

Supplement of

Intercomparison of aerosol optical depth retrievals from GAW-PFR and SKYNET sun photometer networks and the effect of calibration

Angelos Karanikolas et al.

Correspondence to: Angelos Karanikolas (angelos.karanikolas@pmodwrc.ch)

The copyright of individual parts of the supplement might differ from the article licence.

Instrument	Location	Year	Month	Voil500	V _{0IL870}	V0TR500	V 0TR870	% difference	% difference
								500 mn	870 nm
POMVDV	DAVOS I	2017	8	2.828	2.229	2.848	2.234	-0.69	-0.20
POMVDV	ROME I	2017	10	2.782	2.204	2.858	2.227	-2.67	-1.01
POMCNR	DAVOS II	2018	7	2.751	2.300	2.780	2.324	-1.05	-1.02
POMCNR	DAVOS II	2018	8	2.762	2.321	2.807	2.364	-1.60	-1.81
POMCNR	DAVOS II	2018	9	2.771	2.343	2.807	2.368	-1.28	-1.07
POMCNR	DAVOS II	2018	10	2.766	2.346	2.802	2.364	-1.27	-0.75
POMCNR	ROME II	2019	5	2.717	2.321	2.804	2.348	-3.09	-1.14
POMCNR	ROME II	2019	6	2.730	2.303	2.807	2.350	-2.73	-1.98
POMCNR	ROME II	2019	7	2.737	2.299	2.836	2.366	-3.49	-2.83
POMCNR	ROME II	2019	8	2.765	2.329	2.836	2.371	-2.51	-1.76
POMCNR	ROME II	2019	9	2.747	2.320	2.838	2.369	-3.21	-2.05
POMSPZ	ROME II	2019	5	3.062	2.174	3.134	2.203	-2.31	-1.31
POMSPZ	ROME II	2019	6	3.043	2.167	3.122	2.198	-2.53	-1.43
POMSPZ	ROME II	2019	7	3.029	2.151	3.133	2.226	-3.31	-3.36
POMSPZ	ROME II	2019	8	3.082	2.201	3.133	2.233	-1.63	-1.43
POMCNR*	ROME III	2021	9	2.686	2.250	2.754	2.308	-2.48	-2.51
POMCNR*	DAVOS III	2021	10	2.698	2.293	2.734	2.320	-1.30	-1.14

Table S1: The monthly calibration constants for all instruments and campaigns from ILP calibration (V_{0IL}) and calibration transfer from PFR (V_{0TR}) in $\mu Ax 10^{-4}$ with their % differences at 500 nm and 870 nm.

5

Table S2: The uncertainties % of the used reference PFR calibrations and the POM monthly calibration transfers based on the PFR at 500 nm and 870 nm. The monthly uncertainty of the calibration transfer is the square root of the sum of the square errors of the PFR calibration uncertainty and the standard deviation of the daily calibration transfers.

Instrument	Location	Year	Month	UPFR500 %	U PFR870 %	UTR500 %	UTR870 %
POMVDV	DAVOS I	2017	8	0.25	0.25	0.51	0.68
POMVDV	ROME I	2017	10	0.28	0.32	0.30	0.37
POMCNR	DAVOS II	2018	7	0.25	0.25	0.35	0.31
POMCNR	DAVOS II	2018	8	0.25	0.25	0.30	0.35
POMCNR	DAVOS II	2018	9	0.25	0.25	0.29	0.32

POMCNR	DAVOS II	2018	10	0.25	0.25	0.27	0.32	
POMCNR	ROME II	2019	5	0.28	0.32	0.65	0.66	
POMCNR	ROME II	2019	6	0.28	0.32	0.80	0.64	
POMCNR	ROME II	2019	7	0.28	0.32	0.40	0.41	
POMCNR	ROME II	2019	8	0.28	0.32	0.65	0.45	
POMCNR	ROME II	2019	9	0.28	0.32	0.36	0.38	
POMSPZ	ROME II	2019	5	0.28	0.32	0.62	0.63	
POMSPZ	ROME II	2019	6	0.28	0.32	0.79	0.38	
POMSPZ	ROME II	2019	7	0.28	0.32	0.42	0.72	
POMSPZ	ROME II	2019	8	0.28	0.32	0.60	0.43	
POMCNR*	ROME III	2021	9	0.37	0.39	0.43	0.48	
POMCNR*	DAVOS III	2021	10	0.25	0.25	0.27	0.29	

15

20

Figure S1: Box plot of the AOD differences' statistics for all instrument comparisons during both phases of the 3 QUATRAM campaigns. The green boxes correspond to the differences between the original AOD from POMs and PFRs. The red boxes correspond the POM AOD differences retrieved once for each calibration (ILP and transfer from the PFR) using the same post processing algorithm and inputs for ozone absorption and Rayleigh scattering. During ROME 2019 campaign on the left side are the comparisons of POMCNR (master) and on the right side POMSPZ. The black line is the median difference, the size of the boxes denotes the distance between the median and the standard deviation, while the error bars show the 5th and the 95th percentile of the AOD differences. a): 500 nm. b): 870 nm.

S2. PFR calibrations

30

Table S3: The calibrations of the PFRs that were present in the Rome phases of the QUATRAM campaigns (PFRN14 for QUATRAM I and II, PFRN01 for QUATRAM III). The last columns show the % difference of each calibration with the previous. The calibrations were performed in Davos using as reference the PFR triad used for world AOD reference. The instruments measure direct solar irradiance in mV.

Instrun	nent: P	FRN14					Differenc	e (%)		
Year	Mo nth	Day	V0 368 nm (mV)	V0 412 nm (mV)	V0 500 nm (mV)	V0 870 nm (mV)	368 nm	412 nm	500 nm	862 nm
2017	9	21	4.210	3.809	3.806	3.551	-	-	-	-
2018	8	29	4.211	3.809	3.802	3.563	0.02	0.00	-0.11	0.34
2020	6	1	4.180	3.794	3.785	3.565	-0.74	-0.40	-0.45	0.06
Instrun	nent: P	FRN01					Differenc	e (%)		
Year	Mo nth	Day	V0 368 nm (mV)	V0 412 nm (mV)	V0 500 nm (mV)	V0 870 nm (mV)	368 nm	412 nm	500 nm	862 nm
2020	11	7	4.031	3.511	3.725	3.380	-	-	-	-
2021	5	28	4.011	3.503	3.717	3.380	-0.50	-0.23	-0.22	0.00
2022	9	6	4.006	3.493	3.712	3.376	-0.12	-0.29	-0.13	-0.12

35 S3. Imaginary part of refractive index values

4

Table S4: The values used for the imaginary part of refractive index tests of section 3.2.2.1.

		Davos			Rome	
λ(nm)	median- std k	median k	median +std k	median -std k	median k	median +std k
340	0.0040	0.0071	0.0186	0.0021	0.0076	0.0145
400	0.0040	0.0070	0.0189	0.0020	0.0074	0.0142
500	0.0040	0.0068	0.0194	0.0019	0.0071	0.0138
675	0.0040	0.0065	0.0204	0.0017	0.0065	0.0130
870	0.0040	0.0072	0.0204	0.0018	0.0079	0.0145
1020	0.0040	0.0078	0.0203	0.0018	0.0084	0.0135

S4. Surface albedo values

Table S5: values used for the surface albedo variation tests of section 3.2.2.1.

		Davos	Rome			
λ(nm)	mean- std A	mean A	mean +std A	mean -std A	mean A	mean +std A
340	0.016	0.032	0.049	0.038	0.043	0.047
400	0.022	0.044	0.066	0.052	0.058	0.065
500	0.046	0.070	0.095	0.067	0.076	0.084
675	0.046	0.069	0.093	0.100	0.113	0.125
870	0.235	0.270	0.305	0.210	0.240	0.270
1020	0.242	0.271	0.301	0.213	0.241	0.269

40

S5. Solid view angle values

λ(nm)	% max ΔSVA	SVA-ASVA	SVA	SVA+ASVA
340	9.1	2.202	2.422	2.642
400	2.6	2.388	2.452	2.516
500	2.6	2.395	2.459	2.523
675	2	2.402	2.451	2.500
870	4.5	2.385	2.497	2.609
1020	3.8	2.358	2.514	2.545

Table S6: The values used for the solid view angle in $srx10^{-4}$ variation tests of section 3.2.2.1.

S6. Total ozone column, surface pressure and inputs of the 2nd and 3rd sensitivity sub-studies

45 For section 3.2.2.2 the selected values for all the parameters are:

Total ozone column: 400 DU for both locations.

Surface Pressure: 0.85 atm for Davos and 1.02 atm for Rome.

Real part of refractive index: 1.5 for both locations and all wavelengths.

Imaginary part of refractive index, surface albedo and solid view angle are in table 6.

50 For section 3.2.2.2 the selected values for all the parameters are in table 7 below.

Table S7: The values used for the imaginary part of refractive index, surface albedo and solid view angle in $srx10^{-4}$ for the selected tests of section 3.2.2.2.

		Dav	VOS	Rome		
λ(nm)	SVA-ΔSVA	median-std k	mean-std A	median k	mean - std A	
340	2.202	0.0040	0.016	0.0076	0.038	

400	2.388	0.0040	0.022	0.0074	0.052
500	2.395	0.0040	0.046	0.0071	0.067
675	2.402	0.0040	0.046	0.0065	0.100
870	2.385	0.0040	0.235	0.0079	0.210
1020	2.358	0.0040	0.242	0.0084	0.213

S7. Real part of refractive index sensitivity

55 Table S8: The calibration differences % between the calibration transfer from PFR and the ILP calibrations for different values of real part of refractive index.

		Davos:	Original	(n=1.5)	n =	1.33	n=	1.5	n= 2	1.6
		Rome:	Original	(n=1.5)	n =	1.33	n=	1.5	n= 2	1.6
Location	Year	Month	ΔV0% 500 mn	ΔV0% 870 nm	ΔV0% 500 mn	ΔV0% 870 nm	ΔV0% 500 mn	ΔV0% 870 nm	ΔV0% 500 mn	ΔV0% 870 nm
DAVOS	2018	9	-1.28	-1.07	-1.10	-0.86	-1.28	-1.02	-1.24	-1.15
DAVOS	2018	10	-1.27	-0.75	-1.27	-0.75	-1.31	-0.75	-1.24	-0.62
ROME	2019	7	-3.49	-2.83	-3.99	-3.09	-3.49	-3.05	-3.49	-3.00
ROME	2019	8	-2.51	-1.76	-2.65	-1.72	-2.65	-1.72	-2.65	-1.72

S8. Total ozone column sensitivity

60 Table S9: The calibration differences % between the calibration transfer from PFR and the ILP calibrations for different values of total ozone column.

Davos:	Original	TOC=260 DU	TOC=300 DU	TOC=400 DU
	(TOC=300 DU)			

		Rome:	Original (TOC=3	00 DU)	TOC=20	50 DU	TOC=3	600 DU	TOC=40	00 DU
Location	Year	Month	ΔV0% 500 mn	ΔV0% 870 nm	ΔV0% 500 mn	ΔV0% 870 nm	ΔV0% 500 mn	ΔV0% 870 nm	ΔV0% 500 mn	ΔV0% 870 nm
DAVOS	2018	9	-1.28	-1.07	-1.35	-1.02	-1.28	-1.02	-1.21	-1.02
DAVOS	2018	10	-1.27	-0.75	-1.31	-0.75	-1.31	-0.75	-0.74	-0.75
ROME	2019	7	-3.49	-2.83	-3.49	-3.05	-3.49	-3.05	-3.92	-3.05
ROME	2019	8	-2.51	-1.76	-2.54	-1.80	-2.54	-1.80	-2.51	-1.80

S9. Surface pressure sensitivity

Table S10: The calibration differences % between the calibration transfer from PFR and the ILP calibrations for different values of surface pressure.

		Davos:	Original (atm)	(P=0.829	P=0.8	atm	P=0.83	3 atm	P=0.8	5 atm
		Rome:	Original (P=	1 atm)	P=0.9	7 atm	P=1 at	m	P=1.0	2 atm
Location	Year	Month	ΔV0% 500 mn	ΔV0% 870	ΔV0% 500 mn	ΔV0% 870	ΔV0% 500 mn	ΔV0% 870	ΔV0% 500	ΔV0% 870
				nm		nm		nm	mn	nm
DAVOS	2018	9	-1.28	-1.07	-1.28	-1.02	-1.28	-1.02	-1.13	-0.98
DAVOS	2018	10	-1.27	-0.75	-1.38	-0.62	-1.27	-0.75	-1.16	-0.62
ROME	2019	7	-3.49	-2.83	-3.95	-2.71	-3.49	-3.05	-3.53	-2.83
ROME	2019	8	-2.51	-1.76	-2.58	-1.76	-2.54	-1.80	-2.51	-1.80

70

S10. Extensive sensitivity test inputs

Here we show the input parameter values for the third sub-study in sections 2.4.3, 3.2.2.3.

IRI (unitless)	SA (unitless)	SVA (srx10 ⁻⁴) at 500 nm	SVA (srx10 ⁻⁴) at 870 nm
0.0003	0.01	2.250	2.300
0.001	0.035	2.395	2.385
0.01	0.08	2.430	2.450
0.05	0.15	2.459	2.497
0.1	0.2	2.490	2.550
0.2	0.3	2.523	2.609
0.4	0.5	2.700	2.750

Table S11: The used values for the sensitivity tests of IRI, SA and SVA.

75

80

S11. ILP median SSA and variability

Table S12: The monthly medians of the SSA from the Skyrad 4.2 and MRI inversions.

SSA values QUATRAM II:	SKY4.2_500	SKY4.2_	MRI_500	MRI_870 nm
	nm	870 nm	nm	

Location	Year	Month		Median	SSA		Number of measurements
Davos II	2018	7	0.952	0.917	0.959	0.935	194
Davos II	2018	8	0.958	0.933	0.964	0.944	404
Davos II	2018	9	0.950	0.923	0.958	0.940	332
Davos II	2018	10	0.947	0.917	0.953	0.932	184
Rome II	2019	5	0.941	0.922	0.949	0.933	238
Rome II	2019	6	0.928	0.911	0.937	0.924	1215
Rome II	2019	7	0.937	0.917	0.945	0.927	1178
Rome II	2019	8	0.939	0.919	0.946	0.928	1123
Rome II	2019	9	0.932	0.921	0.940	0.929	680

85 Table S13: The monthly medians of the daily P80-P20 values for the SSA from the Skyrad 4.2 and MRI inversions. We also added the % calibration differences between the calibration transfer from the PFRs and the ILP both from Skyrad 4.2 and MRI.

SSA variability		SKY4.2_500	SKY4.2_870	MRI_500	MRI_87	SKY	-TR	MRI-	TR	
			nm	nm	nm	0 nm				
Locatio	Year	Month	Media	n of daily P80-I	20		ΔV_0	ΔV_0	ΔV_0	ΔV_0
n							%	%	%	%
							500	870	500	870
							nm	nm	nm	nm
Davos II	2018	7	0.0130	0.0223	0.0039	0.0073	-1.05	-1.02	-1.46	-1.21
Davos II	2018	8	0.0093	0.0170	0.0033	0.0065	-1.60	-1.81	-1.07	-4.04

Davos II	2018	9	0.0077	0.0158	0.0037	0.0052	-1.28	-1.07	-0.32	-0.43
Davos II	2018	10	0.0120	0.0203	0.0049	0.0089	-1.27	-0.75	-0.74	0.65
Rome II	2019	5	0.0093	0.0097	0.0061	0.0068	-3.09	-1.14	-2.73	-1.33
Rome II	2019	6	0.0108	0.0093	0.0060	0.0052	-2.73	-1.98	-2.51	-1.97
Rome II	2019	7	0.0087	0.0080	0.0059	0.0048	-3.49	-2.83	-3.96	-3.14
Rome II	2019	8	0.0068	0.0078	0.0053	0.0053	-2.51	-1.76	-2.69	-1.92
Rome II	2019	9	0.0121	0.0124	0.0067	0.0068	-3.21	-2.05	-2.80	-2.36

90 S12. Air mass dependence of AOD differences

Table S14: The AOD difference between the AOD from the Skyrad 4.2 inversions and the AOD from the PFR for different subsets of the air mass separately (no smaller than 2 and no larger than 1.5).

Location	Air mass	Median AOD difference		Number of data
		500 nm	870 nm	
DAVOS	>=2	-0.003	0.000	277
ROME	>=2	-0.005	0.000	201
DAVOS	<=1.5	0.000	0.001	443
ROME	<=1.5	-0.012	-0.004	743

Table S15: Least squares-linear fit of the AOD difference between the AOD from the Skyrad 4.2 inversions and the AOD from the PFR in relation to the air mass and the root mean square error (RMSE) of the fit.

Linear fit of AOD difference in relation to the air mass

Location	Wavelen gth (nm)	Slope	Intercept	RMSE	Number of measurements
DAVOS	500	-0.001	-0.001	0.009	1129
ROME	500	0.008	-0.022	0.010	1231
DAVOS	870	-0.001	0.002	0.004	1129
ROME	870	0.004	-0.008	0.007	1231

95 Table S16: List of abbreviations.

GAW-PFR	Global Atmospheric Watch-Precision Filter Radiometer
ESR	European Skynet Radiometers network
AERONET	Aerosol Robotic Network
WMO	World Meteorological Organization
CEReS	Center for Environmental Remote Sensing
PFR	Precision Filter Radiometer
CIMEL	CIMEL sun and sky photometer
РОМ	PREDE-POM sun and sky radiometer

ILP	Improved Langley Plot method						
SLP	Standard Langley Plot method						
FRC	Filter Radiometer Comparison						
QUATRAM	Quality and Traceability of Atmospheric Aerosol Measurements						
AOD	Aerosol Optical Depth						
DSI	Direct Solar Irradiance						
NSR	Normalized Sky Radiance						
SSA	Single Scattering Albedo						
sc-AOD	Scattering Aerosol Optical Depth						
AE	Angström Exponent						
RRI	Real part of the aerosol Refractive Index						
IRI	Imaginary part of the aerosol Refractive Index						
SA	Surface Albedo						
TOC	Total Ozone Column						
Р	Surface Pressure						

NO2	Nitrogen Dioxide
SVA	Solid View Angle
FOV	Field-of-View Angle
FWHM	Full-Width-at-Half-Maximum
σ	Standard Deviation
CV%	Coefficient of Variation
BRDF	Bidirectional Reflectance Distribution Function
Skyrad 4.2	Skyrad pack code version 4.2
MRI	Skyrad pack MRI version 2
DAV	Davos
ROM	Rome