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Abstract. This study investigates the chemical composition
and physical properties of aerosols, which play a crucial role
in influencing human health, cloud physics, and local cli-
mate. Our focus centers on the hygroscopicity of ambient
aerosols, a key property reflecting the ability to take up mois-
ture from the atmosphere and serve as cloud condensation
nuclei. Employing home-built air quality box (AQB) sys-
tems equipped with low-cost sensors, we assess the ambient
variability of particulate matter (PM) concentrations to deter-
mine PM hygroscopicity. The AQB systems effectively cap-
tured meteorological parameters and most pollutant concen-
trations, showing high correlations with data from the Taiwan
Environmental Protection Administration (TW-EPA). With
the application of κ-Köhler equation and certain assump-
tions, AQB-monitored PM concentrations are converted to
dry particle mass concentration, providing optical particle
counter sensitivity correction and resulting in improved cor-
relation with TW-EPA data. The derived single hygroscop-
icity parameters (κ) range from 0.15 to 0.29 for integrated
fine particles (PM2.5) and 0.05 to 0.13 for coarse particles
(PM2.5−10), consistent with results of ionic chromatography
analysis from a previous winter campaign nearby. More-
over, the analysis of PM10 division into PM2.5 and PM2.5−10,
considering composition heterogeneity, provided improved
dry PM10 concentration as the sensitivity coefficients for
PM2.5−10 were notably higher than for PM2.5. Our method-
ology provides a comprehensive approach to assess ambient
aerosol hygroscopicity, with significant implications for at-
mospheric modeling, particularly in evaluating aerosol effi-
ciency as cloud condensation nuclei and in radiative transfer
calculations. Overall, the AQB systems proved to be effective

in monitoring air quality and deriving key aerosol properties,
contributing valuable insights into atmospheric science.

1 Introduction

In an era of increased industrialization, individuals face
growing exposure to poor air quality, elevating the risks of
cardiovascular and respiratory diseases (Chen et al., 2017;
Brook et al., 2010; Heus et al., 2010). Within the realm of air
pollutants, atmospheric aerosols emerge as critical compo-
nents, playing a vital role in Earth’s climate system. They in-
fluence radiative balance, cloud formation, and precipitation
patterns, while significantly impacting human health, visi-
bility, and ecosystems (Pöschl et al., 2010; Wu et al., 2010;
Brook et al., 2010; Hamanaka and Mutlu, 2018). Their abil-
ity to scatter and absorb solar radiation, coupled with their
role as cloud condensation nuclei (CCNs), emphasizes their
significance in shaping both climate dynamics and air qual-
ity (Andreae and Rosenfeld, 2008; Rosenfeld et al., 2014;
Lohmann and Feichter, 2005). However, understanding the
complex interplay between aerosols and these processes re-
quires the physical and chemical properties of aerosols, in-
cluding hygroscopicity. The hygroscopic growth of aerosol
particles, indicating their ability to take up moisture from
the ambient air, alters their size distribution, mass, optical
properties, and CCN activity, thereby impacting climate dy-
namics and air quality (Petters and Kreidenweis, 2007). The
traditional methods such as hygroscopic tandem differential
mobility analyzers and cloud condensation nuclei counters
(Chan and Chan, 2005; Hung et al., 2016; Bian et al., 2014)
have provided valuable insights into the hygroscopic proper-
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ties of various aerosol types. However, their complexity and
cost often limit their applicability for extensive, long-term
measurements.

Over the past decade, the rise in popularity of low-cost op-
tical particle counters (OPCs) can be attributed to their sim-
plicity, portability, and affordability (Sá et al., 2022; Crilley
et al., 2018; Samad et al., 2021). OPCs provide real-time data
on particle size distributions and mass concentrations with
high temporal resolution for monitoring ambient particles.
However, challenges arise in ensuring the accuracy of OPCs,
necessitating additional constraints or calibrations for opti-
mal performance. The measurement principle of OPCs re-
lies on the dependence of Mie scattering on particle size, yet
this dependence is non-monotonic across all sizes. Addition-
ally, particle composition influences light scattering, leading
to varying scattering efficiencies (Kaliszewski et al., 2020;
Formenti et al., 2021). Variations in particle density directly
affect the mass concentration derived from the monitored
number size concentration (Hagan and Kroll, 2020; Dacunto
et al., 2015). A particularly challenging issue involves the
removal of liquid water from ambient particles. Several stud-
ies have attempted to derive the dry mass concentration of
ambient particles using OPC, employing calibration methods
linked to the hygroscopic growth factor (HGF) under con-
trolled relative humidity (RH) conditions. Notably, Crilley et
al. (2018) improved OPC mass concentration correction by
applying the derived hygroscopicity (κ) values of 0.38–0.41
and 0.48–0.51 for PM2.5 and PM10, respectively, achieving a
33 % improvement. Similarly, Di Antonio et al. (2018) and
Venkatraman Jagatha et al. (2021) elevated calibration from
a moderate to a high correlation by assuming a constant κ
of 0.40. Furthermore, the chemical composition and physi-
cal properties of aerosols exhibit high temporal–spatial varia-
tion, making the analysis and correction of observational data
from a physical perspective crucial. The widespread adop-
tion of low-cost sensors, attributed to their affordability, en-
ables more extensive use as users find them more accessible
(Castell et al., 2017). This increased utilization enhances spa-
tial resolution in environmental monitoring, deepening our
understanding of pollution evolution. However, it is essen-
tial to emphasize that regular maintenance and calibration are
necessary for accurate results (Concas et al., 2021; Sá et al.,
2022).

In this study, we evaluate the performance of our home-
built monitoring system, air quality box (AQB), through a
comprehensive analysis and calibration by co-locating the
two AQB systems with the Taiwan Environmental Protec-
tion Administration (TW-EPA) station. Our primary focus is
on OPCs, for which we employed a physical model to elu-
cidate the hygroscopic characteristics of ambient particles
during the determination of dry particle mass concentrations
for integrated fine particles (PM2.5,Dp ≤ 2.5 µm) and coarse
particles (PM2.5−10, 2.5 µm<Dp≤ 10 µm). Additionally, we
discuss various factors contributing to errors in hygroscop-
icity estimates, aiming to gain valuable insights into using

low-cost sensors for extensive and prolonged monitoring ap-
plications.

2 Methodology

2.1 Air quality box (AQB) system

Two home-built AQB systems (AQB no. 1 and AQB no. 2)
consist of multiple sensors that monitor meteorological pa-
rameters such as temperature (T ), relative humidity (RH),
and pressure (P ), as well as gaseous species and partic-
ulate matter (PM) with a temporal resolution of seconds
as shown in Fig. 1 with sensor information summarized
in Table S1. The gas sensors include five Alphasense am-
perometric B4 series sensors that measure CO, NO, NO2,
Ox (O3+NO2), and SO2; a photo-ionization detector (PID-
AH2, Alphasense) monitoring volatile organic compounds;
and a non-dispersive infrared CO2 sensor from Amphenol
Advanced Sensors (T6713-5K). The PID sensor, equipped
with a krypton lamp providing a photon energy of about
10.6 eV, cannot detect methane, which has a higher ioniza-
tion potential of ∼ 13.7 eV (Glockler, 1926). Therefore, the
data of non-methane hydrocarbons (NMHC) from TW-EPA
are more comparable to PID data in our analysis. The PM
sensor (OPC-N2, Alphasense), an optical particle counter,
monitors the number size distribution between 0.38 and
17 µm, divided into 16 bins based on Mie scattering, with
a sampling flow rate of ∼ 4 mL s−1 and a refractive index of
1.5+0 i. In addition, the mass concentration of PM1, PM2.5,
and PM10 could be calculated from the number size distribu-
tion, assuming a particle density of 1.65 g cm−3. These sen-
sors were controlled by a small single-board computer, Rasp-
berry Pi Zero W, at a time resolution of 3 s with data stored in
a microSD card and uploaded to cloud storage via 4G LTE.
The entire system is housed in a remodeled enclosure with
a dimension of 25 cm× 16 cm× 8 cm (L×D×H ) and has
well-ventilated openings for sampling and exhaust. The sam-
pling flow rate is primarily controlled by an installed fan at
∼ 5.6 L min−1, corresponding to a residence time of approx-
imately 34 s in the box. This configuration allows the sys-
tem to effectively monitor ambient air quality independently
without the need of additional inlets.

2.2 Calibration campaign and reference data

The calibration of AQB sensors was carried out by co-
locating them with the TW-EPA Nanzi station (Fig. S1) in
Kaohsiung, Taiwan (22°44′12′′ N, 120°19′42′′ E) from 4 to
19 February 2021. Nanzi station is situated on the roof of a
15 m high building in a well-ventilated environment. The pri-
mary gaseous components, dry PM2.5 and PM10 concentra-
tions, and basic meteorological parameters are continuously
monitored using standard instruments, as summarized in Ta-
ble S1. For electrochemical sensors in AQB, the performance
can be influenced by environmental parameters such as tem-
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Figure 1. The design of the AQB system.

perature, relative humidity, and other chemical species that
have high cross sensitivity (Concas et al., 2021; Karagulian
et al., 2019; Mead et al., 2013). Therefore, in this study, a lin-
ear regression with a multivariate function of voltage and the
environmental temperature was applied to retrieve concen-
trations for gas species. For PM, the reported values by beta
attenuation mass monitor (BAM) in the TW-EPA station re-
flect the dry-state PM concentration by controlling the mea-
surement at RH less than 50 % (i.e., a heating device applied
to reduce the sampling flow to 35 % water saturation when
the ambient RH is > 50 %). On the contrary, the optical par-
ticle counter (OPC) in AQB directly monitors ambient PM
concentration. The difference between BAM and OPC data
reflects the amount of liquid water content in ambient con-
ditions. A simple linear regression between them might not
completely reveal the influence of hygroscopicity. Therefore,
the κ-Köhler equation (Petters and Kreidenweis, 2007) was
applied to derive the κ as discussed in the following section.

2.3 Sensitivity coefficients of OPCs and particle
hygroscopicity

To bridge the PM concentration gap between BAM and OPC,
the sensitivity correction of OPC and the conversion of am-
bient particles to dry particles are required. The sensitivity
coefficient (α) was evaluated as the mass concentration ratio
of BAM and OPC data at low RH (≤ 50 %) having limited
water content, as follows:

α =
MBAM

MOPC
, (1)

where MBAM andMOPC are PM mass concentrations
(µg m−3) measured by BAM and OPC, respectively.
RH≤ 50 % was applied as the threshold criteria for data se-
lection to determine α, as the mass concentration of ambi-
ent particles might have significant water uptake at higher

RH. The statistical distribution of MBAM to MOPC ratios
at RH≤ 50 % was analyzed to assign α as the mean value
± 0.5σ (σ : standard deviation) to prevent high-concentration
data points from dominating the statistical result.

The particle size growth with the water saturation ratio (S)
for a given κ can be evaluated using κ-Köhler equation as
follows (Petters and Kreidenweis, 2007):

S =
D3

amb−D
3
d

D3
amb−D

3
d (1− κ)

exp
(

4σs/aMw

RT ρwDamb

)
, (2)

where Damb and Dd are the diameters (m) of the ambient
and dry particulate matter, respectively; σs/a is the surface
tension of the particle (J m−2); Mw is the molecular weight
of water (g mol−1); R is the gas constant (J mol−1 K−1); T
is the temperature; and ρw is the density of liquid water
(1.0 g cm−3). The first term is the solute effect, while the sec-
ond is the Kelvin effect. As the mass is dominated by the
larger particles, the Kelvin effect in Eq. (2) is assumed to be
negligible for simplification. The derived dry mass concen-
tration (Md,derived) from the measured ambient particles from
OPC data can be expressed as follows (Pope et al., 2010;
Crilley et al., 2018):

Md,derived = (α×MOPC)×

[(
S κ

1− S

)
×
ρw

ρd
+ 1

]−1

, (3)

where ρd is the density of dry aerosol particles and is as-
sumed to be 1.20 g cm−3 in this study. With the determined
α values (Eq. 1), κ can be derived from the data points of
aqueous particles at RH above 70 %, and the deliquescence
RH (DRH) can be verified using ion chromatography (IC)
analyzed composition with the Extended Aerosol Inorganics
Model (E-AIM) model. The mean absolute percentage error
(MAPE) parameter between Md,derived and MBAM was used
to assess the appropriate κ value as follows:

MAPE=

∑n
i=1
|Md,derived,i−MBAM,i |

MBAM,i

n
× 100%, (4)

where n is the total number of data points. With the restricted
range of α, κ can be derived under the minimum MAPE.
The detailed process description for κ derivation is provided
in the Supplement. Due to the heterogeneity between parti-
cles, PM10 was divided into integrated fine particles (Dp ≤

2.5 µm) and coarse particles (2.5 µm<Dp ≤ 10 µm) to eval-
uate the individual sensitivity coefficient and hygroscopicity.

2.4 Composition analysis

Hygroscopicity can also be determined using the volume
fraction of the major components. Based on an earlier
field campaign, the ion chromatography (IC) method was
applied to quantify water-soluble components for samples
(both PM2.5 and PM10) collected at Fooyin University
(22°36′09.8′′ N, 120°23′23.1′′ E) in Kaohsiung from 15 to
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28 January 2013. Ambient aerosol samples were collected
using a pair of dichotomous aerosol samplers (model RP-
2025, R&P Co., Inc., Albany, New York) to collect inte-
grated fine and coarse particles on Teflon filters with sam-
pling flow rates of 15.0 and 16.7 L min−1, respectively. The
samples were categorized into daytime and nighttime. Day-
time samples were collected from 08:00 to 20:00 LT, and
nighttime samples were collected from 20:00 to 08:00 LT
the next day. The samplers were equipped with Teflon filters
deployed for the measurement of water-soluble ions (Na+,
Mg2+, K+, Ca2+, NH+4 , Cl−, SO2−

4 , and NO−3 ) via ion chro-
matography (model ICS-1000, Dionex). More information
on the chemical analysis method can be found in Salvador
and Chou (2014).

To derive the hygroscopicity from samplings, the ions
from IC analysis were converted to chemical components
via the following sequence: ammonium sulfate, ammonium
bisulfate, ammonium nitrate (when there is residual ammo-
nium), sodium nitrate, and sodium chloride. With the as-
sumption of the hygroscopicity of insoluble components as
zero and negligible residual ion contribution (less than 5 %
of total mass), the overall hygroscopicity can be derived by
the volume fraction (εi) weighted hygroscopicity from indi-
vidual soluble component (i species) as follows:

κ =
∑

i
εiκi =

∑
i

vi

vtotal
κi, (5)

where κi is the hygroscopicity of i species, vtotal is the vol-
ume of particles, and vi is the volume of i species. The
conversion of particle mass to volume is based on a den-
sity of 1.20 g cm−3. The applied hygroscopicity, molecular
weight, and density for the related chemical species are sum-
marized in Table S2. With the assumption that these ions dis-
solve completely in the aqueous phase, which represents the
maximum estimation, the hygroscopicity contributed by the
residual ions were found to be approximately up to 1.8 %
and 6.4 % of the overall κ value for integrated fine particles
(PM2.5) and coarse particles (PM2.5−10), respectively. Given
their limited impact on the hygroscopic behavior of the par-
ticles, the contribution of the residual ions was not taken into
account in the calculation. Additionally, other PM2.5 IC data
for samples collected at the National Kaohsiung University
of Science and Technology (22°46′22.4′′ N, 120°24′03.4′′ E)
in Kaohsiung for the period of 8–18 December 2021 samples
were also applied for further comparison (no PM10 collection
for that campaign). We opted for the 2013 dataset for more
discussion due to its comprehensive analysis encompassing
both PM2.5 and PM2.5−10. Furthermore, the composition data
obtained from IC analysis was applied to E-AIM Model III
(for systems containing H+, NH+4 , Na+, SO2

4, NO−3 , Cl−,
and H2O) to evaluate the characteristics of volume variation
as a function of RH in the range of 30 % to 90 % (Clegg et
al., 1998). The partitioning of selected trace gases (HNO3,
HCl, NH3, and H2SO4) into the vapor phase was disabled
to keep a consistent quantity of applied chemical species in

the particle phase. The growth factor, Vamb/Vd, above DRH,
was applied to retrieve the κ value using Eq. (2) but without
the Kelvin effect term (Luo et al., 2020). Both the individual
sample concentrations and the overall averaged composition
conditions were analyzed to evaluate the hygroscopic behav-
ior of the particles.

3 Results and discussion

3.1 Performance of AQB systems

Figure 2 shows the time series of the meteorological param-
eters and pollutant concentrations between calibrated AQB
and TW-EPA data from 14 to 17 February 2021. T, RH,
CO, and Ox showed a good correlation with r>0.9, while
NO, NO2, PM2.5, and PM10 had a moderate correlation
(r ≥ 0.48). The high correlation (r = 0.976) for CO (with a
lifetime of ∼ 2 months) indicates a similar air parcel sam-
pled by both AQB and the instrumentation in TW-EPA. The
PID sensor had consistent peaks with high NMHC concen-
trations and could not reveal temporal variation at low con-
centrations, resulting in a low correlation. Overall, the AQB
system performs well in capturing the ambient variability of
pollutants stated above. The low correlation of SO2 was due
to the cross sensitivity of this SO2 sensor, which was highly
sensitive to O3 and NO2 (about−120 % reported in the tech-
nical specifications of Alphasense). O3 and NO2 generally
have higher concentrations than SO2 and cause a significant
contribution to the response of the SO2 sensor. However, if
high-SO2-concentration events occur, the SO2 sensor might
reflect the variation in SO2 concentration. The PM concentra-
tion shown in Fig. 2 was calibrated using a simple linear re-
gression, which roughly reflects the trend of mass concentra-
tion but shows more significant deviations at higher RH due
to more water uptake in particles, as discussed in Sect. 3.2.
Most gas species showed a high correlation (r ≥ 0.95) be-
tween different AQB systems except for NMHC (r = 0.675)
as summarized in Table S3. Further results and discussions
focus on the PM analysis using AQB no. 1, which has a more
consistent sampling rate during the observation period, un-
less stated otherwise.

3.2 Comparison between OPC and BAM data

3.2.1 Sensitivity coefficient of OPC

Figure 3a and c show the scatter distribution of the mass
concentrations between OPC (with no calibration) and BAM
data for PM2.5 and PM10, respectively. Overall, the PM mass
concentrations measured by OPC have a similar trend to
those measured by BAM but exhibit some variability. The re-
sults reveal an apparent influence of ambient RH, indicating
the contribution of water content. The red-shaded area repre-
sents a regression line with a slope corresponding to the in-
verse of the α derived from data points at ambient RH≤ 50 %
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Figure 2. The temporal profiles of calibrated AQB data (red lines) and the TW-EPA measurement (gray lines) for (a) temperature, (b) relative
humidity, (c) CO, (d) NO, (e) NO2, (f) Ox (≡ NO2+O3), (g) non-methane hydrocarbon, (h) SO2, (i) PM2.5, and (j) PM10 during the period
of 14–17 February 2021 (4 of 16 d in period). All the species were calibrated using linear regression.

(17 out of 356 points, 5 %). The notable deviation of the red-
shaded area from the 1 : 1 line towards the right side indi-
cates the requirement of α>1 corrections, contributed by the
different measurement principles and calibration techniques,
which may result from the assumed particle density and re-
fractive index (RI) (dust, density: 1.65 g cm−3; RI: 1.5+0 i).
The estimated α values, as summarized in Table 1, are higher
for PM10 than for PM2.5, i.e., 2.02± 0.34 vs. 1.26± 0.16,
and are reasonably conclusive as tested with more data points
selected at higher RH thresholds (Fig. S2). The α difference
between PM2.5 and PM10 might be attributed to the com-
plex composition of ambient particles, which differs from
the samples used for instrument calibration, as well as pos-
sible sensitivity variations in OPC over time. With sensitiv-
ity calibration, the performance at ambient RH≤ 50 % ex-
hibits a strong correlation with MAPE at 12.8 % and 18.5 %
as well as a root mean squared error (RMSE) at 3.7 µg m−3

and 10.3 µg m−3 for PM2.5 and PM10, respectively, as sum-
marized in Table 2 excluding the two significant outliers
(shown as hollow circles in Fig. 3). The results confirm the
effectiveness of OPCs in capturing PM concentrations after
proper calibration, consistent with other real-time outdoor

field studies, reporting R2 ranging from 0.34 to 0.97, RMSE
ranging from 0.52 to 12.3 µg m−3, and MAPE about 22 %
(Gillooly et al., 2019; Demanega et al., 2021; Sá et al., 2022;
Crilley et al., 2018). Additionally, the OPC sampling flow
rate has an impact on measurement performance. AQB no. 1
maintained a steady rate at 3.6± 0.2 L min−1, whereas AQB
no. 2 exhibits two distinct periods with sampling flow rates of
3.6–4.2 L min−1 for the first period and 3.2–3.6 L min−1 for
the second period. The distinctive sampling flow rates result
in a non-linear change in α, suggesting the need to separate
the data into two parts to estimate the individual α (Fig. S3).

3.2.2 Hygroscopicity derivation

With the derived α, the hygroscopicities were retrieved using
Eq. (3), resulting in κ ranging from 0.18 to 0.29 for PM2.5
and 0.20 to 0.39 for PM10 during the studied period, as sum-
marized in Table 1. Figure 3d and f show the scatter distribu-
tion of the derived dry concentration vs. BAM concentration
for PM2.5 and PM10, respectively. The results from the two
OPCs exhibit slight differences but are consistent overall.
Considering both the sensitivity coefficient and hygroscop-
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Figure 3. The correlation of mass concentration between BAM and OPC in AQB no. 1 (raw data or calibrated data): (a, d) PM2.5, (b,
e) PM2.5−10, (c, f) PM10, and (f) separated calibration PM10. Panels (a)–(c) are the raw data, while panels (d)–(g) are the calibrated data.
The marker color corresponds to relative humidity. The hollow points are the two significant outliers under conditions of RH≤ 50 %. The
shaded region represents the data associated with the sensitivity coefficient (α). The value in parentheses is the MAPE in percentage.

Table 1. The sensitivity coefficients and the hygroscopicity for PM2.5, PM10, and PM2.5−10.

Sensitivity coefficient (α) Hygroscopicity (κ)

AQB no. 1 AQB no. 2b AQB no. 1 AQB no. 2 IC (species) IC (E-AIM)

PM2.5 1.26± 0.16 1.44± 0.20 0.18–0.29 0.15–0.24 0.14–0.27 0.14–0.26
PM10 2.02± 0.34 2.20± 0.38 0.20–0.39 0.18–0.30
PMa

10 α2.5, α2.5−10 α2.5, α2.5−10 0.13–0.23 0.11–0.26
PM2.5−10 12.37± 1.33 10.58± 2.90 0.07–0.13 0.05–0.09 0.06–0.21 0.08–0.21

a The hygroscopicity derived using different sensitivity coefficients for different size ranges. α2.5 and α2.5−10 are sensitivity coefficients
for PM2.5 and PM2.5−10, respectively. More details are provided in the description of the Supplement. b The sensitivity of AQB no. 2
presents the value in the period of sampling flow rates at 3.6–4.2 L min−1.

icity, the performance of OPC in deriving dry PM concen-
tration is significantly improved with lower MAPE, RMSE,
and higher R2 than the results obtained using only the sen-
sitivity coefficient, as summarized in Table 2. With a sim-
ilar methodology, Crilley et al. (2018) applied the κ-Köhler
equation to compare measured data between OPC-N2 and ta-
pered element oscillating microbalance (TEOM) and derived
the κ ranging from 0.38 to 0.41 and 0.48 to 0.51 for PM2.5
and PM10, respectively, which is within the range for Europe
(i.e., 0.36± 0.16) (Pringle et al., 2010).

Due to the heterogeneity of composition among different
sizes, PM10 can be divided into PM2.5 and PM2.5−10 for fur-
ther analysis. The estimated α value for PM2.5−10, as sum-
marized in Table 1, is approximately 1 order of magnitude
higher than that for PM2.5. The lower κ for PM2.5−10 might
suggest a significant contribution from dust or other less hy-

groscopic species, consistent with the IC analyses in Table 3
and discussed further in Sect. 3.3. With the retrieved α and κ
for PM2.5 and PM2.5−10, Fig. 3e shows the scatter distribu-
tion between the derived dry PM2.5−10 from OPC and BAM
data, exhibiting a MAPE of 31.8 %, which is more signifi-
cant than the 24.8 % for PM2.5. The higher MAPE might re-
sult from the low particle number concentration in the coarse
mode, with only about 0.01 to 0.1 particles per bin per cu-
bic centimeter in the size range of 3.0 to 10.0 µm. The results
are consistent with the findings of Kaliszewski et al. (2020),
which showed that the correlation between OPC-N3 (a newer
version of OPC-N2) and AeroTrak 8220 (TSI Inc., Shore-
view, MN, USA) measurement data decreases with particle
size, from 0.3–0.5 µm (r = 0.99) to 5–10 µm (r = 0.74). The
dry PM10 derived from OPC through the divided PM2.5 and
PM2.5−10 analysis demonstrates better consistency with the
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Table 2. Performance metrics of different calibration methods for PM2.5, PM2.5−10, and PM10.

PM2.5 PM2.5−10 PM10

RH≤ 50 % All data All data RH≤50 % All data All data RH≤ 50 % All data All data (PM2.5+
onlya (no κ) (κ = 0.29) onlya (no κ) (κ = 0.09) onlya (no κ) (κ = 0.36) PM2.5−10)c

Applied α 1.26± 0.16 1.04 1.40 12.37± 1.33 10.77 13.16 2.02± 0.34 1.69 2.36 –
MAPE (%) 21.3 (12.8) 48.8 24.8 15.9 (11.5) 37.9 31.8 32.8 (18.5) 62.5 29.2 18.2
RMSE (µg cm−3) 20.5 (3.7) 29.1 11.3 4.9 (2.8) 9.4 9.1 42.6 (10.3) 54.7 26.9 15.9
R2b

−0.55 (0.51) −3.49 0.32 0.31 (0.78) 0.57 0.59 −4.18 (−0.58) −4.74 −0.38 0.51

a Only for data points at RH≤ 50 %. The value in parentheses is the performance result without two significant outliers shown in Fig. 3. b Coefficient of determination (R2) is calculated as the proportion of
variation in the calibrated dry mass concentration. c The combination of calibrated data from PM2.5 all data (κ = 0.29) and PM2.5−10 all data (κ = 0.09).

reported BAM data than the direct calibration method. This
is evidenced by a lower MAPE in Fig. 3g (18.2 %) compared
to Fig. 3f (29.2 %) and a significant improvement than the
simple linear regression method, which has a higher MAPE
at 62.5 % (Table 2). Moreover, the derived κ for PM10 with
the size-dependent sensitivity coefficient correction ranges
from 0.13 to 0.23 (Table 1). This value falls between those
for PM2.5 and PM2.5−10 and is more reasonable compared to
κ derived with a fixed sensitivity coefficient (κ = 0.20–0.39,
higher than those for PM2.5 and PM2.5−10). The results sub-
stantiate the importance of considering composition hetero-
geneity among particle sizes for accurate dry PM derivation.

3.3 Hygroscopicity derivation using IC data

3.3.1 Composition analysis

The major soluble composition and concentrations obtained
from the IC analysis are summarized in Table 3. The mean
concentrations of PM2.5 and PM2.5−10 are 67± 19 and
36± 7 µg m−3, respectively. The determined soluble compo-
sition of PM2.5 constitutes approximately 53 % of the mass
fraction and is predominantly composed of NH+4 , SO2−

4 , and
NO−3 , which are formed through chemical reactions involv-
ing industrial and agricultural emissions. In contrast, ∼ 30 %
of PM2.5−10 is soluble components, including NO−3 , SO2−

4 ,
Na+, Cl−, NH+4 , and some alkaline earth metal ions (Ca2+

and Mg2+), with a more significant proportion being insol-
uble components (∼ 70 %), likely attributed to dust, metallic
elements, and unanalyzed organic components. The higher
portion of sea salt (Na+ and Cl−) in PM2.5−10 than in PM2.5
is likely transported by the sea breeze during the daytime,
while the increased fractions of Ca2+ and Mg2+ might cor-
respond to sand or dust particles (Li et al., 2022).

The temporal variation of derived κ , based on the IC solu-
ble composition analysis, ranges from 0.14 to 0.26 for PM2.5
and 0.06 to 0.21 for PM2.5−10, as shown in Fig. S4a and
summarized in Table 1. A similar analysis for the winter of
2021 showed a similar κ range for PM2.5, as illustrated in
Fig. S5. This consistency across distinct study periods indi-
cates typical winter hygroscopic characteristics for ambient
PM2.5 in Kaohsiung, applicable for further discussion with
the OPC data. For PM2.5−10, the more significant variability

in κ compared to PM2.5 can be attributed to substantial fluc-
tuations of soluble composition in coarse particles, primarily
driven by significant quantities of thenardite (Na2SO4) and
halite (NaCl) (Tang et al., 2019). Due to the dominance of
the northeast monsoon wind during the filter sampling pe-
riod, the influence of the sea–land breeze was too relatively
weak to cause apparent diurnal variation in κ .

The κ values derived from IC analysis reflect the tem-
poral variation, while those from OPC analysis indicate the
overall physical properties of ambient aerosols for the stud-
ied period. Factors such as spatial and temporal variations
in aerosols, different campaign years and locations (∼ 20 km
apart, as shown in Fig. S1), and technique uncertainties, such
as ammonia and nitrate sampling evaporation during filter
sampling (Hering and Cass, 1999; Chen et al., 2021), as well
as OPC detection uncertainties and assumption required for
calculation, can influence comparisons. However, the results
(i.e., ∼ 0.22 (OPC) vs. 0.14–0.27 (IC) for PM2.5 and ∼ 0.09
(OPC) vs. 0.06–0.21 (IC) for PM2.5−10) summarized in Ta-
ble 1 and Fig. 4a suggest that the derived κ values from OPC
data likely reflect the mean hygroscopicity for the integrated
fine and coarse particles during winter in Kaohsiung.

3.3.2 E-AIM analysis

With the measured composition, the hygroscopicity can be
derived from the growth pattern. The particle growth might
follow the κ-Köhler equation (Eq. 2) when all soluble species
are fully dissolved, typically occurring above the DRH. Us-
ing the averaged soluble composition determined from the
IC analysis, HGF as a function of RH calculated using
E-AIM is shown in Fig. 5. For PM2.5, partial deliques-
cence initiates at 60 % RH with some residual solid com-
ponents such as ((NH4)2SO4 and 2NH4NO3 · (NH4)2SO4).
Complete dissolution occurs at RH ∼ 72 %. In the case of
PM2.5−10, water uptake begins at 42 % RH, leaving a resid-
ual solid composed of 3NH4NO3(NH4)2SO4, NH4Cl, and
NaNO3 ·Na2SO4 ·H2O until reaching 68 % RH. The daily
DRH happens at 71.3± 4.9 % and 67.1± 3.4 % for PM2.5
and PM2.5−10, respectively, as shown in Fig. S4b and c. In the
OPC data analysis, an RH threshold of ≤ 50 % was applied
to determine the sensitivity. At this threshold, PM2.5 parti-
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Table 3. The total mass concentration, major water-soluble composition, and concentration (mean value and standard deviation in µg m−3)
of winter PM2.5 and PM2.5−10 in Kaohsiung by ion chromatography (“Others” represents the insoluble composition).

Ion species Total Na+ Mg2+ K+ Ca2+ NH+4 Cl− SO2−
4 NO−3 Others

PM2.5 67.0± 19.2 0.31± 0.14 0.06± 0.02 0.45± 0.14 0.08± 0.04 8.24± 2.68 1.21± 0.91 13.63± 4.72 11.89± 4.88 31.1± 8.0
PM2.5−10 36.8± 7.64 1.50± 0.52 0.21± 0.06 0.04± 0.02 0.74± 0.25 1.07± 0.69 1.28± 0.69 1.87± 1.12 4.35± 1.41 25.7± 6.4

Figure 4. The hygroscopicities of PM2.5 and PM2.5−10 derived
based on data from OPCs and ion chromatography with the as-
sumption particle density of (a) 1.2 g cm−3 and (b) 1.42± 0.03 and
1.34± 0.07 g cm−3 for PM2.5 and PM2.5−10, respectively, based
on analyzed composition. The average value is shown as a red dia-
mond.

cles have not yet deliquesced, and PM2.5−10 shows minimal
volume growth, indicating the applicability of the selected
RH threshold for sensitivity calculation. A DRH threshold of
70 % was applied to ensure sufficient data points for κ calcu-
lation but slightly lower than the DRH of PM2.5.

To assess the potential bias associated with the selected
DRH threshold, Fig. S6 shows the HGF of mean soluble
composition as a function of RH estimated using E-AIM.
With Eq. (2) (without the Kelvin effect term) and the assump-
tion of volume additivity between the particle and the water
taken up, κ values derived using 70 % and 75 % thresholds
show less than 1 % difference for PM2.5 and PM2.5−10 com-
positions but 13 % and 6 % less than that estimated from the
composition calculation (Eq. 5) for PM2.5 and PM2.5−10, re-
spectively. As the selected DRH threshold decreases, the de-
rived κ decreases slightly due to the interference of adding

Figure 5. The volume ratio of a given soluble composition as a
function of RH under thermodynamic equilibrium calculated using
E-AIM at 298.15 K (composition is the averaged IC data with a
molarity ratio of Na+ : NH+4 : Cl− : SO2−

4 :NO−3 as 7 : 229 : 0 : 71 :
94 for PM2.5 and 65 : 59 : 16 : 19 : 70 for PM2.5−10).

data points with incompletely dissociated composition to the
fitting analysis. However, the temporal composition variation
in the applied OPC dataset (∼ 16 d of observation) might lead
to a higher variation (Fig. S7), making the κ deviation due
to the applied DRH threshold appear negligible in this study.
Furthermore, the lower derived κ for E-AIM compared to the
composition estimation is likely due to the applied individual
κ values in composition estimation being based on CCN acti-
vation measurement, which was reported to be 10 % to 17 %
higher than that derived from the growth factor analysis (Pet-
ters and Kreidenweis, 2007). During the particle growth pro-
cess, the partial dissociation leads to the RH-dependent van’t
Hoff factor, as noted by Petters and Kreidenweis (2007).
Similar findings were reported by Kreidenweis et al. (2008)
regarding the differences in derived water contents between
the κ-Köhler equation and E-AIM to be within ± 20 % un-
der the condition of approximately 85 % RH, which might
cause differences for κ evaluation. Overall, the differences in
derived κ among methods are primarily due to the given hy-
groscopicity of chemical species, likely due to the fixed van’t
Hoff factor and the assumptions of volume additivity in the
κ-Köhler equation.
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3.4 Sensitivity of assumed parameters on derived
hygroscopicity

For simplicity, κ was derived from OPC and BAM data with-
out considering the Kelvin effect and under an assumed par-
ticle density. Neglecting the Kelvin effect may result in mi-
nor differences for particles larger than 100 nm under sub-
saturated conditions (Pope et al., 2010; Topping et al., 2005;
Crilley et al., 2018). To confirm the appropriateness, we as-
sessed biases for particles at 0.1 and 1 µm without consider-
ing the Kelvin effect, as shown in Fig. S8. For particles with
a κ value of 0.3 under RH ranging from 70 % to 95 %, the
deviation of κ due to neglecting the Kelvin effect is −10 %
for 0.1 µm particles and −1 % for 1 µm particles, decreasing
with particle diameter. The particle diameter is overestimated
under the same RH conditions because the positive Kelvin
effect is ignored. To compensate for the deficiency in satu-
ration, the balanced particle diameter needs to be larger with
a more significant solute effect. However, the average mass-
weighted mean diameter for PM2.5 is about 1.3 µm. There-
fore, neglecting the Kelvin effect in our analysis has limited
influence on the derived κ .

Furthermore, the derived κ from OPC data (using Eq. 3)
and IC data (using Eq. 5) are notably influenced by the
assumed particle density. Assuming that the undetermined
composition mainly consists of secondary organic species
with a density of 1.2 g cm−3, within the reported densities
ranging from 0.9 to 1.6 g cm−3 depending on the formation
process (Malloy et al., 2009; Kostenidou et al., 2007; Ze-
lenyuk et al., 2008), along with the properties of analyzed
soluble chemical species summarized in Table S2, the cal-
culated densities are 1.42± 0.03 and 1.34± 0.05 g cm−3 for
PM2.5 and PM2.5−10, respectively (Fig. S9). These calculated
densities are about 15 % and 10 % higher than the assumed
fixed density (1.2 g cm−3) for PM2.5 and PM2.5−10, respec-
tively. Consequently, the derived κ from OPC data increases
by approximately 17 % for PM2.5 and 9 % for PM2.5−10,
while the derived κ from IC data is proportional to density
(i.e., 15 % and 10 % for PM2.5 and PM2.5−10, respectively)
as shown in Fig. 4b. This influence is particularly noticeable
for components with a high portion of higher-density species,
such as black carbon (a non-hygroscopic species with κ∼ 0)
having a high density of about 1.8 g cm−3 (Park et al., 2004;
Shiraiwa et al., 2008). Despite the potential uncertainties as-
sociated with particle density, the derived κ exhibits consis-
tency between the OPC and IC analyses.

4 Conclusions

In this study, we evaluated the performances of home-built
air quality box (AQB) systems equipped with low-cost sen-
sors and focused on the ambient variability of particulate
matter (PM) concentrations to derive the hygroscopicity
of PM and the conversion to dry particle concentrations.

The AQB systems revealed their effectiveness in captur-
ing meteorological parameters and most pollutant concen-
trations with high correlations (r ≥ 0.96) for temperature,
relative humidity, CO, and Ox (O3+NO2) and moderate
correlations (r ≥ 0.48) for NOx and PM, as compared to
TW-EPA data. In the PM analysis, PM10 was divided into
PM2.5 and PM2.5−10 to account for compositional hetero-
geneity among different particle sizes. Comparing the OPC-
monitored ambient PM data and the BAM data (for dry par-
ticles) at RH≤ 50 %, the derived sensitivity coefficients (α)
for PM2.5−10 (10.58–12.37) were higher than those for PM2.5
(1.26–1.44), likely due to the significant sensitivity varia-
tion in the OPC over time. By considering hygroscopicity
with the κ-Köhler equation and assuming a constant compo-
sition density for sensitivity-corrected OPC data, the derived
dry particle mass concentrations show improved consistency
with BAM data compared to the simple linear regression ap-
proach. The derived κ values range from 0.15 to 0.29 for
PM2.5 and 0.05 to 0.13 for PM2.5−10, consistent with those
from IC soluble composition analysis (0.14 to 0.27 for PM2.5
and 0.06 to 0.21 for PM2.5−10) and primarily influenced by
the proportion of soluble components, ∼ 53 % in PM2.5 and
∼ 30 % in PM2.5−10. The sensitivity analysis of various pa-
rameters showed that the effects of the chosen deliquescence
relative humidity (DRH) thresholds and Kelvin effect have
a minor impact on κ values (less than 1 %). Conversely, re-
calculating particle densities for PM2.5 (1.42± 0.03 g cm−3)
and PM2.5−10 (1.34± 0.07 g cm−3) led to higher κ values by
approximately 17 % and 9 %, respectively, compared to the
results assuming a density of 1.2 g cm−3. Overall, the AQB
systems are potentially helpful in understanding the tempo-
ral and spatial variability of air quality by effectively moni-
toring pollutant concentrations and providing the capability
for hygroscopicity derivation. This study also emphasizes the
need for careful consideration of uncertainties and calibra-
tion techniques to interpret low-cost sensor data accurately
in atmospheric research.
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Appendix A: List of symbols and abbreviations

AQB air quality box
α sensitivity coefficient
BAM beta attenuation mass monitor
CCN cloud condensation nuclei
Damb diameters of the ambient particulate matter
Dd diameters of the dry particulate matter
DRH deliquescence relative humidity
E-AIM Extended Aerosol Inorganics Model
εi volume fraction of i species
HGF hygroscopic growth factor
IC ion chromatography
κ hygroscopicity (single hygroscopicity

parameter)
κi hygroscopicity of i species
ρd density of dry aerosol particles
ρw density of liquid water
MBAM particulate matter mass concentrations

measured by BAM
Md,derived derived dry mass concentration
Mw molecular weight of water
MOPC particulate matter mass concentrations

measured by optical particle counter
MAPE mean absolute percentage error
NMHC non-methane hydrocarbons
OPC optical particle counter
P pressure
PM particulate matter
PM2.5 integrated fine particles with

a diameter ≤ 2.5 µm
PM2.5−10 coarse particles with a diameter in a range

of 2.5 to 10 µm
R gas constant (8.314 J mol−1 K−1)
RH relative humidity
RI refractive index
RMSE root mean squared error
S water saturation ratio
σs/a surface tension of the particle
T temperature
TW-EPA Taiwan Environmental Protection

Administration
vi volume of i species
vtotal total volume of particles
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for more information. The observation data for AQBs and
TW-EPA, the E-AIM model output, and the hygroscopicity
derivation result used in this study can be accessed online at
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