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Abstract. The climate impact of persistent aircraft con-
trails is currently estimated to be comparable to that due
to aviation-emitted CO2. A potential near-term and low-
cost mitigation option is contrail avoidance, which involves
rerouting aircraft around ice-supersaturated regions, prevent-
ing the formation of persistent contrails. Current forecasting
methods for these regions of ice supersaturation have been
found to be inaccurate when compared to in situ measure-
ments. Further assessment and improvements of the quality
of these predictions can be realized by comparison with ob-
servations of persistent contrails, such as those found in satel-
lite imagery. In order to further enable comparison between
these observations and contrail predictions, we develop a
deep learning algorithm to estimate contrail altitudes based
on GOES-16 Advanced Baseline Imager (ABI) infrared im-
agery. This algorithm is trained using a dataset of 3267 con-
trails found within Cloud–Aerosol Lidar with Orthogonal
Polarization (CALIOP) data and achieves a root mean square
error (RMSE) of 570 m. The altitude estimation algorithm
outputs probability distributions for the contrail top altitude
in order to represent predictive uncertainty. The 95 % confi-
dence intervals constructed using these distributions, which
are shown to contain approximately 95 % of the contrail data
points, are found to be 2.2 km thick on average. These inter-
vals are found to be 34.1 % smaller than the 95 % confidence
intervals constructed using flight altitude information alone,
which are 3.3 km thick on average. Furthermore, we show
that the contrail altitude estimates are consistent in time and,

in combination with contrail detections, can be used to ob-
serve the persistence and three-dimensional (3D) evolution
of contrail-forming regions from satellite images alone.

1 Introduction

Current estimates attribute more than half of aviation’s cli-
mate impact to contrails (Lee et al., 2020), the ice clouds
that form behind aircraft due to mixing of the engine exhaust
with the ambient air. Most contrails disappear within minutes
after their formation, but when the ambient air is supersatu-
rated with respect to ice they can persist for several hours
(Kärcher, 2018). Several options for mitigation of the cli-
mate impact of contrails have been proposed, such as contrail
avoidance and adopting fuels with lower soot particle emis-
sions (Teoh et al., 2020, 2022; Burkhardt et al., 2018; Voigt et
al., 2021). Contrail avoidance involves small changes in air-
craft altitude (±2000 ft) to fly around ice-supersaturated re-
gions (Sausen et al., 2023), which have been shown to be hor-
izontally wide but vertically thin (Gierens and Spichtinger,
2000; Spichtinger et al., 2003a). The associated trade-off be-
tween additional fuel burn and avoided contrail climate im-
pact has been quantified in modeling studies, indicating that
fuel burn penalties smaller than 1 % (for rerouted flights)
would suffice for halving the radiative impact of contrails
(Teoh et al., 2020). These studies assume that the regions
to avoid are accurately predicted by weather data, whereas
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recent investigations find that the skill of existing numerical
weather prediction models in capturing ice supersaturation is
limited (Gierens et al., 2020a; Agarwal et al., 2022; Sausen
et al., 2023; Geraedts et al., 2023). Inaccurate forecasts may
lead to unnecessary deviations (and potentially fuel burn) as
well as additional climate impact. As such, the evaluation
and improvement of contrail forecasting methods are directly
relevant to assessment and implementation of the contrail
avoidance concept.

Predictions of contrail formation, persistence, and evolu-
tion can be evaluated and improved using in situ and re-
mote sensing measurements (Schumann et al., 2017). In situ
measurements can provide information on the microphysi-
cal properties of a contrail at a great level of detail, whereas
remote sensing allows for observations at high temporal fre-
quency and large spatial coverage. The introduction of con-
trail detection methods for infrared imagery captured by
geostationary satellites constitutes one opportunity to obtain
large amounts of data that can be used for the evaluation
of contrail predictions (Meijer et al., 2022; Ng et al., 2023;
Geraedts et al., 2023). However, existing contrail detection
methods do not directly provide estimates of the contrail al-
titude. Given the significance of the vertical position of ice
supersaturation, and thus contrails, in the context of contrail
avoidance, knowledge of contrail altitudes is valuable for the
assessment and improvement of contrail forecasting meth-
ods.

Multiple approaches for the retrieval of cloud-top altitude
using infrared satellite imagery exist. Fundamentally, these
retrieval algorithms utilize the fact that the infrared radiance
observed by the satellite instrument is a combination of that
emitted by the surface, atmosphere, and cloud itself (Liou,
2002). These approaches include radiance fitting (Schmetz et
al., 1993), radiance ratioing (Smith et al., 1970), optimal esti-
mation (Heidinger, 2011), and machine learning (Kox et al.,
2014; Strandgren et al., 2017a, b). Thin cirrus clouds, which
are microphysically similar to aged contrails (Heymsfield et
al., 2010), are reported to lead to larger cloud-top altitude re-
trieval errors than other cloud types (Hamann et al., 2014;
Chang et al., 2010). Kox et al. (2014) and Strandgren et al.
(2017a) address these difficulties by developing the COCS
and CiPS neural networks using collocated Cloud–Aerosol
Lidar with Orthogonal Polarization (CALIOP) and SEVIRI
image data in order to retrieve cirrus properties from mea-
surements by SEVIRI only. The COCS and CiPS algorithms
have also been applied to estimate contrail altitude and op-
tical thickness (Vázquez-Navarro et al., 2015; Schumann et
al., 2021; Wang et al., 2023). The ability of such cirrus al-
titude estimation algorithms to estimate contrail altitude has
not been tested extensively. Given that younger contrails dif-
fer from natural cirrus in their microphysical, optical, and
geometrical properties (Kärcher, 2018), such cirrus altitude
estimation algorithms may not be appropriate for contrails
detected in satellite imagery. To investigate this, we also de-

velop cirrus altitude estimation algorithms in this work and
evaluate their performance when applied to contrails.

In this paper, we present an algorithm for estimating the
altitude of a contrail by use of GOES-16 Advanced Base-
line Imager (ABI) infrared satellite imagery. The algorithm
is used in combination with the contrail detection method
that was introduced by Meijer et al. (2022) to provide three-
dimensional (3D) estimates of contrail locations above the
contiguous United States. To develop this algorithm, con-
trails detected in GOES-16 ABI imagery are collocated with
measurements by CALIOP. The resulting dataset of 3267
contrails is analyzed for spatiotemporal trends in contrail
altitudes and is compared with flight Automatic Dependent
Surveillance-Broadcast (ADS-B) data and measurements by
GCOS Reference Upper-Air Network (GRUAN) radioson-
des. The dataset is then used to train a convolutional neural
network for the task of contrail altitude estimation. Similar to
Kox et al. (2014) and Strandgren et al. (2017a), we also de-
velop cirrus altitude estimation algorithms using collocated
CALIOP L2 and GOES-16 ABI data to investigate their suit-
ability for estimating contrail altitude and quantify the bene-
fit of training on contrail data specifically. The estimates by
the finalized algorithm are compared with flight altitudes de-
rived from ADS-B data. Finally, the algorithm is applied to
a full day of data in order to investigate the persistence and
evolution of contrail-forming regions in 3D.

2 Methods

2.1 CALIOP and IIR data

The Cloud–Aerosol Lidar with Orthogonal Polarization
(CALIOP) is an instrument aboard the polar-orbiting
CALIPSO satellite (Winker et al., 2010). The CALIPSO
satellite was part of the A-train satellite constellation un-
til September 2018, when it was placed in a different or-
bit together with Cloudsat (Braun et al., 2019). CALIOP
measures the attenuated backscatter at the 532 and 1064 nm
wavelengths, which are disseminated as the CALIOP L1B
product. Additional processing involving the identification
of cloud and aerosol layers, as well as extinction retrieval,
is performed to create the CALIOP L2 products (Winker et
al., 2009). Both the CALIOP L1B and L2 products are used
for collocation with GOES-16 ABI imagery.

The CALIPSO satellite carries two other instruments: the
Wide Field Camera (WFC) and the Imaging Infrared Ra-
diometer (IIR). The IIR instrument measures infrared radi-
ances at three central wavelengths: 8.6, 10.6, and 12.0 µm
(Garnier et al., 2018). The imagery from the 10.6 µm band
and its difference with the 12.0 µm band are used during the
collocation process for visualization and manual inspection
(see Figs. S4 and S5 in the Supplement).
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2.2 GOES-16 Advanced Baseline Imager

The Advanced Baseline Imager (ABI) is a passive imaging
radiometer that is carried aboard the GOES-R satellite series
(Kalluri et al., 2018). The ABI features 16 imaging bands,
10 of which are in the infrared part of the electromagnetic
spectrum. The nadir resolution of the ABI infrared bands is
2 km, and imagery is available every 5 min for the contigu-
ous United States (CONUS) and every 10–15 min for the full
disk. The contrail detection algorithm by Meijer et al. (2022)
uses orthographically projected GOES-16 ABI imagery, cen-
tered on CONUS. The boundaries of the domain where con-
trail detections are available are shown in Fig. 2.

2.3 ERA5

The ERA5 reanalysis (Hersbach et al., 2020) is used to pro-
vide wind data for the advection performed during the collo-
cation process and comparisons to flight data. Geopotential
data are used for conversion between geometric altitude and
pressure altitude. The land–sea mask is used as an input for
the altitude estimation models.

2.4 Collocation

Contrails have previously been located in CALIOP data
by use of contrail detections in Aqua MODIS imagery
(Iwabuchi et al., 2012). At the time, the Aqua satellite was
in the same orbit as CALIPSO such that the time difference
between overpasses by the two satellites was around 75 s.
Collocation of contrails detected on imagery of the GOES-16
ABI is different in that the two satellites do not share an orbit.
The collocation is performed in two steps. The first “coarse”
step considers whether contrails are detected within a 50 km
distance of the ground track of CALIPSO (see Sect. S1 of
the Supplement for more details). The second “fine” step
accounts for advection of contrails between the CALIPSO
overpass time and the GOES-16 ABI capture time, as well
as parallax displacement. The collocation is performed for
the years 2018 to 2022: the resulting dataset features 3267
collocated contrails.

An example collocation is shown in Fig. 1, which displays
the CALIOP L1B attenuated backscatter and the correspond-
ing IIR brightness temperature difference (BTD) imagery for
a segment of an overpass on 8 August 2018. The attenu-
ated backscatter is filtered to remove noise using the meth-
ods described in Sect. S1. The GOES-16 image shows that
the CALIPSO satellite passes over four detected contrails,
which are indicated using colored boundaries, with their cor-
responding cross-sections in the CALIOP L1B denoted by
bounding boxes (and numbers). The approximate locations
of these collocated contrails are also shown in the IIR im-
age in Fig. 1. The first contrail encountered in Fig. 1 appears
to be a thinner and potentially younger contrail embedded
in another cloud and shows up as a narrow region of in-

creased backscatter (white rather than gray) in the CALIOP
L1B data. Contrail 2 has a larger vertical extent (> 1 km)
when compared to the other contrail cross-sections found in
this segment, and it also appears to be wider than the other
contrails when viewed in the GOES-16 image. This particu-
lar contrail may actually be two different contrails given that
the structure in bounding box 2 in the CALIOP L1B data
shows two backscatter maxima, but these are not discernible
as such at the resolution of the GOES-16 image (∼ 2 km) or
the IIR image (1 km). The increased width of this contrail in
the CALIOP data is partially caused by the angle between the
CALIPSO ground track and the contrail. When correcting for
this angle, however, contrail 2 is still found to be wider than
contrails 3 and 4. The final two collocated contrails (3 and 4
in Fig. 1) are of similar vertical and horizontal extent, both
featuring a horizontally displaced fall streak as a result of
vertical wind shear. The GOES-16 ABI image shows several
cirrus clouds (such as the one between contrails 2 and 3) that
could be contrails that are no longer recognized as such by
the detection algorithm and which also seem to correspond to
areas of increased backscatter (in gray) in the CALIOP L1B
data. This highlights that, if a different contrail detection al-
gorithm is used, the collocation process could be repeated to
find more and/or different contrails.

In addition to locating contrails in CALIOP L1B data, we
collocate 5 km cirrus layers – as identified in the CALIOP L2
product – with GOES-16 ABI data. The collocation process
is nearly identical to that for contrails, except that the con-
trail detections described in Sect. 2.2 are no longer involved.
This “cirrus dataset” is created to develop cirrus altitude es-
timation algorithms similar to that presented in Strandgren et
al. (2017a), but for data from GOES-16 ABI rather than Me-
teosat SEVIRI. These algorithms are then assessed on their
ability to estimate contrail altitudes and compared to algo-
rithms developed using contrail data specifically. The possi-
bility exists that contrails are recognized as cirrus layers by
the CALIOP processing algorithms and thus appear in the
CALIOP L2 5 km cloud layer product. These layers are re-
moved from the cirrus dataset using the dataset of collocated
contrails. More details on the collocation processes for both
the contrail and cirrus datasets are given in the Supplement
(Sects. S1 and S2).

2.5 Correction of parallax displacement

Parallax displacement refers to the apparent displacement of
clouds on satellite imagery that results from the incorrect ge-
olocation of pixels containing the cloud in question. The ef-
fect is particularly noticeable at low satellite viewing angles
and can amount to a displacement of the order of 10 km over
the contiguous United States when viewed by the GOES-16
ABI. As such, neglecting this effect during the collocation
procedure could lead to erroneous results. We correct the
parallax effect using Vicente’s method (Vicente et al., 2002;
Bieliński, 2020).
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Figure 1. n example collocation of contrails detected on GOES-16 ABI imagery (c) in CALIOP L1 data (b). The IIR brightness temperature
difference image corresponding to the CALIOP segment is shown as well (a). The GOES-16 ABI image is a false-color ash product, created
using the ABI-L2-MCMIPC data for 8 August 2018 at 19:30 UTC. Detected contrails are indicated by their boundaries, which are colored
for collocated contrails and white for non-collocated contrails. The corresponding cross-sections in the CALIOP L1B data are shown using
bounding boxes, and their approximate location in the IIR image is shown using square markers of the same color. The ground track of the
CALIPSO satellite is also shown in the GOES-16 ABI and IIR images, with the arrows indicating the direction of movement. The CALIOP
color map is the one provided by Kuma (2010).

2.6 Advection

As part of the collocation procedure described in Sect. 2.4,
we account for the advection of contrails by wind. The same
advection process is also utilized when comparing flight data
to contrail observations. This advection is done by means of
the ERA5 data described in Sect. 2.3. The ERA5 wind data
are interpolated by means of a bicubic interpolation in lon-
gitude and latitude (Press et al., 2007), a quadratic polyno-
mial interpolation in pressure, and a linear interpolation in
time. The advection process is advanced in time by use of the
fourth-order adaptive Runge–Kutta method from Fehlberg
(1970) implemented in the GNU Scientific Library (Galassi
et al., 2002). The vertical position of the contrails or flight
segments is affected by the vertical wind speeds from ERA5,
but no ice particle sedimentation processes are accounted for.

2.7 Conversion between geometric, geopotential, and
pressure altitudes

The data from the CALIOP instrument use the altitude above
mean sea level (a.m.s.l.) as the vertical ordinate, thus being a
geometric altitude. In contrast, most numerical weather pre-
diction and ADS-B data utilize pressure (or pressure altitude)

as vertical coordinates. Therefore, the process of advecting
contrails and flight segments, as well as the comparison of
collocated contrail altitudes with flight data, requires the con-
version between geometric and pressure altitude. This con-
version is performed by use of ERA5 geopotential altitude
data, which also utilize the altitude above mean sea level as
the datum. We assume that the geopotential altitude is equal
to the geometric altitude: this leads to errors at higher alti-
tudes as the gravitational field of the Earth weakens. Using
the fact that the gravitational acceleration is proportional to
the inverse square of the distance from the Earth’s center, we
estimate that this assumption leads to errors of ∼ 10 m when
applied to objects around 10 km altitude.

Utilizing this assumption, we find the pressure altitude
corresponding to a given object’s geometric altitude as fol-
lows. We first interpolate the ERA5 geopotential data to the
time and horizontal location of the object at multiple pressure
levels. We then estimate the pressure at which the geopo-
tential altitude of ERA5 equals the geometric altitude of the
object. This results in an estimated pressure for the object.
Finally, to convert this pressure to the pressure altitude, we
use the US standard atmosphere (Champion et al., 1985). The
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process of converting a pressure (altitude) to a geometric al-
titude follows these steps in reverse.

2.8 GRUAN data

Humidity and temperature profiles measured by radiosondes
in the GCOS Reference Upper-Air Network (GRUAN) are
used to compare the altitudes of regions conducive to persis-
tent contrail formation with the altitudes found in the collo-
cated CALIOP contrail dataset (Dirksen et al., 2014). The
profiles supplied by GRUAN have already been corrected
for radiosonde limitations such as the radiation dry bias and
temperature-dependent lag.

We use data from the Lamont (SGP) site as this is located
within the region for which contrail detections are avail-
able, and it also has more than 100 Vaisala RS92 sonde
launches per year for the period between 2009 and 2018
(Sommer et al., 2016). For the profiles corresponding to these
launches, we compute the relative humidity with respect to
ice by use of the approximations from Hyland and Hexler
(1983). This relative humidity with respect to ice is used to
ascertain whether ice supersaturation (ISS) is present, which
is combined with the Schmidt–Appleman criterion (SAC)
(Schmidt, 1941; Appleman, 1953) to evaluate whether per-
sistent contrails may form. The SAC is computed by use of
the approximation from Schumann (1996), using the param-
eters shown in Table S2 of the Supplement.

2.9 ADS-B data and comparison of flight and contrail
altitudes

Automatic Dependent Surveillance-Broadcast (ADS-B) data
are used for comparing observed and predicted contrail al-
titudes with flight altitudes. We use a mixture of data from
the OpenSky database (Schäfer et al., 2014) and FlightAware
(for times in 2023). The OpenSky data are used for compar-
ison with the contrail altitude estimation performance on the
test set in Sect. 3, whereas the FlightAware data are used for
analyzing contrail detections and altitude estimates for a full
day of data in Sect. 4. The OpenSky network does not have
complete coverage throughout the domain for which we have
contrail detections, and we thus use these data only in areas
of the domain where full coverage is available.

When comparing flight and contrail altitudes, we account
for the motion of the contrail between the time of forma-
tion and the time we observe it in a satellite image by ad-
vecting flight segments with ERA5 wind data as described in
Sect. 2.6. We advect flight data from the 2 h leading up to the
observation of a particular contrail. This choice of advecting
only the past 2 h of flight data is motivated by the results from
Chevallier et al. (2023), who show that lifetimes of contrails
observed in GOES-16 ABI imagery tend to be shorter than
2 h. Only advected flight segments that are sufficiently close
– as determined by an estimate of ERA5 wind uncertainty
and the duration of the advection process – to the contrail

are considered in the comparison. The altitudes of the flight
segments that are sufficiently close to the contrail are used to
create a distribution of the distance flown at every 10th flight
level. Further details of this process can be found in Sect. S9.

2.10 Machine learning approaches

We develop both contrail and cirrus altitude estimation tech-
niques using machine learning algorithms. Specifically, we
use neural networks (Goodfellow et al., 2016) to “learn” a
mapping between the input variables (e.g., GOES-16 ABI
infrared brightness temperatures) and the contrail/cirrus top
altitude. Neural networks are capable of learning nonlinear
relationships from data and have been successfully applied to
remote sensing retrieval problems (Kox et al., 2014; Strand-
gren et al., 2017a; Amell et al., 2022).

We broadly distinguish between two neural network mod-
els: pixel-by-pixel models and image-level models. Pixel-
by-pixel models, such as those developed by Strandgren et
al. (2017a), operate independently on each individual pixel
of the input satellite image. Image-level models consider
(part of) the image simultaneously. Although the pixel-by-
pixel option may lead to models containing fewer parameters
and better interpretability of the results, image-level models
have been shown to perform better for certain retrieval tasks
(Amell et al., 2022). For cloud altitude estimation, it could
be that viewing a satellite image (rather than a single pixel)
allows a machine learning model to identify cloud overlap,
a situation that is known to lead to less accurate predictions
by some approaches (Heidinger, 2011), and incorporate this
information into the resulting prediction. For the pixel-by-
pixel models, we consider multilayer perceptrons (MLPs)
with varying numbers and sizes of hidden layers, as well as
activation functions. For the image-level model, the convo-
lutional neural network (CNN) from Amell et al. (2022) is
used. More details on the architecture of these neural net-
works can be found in the Supplement in Sect. S6.

The pixel-by-pixel models obtain the relevant inputs for a
given collocated GOES-16 ABI pixel and are trained to out-
put the CALIOP cloud-top altitude that was collocated with
the relevant pixel. For the image-level models, we extract
patches of 32× 32 px that contain one or more collocated
GOES-16 ABI pixels and present these to the CNN, similar
to Amell et al. (2022). The CNN predicts the cloud-top alti-
tude for all pixels in the input image, but only the pixels in
the output image which have CALIOP collocations are used
during training: an example can be found in Fig. S11. When
using the CNN for contrail altitude predictions after training
is finished, the resulting output (for the whole image) is only
considered for pixels where contrails are detected.

We use all 10 of the GOES-16 ABI infrared channels as in-
put, as well as the latitude, the satellite viewing zenith angle,
and an ERA5 land–sea mask. Temporal information is repre-
sented similar to Strandgren et al. (2017a) by two additional
inputs: sin

(
2π DOY

365

)
and cos

(
2π DOY

365

)
, where DOY is the
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day of the year. The pixel-by-pixel models also receive the re-
gional maximum brightness temperature for all 10 of the ABI
channels, also suggested by Strandgren et al. (2017a). This
regional maximum is the maximum in a 29× 29 px patch
centered on the collocated ABI pixel: this approximately cor-
responds to the region size used for SEVIRI by Strandgren
et al. (2017a). The image-level models also receive a cloud
mask as input. For the cirrus dataset, these cloud masks are
obtained from the GOES-R ABI cloud-top phase (ABI-L2-
ACTP) product (Heidinger et al., 2020). In this mask, the pix-
els for which the product indicates that the cloud-top phase
is ice and the data quality flag is “overall good quality” are
set to 1, whereas other pixels take the value of 0. For the
contrail dataset, the outputs of the contrail detection algo-
rithm are used as cloud masks. The CNN for contrail altitude
estimation is trained by fine-tuning the CNN trained for cir-
rus altitude estimation on the contrail dataset. This avoids
overfitting the CNN, which has significantly more param-
eters than the MLP models, to the relatively small contrail
dataset. The fine-tuning process starts with the CNN trained
on cirrus data. Then, all parameters except for those in the
last two layers of the CNN are fixed to the values obtained
by training on cirrus data. The parameter values of the last
two network layers are optimized by training on the contrail
dataset.

With the exception of the ERA5 land–sea mask and some
of the inputs to the ACTP processing algorithm (Heidinger et
al., 2020), all inputs to the neural networks used for altitude
estimation are derived from observed satellite radiances. Pre-
vious machine learning approaches for cirrus altitude estima-
tion have made use of numerical weather prediction (NWP)
data such as surface temperature (Kox et al., 2014; Strand-
gren et al., 2017a). Motivated by the potential of using the re-
sulting contrail altitude estimates for the comparison to (and
potentially assimilation with) NWP data, we choose not to
include these inputs such that the resulting altitude estimates
represent an independent piece of information.

For training of the neural networks, 80 % of the available
data (for both the cirrus and contrail dataset) are used, and
the remaining 20 % are split evenly between a validation and
test set. The validation set is used during training to monitor
overfitting, and the test set is used to evaluate the resulting
models. The randomization is performed by grouping collo-
cations by their CALIPSO overpass and then selecting the
overpasses for the training, validation, and test sets at ran-
dom. This avoids placing two or more nearby (or even neigh-
boring) collocated pixels in the training and test sets, which
could lead to an unrealistic evaluation of the algorithm’s per-
formance on unseen data.

In order to model predictive uncertainty, we use quan-
tile regression neural networks (Pfreundschuh et al., 2018).
Rather than having a neural network output a single esti-
mate of the cloud-top altitude, we output an estimate for sev-
eral quantiles of the cumulative distribution function. These
models are trained using the quantile loss function from Pfre-

undschuh et al. (2018). A known issue with quantile regres-
sion neural networks is the phenomenon of quantile cross-
ing, where the “quantiles” predicted by the network are not
monotonically increasing. We address this in a way similar
to Amell et al. (2022) by fitting an isotonic regression to
the neural network outputs. The frequency of occurrence and
magnitude of these quantile crossings will be discussed in the
Results section.

3 Results

3.1 Contrail dataset statistics

The dataset consists of 3267 contrails collocated between
CALIOP L1 and GOES-16 ABI data for the years 2018 to
2022. The location of all contrails is shown in Fig. 2. The
mean contrail top altitude decreases with increasing latitude,
as was found by Iwabuchi et al. (2012). The variance of this
contrail top altitude distribution is found to increase with lati-
tude. The location of the tropopause is known to decrease, on
average, with increasing latitude. Given that ice supersatura-
tion, a necessary condition for contrail persistence, is mostly
found below the tropopause (Spichtinger et al., 2003a), this
is a likely explanation for the observed decrease in the con-
trail top altitude with increasing latitude. Further analysis of
the location of the collocated contrails relative to the local
tropopause can be found in Sect. S5. We find that the ma-
jority (86.6 %) of collocated contrails are located below the
local tropopause.

In Fig. 3 we show the seasonal distribution of the con-
trail top altitudes within the dataset, accompanied by vertical
distributions for persistent contrail formation conditions and
flight traffic. The data for persistent contrail formation are
obtained from GRUAN profiles from the SGP site (location
shown in the inset in Fig. 3). The pressure altitude, which is
used as the vertical coordinate in Fig. 3, is defined as the alti-
tude in the International Standard Atmosphere corresponding
to the pressure at which the contrail top is found. Since air-
craft use pressure altitudes for vertical navigation, some sea-
sonal variation in geometric contrail top altitudes (as mea-
sured by CALIOP) is expected to be caused by changes in
temperature and thus the geometric altitude of certain pres-
sure levels. To exclude this seasonal variation in the geomet-
ric altitude of a particular pressure level, Fig. 3 uses the pres-
sure altitude as its vertical ordinate. Finally, the flight altitude
distributions in Fig. 3 result from 1000 randomly sampled
hours of ADS-B data in the years 2018 and 2019. Given the
different locations and times at which the data in the three
different plots are collected, Fig. 3 serves mostly to compare
seasonal trends in the altitude of flights, regions conducive to
persistent contrail formation, and observed contrail top alti-
tudes.

On average, contrails are located at a pressure altitude of
11.1 km during winter (DJF) and 11.8 km during summer
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Figure 2. Location of the 3267 contrails that were collocated between CALIOP and GOES-16 ABI data, over the years 2018 to 2022. The
red line indicates the boundary of the domain for which contrail detections are available. The smaller plots on the side of the main plot show
the variation of contrail top altitude with longitude and latitude. All altitudes in this figure refer to the geometric top altitude of the contrails.

Figure 3. Kernel density estimates for the vertical distribution of contrail top altitude, persistent contrail-forming regions, and flight traffic
as a function of season. Each curve integrates to 1. The horizontal gray lines show flight levels. The persistent contrail-forming regions are
defined as ice supersaturation (ISS) regions that satisfy the Schmidt–Appleman criterion (SAC). The flight distribution is weighted by the
distance flown at each altitude and is based on OpenSky ADS-B data from 1000 randomly sampled hours in the years 2018 and 2019. The
ISS and SAC data are obtained from GRUAN profiles at the SGP site, whose location is indicated in the inset. The GRUAN data cover the
years 2009 to 2021.
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(JJA). This 700 m seasonal difference in the mean contrail lo-
cation is statistically significant using Welch’s t test (Welch,
1947) at p= 0.01. In terms of geometric altitude, the differ-
ence between winter (11.3 km mean) and summer (12.2 km
mean) is larger at 0.9 km than the pressure altitude differ-
ence at the same level of statistical significance. The vertical
distribution of regions satisfying SAC and ISS (middle plot
in Fig. 3) also features higher altitudes during summer and
lower altitudes in winter. Such seasonal changes in the ver-
tical distribution of ice supersaturation have been reported
by other studies (Spichtinger et al., 2003a; Treffeisen et al.,
2007; Gierens et al., 2020b) that use radiosondes, also find-
ing that ice supersaturation is on average located at higher
altitudes during Northern Hemisphere spring–summer than
in Northern Hemisphere winter. The contrail top altitudes in
Fig. 3 are generally found to be higher than the regions that
are ice-supersaturated and satisfy the Schmidt–Appleman
criterion. Given the limited spatial coverage of the GRUAN
data compared to the contrail top altitudes (whose spatial dis-
tribution is shown in Fig. 2) as well as the different times at
which these data were captured, this discrepancy is likely due
to sampling effects.

The flight altitude distributions in Fig. 3 show that flight
distance peaks at flight levels 340–360 (10.5 to 11 km). Sea-
sonal changes in the weighted means of these distributions
are all smaller than 100 m. Thus, the vertical variation of
the observed contrail top altitude distributions cannot be ex-
plained by seasonal patterns in flight altitude alone: con-
sideration of the seasonal variation in the location of per-
sistent contrail formation conditions is necessary. This sea-
sonal variation in the vertical location of persistent contrail-
forming conditions is likely due to seasonal patterns in
tropopause pressure, as ISS regions are known to be located
closely below the tropopause (Spichtinger et al., 2003a; Pet-
zold et al., 2020).

The single GRUAN site for which data are shown in Fig. 3
does not provide full coverage of the spatial domain in which
contrails are collocated (see Fig. 2), nor does it have a sig-
nificant number of sonde launches for the period 2018–2022
(31 versus 4486 launches between 2009 and 2017). Although
statistics on the vertical distribution of ISS are known to
vary with location and time (Spichtinger et al., 2003a, b; Tr-
effeisen et al., 2007; Lamquin et al., 2012; Gierens et al.,
2020b), Petzold et al. (2020) analyzed 15 years of aircraft in
situ measurements and did not find any long-term trends in
the occurrence of ISS besides seasonal variations. Similarly,
we find that for the 9 years between 2009 and 2018 the sea-
sonal trends in the altitude of regions satisfying both the SAC
and ISS measured at the SGP site are qualitatively consistent
(see Fig. S8).

3.2 Algorithm performance

This section evaluates the performance of the four machine
learning approaches to contrail altitude estimation described

in Sect. 2.10 by comparing the predicted altitudes to those
measured by CALIOP for a subset of data not used during
training (i.e., the test set). The evaluation of the predicted
probability distributions for contrail top altitude is the subject
of Sect. 3.3: this section focuses only on the means of these
distributions.

The performance of the four different altitude estimation
models on the contrail test dataset is shown in Fig. 4. These
four models differ in the dataset(s) they have been trained
(cirrus, contrails, or both) on and whether they consider pix-
els individually (MLP) or not (CNN). The cirrus altitude es-
timation models (Cirrus MLP and Cirrus CNN) are included
in this comparison in order to evaluate their suitability for
contrail altitude estimation, as well as the benefits of training
an altitude estimation model on contrail data rather than cir-
rus data only. The two panels on the left in Fig. 4 show the
mean errors as a function of altitude as a percentage of the
ground-truth altitude. For all altitudes, the two MLP mod-
els show larger absolute errors than the two CNN models.
The two MLP models also show larger relative errors for
low (< 10 km) and high (> 14 km) contrails. The mean er-
ror (rather than the mean absolute error) plot in Fig. 4 illus-
trates that the MLP models have the tendency to overpredict
the altitude for “low contrails” and underpredict the altitude
for “high contrails”. The mean errors for the two CNN mod-
els are more uniform with altitude. The cirrus CNN achieves
lower errors for the lower and upper ends of the altitude range
considered here (8–15 km) than the contrail CNN, but the op-
posite is true for altitudes between 10 and 12 km.

The scatterplots on the right in Fig. 4 illustrate the spread
between the ground truth (CALIOP altitudes) and the model
estimates. We see that three out of four models achieve a
root mean square error (RMSE) smaller than 1 km, with the
exception being the Cirrus MLP (which operates pixel by
pixel). This particular model, which is trained using cirrus
data only, performs worse on the contrail test set (RMSE
of 2.87 km) than on a dataset of unseen cirrus data points
(RMSE of 1.05 km, shown in Sect. S7). This Cirrus MLP
model is similar in design and performance to that introduced
by Strandgren et al. (2017b), for which a detailed comparison
can be found in Sect. S7.

The RMSE of a model can also be affected by the dataset
it is evaluated on. For example, a model that always over-
predicts by 10 % would have a higher RMSE on a dataset
that has more variance. For this reason, we also show the
coefficient of determination R2 in the scatterplots in Fig. 4,
which takes such dependency on the underlying data into ac-
count. For the Cirrus MLP evaluated on the contrail test set,
the R2 is −0.39. This can be interpreted as the model be-
ing worse than using the mean of the evaluation data as a
predictor. However, when evaluated on an unseen cirrus data
point we find an R2 of 0.77, indicating that the Cirrus MLP
does have “skill” for the prediction of cirrus altitude estima-
tion. We thus see that the performance of the Cirrus MLP – a
cirrus altitude estimation algorithm that operates on a pixel-
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Figure 4. Performance of the pixel-by-pixel (MLP) and image-based (CNN) models on the contrail test dataset. Panels (a) and (b) show the
relative and absolute errors as a function of the contrail top altitude. The scatterplots in panels (c) to (f) show the estimates by the algorithms
for all data points within the test set, as well as the coefficient of determination R2 and the root mean square error in kilometers. Each point
corresponds to a collocated GOES-16 ABI pixel. All altitudes in this figure are geometric ones.

by-pixel basis – on the task of contrail altitude estimation is
lower than what one would expect based on an evaluation
with cirrus data alone. Nonetheless, the results of the other
three algorithms indicate that this “skill gap” can be resolved
by a choice of architecture, training data, or a combination of
these.

For example, the Cirrus CNN algorithm which operates on
multiple pixels simultaneously and was trained with cirrus
data only is found to predict contrail altitudes with skill (R2

of 0.76). Its skill, as measured byR2, is, however, higher on a
set of unseen cirrus data points (0.86) than it is for contrails.
These results suggest that choosing a CNN model architec-
ture over an MLP is beneficial for the performance on both
cirrus and contrail data. Moreover, the Cirrus CNN is found
to perform better in the task of contrail altitude estimation
than the Contrail MLP: an algorithm that was trained using
contrail data.

Referring to Fig. 4, the best-performing algorithm is found
to be the Contrail CNN. This algorithm corresponds to
the Cirrus CNN model that was fine-tuned on the contrail
dataset. It combines the benefits of the choice of architecture
(CNN over MLP) and the exposure to contrail data to achieve
the lowest RMSE of all four algorithms at 570 m. We there-
fore utilize the contrail CNN for the remainder of this work.

3.3 Evaluation of predictive probability distributions

The analysis in the previous section compared the mean
contrail top altitudes estimated by the neural networks with
the corresponding measurements by CALIOP. The best-
performing algorithm, the CNN trained first on cirrus and

then fine-tuned on contrail data (red in Fig. 4), outputs 13
different quantile values that can be utilized to construct a
probability distribution for the contrail top altitude. The es-
timated quantiles are 0.025, 0.05, 0.1, 0.2, . . ., 0.9, 0.95, and
0.975. This section discusses and quantifies the quality of the
distributions constructed using these quantile predictions.

We compare the probability distributions from the CNN
with two “baseline” models: one based on the CALIOP
dataset distribution (a climatology, in a sense) and one based
on the CNN mean and the error distribution on the test
dataset. The first of these models represents the situation a
priori, without any altitude estimation algorithm, where all
that is available are the altitude data of the collocated con-
trails. The second model does include an altitude estimation
algorithm (as it uses the mean from the CNN output) but
without predictive uncertainty, which depends on the algo-
rithm inputs: i.e., it is constant. An example of the probability
density functions (PDFs) for the three models, and the corre-
sponding contrail altitude found by CALIOP, is shown in the
left panel in Fig. 5. More examples can be found in Fig. S14.

One desired property of predictive probability distribu-
tions is that they are calibrated. This means that when the
model says an event should occur with probability 0.2, the
event actually occurs 20 % of the time. We assess this, for
each predicted quantile, by computing the number of times
the CALIOP contrail top altitude is actually below that alti-
tude. As an example, for the quantile value predicted for the
50 % quantile (i.e., the median), we would expect 50 % of
the CALIOP data points to be below that value if the model
is calibrated. By quantifying the fraction of contrails that are
below the altitude predicted for each of the quantiles, the
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Figure 5. (a) Example probability density functions (PDFs) for a collocated GOES-16 ABI pixel from the test dataset, with altitude referring
to geometric altitude. (b) Calibration diagram for the three different models, obtained using all data in the test set. The CRPS values for each
of the three models are also shown. The colors of the lines in both panels and their meaning are identical.

curves shown in the right panel of Fig. 5 are the result. The
closer a particular curve is to the dashed black line, the better
the calibration of the model. Figure 5 shows that the best-
calibrated model is the one based on the CALIOP dataset
distribution, which is expected given that it represents the
distribution of the data directly. The CNN tends to be over-
confident for most predicted probabilities, with the largest
deviations occurring for predictions between probability 0.4
and 0.9. For example, when the CNN predicts that 60 % of
the contrails should be below a particular altitude, Fig. 5 in-
dicates that only 50 % of contrails will actually be found be-
low this altitude. This overconfidence can be corrected by
means of post-processing: we will show in the next section
that the 95 % confidence intervals derived from the CNN pre-
dictions are calibrated, so we do not perform this correction
here. Lastly, Fig. 5 shows that the error statistics model is
overconfident for the majority of predicted probabilities and
is the least-calibrated model considered here.

If a predictive probability distribution is calibrated, we
would also like it to be sharp. That is, most of its proba-
bility mass should be close to the actual observed value (i.e.,
the CALIOP top altitude). To assess this, we use the con-
tinuous ranked probability score (CRPS) (Wilks, 2011). For
a given probability distribution F(y)= P(Y ≤ y) and ob-
served value x, the CRPS is given by the integral

CRPS(F,x)=

∞∫
−∞

[
F(y)− I(y > x)

]2dy , (1)

where I is the indicator function. Note that CRPS(F,x)≥ 0,
and CRPS(F,x)= 0 if F(y)= I(y > x), which corresponds
to a situation where all probability mass is located at the mea-
surement location x. Lower values of the CRPS correspond
to “sharper” probability distributions centered on the mea-

surement x and are thus desirable. The mean CRPS values
obtained for the three models are shown in Fig. 5. The CRPS
values of the CNN (0.31) and the error statistics model (0.33)
are both about 2 times as low as that of the dataset distribu-
tion model (0.65), indicating that the distributions predicted
by these models are sharper when compared to the measure-
ments. The improvement of the CNN CRPS with respect to
that of the error statistics model is not as large: the CNN
CRPS is about 6 % lower. In Sect. S8 we further analyze the
size of the 95 % confidence intervals of the three models and
find that the CNN confidence intervals are smaller than that
from the error statistics model for over half the test set data
points. Thus, the input-dependent predictive uncertainty of
the CNN does provide additional value when compared to the
constant uncertainty approach from the error statistics model.

The issue of quantile crossing was introduced in the Meth-
ods section and occurs when the quantile values that the neu-
ral network outputs are not monotonically increasing, and
therefore do not define a valid probability distribution. In the
test set, we found seven (out of 1344 total GOES-16 ABI
pixels) occurrences, corresponding to a rate of 0.52 %. The
amount by which the quantiles cross is a distance of 38 m
on average with a maximum of 69 m: these values represent
0.1 % deviations from the values for which predictions are
made (of the order of 10 km). These quantile crossings are
corrected by means of an isotonic regression: the effect on
the mean of the distributions is of the order of tens of mi-
crometers.

3.4 Comparison with flight data

This section further evaluates the performance of the contrail
altitude estimation algorithm by comparison with flight data.
Although interactions with wing tip vortices, wind-driven as-
cent and descent, radiative heating and cooling, and ice par-
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ticle sedimentation can play a role, the observed contrail’s
vertical location is expected to be influenced most strongly
by the altitude of the flight that formed it. Thus, the altitudes
of flights near an observed contrail can be used to assess the
correctness and plausibility of a contrail altitude estimate.
Before any such comparison, flight tracks are advected us-
ing ERA5 (Hersbach et al., 2020) wind data to account for
contrail movement after formation.

Only in locations and during times of low air traffic is it
plausible to visually compare observed contrails and their
estimated altitudes with advected flight tracks. An example
of such a situation is shown in Fig. 6, depicting a scene off
the east coast of the United States at 04:00 local time in the
morning. Flight data from the 2 h leading up to the image
were advected to the satellite image observation time. The
flight pressure altitudes are converted to geometric altitudes
by use of ERA5 geopotential data. We also apply a paral-
lax correction to “simulate” where the flight tracks would
have been visible when viewed by the GOES-16 ABI, which
has the effect of further aligning some of the advected flight
tracks with the detected contrails. Figure 6e and 6f show the
altitudes of the advected flight tracks and those estimated
for the contrails. For the contrail top altitudes, the mean of
the distribution estimated by the CNN is shown. The flights
best aligning with the three detected contrails were cruising
at flight levels 380 and 390, which correspond to geometric
altitudes between 11.7 and 12.1 km. The mean of the esti-
mated contrail top altitude of all detected contrail pixels is
11.9 km.

The comparison of flights to contrails is more complicated
in areas of higher traffic density and makes analyses such
as that presented in Fig. 6 infeasible given currently avail-
able tools. For these cases, we compare estimated contrail
top altitudes to the distribution of distance flown rather than
individual flight tracks and their altitudes, as shown in Fig. 7.
The rationale for using these distributions of distance flown
is that, in the absence of knowledge on the location of ice-
supersaturated regions, they can be used to form an “a pri-
ori” confidence interval of the vertical location of the con-
trail. Figure 7 shows that all but four contrails (i.e., 7.5 %)
are found within the 95 % confidence interval predicted by
the model, which shows that these intervals are close to cal-
ibrated. Furthermore, the intervals that capture 95 % of the
distance flown (not shown) are larger than the 95 % confi-
dence intervals for the contrail top altitude distribution for all
these data points: using the contrail top altitude distributions
from the model narrows down the 95 % confidence interval
of contrail altitude from 3.3 to 2.2 km, on average.

4 A day of 3D contrail coverage over the United States

The previously discussed analyses of the contrail altitude es-
timation algorithm’s performance have mostly relied on com-
paring its outputs directly with CALIOP data. As CALIPSO

(the satellite equipped with the CALIOP instrument) is in a
sun-synchronous orbit, contrail cross-sections are only avail-
able for certain hours of the day. This prohibits the assess-
ment of the algorithm’s performance using CALIOP data
throughout the entire day. Instead, we apply the contrail al-
titude estimation algorithm to 24 h of contrail detection data
between 08:00 UTC on 21 August and 08:00 UTC on 22 Au-
gust 2023 in order to study the temporal consistency and
plausibility of the estimated contrail altitudes. The contrail
detections are produced by the algorithm presented in Meijer
et al. (2022).

The 3D contrail location estimates are visualized in Fig. 8,
with each panel showing 3 h of data. Another view of the
data, in the form of a time series of contrail coverage and the
relative proportion per altitude band, can be found in Fig. 9.
For both figures, the mean of the distribution predicted by the
algorithm is shown.

Contrails are detected and vertically located at altitudes
between 8 and 15 km throughout the day. The greatest frac-
tion, however, is found at altitudes between 12 and 14 km,
which is consistent with the seasonal distributions presented
earlier in Fig. 3. The zonal and meridional views in Fig. 8
indicate that clusters of contrails are located at similar al-
titudes, with cluster thicknesses ranging between 500 and
1500 m. Such vertical extents are in line with those observed
for regions of ice supersaturation (Spichtinger et al., 2003a).
Given that mostly westerly winds were present at cruise alti-
tudes for the day analyzed, the meridional view can be used
to track individual contrails and clusters. One example is
found between 11:00 and 14:00 UTC (Fig. 8b) near 90° W
and 55° N at an altitude of about 10 km: the contrail slightly
descends as it advects towards the east. The altitude estimates
also show consistency throughout the day. For example, a re-
gion of contrail formation and persistence is present near the
Great Lakes, which moves towards the southeast during the
day, located behind an advancing surface cold front. The con-
trails present within this region are consistently estimated to
be at altitudes between 12.5 and 14 km, which can be best
seen in the zonal views. Given that this particular region is
present during the majority of the day, it explains the large
contribution of contrails between 13 and 14 km as visible in
the time series in Fig. 9.

The time series shown in Fig. 9 depict the diurnal vari-
ation in contrail coverage and the relative contribution by
each altitude band. Contrail coverage peaks around 15:00Z,
corresponding to the early morning rise in air traffic around
09:00–10:00 local time, as found by Meijer et al. (2022). The
autocorrelation plots included in Fig. 9 show that the contrail
coverage within particular altitude bands has autocorrelation
coefficients larger than 0.5 at timescales of 1 to 2 h but de-
crease to small absolute values beyond 2 h. This is likely a
consequence of typical detectable contrail lifetimes, which
tend to be shorter than 2 h for methods that use geostation-
ary satellite imagery (Chevallier et al., 2023). However, the
contributions by the lowest altitude band covering 8 to 9 km
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Figure 6. Steps involved in comparison of estimated contrail top altitudes with flight altitudes, overlaid on an ash image for the GOES-16
ABI-L2-MCMIPF product from 08:10 UTC on 29 April 2019. Flight directions are shown using arrowheads. The same color map is used
for panels (e) and (f).

Figure 7. Flight altitude and contrail top altitude distributions for samples from the test set. Each column represents a different sample from
the test set, including the distribution of distance flown per flight level in the 2 h leading up to the observation of the contrail. The box plots
show the contrail top altitude distribution estimated by the model, with the box covering the 25th to 75th quantiles. The whiskers cover the
95 % confidence interval. The red line connects the contrail top altitude values obtained from the CALIOP data.

in altitude oscillate at short timescales (as is evident from the
negative autocorrelation values). This is likely a nonphysi-
cal phenomenon that arises from false-positive contrail de-
tections. For example, consider the southwest of the United
States in the geographic overview for 20:00 to 23:00 UTC in

Fig. 8e. The few low-altitude contrail pixels in that region are
only detected on one or two images within the 3 h. Because
there are relatively few actual contrails estimated to be within
the 8–9 km altitude band, the effect of these false positives is
enlarged and oscillatory behavior results. For the other alti-
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Figure 8. Contrail detections and altitude estimates for 24 h starting from 08:00 UTC on 21 August 2023. Each panel shows 3 h of detected
contrails and estimated altitudes, corresponding to the analysis of 18 ABI-L2-MCMIPF images. The smaller plots on the side of the main plot
show the variation of estimated contrail altitudes with longitude and latitude. Each dot corresponds to a detected contrail pixel. All altitudes
in this figure are geometric ones.
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Figure 9. Contrail coverage for 24 h starting from 08:00 UTC on 21 August 2023, as well as the contribution per altitude band. Contrail
coverage is defined here as the percentage of pixels in the orthographic projection of the ABI-L2-MCMIPF image that are detected as
contrails. Panels (b) and (d) show the autocorrelation of the time series as a function of timescale (“Lag”). The colors of the curves in the
autocorrelation plots correspond to the color bar of the time series. All altitudes in this figure are geometric ones.

tude bands, the contributions by actual contrails seem large
enough to outweigh this behavior.

The geographic overviews in Fig. 8 and the time series
in Fig. 9 illustrate the regional and temporal behavior of
the altitude estimates. In order to assess the plausibility of
the contrail altitudes predicted by the algorithm, we com-
pare these with advected flight data, similar to the analysis
in Sect. 3.4. Flight traffic from the 2 h before each ABI-L2-
MCMIPF product time is advected to the observation time to
compare flight altitudes with those of nearby contrail pixels.
In order to assess the altitude estimate for a given contrail
pixel, we compute the distance from each advected waypoint
to the location of the pixel. We make the assumption that the
error of the wind field used to advect the flight data is at most
10 m s−1: if a waypoint has been advected over a time period
1t (in seconds), we include it in the analysis for a contrail
pixel if it is within a distance of 10×1t m. The advected
flight tracks that satisfy this constraint are used to construct a
distribution of distance flown per flight level. Further details
of this procedure can be found in Sect. S9.

We construct flight altitude distributions according to this
approach for 10 000 randomly sampled contrail pixels from
the 24 h of data. For each of these distributions we find the
flight level with nonzero distance flown that is closest to the
mean flight level of the contrail as estimated by the algo-
rithm. We then consider the difference between this “clos-
est flight” and the estimated contrail altitude, resulting in the
statistics shown in Fig. 10. We find that the majority of es-
timated contrail altitudes are within 20 flight levels (corre-
sponding to 2000 ft, or about 600 m) of at least one nearby
advected flight. However, flight altitude distributions tend to

be densely populated (note the lack of large “gaps” in the
distributions in Fig. 7), and thus it is plausible that randomly
selected contrail altitudes would lead to similar statistics. To
analyze this, a random flight level is sampled uniformly for
each contrail pixel (and thus flight distribution) and shown
in Fig. 10 as well. Comparing the error distributions of the
randomly picked and the actual estimated contrail altitudes
shows that the latter are closer to an advected flight track:
on average, the closest advected flight track for the estimated
contrail altitudes is 4.9 flight levels away, whereas this is 9.2
flight levels for the randomly selected contrail altitude. The
altitude estimates by the CNN – when compared to the alti-
tude of the closest flight – show a positive bias of 2.4 flight
levels (statistically significant as determined using a one-
sample t test at p= 0.01). The evaluation with CALIOP test
data indicates no statistically significant bias (at p= 0.01)
for the CNN estimates, however. Other potential causes of
the bias observed in Fig. 10 may be the use of geopotential
data for the conversion between geometric and pressure alti-
tudes, the methodology used for constructing the flight alti-
tude distributions, and the omission of contrail physics in the
advection process.

5 Conclusions

We have described the development and performance of a
contrail altitude estimation algorithm that uses infrared radi-
ances measured by the geostationary GOES-16 satellite. The
developed algorithm can augment existing contrail detection
methods to estimate the 3D location of contrails based on
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Figure 10. Distance in flight level between estimated contrail alti-
tudes and nearby flights for 10 000 randomly sampled contrail pix-
els during the 24 h following 08:00 UTC on 21 August 2023. For the
flight data, the altitudes correspond to those found after advecting
the originally flown waypoints.

satellite imagery, which further enables comparison of ob-
servations with models.

A dataset of contrails detected on GOES-16 ABI imagery
collocated with CALIOP lidar data has been used to de-
velop this altitude estimation algorithm. This dataset of 3267
contrails illustrates the existence of seasonal patterns in the
vertical location of contrails, with contrails found at higher
altitudes during summer and lower altitudes during winter.
Some of this seasonality is explained by the higher temper-
atures during summer, which cause pressure levels to be lo-
cated at a geometrically higher altitude as the air expands.
We also found a seasonal trend in the contrail top pressure,
which we hypothesize to be due to seasonal differences in the
altitude of ice-supersaturated layers that satisfy the Schmidt–
Appleman criterion.

The contrail altitude estimation has been performed using
neural networks. Models that consider a single satellite im-
age pixel at a time, as well as those that ingest an entire im-
age at once, were developed. The image-based models were
found to perform better, reaching a root mean square error of
570 m on the test dataset compared to 720 m with the pixel-
by-pixel model. We have also shown that the probability dis-
tributions that are predicted by the algorithm can be used to
construct confidence intervals that are calibrated and can ver-
tically locate contrails with greater accuracy than flight data
alone.

The spatial and temporal behavior of the contrail altitude
estimates has been analyzed by considering 24 h of contrail
coverage above the contiguous United States. The resulting

estimates of 3D contrail locations show the evolution of in-
dividual contrail-forming regions with thicknesses of 500–
1500 m, consistent with prior research. One such region, lo-
cated behind an advancing surface cold front, was observed
to move from the Great Lakes towards the east coast dur-
ing the day. Contrails located within this region were consis-
tently estimated to be at altitudes between 12.5 and 14 km.
The plausibility of the estimated contrail altitudes has been
assessed by comparison with altitudes of advected flight traf-
fic. On average, an advected flight track from the 2 h before
the observation was found at a vertical distance of 4.9 flight
levels from the estimated contrail altitude. For randomly se-
lected contrail altitudes, this distance was 9.2 flight levels on
average.

This work also represents the first remote-sensing-based
cloud altitude estimation algorithm developed specifically
for contrails. We have shown that altitude estimation algo-
rithms developed using cirrus data only, when applied to es-
timate contrail altitudes, show lower skill than the algorithms
that were trained with contrail data. The cirrus pixel-by-pixel
model, which achieved a 1.04 km root mean square error
on the cirrus test set, showed degraded performance on the
contrail test set with an RMSE of 2.87 km. The image-level
model, which performed better than the pixel-by-pixel model
on the cirrus test set with an RMSE of 0.81 km, achieved an
RMSE of 0.65 km on the contrail test set. This is still larger
than the image-based altitude estimation model that was de-
veloped using contrail data, which has an RMSE of 570 km.

The altitude estimates can be used to compare satellite-
based observations of contrails with predictions by models in
greater detail than was previously possible, as a vertical com-
parison is now possible as well. Especially in the context of
contrail avoidance, a potentially cost-effective and near-term
mitigation option for aviation’s non-CO2 climate impact, ac-
curate predictions of altitudes conducive to persistent contrail
formation are necessary and will benefit from this new obser-
vational approach. Additionally, we expect that the dataset of
contrails collocated in CALIOP lidar data developed as part
of this work will prove to be useful for a detailed assessment
and potentially calibration of contrail models.

Code and data availability. The dataset of collocated con-
trails (Meijer et al., 2024a) can be found on Zenodo at
https://doi.org/10.5281/zenodo.13737958. The code for collocation
and algorithm development, as well as the developed deep learning
models, can be found at https://doi.org/10.5281/zenodo.13959874
(Meijer et al., 2024b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-17-6145-2024-supplement.
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