for pri-
mary and secondary peaks, and there is significant overlap
between the two distributions, unlike those in Guyot et al.
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Figure 2. Histogram and kernel density estimation (KDE) plots of
backscatter peak magnitudes for primary (peak order= 0) and sec-
ondary (peak order> 0) peaks. Histograms are normalized such that
the bar heights sum to 1. The median of each distribution, Q2prime
and Q2second, respectively, is also plotted.

(2022, Fig. 3). Therefore, we chose not to scale the magni-
tudes of secondary peaks by adding an offset.

The next step in the development of the cloud-phase mask
was to train and test a data-driven model that could perform
multi-class classification of each peak as SLWC, WLWC or
neither. As in Guyot et al. (2022), we also chose XGBoost
due to its excellent performance in a wide range of applica-
tions (Chen and Guestrin, 2016), often outperforming other
decision tree or boosting model approaches. XGBoost is an
optimized version of gradient tree boosting, an ensemble su-
pervised learning algorithm. During training, XGBoost iter-
atively builds a series of “weak” learners (regression trees)
that are fitted to minimize the loss (i.e. error) of the resulting
predictor, whilst also minimizing complexity to avoid over-
fitting. XGBoost applies numerous performance optimiza-
tion strategies when building and combining the trees, re-
ducing computational costs and allowing it to be scalable
to large datasets. The XGBoost model developed by Guyot
et al. (2022) performed binary classification on each peak
as SLCC or not. In this study, due to the presence of warm
liquid water> 0 °C, we apply a multi-class classification of
each peak as SLWC, WLWC or neither (implying the cloud
is IC or MPC). The eight-feature dataset of peak properties
was passed to the model for training along with the target
label, which was the reference mask’s classification of the
peak as SLWC, WLWC, or IC and MPC. Model training and
testing were performed on the entire peak dataset, exclud-
ing peaks from an evaluation subset made up of 15 randomly
selected days. The training dataset contained 34 542 peaks
related to clouds from 211 d, of which 23 % were labelled
SLWC, 56 % were labelled WLWC, 2 % were labelled MPC
and 17 % were labelled IC by the VDR reference mask. Pre-
liminary analysis of the peak dataset is presented in Sect. 3.1.

The XGB model was developed using the Python library
XGBoost (Chen and Guestrin, 2016), with data preparation,
cross-validation and hyperparameter testing implemented us-

ing the scikit-learn Python library (Pedregosa et al., 2011).
To prevent overfitting during hyperparameter testing, we ap-
plied 3-fold stratified-group cross-validation. In k-fold cross-
validation, the model is trained k times on k train and test
folds. Test folds never share the same data with other folds,
allowing k independent validation scores and preventing
overfitting of the model to a specific training set. In stratified
k-fold cross-validation, each training and testing fold con-
tains approximately the same proportion of each target class
as the complete set. Finally, in group k-fold cross-validation,
grouped data are split into train and test folds such that the
same group is not represented in both the training and test
set. In this case, groups were defined as the month in which
the lidar measurement was made, thus creating nine groups
with an approximately equal size and class ratio. This means
that highly correlated neighbouring measurements are kept
together in the same fold, ensuring that each train and test
fold is independent. Due to the class imbalance in our peak
dataset (shown in Sect. 3.1) we used the balanced accu-
racy (described in more detail in Sect. 2.4) as the scoring
method for cross-validation and hyperparameter testing. To
find the optimal XGB hyperparameter combination, an ex-
tended grid search was applied, with 3-fold stratified-group
cross-validation, over a range of hyperparameters including
maximum depth and learning rate (η). The depth of a regres-
sion tree is the number of splits (decisions) the tree makes be-
fore reaching a prediction. Therefore the maximum depth hy-
perparameter controls how large a tree can grow, with larger
values potentially improving predictive performance but in-
creasing complexity. The learning rate is the “shrinking” fac-
tor applied when trees are combined, and lower values reduce
each tree’s individual influence on the final prediction. Cross-
validation testing scores are presented in Sect. 3.2.

The trained and tested XGB model was then used to pre-
dict the classification for all clouds in the MPL dataset. Each
profile of attenuated backscatter was processed sequentially:
firstly, peaks were identified and their properties recorded
for the given profile. If no peaks were detected, that pro-
file was labelled “cloud-free”. The detected peaks’ properties
were passed to the trained model for classification as SLWC,
WLWC, or IC and MPC. Following the peak classification,
the corresponding altitude bin was labelled with the model
prediction along with the surrounding bins, with the lower
and upper bounds defined as twice the peak width value, as
per Guyot et al. (2022). Each profile was also labelled ac-
cording to whether SLWC, WLWC, MPC or IC was present
anywhere in the profile. We hereafter refer to our trained
model as G22-Christchurch to reflect the fact that the model
was trained on the Christchurch dataset. We applied the same
method to create the G22-Davis cloud mask evaluated in this
study for direct comparison with G22-Christchurch. Each
peak was passed to the G22-Davis model for classification as
SLCC or IC, since G22-Davis was trained to identify SLCC
and IC (Guyot et al., 2022). For each peak classification, the
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corresponding altitude bin was labelled in the same process
as described above.

2.4 Model performance metrics

Model testing and evaluation against the reference mask in-
volve the comparison of two one-dimensional Boolean vec-
tors for each class (SLWC and WLWC), representing the
presence of cloud anywhere in the profile. Here we provide
basic definitions and describe metrics used for model evalu-
ation in this study, which are similar to those used by Guyot
et al. (2022). A true positive (TP) is defined as a test result
indicating a correct prediction of a positive classification for
a given class (e.g. presence of SLWC), and a true negative
(TN) is defined as a test result indicating a correct prediction
of a negative classification (e.g. absence of SLWC). A false
positive (FP) is a test result indicating an incorrect predic-
tion of a positive classification (e.g. wrongly predicting the
presence of SLWC) and a false negative (FN) is a test result
indicating an incorrect prediction of a negative classification
(e.g. incorrectly predicting the absence of SLWC).

Recall, or the true positive rate, is defined by Eq. (2) and
represents the proportion of all true samples that are correctly
classified as true, i.e. the ability of the classification to find
all the positive samples:

recall=
TP

TP+FN
. (2)

Precision is defined by Eq. (3) and represents the propor-
tion of samples classified as true that are actually true, i.e. the
ability of the classification not to label a negative sample as
positive:

precision=
TP

TP+FP
. (3)

For the multi-class classification we apply in this study,
recall and precision scores are calculated for each class. Ac-
curacy is defined as the fraction of correct predictions out of
the total number of samples and is equivalent to the weighted
mean of the recalls of each class. However, when classes
are imbalanced (as they are in this study), accuracy scores
can be subject to inflated performance estimates. The bal-
anced accuracy is defined as the unweighted mean of the re-
call obtained on each class and is a more appropriate scoring
method for imbalanced datasets when each class is equally
important (Brodersen et al., 2010). In this study we primar-
ily use balanced accuracy when describing the overall per-
formance of the classification as well as recall and precision
scores when describing the performance for each class.

3 Results

3.1 Peak properties dataset

We first present an analysis of the dataset of peak properties.
The training dataset contained 34 542 peaks from 211 d, of

which 23 % (8006 peaks) were labelled SLWC, 56 % (19 288
peaks) were labelled WLWC, 2 % (799 peaks) were labelled
MPC, 17 % (5945 peaks) were labelled IC and 1 % (504
peaks) were labelled “undetermined” by the VDR reference
mask. In Fig. 3 we show kernel density estimation (KDE)
plots showing the distribution of all the peak properties, sep-
arated by the reference mask’s cloud-phase classification as
liquid (both SLWC and WLWC) or non-liquid (IC or MPC).
In Fig. 4 we show similar KDE plots of liquid peak proper-
ties, this time separated by the reference mask’s classification
of these liquid peaks as SLWC or WLWC.

Figure 3a shows that values of the backscatter peak mag-
nitude for liquid peaks are marginally higher than those for
non-liquid peaks. The same is true for peak width height
(Fig. 3c) and peak prominence (Fig. 3d), which also have
units of m−1 sr−1 and are strongly correlated with peak
height, as we show later in Fig. 8. This supports our physical
understanding that liquid water is associated with stronger
backscatter returned signal, as found in previous studies
(Guyot et al., 2022), though clear overlap between these
properties is observed in each set of distributions. It should
also be noted that the difference in peak magnitude between
liquid and non-liquid peaks is small, and the distributions
overlap. Peak width, shown in Fig. 3b, also separates liquid
and non-liquid peaks, with narrow peaks associated with liq-
uid and wider peaks associated with IC and MPC. This is
because liquid water attenuates the lidar signal more rapidly,
and this attenuation is represented in the returned backscatter
as a thin cloud band. The number of peaks and the peak order,
which are strongly correlated, show a slight separation be-
tween liquid and non-liquid peaks, where most liquid peaks
are associated with a small number (one to two) of peaks in
a single profile. This agrees with the findings of Guyot et al.
(2022), who found that SLWC peaks tend to be associated
with single-layer cloud most frequently. This is potentially
due to the attenuation effects of liquid layers that obscure
higher-altitude cloud in multilayer situations.

Figure 3e shows the altitude distribution of liquid and non-
liquid peaks. It shows that liquid peaks are most strongly as-
sociated with lower altitudes, with the frequency decreasing
as altitude increases. The temperature distribution in Fig. 3f
shows that the inverse is true of temperature: that liquid peaks
are most strongly associated with warmer temperatures as
we expect, and the frequency of liquid peaks decreases as
temperature decreases until the lower temperature limit of
around−40 °C is reached, below which homogeneous freez-
ing occurs (DeMott and Rogers, 1990). Figure 3f shows that
ice peaks are present at temperatures as low as−70 °C. Over-
all, the temperature distribution in Fig. 3f is representative of
SLWC temperature distributions in the heterogeneous freez-
ing temperature regime as identified in previous work (Mur-
ray et al., 2012; McErlich et al., 2021). This provides further
confidence that our VDR reference mask is accurately dis-
tinguishing liquid and ice in the heterogeneous temperature
range.
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Figure 3. Kernel density estimation (KDE) plots of peak property distributions for the full dataset, with the distribution’s median also plotted.
Peaks are separated by the reference mask’s cloud-phase classification as liquid (WLWC and SLWC) or not (IC or MPC). For n peaks and
peak order (g, h), histograms and median lines are omitted for clarity. The unit for peak width is a number of range gates, which can be
converted to distance by multiplying by 50 m.

Figure 4 shows the difference in average peak proper-
ties between peaks classified as SLWC and WLWC by the
reference mask. Figure 4a shows that WLWC peaks gener-
ally have higher values of backscatter magnitude than SLWC
peaks, and the same is true for peak width height and promi-
nence. However, this result was found when looking at peaks
from all altitudes. Given that WLWC peaks are nearly al-
ways found at altitudes below 2 km, and SLWC peaks are al-
ways found above 0.5 km (as shown in Fig. 4e), any altitude-
dependent bias in attenuated volume backscatter would carry
over to the SLWC and WLWC backscatter magnitude distri-
bution. A fair comparison would require all peaks to be in the
same altitude range. By comparing the average peak prop-
erties over smaller altitude ranges (below 0.5, 0.5–1, 1–1.5,
1.5–2 km and above 2 km), we found that the distributions
of peak magnitude were roughly equal and similarly skewed
between SLWC and WLWC peaks. It is possible, then, that
an altitude-dependent bias exists in the attenuated backscat-
ter profile. This could be caused by an imperfect overlap or

range correction in the lidar processing. However, our anal-
ysis found that this potential bias made little difference to
the performance of the G22-Christchurch model and cloud
mask.

As expected, the temperature distribution shown in Fig. 4f
shows that SLWC peaks have temperatures between around
−40 and 0 °C, with the mode just below 0 °C. On the other
hand, WLWC peaks have temperatures above 0 °C, with the
median and mode around 10 °C. The altitude distribution
shown in Fig. 4e shows that WLWC peaks are most fre-
quently found at altitudes below 2 km and that SLWC peaks
are found between around 0.5 and 8 km. The overlap in the
distributions of SLWC and WLWC peak altitude between
0.5–2 km appears to be due to the seasonal and daily vari-
ation in the altitude of the 0 °C isotherm.

3.2 Model performance evaluation

The XGBoost model was trained and tested with 3-fold
stratified-group cross-validation, as discussed previously.
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Figure 4. Kernel density estimation (KDE) plots of peak property distributions for the full dataset, with the distribution’s median also plotted.
Peaks are separated by the reference mask’s cloud-phase classification as SLWC or WLWC. For n peaks and peak order (g, h), histograms
and median lines are omitted for clarity.

Accuracy scores, as described in Sect. 2.4, are presented in
Table 2 as the mean of the 3-fold training and testing scores,
with the uncertainties derived from the standard deviation.
We also applied G22-Davis to our dataset of peak proper-
ties and compared that model’s binary prediction of SLCC
to our reference mask’s classification of each peak as SLCC.
Accuracy scores for the G22-Davis model performance are
presented in Table 3. These results demonstrate that the G22-
Davis model performed poorly at SLCC classification in this
environment relative to the excellent performance at Davis,
where the model achieved accuracy scores as high as 0.91
(Guyot et al., 2022).

The performance of the G22-Christchurch cloud mask was
then analysed by comparing the reference mask and the new
model-generated SLWC mask, as described in Sect. 2.4. This
involves the comparison of two one-dimensional Boolean
vectors, corresponding to the reference mask and the model-
generated mask. We first evaluate the performance of the
model mask by comparing all profiles (time steps) and then
compare only time steps where peaks meeting the minimum

backscatter and width thresholds were detected. For the full
dataset with 66 240 time steps, there were 31 708 time steps
(47.9 %) where peaks were detected. This is lower than the
total number of peaks (34 542) since some time steps con-
tained multiple peaks corresponding to multilayer cloud. Ac-
cording to the reference mask, SLWC was present in 15.3 %
of all profiles and 27.5 % of profiles with peaks. The re-
call (precision) of the G22-Christchurch SLWC mask was
0.76 (0.89) for all profiles and 0.88 (0.89) for profiles with
peaks. The recall (precision) of the G22-Davis SLCC mask
was 0.15 (0.15) for all profiles and 0.18 (0.15) for pro-
files with peaks. We repeated this analysis for WLWC de-
tection by comparing the reference mask’s WLWC label to
our model’s WLWC mask. According to the reference mask,
WLWC was present in 45.1 % of all profiles and 67.2 % of
profiles where peaks were detected. The recall (precision) of
the G22-Christchurch WLWC mask was 0.63 (0.99) for all
profiles and 0.88 (0.99) for profiles with peaks.
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Table 2. G22-Christchurch model balanced accuracy scores as well as recall and precision scores for each class from 3-fold stratified-group
cross-validation.

Balanced accuracy WLWC SLWC IC/MPC

0.928± 0.001
Recall 0.999± 0.001 0.957± 0.009 0.828± 0.011
Precision 0.998± 0.001 0.870± 0.011 0.943± 0.014

Table 3. G22-Davis model balanced accuracy scores as well as re-
call and precision scores for each class.

Balanced accuracy SLCC Non-SLCC

0.39
Recall 0.14 0.64
Precision 0.12 0.68

3.3 Case studies

In this section we present results showing the application of
both our mask and the G22-Davis mask to two case studies in
order to interpret their performance. Backscatter peaks from
these days were excluded from the training dataset, so these
days represent unseen data.

3.3.1 18 May 2021 case study

Observations from 18 May 2021 are shown in Fig. 5 as
an example of a day with a distinct SLWC layer. Figure 5
shows the ALCF-calibrated attenuated volume backscatter
(Fig. 5a), volume depolarization ratio (VDR) (Fig. 5b) and
VDR reference cloud mask (Fig. 5c–d), along with the G22-
Davis cloud mask (Fig. 5e–f) and G22-Christchurch cloud
mask (Fig. 5g–h) applied to the attenuated backscatter pro-
files. The cloud masks are presented as time × altitude grids
(Fig. 5c, e, g) and time step Booleans (Fig. 5d, f, h) accord-
ing to whether SLWC is present anywhere in that profile.
This particular day shows a clear band of SLWC between
06:00 and 12:00 UTC at 4 km altitude and again between
17:00 UTC on 18 May and 00:00 UTC on 19 May between
3–6 km. Other cloud (identified as IC and MPC by the VDR
reference mask) is present from 02:30 to 06:00 UTC between
2–8 km altitude and again from 14:30 to 16:30 UTC. The first
SLWC band is a multilayered cloud region between 06:00
and 08:00 UTC. Clouds or precipitation can be observed be-
low the second SLWC band at around 20:00 and 22:00 UTC.
According to the reference mask classification, a thin layer
of WLWC below 1 km is also present from 19:00 UTC on
18 May to 00:00 UTC on 19 May. However, it is possible
that this layer, which attenuates relatively little lidar signal
as seen in Fig. 5a, could actually be an aerosol layer that has
been misidentified as cloud by the ALCF cloud mask, as dis-
cussed in Sect. 2.2.

The G22-Davis cloud mask identifies some of the SLWC
layers correctly but misses many. Comparing profile-to-

profile SLCC classification to the reference mask, G22-Davis
had recall (precision) scores of 0.19 (0.94) when consider-
ing all profiles and 0.20 (0.94) for profiles containing peaks.
The new G22-Christchurch cloud mask performs better and
identifies most of the SLWC layers. Compared to the refer-
ence mask’s SLWC classification for each time step, G22-
Christchurch had recall (precision) scores of 0.96 (0.94) for
all profiles and 0.97 (0.94) for profiles containing peaks.

3.3.2 5 June 2021 case study

MPL observations from 5 June 2021 are shown in Fig. 6. On
this day, a wide band of IC is present at altitudes ranging
from 3–10 km between 00:00 and 18:00 UTC, followed by
a band of low-altitude (< 1 km) liquid water cloud between
18:00 UTC on 5 June and 00:00 UTC on 6 June and another
layer of liquid water cloud at around 2–3 km altitude for a
short period after 22:00 UTC. Layers of SLWC are present
for short periods throughout the day (06:00, 10:00, 12:00
and 14:00 UTC) interspersed with ice cloud (see Fig. 6c).
Both G22-Davis and G22-Christchurch identify some of the
short periods of SLWC between 06:00 and 15:00 UTC. G22-
Christchurch correctly distinguishes most of the SLWC but
also overestimates SLWC occurrence, making false positive
classifications at around 07:00, 09:00 and 14:00 UTC. Im-
portantly, the low-altitude WLWC band between 18:00 and
21:00 UTC is mistakenly identified as SLCC by G22-Davis.
G22-Christchurch correctly identifies this layer as WLWC.

On this day, G22-Davis had recall (precision) scores of
0.09 (0.12) when compared to the reference mask’s SLCC
classification for all peaks and also 0.09 (0.12) when com-
paring profiles containing peaks. Again, the new G22-
Christchurch performed much better, with recall (precision)
scores of 0.75 (0.64) for all profiles and 0.80 (0.64) for
profiles containing peaks, compared to the reference SLWC
mask. These results show that the new model is a signifi-
cant improvement to G22-Davis in environments that contain
WLWC but still has limitations in identifying SLWC when
interspersed with IC, which are conditions this case study
represents. Despite this, these results indicate that the tech-
nique of Guyot et al. (2022) can be successfully applied to
a new location if appropriate site-specific training data are
available.
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Figure 5. MPL profile for 18 May 2021 over Christchurch showing attenuated the volume backscatter coefficient (a), the volume depolar-
ization ratio (VDR) (b), the VDR reference cloud mask (c), the G22-Davis cloud mask (e) and the G22-Christchurch cloud mask (g). Time
step classifications of SLWCs are shown in (d, f, h) for the reference mask, G22-Davis and G22-Christchurch, respectively, along with time
steps for which peaks were identified. WRF air temperature contours are overlaid in (a) and (c).
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Figure 6. MPL profile for 5 June 2021 over Christchurch showing the attenuated volume backscatter coefficient (a), the volume depolariza-
tion ratio (VDR) (b), the VDR reference cloud mask (c), the G22-Davis cloud mask (e) and the G22-Christchurch cloud mask (g). Time step
classifications of SLWC are shown in panels (d), (f) and (h) for the reference mask, G22-Davis and G22-Christchurch, respectively, along
with time steps for which peaks were identified. WRF air temperature contours are overlaid in (a) and (c).
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3.4 Cloud occurrence for the full observation period

The full dataset was analysed and cloud occurrence statis-
tics computed to compare the accuracy of the G22-Davis and
G22-Christchurch cloud masks to our VDR reference mask.
In this section, we present cloud fraction statistics and cloud-
phase distribution as a function of altitude for each mask
and evaluate the performance of the G22-Christchurch cloud
mask.

Cloud fraction was calculated by finding the proportion
of profiles in which SLWC or WLWC was detected across
all time steps of the dataset. The cloud fraction from all
types (calculated from the ALCF cloud detection mask) was
70 % for the full dataset of 257 equivalent days of MPL
profiles. SLWC was detected in 15.3 % of the reference
mask profiles, 12.9 % of the G22-Christchurch mask pro-
files and 16.9 % of the G22-Davis mask profiles. Meanwhile,
the WLWC frequency was 45.1 % for the reference mask but
only 28.5 % for G22-Christchurch. G22-Davis overestimated
the frequency of SLCC occurrence because it often misclas-
sified WLWC layers as SLCC, such as between 18:00 and
21:00 UTC in Fig. 6. G22-Christchurch, however, tends to
underestimate both SLWC and WLWC occurrence relative
to the reference mask.

Figure 7 compares the cloud-phase distributions as a func-
tion of altitude for G22-Davis and G22-Christchurch against
the reference mask. According to the reference mask in
Fig. 7a, liquid water cloud (WLWC and SLWC) is common
at low altitudes and decreases in frequency with altitude to
a maximum altitude of 8 km. Below 1 km, this is entirely
WLWC, and above 3 km it is entirely SLWC, with the over-
lap between 1–3 km likely corresponding to the variation of
the 0 °C isotherm through the year. This pattern is consistent
with the peak altitude distributions shown in Figs. 3e and 4e.
Ice cloud frequency increases with altitude to a maximum at
8 km, before decreasing to very low occurrences at 13 km.

Figure 7b shows that G22-Davis identifies SLCC at lower
altitudes (0–4 km) than the reference mask (1–8 km). The re-
call and precision scores as a function of altitude, in Fig. 7c,
are low for the G22-Davis model. This bias likely results
from the Davis training dataset, which would indicate that
SLCCs could be present at low altitudes despite the fact that
temperatures at Davis for which SLCCs were detected were
much lower. This therefore provides evidence of the limita-
tion of applying the G22-Davis method, with training data
from Davis, Antarctica, to mid-latitude sites with warmer
air temperatures. This also shows the relative importance of
peak altitude in the SLCC classification for G22-Davis.

Figure 7d shows cloud-phase distributions according to
the G22-Christchurch cloud mask. The frequency of SLWC
is highest at 1.5 km and gradually decreases with altitude
until around 8 km, following a very similar pattern to the
VDR reference mask’s SLWC occurrence. WLWC occur-
rence also closely follows the reference mask’s WLWC oc-
currence, with frequencies being highest at low altitudes and

decreasing with altitude until around 2 km, but is still under-
estimated relative to the reference mask. In Fig. 7e, the pre-
cision and recall scores for SLWC detection as a function of
altitude are relatively consistent, and recall scores are higher
than the recall scores for G22-Davis in Fig. 7c at all altitudes.

Both G22-Davis and G22-Christchurch underestimate to-
tal cloud fraction across all cloud phases. One factor that
may account for this is that the criteria for a peak to be se-
lected for classification (β > 2× 10−5) are stricter than the
criteria for ALCF and the reference mask to detect a cloud
(β > 4× 10−6). We also found that the frequencies and ac-
curacy scores in Fig. 7d and e were sensitive to the width
of the generated cloud mask layer as defined by the upper
and lower bounds around the peak location. Therefore, the
cloud-phase distributions in Fig. 7 provide qualitative evi-
dence of the model’s performance, but quantitative results
are best determined by comparing time step SLWC Booleans
as in Sect. 3.2.

3.5 XGBoost feature analysis with SHAP

The previous sections have shown that our model performs
very well at classifying backscatter peaks as SLWC or
WLWC and reasonably well at generating cloud masks of
SLWC and WLWC occurrence which are comparable to the
reference VDR cloud mask. In order to be confident the
model can be applied in future work to ceilometer datasets
from a range of locations, we need to understand the relative
importance of the input features to the XGBoost algorithm
(our eight-feature set of peak properties).

Figure 8 shows correlation coefficients between each pair
of peak properties for all peaks in the dataset. This allows for
a visual analysis of the independence of the XGBoost input
features. Figure 8 shows that peak magnitude, width height
and prominence are strongly positively correlated, as we ex-
pect. Peak altitude and peak temperature are also strongly
negatively correlated because low altitudes are associated
with warmer temperatures, and high altitudes are associated
with colder temperatures. We can also use Fig. 8 to select a
subset of features that are independent by removing strongly
correlated features. We use this information in Sect. 3.6 to
train a modified model using a smaller range of independent
input features.

Like Guyot et al. (2022), we apply the tree-based model
explanation method by Lundberg et al. (2020) based on
SHapley Additive exPlanations (SHAP) values, which quan-
tify the contributions to the model output from each feature.
Such an analysis is important for model interpretability, to
ensure the model results are trustworthy, and to understand
the relationships between the input features (in this case, the
dataset of peak properties) and model output. Figure 9 shows
the SHAP value distribution for the input features to G22-
Christchurch. In this stacked bar plot, features are ranked
from top to bottom according to their mean absolute SHAP
value, i.e. from most to least important for the model’s clas-
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Figure 7. Cloud altitude distributions separated by cloud phase, according to the VDR reference mask (a), G22-Davis mask (b) and G22-
Christchurch mask (d). Precision and recall accuracy scores for SLCC and SLWC detection, respectively, as a function of altitude, are also
shown for G22-Davis (c) and G22-Christchurch (e).

Figure 8. Correlation coefficients between each pair of peak properties for all peaks in the dataset.

sification. The distribution of SHAP values for the three most
important features (peak temperature, altitude and width) is
further shown in Fig. 10, which shows SHAP value scatter
plots corresponding to each feature for each class.

Temperature is shown in Fig. 9 to be the most important
feature for classification across all classes, and the relation-
ships shown in Fig. 10a, d and g reveal how XGBoost uses
temperature to improve classifications. Figure 10d shows
that SHAP values for SLWC classification are positive for

temperatures between −40 and 0 °C and negative outside
this range. On the other hand, the SHAP values for WLWC
classification are positive above 0 and negative below 0 °C.
The strong discontinuity at 0 °C for classification of both
SLWC and WLWC occurs because the VDR reference mask
uses that temperature for distinguishing between SLWC and
WLWC. Figure 10g shows that the opposite is true for IC
and MPC classification: SHAP values are strongly positive
below around −40 °C (since only ice is found at these tem-
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Figure 9. Mean absolute SHAP values for G22-Christchurch fea-
tures for each class (SLWC, WLWC, and IC and MPC). Features
are ranked from top to bottom according to the sum of the mean
absolute SHAP value across all classes, i.e. most to least important
for the overall classification.

peratures), are strongly negative above 0 °C and have inter-
mediate values in the mixed-phase temperature regime.

Altitude and temperature are inversely correlated (as
shown in Fig. 8) because low altitudes are associated with
warmer temperatures, and high altitudes are associated with
colder temperatures. Figure 9 shows peak altitude to be the
second-most useful feature after temperature, with mean ab-
solute SHAP values roughly equal across all classes. Fig-
ure 10h shows that higher values of altitude were more
strongly associated with IC and that low altitudes had a
negative impact on IC classification. Figure 10b shows that
for WLWC, low values of altitude have positive SHAP val-
ues and a positive impact on WLWC classification. As alti-
tude increases, SHAP values become more negative, mean-
ing these values have a negative impact on WLWC classifi-
cation, as supported by the fact that Fig. 7a shows very little
WLWC occurrence above 3 km. The SHAP value distribu-
tion for SLWC classification (Fig. 10e) is more complex but
generally shows that as altitude increases, SHAP values tend
to decrease, as supported by Fig. 7a showing a decreasing
frequency of SLWC up to around 8 km. In Fig. 10e, for al-
titudes above 8 km, SHAP values tend to zero, showing that
these values have neither a positive nor a negative impact on
SLWC classification.

Next, Fig. 9 shows peak width to be a highly useful fea-
ture. The SHAP value scatter plots shown in Fig. 10f and i
show the relationship between peak width and SLWC or IC
classification. Figure 10f shows that low values of peak width
had a positive impact on SLWC classification and that high
values had a negative impact. This agrees with our physi-
cal understanding of the properties of backscatter from liquid
water cloud as discussed previously, namely that liquid water
rapidly attenuates the lidar signal, leading to a narrow band
of enhanced returned backscatter. The reverse is true for IC
and MPC classification, shown in Fig. 10i, where a low value
of peak width is associated with a negative IC classification,

and higher values of peak width had a positive impact on IC
classification.

While Fig. 3 shows that there was a slight separation in the
distribution of liquid and non-liquid peak backscatter mag-
nitudes, the SHAP values in Fig. 9 show that peak magni-
tude was not a highly useful feature for the G22-Christchurch
model in any class. Peak prominence, which we show in
Fig. 8 to be strongly positively correlated with peak mag-
nitude, has a higher mean absolute SHAP value, indicat-
ing it is more useful than magnitude for classification. Scat-
ter plots of SHAP values found that low prominence peaks
had a positive impact on IC classification, and high promi-
nence peaks had a positive impact for SLWC and WLWC
classification (not shown). One possibility for why magni-
tude is less useful than prominence is that magnitude is al-
ready the main criterion used to select peaks. That is, we
only analyse peaks that already exceed a backscatter thresh-
old of β > 2× 10−5 m−1 sr−1, which excludes most low-β
peaks associated with IC. Peak prominence, however, pro-
vides a way of separating peaks with a higher signal-to-noise
ratio (SNR) and is therefore more useful than peak magni-
tude. The results here differ from the results found by Guyot
et al. (2022). In that study, peak magnitude was found to be
the most significant feature used by XGBoost for the classi-
fication of SLCC. However, the aim of the G22-Davis model
was to distinguish SLCC and ice, while our aim is to distin-
guish SLWC, WLWC and IC. Therefore, it is logical that our
highest-scoring features are temperature and altitude, which
are powerful at distinguishing SLWC and WLWC (as shown
in Fig. 4), whereas the Guyot et al. (2022) highest-scoring
feature was peak magnitude, which was powerful at distin-
guishing SLCC and ice. Therefore, the SHAP value differ-
ences between G22-Davis and G22-Christchurch are likely a
consequence of the different classification objectives of the
two models.

3.6 Reducing XGBoost feature dimensionality

Due to the strong correlation between input features, as
shown in Fig. 8, we next investigate the effect of reducing
the number of input features to train a modified XGB model.
Reducing the dimensionality of the training dataset has been
shown to improve model performance in general by reducing
overfitting (Russell and Norvig, 2010). Furthermore, exclud-
ing temperature would remove the dependence on numerical
weather prediction model inputs which clearly include un-
certainty. We trained a new set of XGBoost models using a
reduced set of input features, testing various combinations of
those input features with the highest mean absolute SHAP
values, as detailed in Fig. 9, and removing “duplicate” fea-
tures that are strongly correlated, as determined in Fig. 8. For
example, because peak magnitude, prominence and width
height are strongly correlated, we only use one of those fea-
tures as input to a model. The same is true for peak altitude
and temperature, which are strongly negatively correlated.
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Figure 10. SHAP value scatter plots for peak temperature, altitude and width for WLWC (a–c), SLWC (d–f), and IC and MPC (g–i).

We also remove the number of peaks and peak order because
they have low absolute SHAP values, as shown in Fig. 9.
These results are presented in Table 4, which shows the var-
ious input features and accuracy scores of the corresponding
XGBoost models, again tested with 3-fold stratified-group
cross-validation in each case. The same set of hyperparam-
eters was used during the development of these models to
allow a direct comparison with the original eight-feature
model. The entire dataset of peak properties was used for the
development of these models, hence the difference from the
scores presented in Table 2.

We see from Table 4 that the highest-scoring model used
the input features temperature, peak width and peak promi-
nence (T ,w,βprom), and it performed equally well as the
original model that used the complete set of eight features.
This is consistent with the results in Sect. 3.5, where we
show using SHAP values that these were among the most
useful features for G22-Christchurch. Replacing peak promi-
nence with either peak magnitude or peak width height
slightly reduced the accuracy, and removing it entirely (with-
out replacement) also only slightly reduced the accuracy. The
model using just peak temperature as an input still gave rea-
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Table 4. Summary of the balanced accuracy scores as well as precision and recall scores for each class from 3-fold stratified-group cross-
validation for the adjusted models with reduced input features: peak temperature T , peak altitude z, peak width w, peak magnitude β, peak
prominence βprom and peak width height βw.

Balanced accuracy
WLWC SLWC IC/MPC

Precision Recall Precision Recall Precision Recall

All features 0.93± 0.01 0.99± 0.01 0.99± 0.01 0.87± 0.02 0.96± 0.01 0.94± 0.01 0.82± 0.04

T ,w,β 0.91± 0.01 0.99± 0.01 0.99± 0.01 0.84± 0.01 0.95± 0.01 0.93± 0.01 0.78± 0.03
T ,w,βprom 0.93± 0.01 0.99± 0.01 0.99± 0.01 0.87± 0.02 0.96± 0.01 0.94± 0.01 0.82± 0.04
T ,w,βw 0.91± 0.01 0.99± 0.01 0.99± 0.01 0.83± 0.01 0.96± 0.01 0.94± 0.01 0.76± 0.03
T ,w 0.91± 0.01 0.99± 0.01 0.99± 0.01 0.83± 0.01 0.96± 0.01 0.94± 0.01 0.76± 0.04
T 0.83± 0.01 0.99± 0.01 0.99± 0.01 0.77± 0.01 0.79± 0.02 0.73± 0.04 0.71± 0.04

z,w,β 0.83± 0.01 0.93± 0.02 0.93± 0.01 0.71± 0.01 0.78± 0.07 0.91± 0.03 0.78± 0.03
z,w,βprom 0.85± 0.01 0.93± 0.02 0.93± 0.01 0.74± 0.01 0.79± 0.07 0.92± 0.02 0.82± 0.04
z,w,βw 0.83± 0.01 0.93± 0.02 0.93± 0.01 0.71± 0.01 0.78± 0.07 0.91± 0.02 0.77± 0.03
z,w 0.83± 0.01 0.93± 0.02 0.93± 0.01 0.70± 0.01 0.79± 0.07 0.92± 0.02 0.76± 0.04
z 0.75± 0.01 0.93± 0.03 0.93± 0.02 0.60± 0.01 0.68± 0.06 0.77± 0.07 0.64± 0.03

w 0.65± 0.01 0.75± 0.01 0.88± 0.02 0.50± 0.03 0.41± 0.02 0.88± 0.03 0.68± 0.04

sonable accuracy scores, although the drop of 0.17 in the
SLWC recall score from the (T ,w) model shows the im-
portance of peak width as an input feature. However, it is
worth noting that peak width and magnitude are both essen-
tial features for identifying clouds and therefore peaks in the
first place. Replacing peak temperature with peak altitude re-
duced the balanced accuracy by around 0.08 for all models,
and reduced the recall scores by around 0.17 for SLWC and
0.07 for WLWC across all models. This significant reduc-
tion in model performance shows that despite peak altitude
and peak temperature being strongly negatively correlated,
altitude was not a useful direct replacement for temperature.
This confirms the importance of having either NWP temper-
ature information or radiosonde temperature data for mak-
ing accurate classifications of SLWC. However, recall scores
for WLWC were still high (> 0.9) and generally unchanged
for IC and MPC (around 0.8) when temperature was re-
placed with altitude, indicating that liquid–ice classification
can generally be made without temperature information (i.e.
without distinguishing SLWC and WLWC).

4 Conclusions

In this study, we applied a method of supercooled liquid
water cloud (SLWC) detection first introduced by Guyot
et al. (2022) to observations from a mid-latitude site.
From a 9-month dataset of micro-pulse lidar (MPL) co-
polarized backscatter peak properties, we then trained an
optimized gradient boosting model to classify backscatter
peaks as SLWC, warm liquid water cloud (WLWC), or ice-
and mixed-phase cloud (IC and MPC). Unlike the binary
supercooled-liquid-water-containing cloud (SLCC) classifi-
cation model developed by Guyot et al. (2022), referred to

as G22-Davis to reflect the fact that the training dataset was
from Davis Station, Antarctica, our model performed multi-
class classification to distinguish SLWC from WLWC, which
was common in our lidar observations from Christchurch,
New Zealand.

We first used MPL depolarization observations to build a
reference cloud-phase mask which uses the volume depolar-
ization ratio (VDR) to distinguish ice and liquid; we then
used WRF-derived air temperatures to distinguish SLWC and
WLWC. Applying G22-Davis to our dataset of co-polarized
backscatter peak properties to create an SLCC classifica-
tion mask, we obtained recall scores of 0.15 when exam-
ining all lidar profiles and 0.18 when examining only pro-
files with detection of strong backscatter signals. We then
trained and tested a modified XGBoost model, referred to as
G22-Christchurch, and applied it to the same MPL dataset
to create an SLWC mask with recall scores of 0.76 for all
profiles and 0.88 for profiles with strong backscatter signals.
G22-Christchurch greatly improved classification of SLWC
compared to G22-Davis, which often misclassified WLWC
as SLCC due to the absence of warm liquid water in the Davis
training data.

We also applied the tree-based model explanation method
by Lundberg et al. (2020) based on SHapley Additive exPla-
nations (SHAP) values to quantify the relative importance of
each XGBoost input feature (Lundberg and Lee, 2017). We
found that temperature was the most important feature for
SLWC and WLWC classification due to the homogeneous
freezing of liquid water at around −40 °C and the defini-
tion that SLWC exists below 0 °C. Peak width was the most
important peak property for detecting liquid water of either
type because liquid water rapidly attenuates the lidar sig-
nal, causing a narrow peak in the returned backscatter pro-
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file. Peak prominence was also a useful feature for SLWC
classification. We then developed a set of models with re-
duced input features and compared their accuracies with the
original model. We found that using only peak temperature,
width and prominence as inputs, an XGBoost model could
perform equally well as the original model trained using the
full set of peak properties. Despite being strongly negatively
correlated with temperature, peak altitude was not a suitable
replacement for temperature for SLWC classification. This
confirms the importance of air temperature data availability,
such as from NWP models, for accurate detection of SLWC
alongside ceilometer observations. This differs from the find-
ings of Guyot et al. (2022); however, it is important to note
that our objectives differ. In this study, features that distin-
guish SLWC and WLWC are highlighted (i.e. temperature),
whereas for Guyot et al. (2022), the best features that distin-
guished SLWC and ice were identified (i.e. peak magnitude).
When using our model to distinguish ice from liquid (of ei-
ther WLWC or SLWC), the set of peak properties without
temperature still gave good results, showing that liquid clas-
sification can be performed without relying on other sources
for temperature information. For future work, such as the in-
corporation of this retrieval method in ALCF, the default XG-
Boost model will only use peak width, prominence and tem-
perature as inputs, while a model using width, prominence
and altitude as inputs will be an alternative for cases when
temperature data are unavailable.

The frequency of SLWC occurrence was analysed for
G22-Davis and G22-Christchurch and compared to our ref-
erence mask. Cloud fraction according to the reference
mask was 15 % for SLWC and 45 % for WLWC. WLWC
was only present at low altitudes, below 2 km, and SLWC
was present between 1–8 km. G22-Davis often misclassified
WLWC as SLWC, which caused that model to incorrectly in-
flate SLWC occurrence below 2 km. On the other hand, G22-
Christchurch replicated the reference mask’s vertical struc-
ture of SLWC and WLWC occurrence, although cloud oc-
currence was still generally underestimated across all phase
categories.

The limitations of the relatively simple VDR reference
mask should be noted. In some cases, high aerosol loads near
the ground were falsely classified as WLWC by the reference
mask. Precipitation and fog were not represented by the ref-
erence mask and may have been misidentified as IC, MPC
or WLWC. Previous methods (Tuononen et al., 2019; Guyot
et al., 2022) have classified precipitation and fog using at-
tenuated backscatter thresholds and gradients, which was not
performed in this study. This may have artificially inflated the
attenuated backscatter coefficient and therefore peak magni-
tudes in WLWC and IC clouds. The effects of multiple scat-
tering may also have caused some liquid layers to be mis-
classified as IC. On the other hand, horizontally aligned ice
crystals may have caused some ice cloud to be misidenti-
fied as liquid, since the MPL was oriented toward the zenith.
This effect may have also caused ice particles to return higher

than normal co-polarized attenuated backscatter (Hogan and
Illingworth, 2003), potentially influencing the distribution of
IC peak properties and therefore the usefulness of peak mag-
nitude for G22-Christchurch in distinguishing liquid and ice.
The reference mask classification of SLWC and WLWC re-
lies on WRF-derived temperature data, which have their own
associated uncertainty. In future work, more focus should be
given to quantifying that error, such as using in situ (e.g. ra-
diosondes) or remote measurements of cloud temperature.
Additionally, it should be noted that the minimum detection
height of the MPL is 100 m. Therefore, the MPL analysis in
this work potentially misses low-level cloud, which Griesche
et al. (2024) identified as an important polar cloud regime for
future observational studies.

The aim of this study was to understand the limitations
of G22-Davis at a mid-latitude site where both supercooled
liquid and warm liquid water clouds exist. Ceilometers, be-
ing relatively common and low-cost, have the potential to be
a useful tool for the detection of SLWCs and have particu-
lar value in regions where observations are sparse, such as
Antarctica and the Southern Ocean. Ground-based ceilome-
ter observations, complementary to satellite observations,
have the potential to improve cloud-phase products. We
found that while the methodology of G22-Davis was suc-
cessful when used with a local training dataset, the original
Davis-trained model was not effective at classifying SLWC
over Christchurch. This confirms the need for further testing
in different regions under different environmental conditions.
The G22-Christchurch model and algorithm will be incor-
porated in future versions of ALCF so that future work can
apply this retrieval technique to other lidar and ceilometer
datasets.

Code and data availability. The ALCF is open-source
and available in a permanent archive of code on Zen-
odo at https://doi.org/10.5281/zenodo.5153867 (Kuma
et al., 2021a). A tool for converting micro-pulse lidar data
files to NetCDF, mpl2nc, is open-source and available at
https://doi.org/10.5281/zenodo.4409731 (Kuma, 2020). AMPS
data were downloaded from https://www2.mmm.ucar.edu/rt/amps/
wrf_grib/ (UCAR, 2024). The observational data (ALCF-processed
NetCDF MPL and cloud mask files) are available on Zenodo at
https://doi.org/10.5281/zenodo.13331220 (Whitehead and McDon-
ald, 2024). The G22-Christchurch algorithm and processing code
will be included in future versions of ALCF.
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