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Abstract. Accurate and detailed retrieval of global horizon-
tal irradiance (GHI) has many benefits, for instance, in sup-
port of the energy transition towards an energy supply with
a high share of renewable energy sources and for validating
high-resolution weather and climate models. In this study,
we apply a downscaling algorithm that combines the high-
resolution visible and standard-resolution channels on board
the Meteosat Spinning Enhanced Visible and Infrared Im-
ager (SEVIRI) to obtain cloud physical properties and GHI
at an increased nadir spatial resolution of 1 km× 1 km in-
stead of 3 km× 3 km. We validate the change in accuracy
of the high-resolution GHI in comparison to the standard-
resolution product against ground-based observations from
a unique network of 99 pyranometers deployed during the
HOPE field campaign in Jülich, Germany, from 18 April
to 22 July 2013. Over the entire duration of the field cam-
paign, a small but statistically significant reduction in root
mean square error (RMSE) of 2.8 Wm−2 is found for the
high-resolution GHI at a 5 min scale. The added value of
the increased spatial resolution is largest on days when GHI
fluctuates strongly: for the 10 most variable days a signif-
icant reduction in the RMSE of 7.9 Wm−2 is obtained with
high- versus standard-resolution retrievals. In contrast, we do
not find significant differences between both resolutions for
clear-sky and fully overcast days. The sensitivity of these re-
sults to temporal- and spatial-averaging scales is studied in

detail. Our findings highlight the benefits of spatially dense
network observations as well as a cloud-regime-resolved ap-
proach for the validation of GHI retrievals. We also conclude
that more research is needed to optimally exploit the instru-
mental capabilities of current advanced geostationary satel-
lites in terms of spatial resolution for GHI retrieval.

1 Introduction

In 2022, 46.1 GW of new solar photovoltaic (PV) capacity
was installed within Europe, and the annually installed PV
capacity is expected to continue to grow towards 120 GW in
2027 (SolarPowerEurope, 2023). On the global scale, solar
PV is foreseen to account for half of all renewable power
expansion between 2021 and 2026 (IEA, 2021). The even-
tual yield of these PV systems is dominated by occurring
weather conditions. Scattering and absorption of incoming
solar radiation by clouds and aerosols can lead to highly vari-
able patterns of irradiance reaching the surface. This vari-
ability occurs at a wide range of temporal and spatial scales
down to seconds and tens of metres (e.g. Madhavan et al.,
2017; Damiani et al., 2018; Jiang et al., 2020; Habte et al.,
2020; Mol et al., 2023) and is highly relevant to PV appli-
cations (Lohmann and Monahan, 2018). Apart from that, ac-
curate observations of surface solar irradiance at high spatio-
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temporal resolution are also required for the evaluation of
weather and climate models, in particular to assess whether
the variability of radiation and thus clouds and aerosols is
correctly resolved.

High-quality observations for studying cloud–radiation in-
teractions can, for instance, be obtained from the Base-
line Surface Radiation Network (BSRN) (Driemel et al.,
2018), the Atmospheric Radiation Measurement (ARM) pro-
gramme (Michalsky et al., 1999), or national measurement
networks (e.g. Krähenmann et al., 2018). This mainly con-
cerns point measurements, which provide a high temporal
resolution but do not resolve the spatial distribution of global
horizontal irradiance (GHI). Satellite data can be used to
complement the sparse network of ground-based observa-
tions. Various algorithms have been developed to retrieve
GHI from satellites (see Polo et al., 2016, for an overview).

In terms of temporal resolution, satellite retrievals of GHI
do not match the ground-based observations (Polo et al.,
2016). However, thanks to the coverage of large geographic
areas and, in the case of geostationary satellites, the ability to
resolve the complete diurnal cycle (e.g. Martins et al., 2016;
Taylor et al., 2017; Seethala et al., 2018), satellite retrievals
provide a unique source of data (Huang et al., 2019).

Over Europe and Africa, the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) on board the Meteosat Second
Generation (MSG) weather satellites (Schmetz et al., 2002)
measures spectral radiances in 11 narrowband channels at a
subsatellite spatial resolution of 3 km× 3 km. Besides these
11 narrowband channels, SEVIRI has one high-resolution
visible (HRV) channel with a 1 km× 1 km resolution. By in-
corporating the spatial information of the HRV channel in
retrieval algorithms (downscaling), cloud properties and GHI
can be retrieved at 1 km× 1 km instead of 3 km× 3 km reso-
lution (Deneke et al., 2008; Werner and Deneke, 2020), here-
after called HR (high resolution) and SR (standard resolu-
tion), respectively.

This downscaling approach potentially offers an improved
description of GHI and cloud variability. However, valida-
tion of a possible improvement of HR compared to SR
GHI is not straightforward since it requires a specific set
of ground-based observations to validate against. The den-
sity of ground-based pyranometers is normally too sparse
to measure the small-scale spatial variability of GHI. High-
quality pyranometer observations from adjacent stations are
usually located in the order of 100 km from each other. Simi-
lar cloud conditions between these stations can therefore not
be guaranteed. Studies that do measure spatial variability of
GHI often focus on scales in the order of tens to hundreds
of metres (e.g. Espinosa-Gavira et al., 2018; Silva and Brito,
2018; Järvelä et al., 2020). Though the smallest-scale vari-
ations of GHI are very relevant to PV applications (Guey-
mard, 2017; Kreuwel et al., 2020), these resolutions are too
fine to validate the current SEVIRI downscaling algorithm.
To demonstrate the SEVIRI spatial-resolution improvement
from SR to HR, ideally, a network of observations cover-

ing an area of at least several pixels is used (Lorenzo et al.,
2015; Yang, 2017). An additional constraint for the valida-
tion is that the ground-based observations need to be made
within the disc of SEVIRI. The 2013 HOPE field campaign
(Macke et al., 2017), where a network of 99 pyranometers
(Lohmann et al., 2016; Madhavan et al., 2016) was set up
in an area of 10 km× 12 km, meets these requirements. An
exemplary comparison between SEVIRI GHI retrievals for
a day with cumulus congestus was already presented by
Deneke et al. (2021), showing that HR GHI compared bet-
ter with the HOPE observations than SR GHI does. To our
knowledge, a comprehensive assessment of changes in accu-
racy in GHI retrievals resulting from spatial-resolution im-
provements has not been carried out so far.

In this paper, we want fill this gap by extensively validating
the downscaling algorithm of Deneke et al. (2021) against
surface observations during the 2013 HOPE campaign. This
study thus aims to assess whether and to what extent the
smaller-scale spatial variability of GHI can be captured better
by the HR retrieval. The validation is performed for a wide
range of cloud conditions, allowing for the determination of
the added value of the increased resolution for each of these
cloud conditions.

The remainder of the paper is structured as follows. In
Sect. 2, the ground-based and satellite datasets and the re-
trieval algorithm used in this study are introduced. Section 3
deals with the validation and identification methods for var-
ious cloud conditions. Results are presented in Sect. 4 and
further discussed in Sect. 5. Conclusions and the outlook are
presented in Sect. 6.

2 Data

This section describes the instruments and datasets we use
to validate the downscaling algorithm. First, in Sect. 2.1, we
introduce the HOPE campaign pyranometer network data in
more detail. Here, we also discuss the quality screening ap-
plied to the pyranometer dataset. Next, the satellite data and
retrieval scheme are described in more detail in Sect. 2.2.

2.1 HOPE campaign data

From 2 April to 24 July 2013, the High Definition Cloud and
Precipitation for Advancing Climate Prediction (HD(CP)2)
Observational Prototype Experiment (HOPE) field campaign
took place. The HD(CP)2 project aimed to improve the rep-
resentation of cloud-precipitation processes within climate
model simulations. As part of this project, the HOPE field
campaign was executed with the specific purpose of pro-
viding a dataset which can be used for model evaluation at
scales relevant to climate model simulations (Macke et al.,
2017). During the HOPE campaign, 99 pyranometers were
installed over an area of 10 km× 12 km (50.85–50.95° N,
6.36–6.50° E) near the German city of Jülich. The exact lo-
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Figure 1. Locations of the 99 pyranometer stations set up during
the 2013 HOPE field campaign near Jülich. The thick black lines
indicate the edges of the SR pixels, whereas the thin red lines show
the borders of the HR pixels. The subfigure in the bottom left corner
illustrates the entire SEVIRI processing region used for this study.
Map data: © OpenStreetMap contributors (2023). Distributed under
the Open Data Commons Open Database License (ODbL) v1.0.

cations of the pyranometer stations are shown in Fig. 1. The
land type around Jülich can mainly be identified as open
farmland as well as some large open-pit mines. Each of the
pyranometers was equipped with a silicon photodiode pyra-
nometer of the model EKO ML-020VM to measure GHI at a
10 Hz resolution. The pyranometers were continuously oper-
ated during the entire length of the fieldwork. The pyranome-
ter network and the resulting dataset have been described in
Madhavan et al. (2016). While quality information based on
manually recorded status information and visual checks is
included in the original dataset, we perform an additional
quality screening here to ensure that questionable data are
omitted from the HOPE dataset.

2.1.1 Quality screening

The first step in the quality control applied to the HOPE so-
lar radiation measurements is a series of tests proposed by
Long and Dutton (2002), which are widely used in the solar
and radiation communities and in particular within BSRN
(Driemel et al., 2018). The Long and Dutton (2002) quality
control procedure is a set of tests applied to the global, direct,
and diffuse irradiance measurement as well as a combination
of the different components. Since only GHI has been mea-
sured during the HOPE campaign, only the extremely rare
limit (ERL; Long and Dutton, 2002) test applying to GHI is

used and given in Eq. (1):

−2Wm−2 < GHI< 1.2×TOANI×µ1.2
+ 50Wm−2. (1)

In Eq. (1), TOANI is the top-of-atmosphere normal irradi-
ance and µ is the cosine of the solar zenith angle.

An inspection of the measurements shows that many mea-
surements whose values lie within the ERL range are not
plausible, and, therefore, additional quality control is neces-
sary. A visual inspection is undertaken to manually flag sen-
sors for which a remaining measurement issue is suspected.
In Appendix A, we further elaborate on the implementation
of the visual inspection.

After performing quality control, we observe a daily re-
duction of roughly 5 % to 10 % in the number of valid sen-
sors. To have a homogeneous number of sensors over the en-
tire evaluation period, we have limited the range of the anal-
ysis to 18 April to 22 July 2013, instead of relying on the en-
tire HOPE campaign period (ranging from 2 April to 24 July
2013).

2.2 Geostationary satellite data

In this study, we make use of the data from the MSG weather
satellites operated by the European Organisation for the Ex-
ploitation of Meteorological Satellites (EUMETSAT). The
MSG satellites are positioned in geostationary orbit. Four
satellites were launched within this generation, Meteosat-8,
Meteosat-9, Meteosat-10, and Meteosat-11, providing oper-
ational data since 2004. The SEVIRI instrument carried by
MSG operates 12 spectral channels in the visible and infrared
range of the spectrum. Here, we mainly consider the channels
covering the visible-to-shortwave-infrared range of the spec-
trum (i.e. 0.6, 0.8, and 1.6 µm and the HRV channel), as these
channels are the most relevant to deriving cloud properties
and solar radiation products. The spectral bandwidth of the
HRV channel is broader than for the 11 narrowband chan-
nels, ranging roughly from 0.4 to 1.1 µm. This study uses
data from Meteosat-9, which was positioned at 9.5° E during
the months of the field campaign. For some days during the
campaign Meteosat-9 was not available. For these days, data
from Meteosat-8 positioned at 3.5° E are used instead. Due to
oblique viewing angles, the SEVIRI pixel size for the Jülich
study domain is increased by about a factor 2 in the north–
south direction compared to the pixel size at the subsatellite
point. For the study domain, this means that each pixel covers
an area of about 6.1 km× 3.2 km and 2.0 km× 1.1 km for the
narrowband and HRV channels, respectively. The retrievals
are only performed for a part of the SEVIRI disc, ranging
from 44.4° N, 2.3° E to 57.8° N, 21.6° E, centred around Ger-
many. This selected area consists of 240× 400 SR pixels or
720× 1200 HR pixels. The HOPE campaign area is covered
by about 6 SR pixels and 31 HR pixels (see Fig. 1). Note that
for the retrieval of satellite-derived GHI at the locations of
the pyranometer stations, a collection of surrounding pixels
is used, possibly including pixels that do not contain a pyra-
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nometer station (see Sect. 3.1). Using the rapid scanning ser-
vice (RSS), only part of the SEVIRI disc covering northern
Africa and Europe is scanned, enabling a 5 min repeat cycle.
Until 2017, the Level 1.5 images of SEVIRI contained an
erroneous georeferencing offset. SEVIRI pixels were shifted
by 1.5 km in the northward and westward direction, result-
ing in an erroneous shift of 0.5 SR pixels and 1.5 HR pixels
(EUMETSAT, 2017). We correct for this pixel shift to ensure
accurate georeferencing in our analyses. The 0.6, 0.8, and
1.6 µm channels were calibrated following the methodology
described in Meirink et al. (2013) by collocating and ray-
matching reflectances from corresponding Moderate Reso-
lution Imaging Spectroradiometer (MODIS) channels on the
Aqua satellite. For other channels the operational calibration
slopes were used, as provided in the SEVIRI Level 1.5 files.

The following subsections summarize the processing
scheme for retrieving cloud properties and GHI from SEVIRI
radiances. An in-depth description of the entire workflow is
presented in Deneke et al. (2021) and shown in a more com-
pact form on the left hand side of Fig. 2.

2.2.1 NWC SAF

As an initial step in the retrieval scheme, basic cloud prop-
erties are obtained by running the 2021 version of the Now-
casting and Very Short Range Forecasting Satellite Appli-
cation Facility (NWC SAF) geostationary (GEO) software
package (NWC SAF, 2021). The algorithm performs a se-
ries of spectral threshold tests on SEVIRI radiances to infer
a cloud mask and determine the cloud type, cloud top tem-
perature, and cloud top height. The NWC SAF software uses
estimations of the atmospheric state from numerical weather
prediction forecast and analysis fields, which have been re-
trieved from the ECMWF operational model archive.

2.2.2 Cloud Physical Properties (CPP)

To derive cloud optical and microphysical properties, the
CPP algorithm (Roebeling et al., 2006; Benas et al., 2023)
developed at the Royal Netherlands Meteorological Institute
(KNMI) is used. The CPP algorithm starts with the determi-
nation of the phase (liquid or ice) near the cloud top, which
is based on a modified version of the algorithm described in
Pavolonis et al. (2005). Several spectral tests are performed
on the observed brightness temperatures of the SEVIRI 6.2,
8.7, 10.8, 12, and 13.4 µm channels along with simulated
brightness temperatures under clear and cloudy conditions,
using the RTTOV v13 radiative transfer model (Saunders et
al., 2018; Hocking et al., 2021). Next, reflectances from the
SEVIRI 0.6 and 1.6 µm channels are used to simultaneously
retrieve cloud optical thickness (COT) and effective radius
(CER), following the principle of bi-spectral retrieval de-
scribed in Nakajima and King (1990). This is done using pre-
calculated look-up tables (LUTs), which have been generated
with the Doubling Adding KNMI (DAK) radiative transfer

model (de Haan et al., 1987; Stammes, 2001). CPP requires
a number of inputs. Spectral surface reflectances are taken
from the Land Surface Analysis Satellite Application Facility
(LSA SAF; Carrer et al., 2018). Several atmospheric proper-
ties are required, including temperature and humidity pro-
files and the integrated ozone column, which are taken from
the Copernicus Atmospheric Monitoring Service (CAMS)
reanalysis and forecast (Inness et al., 2019). A comprehen-
sive description of the retrieval scheme can be found in Be-
nas et al. (2023) and CM SAF (2022).

2.2.3 Solar Irradiance under Clear and Cloudy Skies
(SICCS)

The estimation of global, direct, and diffuse irradiance is
performed by the SICCS algorithm using a second set of
LUTs (Deneke and Roebeling, 2010; Greuell et al., 2013).
These LUTs have been precalculated with a broadband ver-
sion of the DAK model (Kuipers Munneke et al., 2008). In
the LUTs, a distinction is made between cloud-free condi-
tions and water or ice clouds. All LUTs take the solar zenith
angle, broadband surface albedo (again from LSA SAF), in-
tegrated water vapour path, and ozone column into account.
For clear-sky conditions, aerosol properties (optical depth,
Ångström exponent, single-scattering albedo) and surface el-
evation serve as additional input parameters. Under cloudy
conditions, COT and CER retrieved with CPP are considered
instead. All atmospheric inputs are, as for CPP, taken from
the CAMS reanalysis and forecast.

2.2.4 Downscaling

The description of the CPP–SICCS algorithm in the previ-
ous paragraphs relates to the retrieval at SR. Some additional
steps are performed to generate GHI at high spatial reso-
lution, starting with creating an HR cloud mask. Using the
NWC SAF algorithm, we first generate a cloud mask at SR.
However, this classification might lead to inaccuracies, es-
pecially in conditions with broken or factional clouds. Pix-
els that are identified as cloud filled at SR might be clas-
sified as partially cloud filled at HR (Werner et al., 2018).
Here, we apply the updated HRV cloud masking scheme
from Deneke et al. (2021), first introduced and described in
detail by Bley and Deneke (2013). An HR cloud mask is de-
rived by comparing the reflectances of the HRV channel to a
clear-sky composite map generated from clear-sky HRV re-
flectances over 16 d. To identify the clear-sky pixels in the
clear-sky composite map, we use an upsampled version of
the NWC SAF cloud mask. Based on the calculation of the
Matthews correlation coefficient (Matthews, 1975), for ev-
ery HRV pixel, an optimal reflectance threshold is selected
to separate clear from cloudy conditions. With the optimal
reflectance thresholds, we construct the HR cloud mask from
the HRV reflectances. The newly constructed HR cloud mask
is then used as the new input for the HRV cloud masking al-
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Figure 2. Flow diagram illustrating the required steps to derive time series of GHI from SEVIRI reflectances. The input data and processing
are explained in Sect. 2, while the post-processing is explained in Sect. 3, including an explanation of the CRAAS dataset and HR2SR
product.

gorithm to further optimize the separation between clear and
cloudy pixels by repeating the algorithm for a few additional
iterations.

To retrieve cloud properties at high spatial resolution, we
utilize a modified version of the CPP retrieval. The HR re-
trieval relies on an assumed linear relation that links the 0.6
and 0.8 µm channels to the spectrally overlapping HRV chan-
nel (Cros et al., 2006; Deneke and Roebeling, 2010) as illus-
trated in Eq. (2):

δr06 =
1
a
(δrHV− bδr08) . (2)

The linear relation from Eq. (2) does not apply to absolute
values of reflectance but rather to the high-frequency resid-
uals of the 0.6 µm, 0.8 µm, and HRV channels, denoted as
δr06, δr08, and δrHV, respectively. To determine the high-
frequency residuals of the HRV channel, a modulation trans-
fer function (MTF) is applied. The MTF filters out the HR
spatial information (i.e. the scales between 1 and 3 km) from
the HRV reflectances. Next, the filtered HRV reflectances are
subtracted from the actual HRV reflectances to get the high-
frequency residuals. In Eq. (2), a and b represent fit coeffi-
cients empirically determined by performing a least-squares
regression on the assumed linear relationship between the
residuals. More details on the determination of the fit coeffi-
cients and the application of the MTF can be found in Werner
and Deneke (2020) and Deneke et al. (2021), respectively.

Equation (2) contains both δr06 and δr08 as unknowns. To
solve Eq. (2), the assumption is made that, initially, δr06 and
δr08 are equal, which enables us to make a first estimation

of δr06. The high-frequency residuals of the 0.6 µm channel
are then added to the original 0.6 µm reflectances, providing
updated values of reflectances for the 0.6 µm channel that in-
clude HRV information. Using CPP LUTs and the bi-spectral
retrieval method of Nakajima and King (1990), COT can now
be derived at HR. Next, the HR and SR COT are utilized in
new retrieval iterations to retrieve an updated estimation of
δr08. With the new value for δr08, Eq. (2) can be solved again
to refine the estimation of δr06 and accordingly provide an
updated value for COT at HR. Neglecting the HR residuals
of the r1.6 micrometre channel reduces the accuracy of the
CER retrieval compared to the SR retrieval. To restore the
accuracy of the retrieved CER at HR, a local slope adjust-
ment is performed. The slope adjustment determines where
the high-frequency residual of r1.6 equals zero, meaning the
SR value of CER is restored. However, since the slope ad-
justment is based on the tangent of the COT contour at the
location of the SR reflectances in the LUT, the HR CER re-
trieval does not precisely have to match the SR value (Werner
and Deneke, 2020).

3 Methodology

This Methodology section is structured as follows. In
Sect. 3.1, we present how the SEVIRI retrievals are validated
against ground-based observations. Next, in Sect. 3.2, we in-
troduce two methods to differentiate between various cloud
conditions when performing the validation.
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3.1 Validation

To validate the SEVIRI retrievals against ground-based ob-
servations, GHI time series are generated. The derivation of
satellite-based time series is performed at the location of each
of the 99 pyranometer stations, both at HR and SR. Besides
the HR and SR SEVIRI GHI time series, an additional set of
time series (HR2SR) are computed to study the effect of the
downscaling algorithm in more detail. These time series are
generated using the HR SEVIRI GHI but are averaged over
3× 3 pixels to match the SR.

Following the method described in Greuell and Roebeling
(2009), we account for the scale difference between the SE-
VIRI retrieval and the ground-based observations by smooth-
ing the SEVIRI retrievals with a Gaussian filter (Eq. 3):

GHIt,n =

∑
i,jGHIt,i,j e

−
x2
i,j,n

2σ2

∑
i,j e
−
x2
i,j,n

2σ2

. (3)

Here, GHIt,i,j is the retrieved GHI at pixel i,j and time t ;
GHIt,n is the estimated satellite GHI at the location of sta-
tion n at time t ; and xi,j,n is the distance between the sta-
tion n and the centre of SEVIRI pixel i,j . The Gaussian filter
width σ is set to 1.0 km (Deneke et al., 2021).

The pyranometer network data are averaged to 5 min in-
tervals to match the SEVIRI RSS temporal resolution. The
5 min averaging period is centred around the actual SEVIRI
acquisition time for the Jülich area, which is about 3 min af-
ter the start time of the RSS scan.

In order to account for spatial mismatches between satel-
lite and ground-based observations, a daily collocation shift
is computed that maximizes the correlation between the
ground-based observations and the satellite time series us-
ing the SEVIRI data between 06:15 and 17:15 UTC. For this
procedure, shifts of the SEVIRI grid by multiples of 500 m
in any direction are considered. The daily collocation shifts
are then used to calculate a single collocation shift for the
whole period of the HOPE campaign, which is based on the
highest mean correlation over all the days. In this way, for
the HR retrieval, a shift of the SEVIRI grid by 3.0 km south
and 0.5 km east is obtained, while for the SR retrieval, a shift
by 3.0 km south and 1.0 km east is found. With the colloca-
tion shift, we account for possible uncertainties due to inac-
curacies and instabilities in the rectification to the SEVIRI
grid as well as for parallax and shadow effects. Actual par-
allax and shadow displacements depend on cloud height and
solar position and, therefore, vary between different pixels
in the same image as well as between different satellite im-
ages. For the context of this study, however, we decided to
keep a single offset for the whole period, since the mean op-
timal shift is indeed relatively constant throughout the study
period: monthly averaged optimal shifts for HR and SR are
within 1 km from the optimal shifts obtained for the whole
period of the field campaign.

To validate the SEVIRI-derived GHI time series against
the pyranometer network, for each of the 99 pyranometer
stations, the root mean square error (RMSE) between the
satellite-derived GHI and the ground-based GHI is com-
puted. All observations from 18 April until 22 July 2013 be-
tween 06:15 and 16:45 UTC that have passed quality control
are considered. To study the effect of temporal averaging, we
repeat the original analysis with a 5 min temporal resolution
for averaging times of 10, 15, 30, and 60 min. The results
will be presented in box-and-whisker plots, where each box
whisker represents 99 data points.

3.2 Scene identification

To differentiate between various cloud conditions we ap-
ply two methods: one based on the pyranometer net-
work (Sect. 3.2.1) and one based on SEVIRI retrievals
(Sect. 3.2.2).

3.2.1 Variability index

For the first method, based on the pyranometer network, we
make a differentiation following the variability index (VI)
method of Stein et al. (2012). This method relies on the
calculation of the daily clearness index (DCI) and the vari-
ability index (VI). DCI is defined as the ratio between the
daily summed GHI and the daily summed clear-sky irradi-
ance (CSI). The values for CSI are taken from the CAMS
McClear clear-sky model (Gschwind et al., 2019). VI is cal-
culated as the ratio between the sum of the variations in GHI
between consecutive time steps and the sum of the CSI vari-
ations between consecutive time steps for the same day (1t)
as defined in Eq. (4):

VI=
∑N
k=2

√
(GHIk −GHIk−1)2+1t2∑N

k=2

√
(CSIk −CSIk−1)2+1t2

, (4)

where N is the number of time steps during a day. For each
of the 99 pyranometer stations and every day of the HOPE
field campaign, the DCI and VI are calculated. Next, for all
the days, VI is normalized to the day with the highest VI
to ensure that it ranges between 0 and 1. Finally, using the
computed DCI and VI, four different cloud classes are deter-
mined: clear sky, overcast, highly variable, and mixed. The
criteria for each of the four classes are shown in Table 1. The
criteria are set so that the number of days in the clear-sky,
variable, and overcast classes are equal. The distribution of
the HOPE campaign days as a function of DCI and VI is
illustrated in Fig. 3. High VI values characterize highly vari-
able days regarding cloud conditions, whereas overcast and
clear-sky days have a low VI. The separation between clear
and overcast days is done based on the DCI, where clear-sky
and overcast days have a high and low DCI, respectively.
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Figure 3. Variability index for the HOPE field campaign. (a) Scatterplot of DCI and VI: a single point represents 1 d of the campaign. The
highly variable days fall within the red area, while the clear-sky and overcast days fall within the blue and green areas, respectively. All other
dates are identified as mixed or partially variable. The points are colour-coded dependent on whether the downscaling algorithm yields a
non-significant or significant deterioration or improvement. The scatter points marked with black edges represent the dates shown in Fig. 7.
For the clear-sky, variable, and overcast days, an example of the development of GHI throughout the day is shown in panels (b), (c), and (d),
respectively. Listed behind these GHI time series are the dates that fall within each of these categories, where the example dates are displayed
in bold font.

Table 1. Criteria for division of the HOPE field campaign days into
four variability classes using the variability index (VI) and daily
clear-sky index (DCI).

Method 1: variability index

Type Condition

1 Variable Days with the highest 10 percentiles of VI
2 Overcast VI< 0.27 and DCI> 2

3 max(DCI)+ 1
3 min(DCI)

3 Clear sky VI< 0.207 and DCI< 1
3 max(DCI)+ 2

3 min(DCI)
4 Mixed All other days

3.2.2 CRAAS cloud regimes

The satellite-based method for the determination of cloud
conditions is based on the CRAAS European cloud regime
dataset (Tzallas et al., 2022b). The CRAAS dataset uses the
COT and cloud top pressure (CTP) taken from the CLAAS-
2.1 dataset (Benas et al., 2017) to extract eight possible cloud
regimes at a spatial resolution of 1°× 1° and 15 min inter-

vals. The eight cloud regimes were determined by perform-
ing k-means clustering (Anderberg, 1973) based on the 2D
histograms of COT and CTP. The eight cloud regimes and
the corresponding main cloud types are summarized in Ta-
ble 2 along with the mean values for COT and CTP for each
of the regimes. Since no cloud regime is specified for clear-
sky days, we take the clear-sky days as identified by the VI
method and treat them as a separate clear-sky cloud regime
(CR9).

4 Results

In this section, the results of the validation of the SE-
VIRI downscaling algorithm are presented. We first present
the results without differentiating between cloud conditions
(Sect. 4.1). Next, we show the results for subsets of the data
derived with the VI method (Sect. 4.2). Then, four example
cases are presented that illustrate the effects of the down-
scaling algorithm (Sect. 4.3). Finally, we show results for the
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Table 2. Classification of the eight CRAAS cloud regimes (CRs)
and their associated main cloud types. The table includes median
values of cloud optical thickness (COT) and cloud top pressure
(CTP) for each cloud regime. We added a ninth regime consisting
of the clear-sky dates from the variability index method.

Method 2: CRAAS cloud regimes

CR Main cloud type COT CTP

1 Cirrus 2.4 308.1
2 Cirrostratus 7 302.3
3 Deep convection 31.7 286.3
4 Alto- and nimbo-type clouds 12 425.3
5 Mid-level clouds 29.5 614.8
6 Shallow cumulus, fog 5.2 861.3
7 Stratocumulus 14.2 882.7
8 Fair-weather clouds 12.2 627.6
9 Clear sky – –

CRAAS subsets to assess the added value of the HR product
over the SR product under various cloud regimes (Sect. 4.4).

4.1 All conditions

When all dates of the HOPE field campaign are considered
at a 5 min averaging time, we observe a decrease in median
RMSE of 2.8 Wm−2 (or 2.8 %) if the HR product is used in-
stead of the SR product (Fig. 4). This decrease is statistically
significant according to the Mood median test (Mood, 1950).

For the 5 min averaging time at a daily basis, we find an
improvement of the HR product over the SR product for 60
out of 96 d, of which 27 are also statistically significant. For
the remaining 36 d, no improvement is observed regarding
the RMSE when the downscaling algorithm is applied. For
12 of these days, the deterioration is also statistically signifi-
cant.

Comparison of the 3×3-pixel spatially averaged HR prod-
uct (HR2SR) with the actual HR product confirms that the
reduction in RMSE between HR and SR mainly results from
the finer-scale spatial information contained in the HR re-
trieval. After spatial averaging, the largest part of the HR ef-
fect is removed. Minor differences that still occur between
the 3× 3-pixel spatially averaged HR retrieval and the SR
product might be explained by differences between the SR
cloud mask and the 3×3-pixel spatially averaged HRV cloud
mask, which are not necessarily identical. Some HR infor-
mation might still be included in the spatially averaged HRV
cloud mask, and, therefore, a slightly lower RMSE may be
observed for the 3× 3-pixel spatially averaged HR retrieval
than for the actual SR retrieval.

When the GHI time series are averaged over longer pe-
riods, as expected, a decrease in RMSE is observed since
GHI variability is further averaged out both spatially and
temporally. Moreover, even for these longer averaging times,
the beneficial effect of the downscaling algorithm remains

Figure 4. Box-and-whisker plots of the RMSE resulting from com-
paring the SEVIRI-derived and pyranometer-based GHI time series.
Each boxplot is compiled from 99 data points representing the mean
RMSE per station for all days between 18 April and 22 July 2013
from 06:15 until 16:45 UTC. Results are shown for the HR SEVIRI
retrieval (SEVIRI: HR) and the SR SEVIRI retrieval (SEVIRI: SR),
as well as for the HR SEVIRI retrieval that is spatially averaged to
match SR (SEVIRI: HR2SR). These results are plotted for an aver-
aging period ranging from 5 min to 1 h. The annotations above the
boxplots show the median difference between the RMSE of the HR
and SR retrievals. For all the averaging periods, the differences be-
tween HR and SR are significant at a 95 % confidence level accord-
ing to the Mood median test, which is indicated by the continuous
lines around the annotation boxes.

present. At hourly scales, the median HR benefit remains sta-
tistically significant and even larger than at the 5 min averag-
ing time. The HR and SR errors for longer averaging times
up to daytime averages (06:15–16:45 UTC) are discussed in
more detail in Sect. 5.3.

In the results of Fig. 4 we have not differentiated between
various cloud conditions. What we expect is that the effects
of an improved resolution are most beneficial for variable
conditions where smaller cloud structures can be resolved.
From Fig. 3, we can derive that the beneficial effects of the
downscaling algorithm do not remain limited to the most
variable cases. Also, statistically significant improvements
for the HR retrieval occur for less variable days.

4.2 Variability index classes

Using the variability index classification, we can further eval-
uate the possible added value of performing HR retrievals
for the most persistent overcast, clear-sky, and highly vari-
able days. For the days that are identified as clear sky, no
significant difference between HR and SR is found (Fig. 5a).
At a 5 min temporal resolution, the median RMSEs for HR
and SR are 48.1 and 48.3 Wm−2, respectively. Under clear-
sky conditions, no added value of the downscaling algorithm
is expected because the satellite measurements are not used,
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and the only variability in the GHI retrieval is caused by the
atmospheric composition (in particular aerosols and water
vapour, based on numerical weather prediction – NWP – out-
put at much coarser resolution). However, minor differences
between both resolutions might arise from days identified as
clear sky but still containing some clouds for a part of the day
or from cloud-contaminated pixels that are only retrieved as
cloudy at HR.

The largest reductions in RMSE between both resolu-
tions are found for days that are classified as highly vari-
able (Fig. 5b). At a 5 min temporal resolution, the median
reduction in RMSE between both resolutions is 7.9 Wm−2

(or 5.8 %). On these variable days, fast changes in cloud and
radiation patterns occur, resulting in large overall errors. At
a 5 min averaging time for both resolutions, the RMSE for
the variable days is about 3 times as large as under clear-sky
conditions. However, just as in Fig. 4, substantial reductions
in RMSE are observed when longer averaging periods are
considered. For the HR and SR retrieval, the median RMSE
is halved when we use hourly averaged time series instead
of the 5 min temporal resolution. The clear-sky (Fig. 5a) and
overcast days (Fig. 5c) react much less strongly to the in-
creasing averaging time, which is logical since surface radi-
ation is both spatially and temporally less variable in these
cases. Therefore, the decrease in RMSE observed for the
longer averaging periods in Fig. 4 is mainly the result of a
decrease in RMSE on the variable days.

Interestingly, when we apply the downscaling algorithm
for the days that have been identified as overcast, we do not
observe an improvement in accuracy (Fig. 5c). For the over-
cast cases, all averaging periods up to a 30 min averaging
time show a small but non-significant increase in RMSE be-
low 1.9 Wm−2, when the HR product is used instead of the
SR product. Only for hourly averages, a non-significant im-
provement of 0.4 Wm−2 is found for the HR product. The
days classified as overcast show the least variability in GHI
from all dates of the HOPE field campaign. Therefore, it is
likely that under these conditions, clouds are the most ho-
mogeneous regarding optical thickness and reflectance. We
expect little added value from the downscaling algorithm for
these conditions. On the other hand, a deterioration in accu-
racy is not expected either. In Sect. 5.2, we further elabo-
rate on the performance of the downscaling algorithm for the
most strongly overcast days.

In Fig. 6, we take a closer look at the errors made for the
10 highly variable days by splitting the GHI RMSE into bias
and the standard deviation of the error (SDE) (SEVIRI minus
pyranometer). The positive bias shown by both the HR and
SR histograms indicates an overestimation of the SEVIRI re-
trieval with respect to the pyranometer network (Fig. 6, upper
panels). However, even for clear-sky conditions, a positive
bias is found (not shown). Since, for clear-sky conditions,
the CPP–SICCS GHI retrievals solely depend on NWP out-
put and are overall consistent with McClear estimates, there
is probably an underestimation of the pyranometer network

rather than an overestimation of the CPP–SICCS retrieval.
Figure 6 also shows that for the 10 most variable days, mainly
the SDE contributes to the total RMSE. Except for three
pyranometer stations, applying the downscaling reduces both
the bias and the SDE for each station in the order of 0 to
15 Wm−2. The downscaling also results in a slight increase
in correlation with a median value just below 0.02.

4.3 Example cases

In Fig. 7, we plot the time series of GHI for both the HR and
SR retrievals and the pyranometer network and relate these
to the observed spatial distribution of GHI, cloud type, and
properties retrieved with SEVIRI. We have selected four ex-
ample cases, one from each VI class.

The day of 21 July 2013 was selected to illustrate a clear-
sky day. In fact, for large parts of central Europe, this was
a persistently clear-sky day (Fig. 7a–d). Towards the after-
noon, some cumulus developed in northern France, Luxem-
bourg, and Belgium (not shown). However, these clouds did
not reach the Jülich study domain. The GHI time series show
an identical retrieval for HR and SR throughout the entire
day. This is as expected since the lack of clouds means that
the retrieval solely relies on NWP output, which is identi-
cal for both resolutions. Also, the pyranometer network ob-
servations show a comparable parabolic GHI development.
However, especially in the hours leading up to noon, lower
clear-sky irradiance is measured with the pyranometer net-
work than with the SEVIRI retrievals. Furthermore, some
spread in GHI can be observed between the different pyra-
nometer stations, likely caused by slight tilts of the instru-
ments and imperfect calibration.

The day of 12 May 2013 was one of the most variable days
during the HOPE field campaign in terms of radiation vari-
ability. Over the whole day, strong fluctuations in GHI were
measured (Fig. 7e–h). Using the HR retrieval, especially the
dips in GHI are better represented, which contributes to a
significant improvement in accuracy as shown in Fig. 5b.

The pyranometer observations show that cloud enhance-
ment, i.e. GHI exceeding clear-sky GHI, occurs at multi-
ple moments throughout this day. From surface observations,
it is known that especially for altocumulus, cloud enhance-
ment can be prominent, with GHI even exceeding its clear-
sky value by up to 40 % at subminute timescales (Mol et
al., 2024). Here, the observed cloud enhancement is smaller
since, in this study, 5 min averaged observations of GHI are
considered and the effects of cloud enhancements are more
pronounced at smaller timescales. The CPP–SICCS retrieval
cannot derive cloud enhancements as the algorithm relies on
1D radiative transfer. Therefore, the maximum GHI retrieved
with SEVIRI is limited to the clear-sky value, as can be seen
at 09:50 UTC.

Despite the lack of cloud enhancement in the SEVIRI re-
trieval, for large parts of the day, the spread in GHI retrieved
with SEVIRI matches the observed GHI variability between
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Figure 5. Box-and-whisker plots of the HR (SEVIRI: HR) and SR (SEVIRI: SR) RMSE between the SEVIRI-derived and pyranometer-
based GHI time series, separated into three variability index classes: days falling in the clear-sky class are shown in panel (a), variable days
in panel (b), and overcast days in panel (c). Averaging periods ranging from 5 min to 1 h are shown for each subplot. The annotations above
the boxplots show the median difference between the RMSE of the HR and SR retrievals. Dotted lines around the annotation boxes indicate
that the difference between HR and SR is non-significant at a 95 % confidence level according to the Mood median test, while continuous
lines indicate a statistically significant difference between both resolutions.

Figure 6. Histograms of the bias (a) and standard deviation of the error (SDE) (c) between the SEVIRI-derived GHI at HR (red) and SR
(blue) and the pyranometer observations for the highly variable days. The continuous black lines indicate the mean and standard deviation
of the respective histograms. The dashed lines show the corresponding Gaussian distributions. Panel (b) shows the bias and SDE difference
between HR and SR for each of the 99 pyranometer stations. The colour scaling in scatter points indicates the difference in correlation
between HR and SR. The rhombus illustrates the magnitude of the median difference in SDE and bias. The black line in the colour bar shows
the median HR correlation improvement.
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Figure 7. Time series (a, e, i, m) and the spatial distribution of global horizontal irradiance (GHI) over central Europe at HR (b, f, j, n) and
the Jülich study domain at HR (c, g, k, o) and SR (d, h, l, p), respectively. The Jülich domain is highlighted in the central Europe domain
plots by light-green pixels. Values of GHI for the pyranometer network have been plotted over the SR spatial plot. The vertical dashed black
lines in the time series plots indicate the time of the spatial plots. The time series show the median GHI for a clear-sky (a), highly variable (e),
overcast (i), and mixed (m) day at HR (red line) and SR (blue line) and for the pyranometer observations (black line). The colour-shaded
areas show the data distribution between the 5th and 95th percentile. The dashed red lines show clear-sky irradiance simulated with the
McClear clear-sky model. The colour bars below the time series indicate the cloud optical thickness and CRAAS cloud regime derived from
the SEVIRI retrievals over the study domain.

the pyranometer stations rather well. This might indicate
that, at those moments, the subpixel variability of GHI re-
mains limited and clouds appear over the study domain with
sizes that SEVIRI can capture. However, there are also peri-
ods, e.g. between 12:30 and 13:30 UTC, when the satellite-
retrieved spatial GHI variability is much smaller than in-
dicated by the pyranometer observations. From the spatial
plot at HR, we can clearly distinguish the transition between
cloudy and clear-sky regions. This is harder to detect at SR
since a much less smooth cloud edge is retrieved. This exam-
ple illustrates that the HR retrieval not only is able to resolve
smaller clouds themselves but is also able to resolve finer
cloud structures in larger cloud systems.

As an example of an overcast day, we show the time series
for 16 May 2013 (Fig. 7i–l). This day was persistently cloudy
with relatively thick, high-level clouds (CRAAS regimes
CR3–CR5). The GHI observed with the pyranometer net-
work does not reach values above 250 Wm−2 throughout the

entire day. The limited spread in GHI between the pyranome-
ter stations indicates homogeneous cloud conditions, as il-
lustrated by the spatial distribution of GHI, where little vari-
ation can be seen. In the early afternoon, some fluctuations
in GHI can be observed from the SEVIRI retrieval, corre-
sponding to sudden changes in COT. These fluctuations are
observed to a much smaller extent by the ground-based mea-
surements. Furthermore, on most of the overcast days, we
observe a slightly more strongly fluctuating GHI signal for
the HR retrieval than for the SR retrieval. These differences
and a possible explanation are discussed in more detail in
Sect. 5.2.

Finally, we have selected 29 April 2013 to illustrate a day
classified as mixed using the VI method (Fig. 7m–p). This
day started off with clear skies, but from 08:30 UTC onward,
various cloud types moved over the Jülich domain. Through-
out the day, the COT gradually increased. Both the HR and
SR retrieval can capture the mean observed GHI from the
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pyranometer network well. On this date, the spread in GHI
between the different pyranometer stations strongly varies.
In the morning, there is a large spread between the differ-
ent pyranometer stations, while, in the afternoon, the spread
between the pyranometer stations remains limited. For both
SEVIRI retrievals, the spread in GHI between the pixels is
relatively constant. Therefore, only in the afternoon do the
SEVIRI retrievals represent the observed spatial variability
in GHI well. The large spread in GHI observed by the pyra-
nometer network in the morning, which is not captured by
SEVIRI retrievals, indicates a situation where clouds occur
at a subpixel scale that SEVIRI cannot resolve at either reso-
lution. From the spatial plots of the pyranometer network,
we can distinguish two cloudy regions in the eastern and
northwestern part of the domain, with in-between clear-sky
conditions. Considerable cloud enhancement occurs in this
clear-sky region, even at a 5 min averaged temporal resolu-
tion. Judging from the spatial plots of SEVIRI, finer-scale
structures not resolved at SR can be identified using the HR
retrieval. While the sharp transition of the cloud edge ob-
served with the pyranometer network is not reproduced by
SEVIRI, there is at HR still some contrast between the more
cloudy pixels in the northwest and southeast of the domain
and the less cloudy pixels in the middle. This contrast is less
prominent in the SR retrieval.

In the next section, we show the performance of the down-
scaling algorithm per CRAAS cloud regime to better evaluate
the added value of the downscaling algorithm for different
cloud conditions. This helps to better decide whether, in gen-
eral, the GHI variabilities observed at HR, for instance for
the conditions of Fig. 7e, are really more accurate than those
observed at SR.

4.4 Cloud regime classes

Sorting the HOPE campaign data into CRAAS cloud regime
classes significantly improves the accuracy of the HR re-
trieval for three out of nine regimes (Fig. 8). The largest im-
provements are found for stratocumulus clouds (CR7), fol-
lowed by cirrostratus (CR2) and mid-level clouds (CR5),
respectively. Together, these three cloud regimes make up
about half (51 %) of the total number of observations during
the field campaign.

The significant improvement for the cirrostratus regime is
surprising as we do not expect this regime to be the most
spatially and temporally varying. However, inspection of the
cloud fields where the cirrostratus cloud regime occurs shows
that, in many cases, there are fine-scale fluctuations in GHI
that are better resolved at HR. Further inspection using the
NWC SAF cloud types shows that, during the field campaign,
the cirrostratus cloud regime consists of semi-transparent
clouds above medium- or low-level clouds for about 20 %
of the time (not shown), explaining the visually observed in-
creased variability for this regime.

For the clear-sky regime, no significant differences are
found between both resolutions. Since this regime only con-
sists of data selected from the 10 most clear-sky days iden-
tified by the VI method, the boxplots are identical to those
shown in Fig. 5a for a 5 min averaging period. A small dete-
rioration in accuracy is observed for the remaining four cloud
regimes when the downscaling algorithm is applied. Only for
the deep-convection cloud (CR3) regime is this difference
statistically significant. CR3 consists of the thickest clouds
with the highest total cloud fractions. The regime mostly rep-
resents convective and storm systems over Europe (Tzallas et
al., 2022b). Under these homogeneous conditions, in terms
of small-scale cloud variability, we expect no added value of
the downscaling algorithm.

The decrease in accuracy for the shallow-cumulus cloud
regime (CR6) is remarkable. This regime is expected to con-
sist of the smallest and most variable clouds of the HOPE
field campaign both spatially and temporally. Therefore, one
might expect an increase in accuracy for this regime when
applying the downscaling. It must be noted that the number
of observations that fall within this category is very limited
since this regime mainly has an oceanic character (Tzallas et
al., 2022b). With only 2.2 % of the total number of observa-
tions falling within this regime, it is the least populated of the
nine defined cloud regimes.

Accurate retrieval of cloud properties becomes increas-
ingly challenging with SEVIRI when there is a high amount
of subpixel variability resulting from fine-scaled cloud fields.
Even the HR retrieval will then still have too coarse a spatial
resolution to fully capture all the complexity that can be ob-
served in many shallow-cumulus cloud fields. Furthermore,
using RMSE as a validation metric, in particular the HR re-
trieval might suffer from double-penalty issues. With very
local clouds occurring, the time matching between the SE-
VIRI retrieval over the Jülich domain and the 5 min averaged
observations of the pyranometer network can become uncer-
tain. A smoother retrieval might be less sensitive to these un-
certainties.

Comparing the different CRAAS regimes, it becomes ap-
parent that, in general, the observed RMSE is very regime-
dependent. The resolution differences are minor compared
to the regime differences. CR7 and CR2 show the largest
median improvements with values of 6.6 and 3.6 Wm−2 be-
tween HR and SR, respectively. Meanwhile, these regimes
also have the highest overall RMSE. Comparing the stratocu-
mulus regime (CR7) to the clear-sky days (CR9), the median
RMSE for CR9 is almost 100 Wm−2, or a factor of 3, lower.

5 Discussion

In this Discussion section, we elaborate on the following top-
ics. First, in Sect. 5.1, we focus on some of the uncertainties
within the pyranometer network. Next, in Sect. 5.2 and 5.3,
respectively, the accuracy of the downscaling algorithm as
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Figure 8. Same as Fig. 5 but separated according to the CRAAS cloud regimes. The relative frequency of occurrence (RFO) for each regime
is indicated below the x axis.

a result of the spatial- and temporal-averaging length scales
are discussed. In Sect. 5.4, the focus is on the diurnal cycle of
the GHI retrieval. Finally, in Sect. 5.5, we briefly review our
method used to account for possible parallax displacement.

5.1 Pyranometer network uncertainties

Consistent throughout the entire duration of the field cam-
paign and also between various cloud conditions is that the
GHI retrieved with SEVIRI tends to overestimate what is
measured with the pyranometer network (e.g. Fig. 7). As
is covered by Madhavan et al. (2016), there are some op-
erational uncertainties for the pyranometer network. One
of these uncertainties is related to the soiling of the pyra-
nometers. As it was not feasible to maintain the 99 pyra-
nometer stations continuously for the entire duration of
the field campaign, an underestimation of measured GHI
might be expected due to soiling, especially during or af-
ter slight precipitation events. Further uncertainties are de-
viations in GHI within the silicon photodiode pyranometers
themselves; slight deviations in the horizontal alignment of
the pyranometers; and nearby structures that might be in-
terfering with observations, especially at larger solar zenith
angles. Considering these issues, a standard uncertainty of
±15 Wm−2 was assumed during the HOPE campaign (Mad-
havan et al., 2016).

Furthermore, the limited spectral response of the pyra-
nometers should also be considered. The silicon photodi-
ode pyranometers have a spectral response sensitive to wave-
lengths between 0.3 and 1.1 µm. This means that the pyra-
nometers are sensitive to variations in aerosols and COT
but do not have the sensitivity necessary to measure GHI
variations due to differential absorption by liquid and ice
cloud particles and by particles of different sizes, occurring
at wavelengths in the shortwave infrared, outside the range
of sensitivity of the pyranometer. In addition, variations in

water vapour absorption at these larger wavelengths are not
captured.

5.2 Dependence on the spatial-averaging length scale

Our validation study shows that, as expected, accurately re-
trieving GHI is most challenging for variable conditions. For
the variable days, the highest overall RMSE values are found.
Meanwhile, the largest improvements in GHI with the HR re-
trieval are also found for variable conditions. Thus, the ben-
eficial effect of the downscaling algorithm is largest when
it is most needed. However, for overcast situations, a slight
deterioration in accuracy with respect to the standard GHI
retrieval is obtained. In these relatively homogeneous con-
ditions we would expect that most of the spatial variability
that can be resolved at HR can also be resolved at SR. How-
ever, a decrease in accuracy for overcast conditions at HR is
surprising. This decrease can be better understood when the
spatial-averaging length scale is considered.

So far, a fixed filter width σ of 1.0 km has been used. When
the RMSE of GHI is plotted as a function of σ (Fig. 9), the
optimal σ can be determined as the value where RMSE is at
its minimum. Over all the dates of the field campaign the op-
timal filter widths for HR and SR are around 1.7 and 2.2 km,
respectively, while the largest HR improvement occurs for σ
between 1.0 and 1.5 km (Fig. 9a). Variable days yield slightly
lower optimal values of σ (about 1.4 and 1.9 km), and the
largest HR improvement is again found for σ just above
1.0 km (Fig. 9b). In contrast, for the overcast days the min-
imal RMSEs for both HR and SR are achieved when σ ap-
proaches 5.0 km, and for smaller filter widths the SR RMSE
is smaller than the HR RMSE (Fig. 9c). For clear-sky con-
ditions the dependence of the RMSE on σ is negligible (not
shown), which is expected because there is hardly any spatial
variability in GHI.

We explain the varying dependence of RMSE on filter
width for different cloud conditions as follows. The SEVIRI
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Figure 9. The mean root mean square error at HR (SEVIRI:
HR) and SR (SEVIRI: SR) resulting from comparison of SEVIRI-
derived and pyranometer-based GHI as a function of the filter width
for all conditions (a), variable days (b), and overcast days (c). On
the secondary axis, the HR improvement (i.e. the difference in me-
dian RMSE between SR and HR) is plotted. The vertical dotted line
indicates the filter width of 1 km adopted elsewhere in this study.

retrievals are spatially averaged to account for their scale
mismatch with the pyranometers. Yet, the spatial scale mea-
sured by the pyranometers in the network is not constant but
rather related to cloud conditions. In fully overcast condi-
tions, the GHI measured by the pyranometers consists solely
of diffuse irradiance, which originates from the scattering of
radiation by clouds in the wider surroundings. In partially
cloudy and clear-sky conditions, the diffuse irradiance frac-
tion is negligible and radiation comes from a smaller region.
This is consistent with the results from Fig. 9, which suggest
that the pyranometer measurements are representative of an
area of at least 5 km for overcast conditions versus 1–2 km
for variable conditions.

We can also explain why the SR retrievals have a smaller
RMSE than the HR retrievals for filter widths below 5 km in
overcast conditions. This is because applying Gaussian filter-
ing to the SR pixels of around 6 km× 3 km yields coverage
of a larger area than applying the same filtering to the HR
pixels of 2 km× 1 km (irrespective of the filter width), and
this larger area is closer to the ∼ 5 km area for which the
pyranometer measurements are representative.

5.3 Dependence on the temporal-averaging length scale

In Fig. 4, a decrease in RMSE is shown when longer averag-
ing timescales are considered. This section studies the rela-
tion between the observed error and the temporal-averaging
length scale in more detail. Since the bias is independent
from the length of the averaging period, it becomes the dom-
inating contribution to the RMSE towards daily timescales.
The median HR bias is, over the entire duration of the field
campaign, 3.3 Wm−2 smaller than the SR bias, and this
would favour the HR product in terms of RMSE for longer
averaging times. Therefore, as we are interested in variabil-
ity rather than systematic offsets, Fig. 10 displays the SDE
rather than the RMSE. With this metric, taken over all the
dates of the field campaign, the HR gain in accuracy is largest
at a 20 min averaging time. This might be explained as fol-
lows. Especially for shorter timescales, a spatial mismatch

may occur between what is measured by SEVIRI and the
pyranometer network. This mismatch may result from devi-
ations between the applied daily mean optimal spatial shift
and what would be the actual optimal spatial shift at the se-
lected time step. Since the HR retrieval is more spatially vari-
able than the SR retrieval, the spatial mismatch errors will
be larger at HR. By temporal averaging, the spatial variabil-
ity diminishes. This means on one hand that HR information
is lost but on the other hand that the spatial mismatch error
becomes a less important factor. The 20 min averaging time
could be the optimal trade-off between a good spatial rep-
resentation with still enough HR information included. In-
terestingly, earlier work by Huang et al. (2016) recommends
using a 30 min temporal-averaging time for routine valida-
tion. They argue that at smaller timescales, retrieval accu-
racy is increasingly affected by representation errors origi-
nating from, for instance, 3D radiative effects or cloud in-
homogeneities. Our results do show that the most significant
HR improvement in SDE occurs at 20 min timescales. How-
ever, even at 5 min timescales, additional skill remains in-
cluded for the HR retrieval. For longer averaging periods,
the HR benefit decreases. Surprisingly, the benefit of the HR
retrieval remains statistically significant up to an averaging
time of approximately 5 h. Moreover, with an improvement
of 4.8 %, the relative HR gain is even larger for this aver-
aging period. Only for daytime averages are no significant
differences found anymore between HR and SR.

5.4 Diurnal cycle

Up to this point, the effect of the diurnal cycle of GHI in the
validation has not yet been considered. Therefore, in Fig. 11,
the RMSE between SEVIRI and the pyranometer network is
shown for hourly intervals. The RMSE is normalized with
the corresponding mean GHI from the pyranometer network
to better compare different time slots.

Overall, the relative RMSE is smallest just before solar
noon (10:15–11:10 UTC), with median RMSE values just
above 20.0 %. For both resolutions, the relative RMSE in-
creases towards the morning and afternoon. Note that GHI
follows a strong diurnal cycle, especially under clear-sky
conditions, with fluxes peaking around noon. Therefore, in
terms of absolute RMSE, the measurement errors around
noon are larger than at other times.

Between 10:15 and 14:10 UTC, we find significant im-
provements in relative RMSE with relative median reduc-
tions between HR and SR ranging from 4.52 % to 7.61 %.
In contrast, for the first (06:15–07:10 UTC) and the last two
(14:15–15:10 and 15:15–16:10 UTC) hourly periods a sig-
nificant deterioration in accuracy is obtained when apply-
ing the downscaling algorithm. The corresponding median
increases of relative RMSE between HR and SR for these
three hourly periods are 3.23 %, 2.50 %, and 4.96 %, respec-
tively. No significant differences are found for the remain-
ing time slots between 07:15 and 10:10 UTC. The finding
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Figure 10. Same as Fig. 5 but showing the standard deviation of the error (SDE). The results are plotted for averaging periods that are
doubled from 5 min to daytime averages (from 06:15 to 16:45 UTC).

Figure 11. Same as Fig. 5 but separated according to the time of day in hourly bins.

that the most significant improvements in accuracy are ob-
served around noon is relevant to PV applications, since dur-
ing these hours the GHI potential and corresponding effects
on the power grid are largest. It is worth mentioning that the
results of Fig. 11 not only show the accuracy of the downscal-
ing algorithm throughout the day but also implicitly reveal
the choices made for the mean optimal shift, as is explained
next.

5.5 Spatial corrections

In this study, we apply a mean geolocation shift to account
for possible inaccuracies and instabilities in the rectifica-
tion to the SEVIRI grid as well as for parallax and shadow
displacements. This method has some uncertainties. For in-
stance, higher clouds require more displacement to account
for parallax and shadow effects than low clouds. By using the
mean shift for situations with high clouds, the displacement
is thus likely underestimated.

Another limitation of using a daily averaged mean optimal
shift is that diurnal variations in the optimal displacement are
averaged out. While the parallax correction is independent

of solar position, this does not hold for the correction to the
cloud shadow location, which depends on solar azimuth and
zenith angles. Using the collocation shift method, implicitly,
a correction for both parallax displacement and shadow po-
sition is performed. Therefore, the diurnal cycle of the cloud
shadow location is reflected in the displacement of the mean
optimal shift. This is a source of errors, especially earlier in
the morning and later in the afternoon, since the actual opti-
mal shift will deviate the most from the daily averaged mean
optimal shift.

Another limitation of using the mean optimal shift to cor-
rect for parallax displacements is that the method is not fea-
sible for most (operational) applications. The method of the
mean optimal shift requires ground truth from a pyranometer
station to perform the collocation shift, which in many cases
will not be available. However, for validating the downscal-
ing algorithm, the method of the mean optimal shift is suit-
able as ground-based observations are available. Especially
around noon, the results from the collocation shift method
could be seen as the maximum improvement that can be
achieved from using HR instead of SR.
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For an operational implementation, parallax correction can
be implemented by deriving the cloud top height (CTH) and
using this together with the satellite position to calculate the
spatial displacement (e.g. Beyer et al., 1996; Vicente et al.,
2002; Bieliński, 2020). Similarly, corrections can be made
for the effect of cloud shadows on the earth’s surface (Roy
et al., 2023). While implementing these geometric correction
themselves is straightforward, it is often more complicated
in practice. One of the complicating factors, for instance,
is that there are multiple ways to handle the CTH retrieval
(Lorenzo et al., 2017; Miller et al., 2018; Roy et al., 2023).
Furthermore, for an accurate geometric correction, the ver-
tical distribution of the cloud field is highly relevant. Solely
relying on CTH data might only partially account for the ef-
fect of clouds on GHI retrieved at the surface. A study on
how to best apply parallax and shadow corrections is outside
the scope of this paper and will be part of future work.

6 Conclusions and outlook

In the present paper, we validate a GHI retrieval with im-
proved spatial resolution from Meteosat SEVIRI based on
a downscaling algorithm. This downscaling algorithm relies
on a combination of reflectances from the high-resolution
visible and standard-resolution channels of SEVIRI to ob-
tain cloud physical properties and GHI at an increased res-
olution. Validation is performed against a dense network of
99 pyranometers spread out over an area of 10 km× 12 km
from 18 April to 22 July 2013 in Jülich, Germany, during
the HOPE field campaign. We demonstrate that retrieving
GHI at an increased spatial resolution of 1 km× 1 km at nadir
instead of the standard 3 km× 3 km leads to significant im-
provements in accuracy, especially for variable cloud condi-
tions.

Over the entire field campaign period, we find a small
but statistically significant improvement in accuracy of
2.8 Wm−2 when the HR retrieval is used instead of the SR
retrieval. This result is valid for the original 5 min time res-
olution of the satellite observations but interestingly per-
sists even when aggregated to longer periods up to approxi-
mately 5 h. For 60 out of 96 d, the RMSE of the HR retrieval
is smaller than the SR retrieval. The largest improvements
in GHI accuracy occur on the days when GHI fluctuates
strongly. For the 10 most variable days, a median reduction in
RMSE of 7.9 Wm−2 is found when the downscaled product
is used. We do not find significant differences in accuracy be-
tween both resolutions on clear-sky and fully overcast days.
For fully overcast conditions, it is suggested that the pyra-
nometer measurements are representative of scales of at least
5 km, which explains why the downscaling algorithm does
not provide improved agreement.

When the downscaling algorithm is validated for individ-
ual cloud regimes as identified by the CRAAS cloud regime
dataset, the largest improvement in accuracy occurs for the

stratocumulus regime, with a median RMSE reduction of
6.6 Wm−2 between standard and high resolution. For cirro-
stratus and mid-level clouds, we also find a significant im-
provement in accuracy when the downscaling is applied. To-
gether, these three cloud regimes make up 51 % of all field
campaign observations. Only for the deep-convection cloud
regime is a statistically significant deterioration in accuracy
for the high-resolution retrieval found. For the other cloud
regimes, no significant differences in accuracy are observed
between the two resolutions.

These considerations also demonstrate the benefits of con-
ducting a cloud-regime-based validation of GHI. The large
inter-regime differences in validation statistics imply that the
overall accuracy is strongly influenced by the frequency of
occurrence of individual cloud regimes. Knowledge of the
cloud regime can inform one about the expected accuracy of
the retrieval, as well as the variability of GHI. To our knowl-
edge, this study is the first to conduct such a regime-based
validation approach, but we hope to see wider adoption in
the future. The question of how to optimally define and clas-
sify the cloud regimes remains open here.

Overall, this study demonstrates that an increased spa-
tial resolution of satellite measurements yields more accu-
rate GHI retrievals, which is important for scientific applica-
tions as well as for the practical use of the data. The down-
scaling approach applied in this study can be transferred to
other satellite instruments, such as the Advanced Baseline
Imager (ABI) on the third-generation Geostationary Oper-
ational Environmental Satellites (GOES), by combining its
0.6 µm channel at 0.5 km× 0.5 km with coarser-resolution
channels. The added value of this 2-fold higher spatial res-
olution remains to be proven since satellite retrievals may
become increasingly affected by horizontal photon transport
between neighbouring pixels, which effectively smoothens
the information content. Similar to GOES ABI, the Flexible
Combined Imager (FCI) on board Meteosat Third Genera-
tion (MTG) satellites will allow for retrieving cloud physical
properties and GHI at a resolution down to 0.5 km× 0.5 km.

In addition, with the SEVIRI downscaling algorithm, the
resolution gap between the second- and third-generation Me-
teosat satellites can be bridged for cloud physical proper-
ties and GHI, enabling longer-term climate data records at
1 km× 1 km resolution consisting of both MSG and MTG
observations. While the results presented here demonstrate
the potential of the downscaling, further research should fo-
cus on the validation of the cloud properties and ensuring the
homogeneity of such a combined data record.

With the increase in spatial resolution, it also becomes in-
creasingly important to ensure that the geolocation of the
satellite products remains accurate. For this validation study,
accurate geolocation was achieved by deriving an optimal
mean spatial collocation shift with reference to the pyra-
nometer observations. However, this method cannot be ap-
plied to regions where or periods when ground-based obser-
vations are lacking. In future work, we will use the HOPE
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field campaign to investigate parallax and shadow correction
implementations, enabling a more reliable downscaling for
arbitrary regions and periods.

Appendix A: Visual inspection of HOPE pyranometer
data

The visual inspection is conducted on a daily basis. The gen-
eral idea of the visual inspection is that sensors affected by
measurement issues can be identified as outliers in space or
time. As a first criterion, stations are flagged based on their
daily averaged irradiance. By examining both the spatial dis-
tribution and the probability density distribution of daily av-
eraged irradiance for many days, we can observe a few clear
outliers (Fig. A1). Subsequently, a more detailed visual anal-
ysis is conducted by examining the time series of GHI for
each of the sensors, confirming that for some of the sensors
the GHI measurements are abnormally low (most probably
due to a tilt of the pyranometer). Furthermore, for some of
the sensors, the time series representation also reveals sudden
drops in GHI to abnormally low values (almost zero during
the day). Even if, for the latter case, the measured values lie
within the ERL range, we consider this behaviour suspicious
and manually flag the sensor. After quality control, the num-
ber of valid stations varies between 70 and 90 for each time
step (Fig. A2).

For each day, all sensors exhibiting abnormal behaviour,
as discussed above, have been listed. A conservative flagging

Figure A1. Plots used for the visual control of the HOPE measurements. Panel (a) represents the daily average of the measurements of each
sensor; panel (b) is the distribution of the daily measurements. In panel (c), the time series for each of the sensors is represented. Flagged
measurements are marked in red.

strategy is employed to ensure that as few faulty measure-
ments as possible are used for the validation. When an issue
is suspected during the visual inspection, a sensor is flagged
for the entire day (Fig. A3).
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Figure A2. Number of valid measurements as a function of time before (blue line) and after (red line) quality control.

Figure A3. Global horizontal irradiance for each of the 99 pyranometer stations as a function of time during the HOPE field campaign.
Invalid data are illustrated by the black boxes.
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Code and data availability. The datasets used for the analyses and
the Python codes used for preparing and post processing the
CPP-SICCS data and for reproducing the presented figures are
stored on the SURF Data Archive and available upon request. EU-
METSAT copyrights the CPP-SICCS retrieval software and there-
fore it cannot be made publicly available. The SEVIRI HRIT
and level 1.5 input data can be obtained from the EUMETSAT
Data store at https://data.eumetsat.int/data/map/EO:EUM:DAT:
MSG:MSG15-RSS (last access: 7 October 2024, Schmetz et al.,
2002). The NWC SAF software can be installed by registered users
from http://www.nwcsaf.org (last access: 7 October 2024, NWC
SAF, 2021). LSA SAF products can be obtained by registered users
from https://datalsasaf.lsasvcs.ipma.pt/PRODUCTS/MSG/MDAL/
HDF5/ (last access: 7 October 2024, Carrer et al., 2018).
The CAMS reanalysis and the CAMS McClear data are avail-
able from the Atmosphere Data Store at https://ads.atmosphere.
copernicus.eu/datasets/cams-solar-radiation-timeseries Gschwind
et al., 2019 and https://ads.atmosphere.copernicus.eu/datasets/
cams-global-reanalysis-eac4 (Inness et al., 2019). Registered
users can retrieve data from the operational ECMWF archive
from https://apps.ecmwf.int/archive-catalogue/ (ECMWF, 2024).
The CRAAS cloud regime dataset can be retrieved from
https://doi.org/10.5281/zenodo.7120267 (Tzallas et al., 2022a).
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