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Abstract. Global Navigation Satellite System radio occul-
tation (GNSS-RO) and microwave radiometry (MWR) are
two of the most impactful spaceborne remote sensing tech-
niques for numerical weather prediction (NWP). These two
techniques provide complementary information about atmo-
spheric temperature and water vapor structure. GNSS-RO
provides high vertical resolution measurements with cloud
penetration capability, but the temperature and moisture are
coupled in the GNSS-RO retrieval process and their separa-
tion requires the use of a priori information or auxiliary ob-
servations. On the other hand, the MWR measures brightness
temperature (Tb) in numerous frequency bands related to the
temperature and water vapor structure but is limited by poor
vertical resolution (> 2 km) and precipitation.

In this study, we combine these two technologies in an op-
timal estimation approach, 1D variation method (1DVar), to
improve the characterization of the complex thermodynamic
structures in the lower troposphere. This study employs both
simulated and operational observations. GNSS-RO bending
angle and MWR Tb observations are used as inputs to the
joint retrieval, where bending can be modeled by an Abel in-
tegral and Tb can be modeled by a radiative transfer model
(RTM) that takes into account atmospheric absorption, as
well as surface reflection and emission. By incorporating the
forward operators into the 1DVar method, the strength of
both techniques can be combined to bridge individual weak-
nesses. Applying 1DVar to the data simulated from large
eddy simulation (LES) is shown to reduce GNSS-RO tem-
perature and water vapor retrieval biases at the lower tro-
posphere while simultaneously capturing the fine-scale vari-
ability that MWR cannot resolve. A sensitivity analysis is

also conducted to quantify the impact of the a priori infor-
mation and error covariance used in different retrieval sce-
narios. The applicability of 1DVar joint retrieval to the ac-
tual GNSS-RO and MWR observations is also demonstrated
through combining collocated COSMIC-2 and Suomi-NPP
(National Polar-orbiting Partnership) measurements.

Copyright statement. © 2022 California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

Atmospheric profiles of temperature and water vapor are
critical geophysical variables to various weather and cli-
mate processes. Humidity in the lower troposphere (LT),
especially the planetary boundary layer (PBL), determines
the strength and depth of convection and influences circu-
lations and cloudiness, and it indirectly affects atmospheric
circulations through non-local influence on infrared irradi-
ances (Stevens et al., 2017). The thermodynamic effect of
atmospheric moisture plays an important role in strong pos-
itive feedback on global warming and increased subtrop-
ical dryness (Sherwood et al., 2010), as well as negative
feedback through low cloud formation (Mülmenstädt et al.,
2021; Zhou et al., 2016). Also, surface air temperature and
atmospheric water vapor content are found in Fujita and
Sato (2017) to be connected to extreme precipitation un-
der a warming climate. In particular, Holloway and Neelin
(2009) show that the vertical structure of the specific humid-
ity, especially in the free troposphere, is highly correlated
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to moist convections and rainfalls. To provide accurate mea-
surements of temperature and water vapor, the Global Navi-
gation Satellite System radio occultation (GNSS-RO), pas-
sive microwave radiometer (MWR), and hyperspectral in-
frared (IR) sounders are the key spaceborne sounding tech-
niques for numerical weather prediction and atmospheric sci-
ence research. In this study, we focus on the combination of
GNSS-RO with MWR over IR because of simplicity (lower
number of channels) and applicability (better penetration be-
low the thick cloud).

GNSS-RO is a remote sensing technique used to observe
the vertical thermodynamic structure from the bending of
the occulted GNSS signal ray paths that propagate through
the stratified atmosphere (Kursinski et al., 1997). By mea-
suring the time-varying phase of the received signals, the
bending angle of each ray path can be computed and in-
verted to retrieve the vertical profiles of refractivity, which
can be used to retrieve temperature and moisture with a pri-
ori information. With its limb-sounding geometry, GNSS-
RO is capable of providing global coverage with high ver-
tical resolution (∼ 200 m) observations. In addition, the L-
band navigation signals used in GNSS-RO can penetrate
heavy cloud cover and precipitation and is independent of
surface emissivity. Numerous GNSS-RO missions have been
launched since 1995, and the number of RO observations has
now reached more than 10 000 per day, including the ones
from COSMIC-2 (July 2019), METOP-C (November 2018),
GRACE Follow-on (May 2018), Sentinel-6 Michael Freilich
(November 2020), and commercial CubeSats that have been
deployed in recent years.

In addition to GNSS-RO, MWR is also commonly used
to profile the atmosphere. MWR utilizes multiple frequency
bands, providing information that can be related to the ver-
tical structure of temperature and water vapor in the atmo-
spheric column (Rodgers, 2000). The temperature profile is
mostly linked to the oxygen absorption frequency bands lo-
cated between 50–60 GHz, while the water vapor profile can
be retrieved from the brightness temperature measurements
of 23.8 and 183 GHz water vapor absorption lines (Liu et al.,
2021). Typically, the atmospheric temperature and water va-
por profiles are retrieved along with the surface temperature
and emissivity simultaneously through an optimal estimation
approach (Boukabara et al., 2011). This technology has been
extensively utilized in both ground-based and airborne plat-
forms, and numerous MWR instruments have been launched
to low earth orbit (LEO) including the Advanced Microwave
Sounding Unit (AMSU) and Microwave Humidity Sensor
(MHS) on NOAA-18, NOAA-19, and Metop series; Ad-
vanced Microwave Scanning Radiometer for Earth Observ-
ing System (EOS) (AMSR-E) on Aqua; and Advanced Tech-
nology Microwave Sounder (ATMS) on Suomi-NPP (Na-
tional Polar-orbiting Partnership). Assimilation of observa-
tion from AMSU and MHS (Bao et al., 2015), AMSR-E
(Kazumori et al., 2008), and ATMS (Bormann et al., 2013)

in numerical weather prediction (NWP) models has shown
significant positive impacts.

While both techniques provide high quality observations,
each has its own limitations. For example, MWR sound-
ing suffers from poor vertical resolution (> 2 km) due to a
limited number of frequency channels and a broad range
of weighting functions. MWR measurements from differ-
ent bands could also be affected by clouds, precipitation,
aerosol, absorption by ozone and carbon dioxide, and sur-
face properties, which introduce notable uncertainties in the
MWR retrievals. Meanwhile, even though GNSS-RO re-
fractivity and bending angle profiles are closely related to
the vertical temperature and moisture structures, they can-
not be used to retrieve temperature and water vapor inde-
pendently without the use of auxiliary information, as ex-
plained in Sect. 2 below. In general, atmospheric profiles
from a global weather analysis, such as National Centers for
Environmental Prediction (NCEP) or European Centre for
Medium-Range Weather Forecasts (ECMWF), are utilized
as a priori states, which could be biased or erroneous and
significantly impact the final temperature and moisture prod-
ucts derived from the RO refractivity. In addition, the RO
refractivity retrieval itself could be negatively biased due to
ducting (Xie et al., 2006; Ao, 2007), which will be translated
into considerable positive bias in the temperature and neg-
ative bias in the moisture at the top of the boundary layer.
While several bias-correction methods for RO within PBL
have been proposed (Xie et al., 2006; Wang et al., 2020),
they remain challenging to apply in practice, and the corre-
sponding SI (Système International) traceability for refrac-
tivity could potentially be lost.

In this study, a one-dimension variational (1DVar) esti-
mation approach is implemented to combine GNSS-RO and
MWR measurements and simultaneously retrieve tempera-
ture and water vapor profiles that preserve the high vertical
resolution from GNSS-RO. The idea of combining RO with
MWR or IR soundings is not new: several methods have been
proposed to take advantage of these complementary mea-
surements. For example, von Engeln et al. (2001) applied an
optimal estimation method to determine the temperature pro-
file from RO bending angle measurements and oxygen line
radiance from the passive microwave limb sounder (MLS).
In Borbas et al. (2003), the multivariable regression method
is used to estimate the atmospheric states based on the coef-
ficients trained by a set of RO refractivity and MWR or IR
brightness temperature observations. The simulation results
around the tropopause altitude show that the RO–IR combi-
nation can improve the temperature and moisture retrievals
by 0.5 K and 2.5 %, respectively, compared to retrievals from
IR alone. Ho et al. (2007) took a similar regression approach
and expanded the application to the lower troposphere to re-
duce the impacts of RO refractivity retrieval bias by introduc-
ing AIRS observations. For both studies, the regression coef-
ficients are calculated from specific training datasets, which
could be biased based on its spatial and temporal distribu-
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tion. The non-linear behavior between the profile variables
(temperature and water vapor) and the observables (bright-
ness temperature and refractivity) could also induce errors in
the simple linear regression expressions.

The simulation study conducted in Collard and Healy
(2003) shows that by combining RO and nadir sounding
(MWR or IR) measurements using a sequential 1DVar al-
gorithm, two complementary observations can be fused to-
gether and “contribute the greatest impacts to different parts
of atmospheric temperature and humidity fields”. Collard
and Healy (2003) performed 1DVar twice to include the
background temperature and moisture information with RO
refractivity and IR brightness temperature observations sep-
arately. While this approach works well for unbiased mea-
surements, it is known that in the lower troposphere GNSS-
RO refractivity observation could be negatively biased due
to ducting which occurs at the top of the PBL (Ao, 2007),
phase unwrapping error caused by low signal-to-noise (SNR)
conditions (Wang et al., 2016), and possibly small-scaled re-
fractivity fluctuations (Gorbunov et al., 2015). To reduce the
refractivity bias due to ducting, Wang et al. (2017) developed
an optimal estimation algorithm to choose the unbiased pro-
file from a family of solutions with collocated AMSR-E total
precipitable water (TPW) retrievals. However, the Wang et
al. (2017) study focuses on correcting the bias due to ducting
with TPW retrieval but does not utilize the full information
provided by MWR observations.

In this study, we correct the RO bias and improve the re-
trieval for both RO and MWR with a more optimized ap-
proach by (1) using RO bending angle and MWR brightness
temperature measurements instead of RO refractivity and
MWR TPW retrieval and (2) overcoming the non-linearity
of sequential 1DVar by using the RO and MWR observations
simultaneously. The GNSS-RO bending angle observations
are simulated by the Abel integral, while the MWR bright-
ness temperature observations are simulated by the radiative
transfer model (RTM) that considers atmospheric absorption,
as well as oceanic surface reflection and emission. Our re-
sults show that this approach can simultaneously remove the
GNSS-RO temperature and water vapor retrieval bias, reduce
the errors in the a priori profiles used in the retrievals, and
capture the small-scale vertical structure that MWR cannot
resolve. In Sect. 2, the joint 1DVar retrieval algorithm us-
ing both GNSS-RO and MWR observations will be described
in detail. Simulations, sensitivity tests, and actual data from
collocated COSMIC-2 GNSS-RO and ATMS measurements
aboard Suomi-NPP will be discussed in Sect. 3. A conclusion
will be given in Sect. 4.

2 Joint retrieval algorithm: observations, forward
model, and the 1D variational method

2.1 GNSS-RO

In this study, the retrieved 1D bending angle α(a), where a is
the impact parameter, is used as the GNSS-RO observation.
It can be related to the atmospheric refractivity through the
forward Abel equation (Fjeldbo et al., 1971):

α (a)=−2a

∞∫
a

1
n

dn
dx

dx
√
x2− a2

, (1)

where n is the refractive index, x = rn(r), r is the distance
from the center of curvature to a point along the ray path,
and a is defined as the x at the location of tangent points.
The 1D bending angle is chosen as the observation in this ap-
proach for two reasons. First, it is a more “raw” data product
than refractivity, reducing the likelihood of additional pro-
cessing errors. Bending angles are less vertically correlated
and less susceptible to errors arising from the lack of spher-
ical symmetry than refractivity. Second, Abel inversion can
only be applied to non-ducting atmospheric profiles, where
dN/dr >−157N units km−1. Refractivity retrievals of pro-
files with refractivity gradient less than this critical value will
be biased below the ducting layer (Xie et al., 2006); using
the bending angle retrieval instead of refractivity can avoid
the negative observational bias. However, it is worth stress-
ing that under ducting conditions the refractivity inversion is
ill-posed, and infinite solutions can correspond to the same
bending angle measurements. Therefore, with the bending
angle alone, the thermodynamic states of the atmosphere
cannot be determined, and the MWR observation is utilized
in our method to provide essential information needed for
constraining the refractivity retrieval under ducting condi-
tions.

The refractive index n as a function of height can be cal-
culated from the atmospheric temperature and water vapor
profiles (Smith and Weintraub, 1953):

N = 77.6
p

T
+ 3.73× 105 e

T 2 , (2)

where N = (n− 1)× 106 is the refractivity in N units, p is
the pressure in millibar (mbar), e is the vapor pressure (in
mbar), and T is the temperature (in kelvin). The atmospheric
refractivity can be more accurately calculated by considering
non-ideal gas with slightly modified constants as used in Ra-
dio Occultation Processing Package (ROPP) (Culverwell et
al. , 2015; Burrows et al., 2014). Here we neglect the non-
ideal gas effect due to its limited impact (∼ 0.1 % of bending
angle) on our analysis results.

In practice, Eq. (1) can be implemented by numerical in-
tegration with changing variables. However this is a time-
consuming process, especially in 1DVar, where the Jacobian
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at multiple samples must be calculated over numerous itera-
tions. To reduce the 1DVar Jacobian calculation complexity,
Eq. (1) is implemented using the approach taken by ROPP
where an exponential refractivity is assumed at each layer:

d ln(n)
dx

=∼ 10−6 dN
dx
. (3)

Under this assumption, the bending angle integration
shown in Eq. (1) can be simplified. When the refractivity de-
creases with height as in most situations, the bending angle
for each interval is given by

1α =10−6
√

2πakiNi exp(ki(xi − a))[
erf
(√
ki(x− a)

)]∣∣∣∣xi+1

xi

, (4)

where erf is the error function and

ki =
ln(Ni/Ni+1)

xi+1− xi
. (5)

When refractivity increases with height, we assume a con-
stant refractivity gradient within the layer, and Eq. (4) is
modified to

1α =−2
√

2a10−6 (Ni+1−Ni)

(xi+1− xi)

[√
(x− a)

]∣∣∣∣xi+1

xi

. (6)

Currently, ROPP processing removes the portion of the
profiles below the ducting layer when its refractivity gra-
dient reaches the critical value. Here we generalize the ap-
plication of Eq. (6) to the ducting cases. When ducting oc-
curs, x = rn(r) is decreasing within the ducting layer when
its corresponding refractivity decreases sharply. In this case,
ki would remain negative and the slope of N(r) can be ap-
proximated as constant, which is assumed in the derivation
of Eq. (6). Therefore, Eq. (6) is still applicable to calculate
the bending angle profile within the ducting layer. In general,
this would result in a sharp peak in the bending angle profile
that can be observed in occultation profiles.

2.2 MWR

The MWR forward operator we use in this research is based
on a radiative transfer model developed at the Jet Propul-
sion Laboratory (JPL) for simulation, testing, validation, and
calibration of microwave radiometer measurements – from
instrument design through to on-orbit operation. The for-
ward model is valid for frequencies between 6 and 183 GHz
and can simulate both imager and sounder configurations.
Oceanic surface emission is based on Meissner and Wentz
(2012). For atmosphere absorption, a number of functions
can be employed. Oxygen absorption is modeled based on
the work of Liebe et al. (1993), Rosenkranz (1998), and
Tretyakov et al. (2005). Water (vapor and liquid) absorption
is modeled with Liebe et al. (1993). Nitrogen absorption is

modeled with Rosenkranz (1998). Given inputs of instrument
and environmental parameters, the forward model produces
the simulated Tb.

In this article, the Tb measurements of all 22 channels from
the ATMS instrument are simulated using the forward opera-
tor described above. This process can be improved in the fu-
ture by using only the channels that are most sensitive to the
tropospheric temperature and water vapor structure and dis-
carding the rest. For ATMS, we can focus on channels 4 to 9
(51.76–55.5 GHz) that are most sensitive to the tropospheric
temperature and channels 17 to 22 (165.5–183.31 GHz) that
are most sensitive to water vapor (Shao et al., 2021). By re-
ducing the number of channels from 22 to 12, the compu-
tational complexity and surface property dependence can be
significantly decreased. However, the thermodynamic infor-
mation close to the surface will also be reduced. The trade-off
between the number of channels used and the corresponding
retrieval accuracy needs to be further investigated in future
studies.

2.3 1DVar

Here we generalize the RO 1DVar inversion method de-
scribed in von Engeln et al. (2003) to the RO and MWR joint
retrieval algorithm. As in most current RO processing sys-
tems, the temperature, pressure, and the water vapor pressure
at each level form the state vector x that is being estimated:

x =

 T

p

e

 , (7)

where T is the temperature, p is the pressure, and e is the
vapor pressure in 200 m sampling. The vertical range of the
state vector spanned from 0 to 10 km altitude. We focus on
estimating the lower atmosphere because (1) the contribution
of the upper atmosphere to the lower troposphere is small due
to exponentially decreases of atmospheric refractivity (with
< 0.4 % standard deviation above 10 km) and (2) most of the
vapor is distributed in the bottom 10 km of the atmosphere.
Each state variable in Eq. (7) is sampled every 200 m over
this range to approximately match the vertical resolution of
GNSS-RO. The state variables can be connected to the bend-
ing angle observation yro and brightness temperature obser-
vation ymwr with the forward operators Hro and Hmwr as ex-
plained in Sect. 2.1 and 2.2:

yro = [α]=Hro (x) , (8)
ymwr = [T b]=Hmwr (x) , (9)

where α and T b are the RO bending angle and MWR bright-
ness temperature observations over the range of impact pa-
rameter and 22-channel frequency band, respectively. As an
optimal estimation approach, 1DVar will look for the best so-
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lution x by minimizing the following cost function:

J =
1
2
(x− xb)

TB−1 (x− xb)

+
1
2
(y−H [x])TO−1 (y−H [x]) , (10)

where y = (yro,ymwr) represents the RO and MWR obser-
vations, H [x] = (Hro[x],Hmwr[x]) is the forward operator,
and xb represents the background state variables, or a pri-
ori, which can be obtained from a global weather analysis
such as NCEP, MERRA-2, or ECMWF. B is the error co-
variance matrix of the a priori xb. O is the error covari-
ance matrix of y which includes observational and model
representation errors. In this research, O is given in a di-
agonal form with estimated uncertainties of bending angle
of σα = 8× 10−4 rad and brightness temperature of σTb =

0.25 K. The chosen bending angle uncertainty is comparable
to the one of COSMIC-2 at ∼5 km impact height (Todling
et al., 2022), which represents the average RO observation
uncertainty over the lower troposphere. Actual RO bend-
ing uncertainty can be much smaller in the free troposphere
(> 4 km) and provides better quality observations (Todling
et al., 2022). Therefore, the simplified constant uncertainty
setting over impact parameters shows the worst case of com-
bination above the PBL. For simplicity, the state covariance
matrix B also has a diagonal form that incorporates the un-
certainty of the background state variables (T : 2.5 K, p: 1 %,
e: 40 %). The background uncertainties of T , p, and e are
chosen according to the ECMWF model used in von Engeln
et al. (2003), and a similar amount of uncertainties are also
assumed for other weather models. The use of a diagonal
form for both covariance matrices implies the independence
of measurement errors with respect to height. In reality this is
not entirely true, and a sensitivity test with respect to the off-
diagonal terms is given in the next section. The uncertainty
defined in B and O will affect the optimal solution of tem-
perature and vapor retrievals. More discussions on this will
be provided in Sect. 3.1.

The estimated state variable x can be determined by itera-
tively solving the following formula:

xn+1 = xb+Gn

[
(y−H [xn])−Kn (xb− xn)

]
, (11)

where xn is the state variable at the nth iteration, and xb is
the state a priori. Kn is the state Jacobian matrix which can
be calculated by perturbing each individual variable in x:

Kn =
∂H(x)

∂x

∣∣∣∣
x=xn

. (12)

In this work, we perturb T and p by 0.1 K and 0.1 hPa, re-
spectively, and we perturb water vapor by 0.02 hPa. Alterna-
tively, one can use the Jacobian term calculated by the ROPP
software to lower the time consumption for numerical dif-
ferentiation computation. The gain matrix Gn can then be

calculated from

Gn =

(
B−1
+KT

nO−1Kn

)−1
KT
nO−1. (13)

Here we set the conditions Tn− Tn−1 < 0.1 K and en−
en−1 < 0.2 hPa as the convergence criteria.

3 Results and analysis of the joint retrieval algorithm

3.1 Large eddy simulation

An important goal of this study is to investigate the effec-
tiveness of the joint retrieval on the planetary boundary layer
(PBL). To this end, high-resolution profiles obtained from
the large eddy simulation (LES) (Kurowski et al., 2023) are
used to validate the 1DVar algorithm. Temperature, pressure,
and water vapor from LES in three different physical regimes
are extracted to simulate the RO bending angle and MWR Tb
observations and regarded as the truth:

1. shallow to deep convective cloud transition in the
Amazonia region, i.e., the Large-scale Biosphere-
Atmosphere (LBA) experiment (Gustavo Gonçalves de
Gonçalves et al., 2013; Grabowski et al., 2006);

2. shallow cumulus cloud in the west Atlantic Ocean, i.e.,
the Rain In shallow Cumulus over the Ocean (RICO)
campaign (Rauber et al., 2007);

3. marine stratocumulus region in the northeast Pacific,
i.e., the DYnamics and Chemistry Of Marine Stratocu-
mulus (DYCOMS) campaign (Stevens et al., 2003).

For each case, the RO bending angle and MWR Tb obser-
vations are simulated using the forward model described in
Sect. 2.1 and 2.2. Here we simulate the bending angle over
the 0–30 km range of impact height with 50 m sampling to
match the RO bending resolution at the lower troposphere.
In this paper, no thermal noise is added to either simulated
observation, although the 1DVar processing takes this un-
certainty into account with the observation error covariance
matrix O (Sect. 2.3). The temperature a priori is derived by
smoothing the true temperature profile from LES with a 1 km
moving window. In addition, we added a constant −2 K bias
to the a priori temperature at every altitude to simulate a po-
tential bias in the background profile and test if the 1DVar
algorithm can remove it. The total pressure and water vapor
pressure a priori are also defined by smoothing the true pro-
file with 3 and 1 km boxcar filters, respectively. This would
remove most of the small-scaled structures in the lower tro-
posphere that typically do not show up in the background
profiles. For each case, the implemented 1DVar algorithm is
used in three different scenarios: RO only, MWR only, and a
joint retrieval using RO and MWR (RO+MWR).

The 1DVar results between the surface and 5 km are shown
in Figs. 1 to 3, corresponding to the three campaigns listed
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Figure 1. The 1DVar results for LES temperature (a, b) and water vapor (c, d) profiles in the LBA scheme. Note that the RO temperature
solution (green) is close to the a priori profile (orange); the two curves almost overlap in (a).

above, respectively. Each figure includes the temperature
profiles (a), temperature difference from truth (b), water va-
por pressure (c), and water vapor difference from truth (d).
In the case of LBA (Fig. 1), the true T and e are relatively
smooth with little fine-scale vertical structures; the back-
ground profiles are close to the true profiles except for the
−2 K added to the a priori T . Here we intentionally added
−2 K to test the robustness of the joint retrieval under a large
amount of background uncertainty. While this magnitude of
error in the model is not expected to be common, it could oc-
cur at the top of the PBL where a large temperature transition
occurred over a short altitude interval.

Figure 1b shows that the temperature solution of the RO-
only scenario mostly follows the a priori profile with the
−2 K error because the 1DVar is heavily weighted with re-
spect to the T a priori compared to the water vapor a priori.
The resulting RO-only water vapor retrieval shown in Fig. 1d
is also slightly biased (−1 hPa) near the surface to compen-
sate for the negative T bias and yield the same refractivity.
These biases are representative of the sensitivity of the de-
rived T and e to the T a priori errors in a RO 1DVar-retrieval
in the lower troposphere. On the other hand, the MWR-only
solutions (purple dotted-dashed) appear to be less sensitive
to the a priori T error with not even 1 K difference at max-
imum compared to the truth. The results imply that, unlike
RO, the MWR is capable of independently solving for T and
e, except for the small-scale structure within 500 m altitude
from the surface. Combining RO bending and MWR Tb in

the 1DVar framework discussed above, we observe that the
retrieved T data (red solid line) in Fig. 1a and b are close
to truth, despite the −2 K bias that was added to the a pri-
ori, and generate a detailed water vapor retrieval (red solid
line) in Fig. 1c and d that is more accurate than either MWR
(purple dotted-dashed) or RO (green dotted-dashed) alone.

In the RICO case (Fig. 2), the water vapor retrieval from
the MWR-only scenario (purple dotted-dashed) shows a
large error of 2 hPa at 2 km. This is due to the low verti-
cal resolution of the MWR measurements which miss the
fine-scale structure below 2 km. As a result, the 1DVar so-
lution for MWR-only shares nearly identical structure with
the given a priori profile (orange dotted), which was heav-
ily smoothed with small structure removed and correct only
the bias from the T measurements. By contrast, the RO-only
solution (green dashed) is able to reduce the water vapor re-
trieval error relative to the a priori (to within 1 hPa) and better
resolve the fine vertical structure. However, as shown in the
LBA case, the negative e bias (0.5 hPa at the surface) persists
in the lower troposphere due to a −2 K bias in the temper-
ature a priori. By combining both RO and MWR with the
proposed 1DVar approach, the T and e biases are corrected
for and the small scale structures in water vapor are captured.

Figure 3 shows the T and e profiles in the DYCOMS case,
which is located at the stratocumulus region in the northeast
Pacific. The lower troposphere in this region is known to have
a sharp transition at the top of the boundary layer as can be
seen from the temperature and moisture profiles in Fig. 3a
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Figure 2. Same as Fig. 1 but with the RICO case.

Figure 3. Same as Fig. 1 but with the DYCOMS case.

and c at the ∼ 1 km height. The sharp transition of temper-
ature and moisture create a ducting layer (Xie et al., 2006;
Ao, 2007) where the RO tangent point cannot be located and
the thermodynamic information in the ducting layer is lost.
This results in an ill-posed inversion problem where multiple

refractivity solutions would correspond to the same bending
angle profile, and the standard Abel inversion would resort to
a solution without ducting and cause a negative bias of up to
15 % in refractivity inside the layer. This is the reason why
bending angle is used in the 1DVar instead of refractivity and
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could, potentially, avoid this refractivity bias. Nonetheless,
without additional information, the solution may not con-
verge to the correct refractivity profile in the family of so-
lutions. As shown in Fig. 3c and d, the water vapor retrieval
in the RO-only scenario still contains a large negative bias
(−2.5 hPa close to the surface) compared to the true profile.
This can be due to the−2 K bias introduced in the a priori T .

To overcome the negative N bias due to ducting, Wang
et al. (2017, 2020) used the information of collocated MWR
TPW retrievals and RO grazing reflected bending angles as
constraints to choose the unbiased refractivity profile. Here,
however, we show that combining MWR Tb with the RO
bending angles results in a reduced negative bias due to
ducting. As shown in Fig. 3c and d, the MWR-only and
RO+MWR scenarios are no longer limited by the ducting
condition and are able to correct the moisture bias within
the boundary layer. The low resolution of the MWR mea-
surement misses the sharp transition at the PBL top, but the
combination of RO and MWR preserve the advantages of
both measurements. For temperature retrieval (Fig. 3a and
b), while the MWR and RO+MWR solutions are able to cor-
rect the−2 K bias, all three solutions fail to resolve the sharp
change at the transition due to strong smoothing of the back-
ground profile. With a smaller covariance of T a priori, the
1DVar temperature solution will depend more on the low-
resolution a priori and MWR observations rather than the
RO measurements; therefore, the large error at the transition
layer should not come as a surprise.

3.2 Sensitivity study

To investigate the sensitivity of the 1DVar solution to
the a priori and the measurement covariances, we per-
form a number of simulations using a radiosonde pro-
file from the MAGIC campaign (file name: magson-
dewnpnM1.b1.20121104.120900) (Keeler and Burk, 2012;
Lewis , 2016). In this study, we chose a profile that does
not contain any ducting conditions to avoid errors due to
super-refraction. The temperature, water vapor, and the cor-
responding refractivity and bending angle profiles are shown
in Fig. 4. The temperature and water vapor priors are ob-
tained by a 1 km boxcar filter to the radiosonde observation
(RAOB) T and e profiles. In addition to smoothing, constant
biases in T of −2, −1, 0, 1, or 2 K were added to the a pri-
ori T profile. Alternatively, constant biases in e of −40 %,
−20 %, 0 %, 20 %, and 40 % were added to the a priori e pro-
file. For each of these cases, three different scenarios corre-
sponding to RO only, MWR only, and combined RO+MWR
were run. The resulting T and e solutions are then compared
to the truth by computing the root mean square error (RMSE)
over the 0–5 km range. The results are shown in Fig. 5. It is
clear that the RMSE for the RO-only solution (green dashed)
largely follows the a priori RMSE (orange dotted). This is ex-
pected since no independent T information is provided, and
the 1DVar has to rely on the a priori to estimate the T profile.

By contrast, the MWR-only RMSE (purple dotted dashed) is
considerably lower (∼ 0.5 K compared to the ∼ 1.8 K) and is
less sensitive to the T bias. The combined RO+MWR sce-
nario (red solid) reduces the T RMSE even further to 0.4 K
and is nearly independent of the T bias. On the other hand,
the e RMSE of the MWR-only scenario shown in Fig. 5b
mainly follows the a priori due to its low resolution. While
the RO-only e solution has lower RMSE, it is sensitive to
the T bias because temperature and water vapor are coupled.
The combination of RO and MWR is able to uncouple the
T and e and make the RMSE almost always below 0.3 hPa,
independent of the T bias. By contrast, the water vapor bias
has a smaller impact on retrieved temperature (Fig. 5c) or
water vapor (Fig. 5d). This is mainly due to the fact that the
water vapor standard deviation (set to 40 %) is much larger
than the temperature standard deviation (2.5 K), causing the
1DVar solutions to match better with the temperature a pri-
ori rather than the moisture a priori. Hence the MWR-only
moisture solution is not strongly biased, although its struc-
ture mainly follows the water vapor a priori. Overall, the
RO+MWR combined solutions show the lowest sensitivity
to the temperature and water vapor a priori errors.

Now we turn our attention to the sensitivity of the re-
trievals to the MWR and RO measurement error covariances.
The results are shown in Fig. 6 for five different levels of
uncertainty in Tb (0.25, 0.50, 1.00, 1.50, 2.00 K) and bend-
ing angle (0.0008, 0.0012, 0.0016, 0.002, 0.0024 rad). In all
cases, the combination of RO and MWR observations have
a positive impact on the solution, causing the RMSE to re-
duce. As expected, a larger covariance reduces the value
of measurements, leading to larger retrieval RMSE values.
This positive, near-linear trend can be seen in both MWR Tb
(Fig. 6a, b) and RO bending angle measurements (Fig. 6c,
d). In this test, no noise is added to the measurements, so
the relationship is only driven by the covariance values. It
can be observed that the temperature RMSE (Fig. 6a, c) of
the RO+MWR solution (red solid lines) increased by 0.22 K
when Tb covariance increases from 0.25 to 2 K, while it only
adds 0.05 K and is saturated when bending angle covari-
ance increased by 3 times. This result illustrates the higher-
temperature information content from MWR Tb relative to
RO bending angle between 0 to 5 km as expected from previ-
ous studies (e.g., Collard and Healy, 2003). Note that Tb co-
variance should have no effects on estimates for the RO-only
scenario. Similarly, error covariance in bending should have
no effects on estimates for the MWR-only scenario, as con-
firmed in Fig. 6c and d. The MWR/RO combined solution
has the lowest temperature RMSE value in both scenarios
(Fig. 6a, c), while its moisture RMSEs are almost the same
as the one of RO-only solutions (Fig. 6b, d). As expected, the
results show that when the a priori is not biased, the MWR
observation provides little information content to the estima-
tion process.

The third sensitivity test shown in Fig. 7 quantifies the re-
trieval RMSE with respect to a change of temperature (1.5,
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Figure 4. (a) Temperature, water vapor, and the refractivity profiles calculated using Eq. (2); (b) the bending angle from the forward Abel as
described in Sect. 2.1.

2.5, 3.5, 4.5, 5.5 K) and moisture (20 %, 40 %, 60 %, 80 %,
100 %) in the a priori covariance. A higher a priori covari-
ance implies a greater reliance on observations in the 1DVar
estimation process and reflects different behaviors for dif-
ferent measurements. For the RO-only case (green curve in
Fig. 7a), the temperature RMSE decreases under larger tem-
perature a priori covariance. This may be due to a better re-
solved temperature profile, especially at the top of the PBL,
where the strong constraint from the a priori is relaxed. On
the other hand, the MWR-only case (purple curve in Fig. 7a)
shows the opposite trend, indicating that most of the vertical
information of the MWR-only retrieval is derived from the
temperature a priori. In fact, when the temperature a priori
covariance is larger than 4.5 K, its corresponding RMSE ex-
ceeds the one from the a priori itself (orange). However, the
large variance observed in the temperature RMSE does not
propagate to the water vapor RMSE (Fig. 7b) and shows a
relatively stable curve when the temperature a priori covari-
ance changes.

It is worth noting that the perturbation of the water va-
por a priori covariance does not cause a dramatic change in
water vapor results (Fig. 7d). At the same time, higher wa-
ter vapor a priori covariance would push the RO-only tem-
perature solution closer to the a priori profile, leading to in-
creasing temperature RMSE as shown in Fig. 7c. By contrast,
the MWR-only temperature solutions show a negative trend
which implies the independence of MWR temperature and
water vapor retrieval based on the Tb measurements. As the

results show in Figs. 5 and 6, the RO+MWR joint retrieval
solutions remain the lowest RMSEs among all scenarios in
this sensitivity test, with errors at ∼ 0.4 K (temperature) and
∼ 0.3 hPa (vapor pressure) in all levels. These results show
that 1DVar retrievals from combining RO and MWR can bet-
ter reduce the error propagated from the a priori, and its so-
lutions maintain low sensitivity to observation and a priori
covariance.

So far, we used the diagonal covariance matrix by assum-
ing the model data are independent for all levels, but in reality
the temperature and water vapor at neighboring levels may
be correlated. To investigate the impact of the off-diagonal
elements we repeat the RAOB simulation using the covari-
ance matrix computed by the equation documented in Healy
(2001):

Bi,j = σiσj exp

[
−

(
zj − zi

)2
l2

]
, (14)

where i and j are the column and row indexes of the back-
ground matrix, respectively; σi is the standard deviation at
the ith level; z is the level altitude; and l is the scale length.
In this test we set l as 0.75 km, and the corresponding tem-
perature and water vapor results are shown in Fig. 8. As the
figure shows, the off-diagonal elements will smooth the esti-
mated solutions with the correlation between different levels,
which is consistent with the results shown in Healy (2001).
The smoother profile implies reduced information content in
each sample when correlations between the neighboring lev-
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Figure 5. Sensitivity test of the (a, c) temperature and (b, d) vapor retrieval with respect to the temperature (a, b) and vapor pressure (c, d) a
priori.

els are increased. The enforcement of smoothness in the es-
timated profiles makes the combination with sharp RO bend-
ing angle observations in the lower troposphere difficult. The
water vapor profile shows less small-scale structures, and the
RO and RO+MWR temperature profile has larger error above
the PBL. Therefore, while the estimation results are gener-
ally insensitive to the covariance, they could be sensitive to
the correlation in the background, and the off-diagonal terms

have to be carefully chosen in practice. The method of se-
lecting optimal off-diagonal terms in the background matrix
needs to be further investigated in the future.

3.3 Real ATMS and COSMIC-2 data

We applied our joint RO+MWR 1DVar algorithm to Suomi-
NPP and COSMIC-2 measurements to assess the applica-
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Figure 6. Sensitivity test of the (a, c) temperature and (b, d) vapor retrieval with respect to the Tb covariance (a, b) and the bending angle
covariance (c, d).

bility of this method to real measurements. Fig. 9 shows
the collocated cases between Suomi-NPP and COSMIC-2
in a 6 h period starting on 1 April 2019, 00:00–06:00 UTC.
The Suomi-NPP data we used are the L1B calibrated/bias-
corrected brightness temperature product (Lambrigtsen,
2018) provided by the Goddard Earth Sciences Data and
Information Services Center (GES DISC). This radiance
dataset has been calibrated by the in-flight ATMS anten-
na/receiver systems that measure the radiation from two cal-

ibration sources during every scan cycle. One is the cos-
mic background radiation from space (cold space) and the
other is the internal blackbody calibration target (hot tar-
get). By taking the radiometric counts measurements from
both sources and combining them with instrument errors that
have been accurately modeled from ground thermal-vacuum
tests, the published Tb measurements are calibrated and bias-
corrected. The details of the in-flight calibration process are
documented in the “Algorithm Theoretical Basis Document”
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Figure 7. Sensitivity test of the (a, c) temperature and (b, d) vapor retrieval with respect to the temperature (a, b) and vapor pressure (c, d)
covariance.

accompanying the published dataset (Lambrigtsen, 2018).
Here we assume the Tb observations are unbiased and can
be directly used for 1DVar combination without additional
calibration steps.

Due to the lower inclination of COSMIC-2 orbits, all of the
collocated cases are located between −45 to 45◦ in latitude.
To illustrate the 1DVar algorithm, we chose one case (2020-

04-01-03:10c2f4_gps58) in the Atlantic Ocean (17.91◦ N,
36.75◦W). This case is chosen because it is located over the
ocean, where surface emissivity can be robustly modeled for
the MWR observation. In addition, the collocated MERRA-
2 reanalysis shows low ice and liquid water contents, which
suggests that the MWR observation is less likely to be im-
pacted by clouds and precipitation. Furthermore, the RO re-
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Figure 8. Sensitivity test of the (a, c) temperature and (b, d) vapor retrieval with respect to the off-diagonal term in the background covariance
matrix. The diagonal matrix is used for the first two panels (a, b) and the off-diagonal elements are added in the last two panels (c, d).

Figure 9. Collocated cases between Suomi-NPP and COSMIC-2 on 1 April 2019, 00:00–06:00 UTC. The red dots are the tangent point
location of each COSMIC-2 RO at its lowest penetration height, while the background color is the (a) 31.4 GHz and (b) 165.5 GHz brightness
temperature measurement from the onboard ATMS instrument.

trieval penetrated sufficiently deep in this case so that the
1DVar can estimate the thermodynamic structure within the
PBL. The estimation results using different instrument sce-
narios are shown in Fig. 10.

Since there is no ground truth in this comparison, we can-
not conclude definitely which method provides the best solu-
tion. However, by comparing the vertical structures between

the different estimates, we can find several clues regarding
their information content.

The orange dotted lines shown in Fig. 10a and b are the
profiles from the NCEP analysis, used as priors in the 1DVar
processing. Note that in this case the COSMIC-2 data have
not yet been assimilated in the NCEP analysis (NCEP, 2023),
and no RO information from COSMIC-2 is included in the
a priori. The green, red, and purple lines are the 1DVar so-
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Figure 10. An example (2020-04-01-03:10c2f4_gps58) of the actual collocated RO-MWR combination (a) temperature and (b) water vapor
retrieval.

lutions in the RO-only, RO+MWR, and MWR-only scenar-
ios, respectively. The yellow line is the Community Long-
term Infrared Microwave Combined Atmospheric Product
System (CLIMCAPS) retrieval (i.e., not 1DVar) using the
ATMS MWR and Cross-track Infrared Sounder (CrIS) data
(Smith and Barnet, 2019), provided by GES DISC (Barnet,
2019). Here, MWR provides additional temperature infor-
mation as shown in Fig. 10a so that the MWR-only solu-
tion (purple) deviates from the a priori (orange) and RO-
only (green) temperature retrievals by∼ 3 K below 2 km. The
joint RO+MWR retrieval lies in between the RO-only and
MWR-only solutions and has approximately the same tem-
perature solution as the CLIMCAPS solution. On the other
hand, the water vapor profiles shown in Fig. 10b demon-
strates that the joint RO+MWR solution is able to resolve
the small-scale moisture structure throughout the profile. The
deviation between the RO-only and the RO+MWR mois-
ture solutions is caused by the temperature information that
MWR provides, which in fact matches better with the ATMS
moisture profile below 1 km. While the improvements cannot
be quantified without ground truth, the results show that the
1DVar joint retrieval combines the information and strengths
of both techniques and is able to provide the high-resolution
and low-bias thermodynamic profiles that a single technique
cannot retrieve.

The effectiveness of combining RO and MWR observa-
tions within the framework of the proposed 1DVar approach
is limited by several factors. First, the existence of cloud and
precipitation can significantly increase the forward model er-
ror in the Tb calculation (Errico et al., 2007). Second, the
MWR input and forward modeling error could still exist even

in clear-sky events due to other factors that affect the sur-
face emissivity, such as surface type, surface temperature,
and surface wind speed. In this study, we limited the appli-
cation of joint retrieval to an RO over the ocean. In addition,
a quality control (QC) test based on the difference between
the observed Tb and MERRA-2 calculated Tb for each chan-
nel was applied to ensure that the MWR measurements are
not biased due to the reasons stated above. Statistically, 73
out of 132 collocations found within a 6 h period passed the
QC test when an rms threshold of 10 K is applied on all 22
ATMS channels. Alternatively, one can also implement an
additional calibration process to further remove these factors
from the MWR data and forward modeling errors. We expect
this approach will improve the quality and quantity of data
available for the joint retrievals, but this requires more stud-
ies in the future to statistically validate its effectiveness and
uncertainty.

4 Conclusions and discussions

In this article, we described a 1DVar approach combin-
ing two complementary measurements to obtain high verti-
cal resolution data and solve for temperature and moisture
simultaneously. Simulations were performed where high-
resolution LES profiles from three different campaigns were
used as truth, and three different scenarios corresponding to
RO-only, MWR-only, and the RO+MWR combination were
tested. The results show that potential biases in the a priori
information used in the 1DVar can be significantly reduced
after adding Tb observations from MWR. At the same time,
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the high-resolution RO bending angle observation provides
the needed vertical moisture information. The complicated
thermodynamic structure in the lower troposphere, including
the one with ducting, can therefore be better resolved with
much smaller biases compared to the ones using RO or MWR
alone. We also analyzed the sensitivity of the temperature and
vapor retrieval in each scenario to the a priori, background
covariance, and observation covariance and showed that the
RO+MWR combination is the most stable among the three
scenarios when the background vertical levels are assumed
uncorrelated. Finally, the 1DVar approach is applied to real
data from COSMIC-2 and Suomi-NPP observations, and the
results show the promise of the 1DVar technique.

The joint retrieval approach is similar to the optimal esti-
mation currently used in data assimilation. Both techniques
minimize the cost function, require covariance matrices to
define the background and observations uncertainties, and
use the forward operator to map the state vector to the ob-
servables. Typically, data assimilation for numerical weather
prediction (NWP) purposes utilizes a 3DVar or 4DVar ap-
proach to account for horizontal and temporal coverage. Here
we only estimate the state variable on a single spatial di-
mension (altitude), assuming a spherically symmetric atmo-
sphere, which reduces the number of the state variables and
allows us to better quantify the relative strengths and weak-
nesses of the information used in the retrieval process. This
also allows us to introduce as many vertical levels as needed
to capture the highest vertical resolution possible with RO
measurements. The proposed 1DVar joint retrieval is less de-
pendent on any given operational NWP model and is not lim-
ited by observation QC criteria, a priori contribution, or the
vertical grid resolution applied in operational NWP models.
Therefore, the jointly retrieved temperature and water vapor
profiles can be good candidates for validating weather and
climate models. In addition, under the circumstances when
individual RO and/or MWR measurements are not included
in the data assimilation process due to the internal QC of the
NWP systems, the joint retrieval profiles can potentially pro-
vide additional data that are more amenable for NWP pro-
cessing.

Two future improvements are envisioned to make the pro-
posed 1DVar approach more practical and accurate. First,
all the observation error covariance matrices we used in this
study are diagonal. This implies that errors of Tb of different
channels and RO bending angle measurements at different
heights are assumed to be independent, which is an assump-
tion that is not perfectly valid. The vertical smoothing in the
RO bending angle profile could lead to a high correlation of
two or more neighboring samples, especially in lower alti-
tudes. One possible way to address this issue is to use the
Desroziers diagnosis (Desroziers and Ivanov, 2001) to ex-
amine if the error covariance matrices used are reasonable,
which is a topic that will be investigated in future studies.
Second, the 1DVar approach combines RO measurements
with a single set of MWR Tb measurements that are nearest

to the RO location. The RO location is defined as the latitude
and longitude of the tangent point of the lowest link in the
RO. However, in reality, RO has an extended footprint of sev-
eral hundred kilometers in the occultation plan and a poten-
tial drift of the tangent point out of the occultation plane by
as much as tens of kilometers. Taking horizontal variability
into account could better represent the MWR Tb observation
at the tangent point location for each corresponding altitude.
This requires a better understanding of the Jacobian function
as a function of height for each channel and the location of
the tangent point prior to the joint retrieval process.
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