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Abstract. In the central Arctic, high-quality water vapour
observations are sparse due to the low density of meteo-
rological stations and uncertainties in satellite remote sens-
ing. Different reanalyses also disagree on the amount of wa-
ter vapour in the central Arctic. The Multidisciplinary drift-
ing Observatory for the Study of the Arctic Climate (MO-
SAiC) expedition provides comprehensive observations that
are suitable for evaluating satellite products and reanalyses.
Radiosonde observations provide high-quality water vapour
estimates with a high vertical but a low temporal resolution.
Observations from the microwave radiometers (MWRs) on
board the research vessel Polarstern complement these ob-
servations through high temporal resolution. In this study,
we demonstrate the high accuracy of the combination of the
two MWRs HATPRO (Humidity and Temperature Profiler)
and MiRAC-P (Microwave Radiometer for Arctic Clouds —
Passive). For this purpose, we developed new retrievals of
integrated water vapour (IWV) and profiles of specific hu-
midity and temperature using a neural network approach, in-
cluding observations from both HATPRO and MiRAC-P to
utilize their different water vapour sensitivity. The retrievals
were trained with the European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis version 5 (ERAS)
and synthetic MWR observations simulated with the Passive
and Active Microwave radiative TR Ansfer tool (PAMTRA).
We applied the retrievals to synthetic and real observations
and evaluated them with ERAS and radiosondes launched
during MOSAIC, respectively. To assess the benefit of the
combination of HATPRO and MiRAC-P compared to sin-
gle MWR retrievals, we compared the errors with respect

to MOSAIC radiosondes and computed the vertical infor-
mation content of the specific humidity profiles. The root
mean squared error (RMSE) of IWV was reduced by up
to 15 %. Specific humidity biases and RMSE were reduced
by up to 75 % and 50 %, respectively. The vertical informa-
tion content of specific humidity could be increased from 1.7
to 2.4 degrees of freedom. We also computed relative hu-
midity from the retrieved temperature and specific humid-
ity profiles and found that RMSE was reduced from 45 % to
15 %. Finally, we show a case study demonstrating the en-
hanced humidity profiling capabilities compared to the stan-
dard HATPRO-based retrievals. The vertical resolution of the
retrieved specific humidity profiles is still low compared to
radiosondes, but the case study revealed the potential to re-
solve major humidity inversions. To what degree the MWR
combination detects humidity inversions, also compared to
satellites and reanalyses, will be part of future work.

1 Introduction

The amplified warming of the Arctic, known as Arctic am-
plification, is a well-established phenomenon and has been
discussed in several studies (e.g. Screen et al., 2012; Screen
and Simmonds, 2010; Rantanen et al., 2022; Wendisch et al.,
2023). Arctic amplification is caused by several positive cli-
mate feedback mechanisms, such as the ice albedo and the
lapse rate feedback (Serreze and Barry, 2011; Wendisch
et al., 2023). Following the Clausius—Clapeyron relation, a
warmer atmosphere can contain more water vapour before
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condensation occurs. Higher water vapour loads enhance the
greenhouse effect (stronger emission in the thermal infrared)
and thus increase temperatures at the surface (Held and So-
den, 2000; Graversen and Wang, 2009; Ghatak and Miller,
2013). This positive feedback loop is known as the water
vapour feedback, and its role in Arctic amplification is still
under investigation.

In the past decades, a moistening trend has been observed
on a global scale (Chen and Liu, 2016; Allan et al., 2022) and
also regionally in the Arctic (Ghatak and Miller, 2013; Ma-
turilli and Kayser, 2017; Parracho et al., 2018; Rinke et al.,
2019; Serreze et al., 2012). The relative increase in the verti-
cally integrated water vapour (IWV) is strongest in the Arc-
tic (Chen and Liu, 2016). However, IWV trends have a high
spatial heterogeneity and depend on the season (Parracho
et al., 2018; Rinke et al., 2019). Many studies have relied
on atmospheric reanalyses, which assimilate measurements
from synoptic stations, particularly radiosondes and satel-
lites. However, ground-based observations are sparse and
satellite observations have different challenges in the Arctic
(Crewell et al., 2021): the derivation of water vapour prod-
ucts from visible and infrared observations is hindered by
darkness or clouds, and satellite products from microwave
observations are uncertain due to the high and variable sea ice
emissivity (Mathew et al., 2008; Wang et al., 2017; Scarlat
et al., 2017). The lack of ground-based observations and dif-
ficulties in satellite remote sensing in the Arctic lead to high
uncertainties in water vapour products in reanalyses (Crewell
et al., 2021; Parracho et al., 2018; Chen and Liu, 2016; Gra-
ham et al., 2019b). Therefore, it is not surprising to find a
large spread of the IWV trend among reanalyses, often larger
than the median trend itself for certain seasons and regions
(Rinke et al., 2019).

A special feature of the Arctic is the high occurrence of
humidity inversions, which are height layers where the water
vapour concentration increases with height (Devasthale et al.,
2011; Vihma et al., 2011; Nygard et al., 2014; Maturilli and
Kayser, 2017; Naakka et al., 2018). Humidity inversions are
strongly coupled with temperature inversions (Tjernstrom
et al., 2004), which form due to radiative cooling in clear-
sky conditions in winter or due to sea ice melt or advection
of warm and moist air above the boundary layer in summer
(Graversen et al., 2008; Devasthale et al., 2010; Tjernstrom
et al., 2019). Humidity inversions are a moisture source for
the formation and maintenance of clouds through entrain-
ment at the cloud top (Nygard et al., 2014). It is therefore
important to have humidity observations with a sufficiently
high vertical resolution that allows capturing this character-
istic feature of the Arctic humidity profile. Additionally, the
vertical water vapour distribution affects the downward ther-
mal infrared radiation. Tjernstrom et al. (2019) showed that
in cases when humidity inversions were present, the down-
ward thermal infrared radiation was higher, fostered by fog
or low cloud formation.
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Current reanalyses have difficulties in correctly represent-
ing the stable stratification of Arctic winter conditions (Wang
et al., 2019; Yu et al., 2021; Graham et al., 2019a). For ex-
ample, the widely used European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis version 5 (ERAS)
(Hersbach et al., 2020), which is among the best-performing
global reanalyses in the Arctic, still shows positive near-
surface air temperature and humidity biases (Graham et al.,
2019a; Avila-Diaz et al., 2021; Loeb et al., 2022; Yu et al.,
2021). The biases are highest in cold stable conditions found
over sea ice in winter and smaller in summer or over the open
Arctic Ocean (e.g. Fram Strait; Wang et al., 2019; Graham
et al., 2019b). Herrmannsdorfer et al. (2023) suggested that
ERAS does not sufficiently represent sea ice thickness and
snow depth. Difficulties representing stable conditions and
positive biases of temperature and humidity at the surface
result in errors in the temperature and humidity profiles of
ERAS (and other reanalyses).

It follows that reanalyses and satellite products struggle
with the representation of water vapour in the Arctic. To eval-
uate the accuracy of water vapour in current reanalyses and
satellite products, we need reference measurements. How-
ever, reliable and high-quality water vapour measurements
in the central Arctic are currently only available through
field campaigns. The Multidisciplinary drifting Observatory
for the Study of the Arctic Climate (MOSAIC; Shupe et al.,
2022) expedition, where the research vessel (RV) Polarstern
(Knust, 2017) was frozen into the ice to observe the Arctic
climate for a full annual cycle, provides unique observations
for this purpose. Radiosonde measurements (Maturilli et al.,
2021) yield IWV and humidity profiles with a high vertical
but low temporal resolution (3—6-hourly). Additionally, wa-
ter vapour products have been derived from upward-looking
microwave radiometers (MWRs) that were mounted on the
OCEANET container (Macke et al., 2010; Engelmann et al.,
2021) at the bow of RV Polarstern: Walbrdl et al. (2022c¢)
created retrievals of IWV and profiles of absolute humid-
ity and temperature from the low-frequency Humidity and
Temperature Profiler (HATPRO; Rose et al., 2005) and an
IWYV product specifically designed for dry conditions from
the high-frequency Microwave Radiometer for Arctic Clouds
— Passive (MiRAC-P; Mech et al., 2019a). The MWR prod-
ucts have a high temporal resolution (almost every second),
but the humidity profile from HATPRO is coarse, with less
than 2 degrees of freedom (Lohnert et al., 2009).

The high-frequency observations from MiRAC-P have a
high sensitivity to atmospheric water vapour in dry condi-
tions IWV < 10kg m~2) but get saturated in humid condi-
tions IWV > 10kg m~2; Cadeddu et al., 2007, 2022; Fionda
et al., 2019). In contrast, the low-frequency observations
from HATPRO have a high sensitivity in humid conditions
but a weak signal in the dry conditions of the Arctic in win-
ter. The complementary moisture sensitivity of HATPRO and
MiRAC-P motivates the synergy of both instruments, as done
for IWV in e.g. Cadeddu et al. (2009).
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In this study, we develop retrievals of water vapour prod-
ucts by combining observations from HATPRO and MiRAC-
P to improve the vertical resolution of specific humidity pro-
files and reduce errors compared to single MWR retrievals.
We retrieved specific humidity instead of absolute humidity
because it is a more commonly used humidity measure in at-
mospheric reanalyses and satellite products. Specifically, we
answer the following questions.

1. How much are IWV and humidity profile errors reduced
compared to single-instrument retrievals and what is the
influence of using different retrieval setups?

2. What is the vertical information content benefit for hu-
midity retrievals when combining two MWRs with dif-
ferent moisture sensitivity?

3. Is the vertical information content sensitive to cloud
presence, temperature, or water vapour amount?

The paper is structured as follows: in Sect. 2, we start
with a description of the data used for the retrieval develop-
ment and the measurements from the MOSAIC expedition,
which will be used for the application and evaluation of the
retrieval. In Sect. 3, we elaborate on the preparation of the
retrieval development data before giving details on the re-
trieval setup and vertical information content estimation. Af-
terwards, we evaluate the retrieval in Sect. 4 and estimate the
information benefit in Sect. 5 before concluding the paper in
Sect. 6 by answering the questions raised above.

2 Datasets
2.1 Retrieval development data

Radiosondes are commonly used for the evaluation of tem-
perature and humidity profile retrievals because of the high
vertical resolution and accuracy (e.g. Cimini et al., 2010;
Lohnert and Maier, 2012). Due to the lack of radiosonde sta-
tions and uncertain water vapour observations from satellites,
we selected the ERAS reanalysis (Hersbach et al., 2020) as a
data source for the retrieval development. With a horizontal
resolution of 31 km and 137 vertical levels, it has the high-
est horizontal and vertical resolution of all current global re-
analyses. The high vertical resolution might be beneficial for
developing humidity profile retrievals because a low verti-
cal resolution could constrain the retrieval from reaching its
true potential. ERAS data are available for 1940—present with
an hourly resolution. Despite having slightly higher biases
in near-surface air temperatures and humidity in cold stable
conditions over sea ice than other reanalyses, ERA5 overall
performs best in the Arctic, especially concerning the repre-
sentation of clouds and precipitation (Graham et al., 2019a).
The better representation of clouds and precipitation is ben-
eficial for the simulation of microwave radiances for the re-
trieval development (described in Sect. 3.1). Also, extreme
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precipitation and temperature events are better captured by
ERAS than other reanalyses (Avila-Diaz et al., 2021; Wang
etal., 2019; Loeb et al., 2022).

2.2 MOSAIC observations for retrieval application and
evaluation

RV Polarstern drifted with an ice floe from 4 October 2019
in the Laptev Sea across the central Arctic Ocean until it ap-
proached the marginal ice zone in the Fram Strait on 31 July
2020. Between mid-May and mid-June 2020, RV Polarstern
had to leave the floe for logistical reasons. To capture the
refreezing period of the ice, RV Polarstern drifted with a
second ice floe close to the North Pole from 21 August to
20 September 2020. In early October 2020, RV Polarstern
left the sea ice.

2.2.1 Radiosondes

Throughout MOSAIC, Vaisala RS41 radiosondes were
launched from RV Polarstern at the standard synoptic times
(00:00, 06:00, 12:00, and 18:00 UTC). The actual launch
time is usually around 1 h before the respective synoptic time
due to the relatively slow ascent rates of about Sms~!. Dur-
ing intense observation periods, additional radiosondes were
launched at 03:00, 09:00, 15:00, and 21:00 UTC. Here, we
use all radiosonde level 2 data from 1 October 2019 to 1 Oc-
tober 2020 (Maturilli et al., 2021). Radiosondes provide tem-
perature, pressure, and relative humidity with accuracies of
0.2-0.4K, 0.04-1.0hPa, and 3 %—4 %, respectively. With a
measurement frequency of 1Hz, the vertical resolution is
about 5 m. For comparison with the retrievals, the radiosonde
data have been interpolated onto the retrieval height grid (see
Sect. 3.1).

2.2.2 Cloudnet and surface meteorology measurements

To evaluate the presented retrievals in different atmospheric
conditions, we included additional datasets from the MO-
SAIC expedition: to distinguish between freezing and non-
freezing conditions at the surface (temperatures below and
above 273.15K), the 2m temperature measurements from
the tower at the Met City site (Cox et al., 2023) were used.
The Met City site was located within the central observa-
tory, only a few hundred metres away from RV Polarstern.
Additionally, we identified cloudy scenes using the Cloud-
net retrieval products (Griesche et al., 2024). Cloudnet uses
a synergy of passive and active atmospheric remote sensing
to provide profiles of cloud macro- and microphysical prop-
erties (liquid and ice water content, effective radii of liquid
droplets and ice crystals) with a time and height resolution
of 30 s and 30 m, respectively (Illingworth et al., 2007; Tuki-
ainen et al., 2020).

Cloudnet delivers e.g. a classification of the atmospheric
conditions, distinguishing between clear sky, different cloud
types (ice, liquid, mixed-phase), and the presence of aerosols
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and insects for each time-height pixel. Because of techni-
cal limitations, the Cloudnet product starts at a height of
182 m and can therefore miss the presence of low-level stra-
tus clouds, which are common in the Arctic (Gierens et al.,
2020; Griesche et al., 2020). The additional low-level stra-
tus detection developed by Griesche et al. (2020) was used to
mask these cases.

In this study, clear-sky conditions were identified us-
ing Cloudnet target classification data (Engelmann et al.,
2023) and the low-level stratus mask (Griesche et al., 2023)
where quality flags indicated good quality (also including the
Cloudnet-issued dataset; Griesche and Seifert, 2023). As we
compare our retrievals with radiosonde measurements, we
selected Cloudnet data at times of the radiosonde launch to
15 min after the launch. A radiosonde launch is considered
clear-sky when no low-level stratus clouds were present and
the Cloudnet target classification indicated either clear sky,
aerosols, or insects.

2.2.3 Microwave radiometers

The two upward-looking microwave radiometers, HATPRO
and MiRAC-P, measure radiation emitted from water vapour,
oxygen, and hydrometeors. Measured radiances are typ-
ically expressed as brightness temperatures (TBs). HAT-
PRO detects radiances in seven channels between 22.24 and
31.4 GHz (K-band) and in seven channels between 51.26 and
58 GHz (V-band). MiRAC-P has a double-sideband receiver
that measures radiances at six frequencies from 183.31 0.6
to 183.31+7.5 GHz (G-band) and a two-channel receiver for
243 and 340 GHz. At MiRAC-P frequencies, the scattering
of radiation by hydrometeors is relevant, and the contribu-
tion of the continuum water vapour absorption is stronger
(Rosenkranz, 1998).

Figure 1 shows TBs simulated with the Passive and Ac-
tive Microwave radiative TRAnsfer tool (PAMTRA; Mech
et al., 2020) using two clear-sky radiosondes from MOSAiC
(winter: 5 March 2020, 06:00 UTC; summer: 6 August 2020,
00:00 UTC). A higher atmospheric opacity generally results
in higher TBs in the zenith. In the K-band channels of HAT-
PRO and the G-band channels of MiRAC-P, which are lo-
cated around resonant water vapour absorption lines, the dif-
ferent water vapour loads of winter and summer can be dis-
tinguished well by their large TB differences of up to 40K
in the K-band and more than 100K in the G-band. Also in
MiRAC-P’s high-frequency channels at 243 and 340 GHz,
TB differences are larger than at K-band frequencies (up to
200K) due to continuum water vapour absorption. At the
K-band frequencies, the relation between TBs and IWV is
rather linear and becomes more nonlinear for the higher fre-
quencies (G-band and above).

Observations along resonant water vapour absorption lines
are well suited to derive IWV and humidity profiles (e.g.
Crewell et al., 2001; Cadeddu et al., 2007; Cimini et al.,
2010; Perro et al., 2016). Because of the high water vapour
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sensitivity, most of the G-band channels are saturated in the
summer case, meaning they do not observe radiances from
the entire atmospheric column. In contrast, the K-band chan-
nels show almost no water vapour signal in the extremely dry
winter case (IWV of 0.9 kgm~2), while there is still a strong
signal in the G-band.

Furthermore, higher TBs in summer compared to winter
are caused by higher temperatures of the emitting gases and
hydrometeors (Fig. 1). The V-band channels of HATPRO lie
around the oxygen absorption complex and can be used for
temperature profiling (Rose et al., 2005; Lohnert and Maier,
2012). As explained in Walbrdl et al. (2022c), HATPRO also
measured atmospheric radiances at different elevation an-
gles every 30 min during MOSAIC, allowing for more de-
tailed temperature profile retrievals in the lower troposphere
(boundary layer temperature profiles).

In this study, we generally used TB measurements where
flags indicate good quality (Walbrdl et al., 2022c). We iden-
tified a few rain events between late May and late June 2020
that were not flagged by visual inspection. The quality flags
have been updated. Additionally, we checked whether other
flag values could be accepted and found that a receiver san-
ity flag was often set although the data looked reasonable.
Therefore, we also included those data in our analysis. Times
before the first successful calibration of both MWRs (22 Oc-
tober 2019, 05:40 UTC) have been excluded.

For the information benefit analysis, we compared the new
synergistic retrievals to the single-instrument retrievals de-
veloped by Walbr6l et al. (2022¢), i.e. the two IWV prod-
ucts (HATPRO and MiRAC-P), and profiles of temperature
and absolute humidity from HATPRO (Ebell et al., 2022;
Walbrol et al., 2022b). We converted the retrieved absolute
to specific humidity using the retrieved temperature profiles
and air pressure from radiosondes. All retrieved quantities
were averaged over 15 min, starting at the launch time of
each radiosonde, for comparison with MOSAIC radiosondes.
For boundary layer temperature profiles, we extended the av-
eraging window to 30 min before and 30 min after each ra-
diosonde launch due to the lower sampling rate.

3 Methods

The retrieval of an atmospheric state vector x (e.g. spe-
cific humidity profile) from an observation vector y (e.g.
TBs at different frequencies) is an inverse problem. In its
simplest form, the inverse problem can be formulated as
x=F _1(y), where F is the forward operator (e.g. radia-
tive transfer model; here, PAMTRA). In atmospheric remote
sensing, inverse problems are often ill-conditioned because
small changes in observations can lead to large changes in the
retrieved state vector and many different atmospheric states
can lead to the same observations. Furthermore, the inverse
problem is ill-posed because the radiative transfer equation
cannot be inverted in a direct way.
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A. Walbrol et al.: Combining low- and high-frequency microwave radiometer measurements from MOSAiC

Freq. bands K \'4

G 243

6227

340

250

i y —— MiIRAC-P frequencies

|
i
i

Winter, IWV = 0.9kgm™2
—— Summer, IWV = 16.1kgm™2 ;: i
—— HATPRO frequencies o

0 50 150

200
Frequency (GHz)

250 300 350 400

Figure 1. Brightness temperatures (TBs) from 1 to 400 GHz simulated with PAMTRA for two radiosondes launched from RV Polarstern
during MOSAIC (winter: 5 March 2020, 06:00 UTC; summer: 6 August 2020, 00:00 UTC). The dashed (solid) black line shows the TBs
simulated with meteorological data from the winter (summer) radiosonde. The blue (cyan) lines indicate the frequencies at which HATPRO
(MiRAC-P) measures. The labels K, V, G, 243, and 340 represent abbreviations for sets of frequency channels (bands) of HATPRO and

MiRAC-P.

The challenge is to find the most probable and realis-
tic state of the atmosphere that fits the observations. In
physical retrievals (e.g. optimal estimation; Rodgers, 2008;
Ebell et al., 2017), the state vector x is adapted as long as
the forward-simulated observations F(x) do not agree with
the actual observations y within a given uncertainty range.
Physical retrievals are computationally expensive but pro-
vide physically consistent state vectors and uncertainty es-
timation. However, at the high frequencies of MiRAC-P, the
scattering of radiation by frozen hydrometeors cannot be ne-
glected and may therefore introduce uncertainties in the ra-
diative transfer calculations needed for the forward simula-
tion F(x). The retrieval would require assumptions on hy-
drometeor properties (concentration, size, shape, orientation)
or further hydrometeor observations, making it dependent on
the availability of such observations.

Statistical retrievals are computationally cheap approaches
that are also well established and provide similarly good re-
sults as physical retrievals (Solheim et al., 1998). In statis-
tical retrievals, empirical relations are used to map observa-
tions to the state vector. The statistical relationship between
observations and the state vector must be trained with large
datasets covering the conditions of the area of interest. Re-
gression or deep learning algorithms are examples of statisti-
cal retrievals. In this study, we use neural networks (NNs) be-
cause they can deal better with the nonlinear relationship be-
tween IWV and TB measurements in the G-band compared
to regression. During the development of the MiRAC-P-only
retrieval (Walbrol et al., 2022c¢), tests showed that the IWV
retrieved with a multiple nonlinear regression had a signifi-
cantly higher spread than when retrieved with NNs.

3.1 Retrieval preparation

For the NN retrievals of IWYV, specific humidity, and temper-
ature profiles during MOSAIC, a training dataset is needed
that covers the variability of the environmental conditions in
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Figure 2. Mean sea ice concentration in the Arctic over the years
2001-2018 based on daily ERAS data at 12:00 UTC. Light blue cir-
cles mark the position of the 12 grid points selected for the retrieval
development. The MOSAIC drift track is marked as a coloured line
with a black outline.

the central Arctic over an annual cycle. We selected ERAS
data for 2001-2018 with 6-hourly temporal resolution at 12
grid points, 9 of which are located in the central Arctic and
3 in the Fram Strait (see Fig. 2). The grid points in the Fram
Strait cover more humid conditions, as this is a typical path-
way for warm and moist air intrusions (Mewes and Jacobi,
2019).

Simulated HATPRO and MiRAC-P observations are
needed in conjunction with the ERAS data to train the NN.
Meteorological data (temperature, relative humidity, geopo-
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tential height, pressure, 10 m wind) and vertical hydrome-
teor distributions from ERAS (specific cloud liquid, ice, rain
and snow content) have been used as input to simulate TBs
with PAMTRA. The ERAS skin temperature was used for
the sea ice and sea surface temperatures. The TBs were sim-
ulated with PAMTRA’s default gaseous absorption, hydrom-
eteor absorption, and scattering models as described in Mech
et al. (2020).

A total of 4 years of simulated TBs and ERAS5 data (2001,
2006, 2011, and 2015) were held back from the retrieval de-
velopment for the final evaluation (ERAS evaluation dataset).
With the remaining 14 years of data, we trained the NN and
validated its performance (11 and 3 years for the training
and validation datasets, respectively). The number of training
(validation) samples is roughly 192 000 (52 000). To avoid
training near-surface temperature and humidity biases from
ERAS into the retrieval, a small subset of about 5 % of level 2
MOSAIC radiosondes (Maturilli et al., 2021) was also in-
cluded in the validation process. For the retrieval develop-
ment and evaluation, atmospheric profiles have been interpo-
lated onto the same height grid used in the standard HATPRO
retrieval (Lohnert, 2023; Marke et al., 2024) and in Walbrol
et al. (2022c), ranging from O to 10 000 m with the vertical
spacing increasing from 50 m at the surface to 500 m at the
top. The height grid was limited to 8000 m for temperature
profiles to avoid the tropopause. Additionally, to imitate mea-
surement uncertainties, random Gaussian noise with a mean
of 0 and standard deviations of 0.5, 0.75, and 2.5 K has been
added to the simulated TBs at K-V, G, and 243-340 GHz, re-
spectively. We intentionally used a higher noise level for the
higher frequencies to account for the higher PAMTRA simu-
lation uncertainties due to scattering from hydrometeors and
water vapour continuum absorption.

3.2 Retrieval setup

This study used multilayer perceptron NNs (fully connected
layers) to retrieve IWV, specific humidity, and temperature
profiles. To optimally use HATPRO’s boundary layer obser-
vations, we retrieved temperature profiles from zenith and
boundary layer observations separately. The challenge is to
develop retrievals that are not overfitted and can therefore
adapt well to new data. Overfitting occurs when the retrieval
learns not only the relation between the observations and the
atmospheric state but also the (synthetic) noise. Additionally,
we wanted to ensure that the retrievals are robust by training
an ensemble of 20 NNs with identical settings but with differ-
ent random number seeds. The random number seeds affect
the selection of years for the training and validation data, as
well as the NN initialization (weight coefficients). The NNs
are considered robust when the errors in the validation data
show a small spread over the ensemble of 20 NNs. For ex-
ample, the spread should be smaller than a given threshold
(e.g. 0.2kgm™—2 for IWV) or smaller than the magnitude of
the error.
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To meet the retrieval performance requirements, we de-
veloped four NNs with different settings (see Appendix A),
one for each retrieved quantity IWV, specific humidity, and
temperature profiles from zenith and boundary layer obser-
vations). The retrievals of profiles required deeper networks
and stronger regularization measures (e.g. dropout layers,
batch normalization; see Appendix A) to avoid overfitting
and to achieve a good performance. Besides TBs at differ-
ent frequencies, we also included seasonal information in the
form of the cosine and sine of the day of the year as input
to all NNs except for the boundary layer temperature profile
(inspired by Billault-Roux and Berne, 2021). Additionally,
adding the 2 m temperature and the retrieved IWV as input
to the specific humidity profile retrieval slightly reduced er-
rors during validation. Therefore, the specific humidity re-
trieval can only be performed after the IWV retrieval. For
the boundary layer temperature profile, the input vector con-
sists of V-band TBs at various elevation angles (90.0, 30.0,
19.2,14.4,11.4, 8.4, 6.6, and 5.4°), which are measured dur-
ing HATPRO’s boundary layer scan. TBs at other frequencies
were not included because they were not measured at these
elevation angles. Also, adding other parameters to the input
vector did not improve errors. Therefore, the input vector is
identical to the one used in the HATPRO regression retrieval
described in Walbrol et al. (2022c¢). Further details of the NN
retrieval principles and settings can be found in Appendix A.

3.3 Metrics for retrieval evaluation and vertical
information content

The retrieved state vector x (e.g. specific humidity profile)
is evaluated using the reference x provided by ERA5 (ERAS
evaluation dataset) or MOSAIiC radiosondes (MOSAIC eval-
uation dataset). For each component j of the state vector (i.e.
Jjth height level), we calculate the bias, the root mean squared
error (RMSE), and the bias-corrected RMSE.

1 %
BiasjzﬁZ(xij—)zij) @)
S i=0
1 - \2
RMSE; = EZ(XU_XU) )
i=0
1 . -2
RMSEcorr; = | — ¥ ((xij — Bias;) — %)) &)
N
S =0

N; is the number of data samples of the respective evalua-
tion dataset. For IWV, we also compute the Pearson product—
moment correlation coefficient:

X (R w-D
\/ZzN:So (f" - ):C)ZZzN:So (xi —%)° |

where X ();c) is the mean retrieved (reference) state vector.

R 4
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The vertical information content of passive microwave ob-
servations was computed following the ideas of the physical
retrievals of Rodgers (2008). Due to computation time, the
information content was only computed for a randomly se-
lected subset of 4 % of the ERAS evaluation dataset (2803
samples). Firstly, we interpolated the vertical grid from the
ERAS model levels to the retrieval height grid and simulated
new reference observation vectors y (here, TBs) with PAM-
TRA. For these simulations, the retrieval grid has been ex-
tended to 45 000 m to simulate emissions from gases (mainly
oxygen) beyond the retrieval height grid. Secondly, each state
vector component is perturbed step by step. We multiply the
respective height level by 1.01 for specific humidity pro-
files, similar to Ebell et al. (2013). Thirdly, we simulate new
TBs with PAMTRA for each perturbed state vector. Fourthly,
the Jacobian matrix K is calculated with entries K,; =
0Yia/0x;j, where dy;, is the ath component of the differ-
ence between the perturbation-based and reference observa-
tion vector of the ith data sample. dx;; is the jth component
(jth height level) of the difference between the perturbed and
reference state vector. Fifthly, the averaging kernel matrix A
is computed with A = (KTS; 'K + Sa_l)flKTS;lK, where
S, and S; are the covariance matrices of the state and obser-
vation vectors, respectively. S, contains the TB noise on the
main diagonal, while the remaining entries are 0. S, is calcu-
lated as a full covariance matrix from the ERAS evaluation
dataset. Finally, the degrees of freedom (DOF) are inferred
from the trace of the averaging kernel A.

4 Retrieval evaluation

We applied the retrievals to both the ERAS evaluation dataset
and MOSAIC observations (MOSAIC evaluation dataset),
for which the radiosondes serve as the reference dataset. The
retrieval evaluation with respect to the ERAS data allows us
to assess the retrievals’ theoretical best performance because
itis an idealized world without measurement problems. Here,
we compute errors for all 20 NN to get an idea of the spread
among the NNs. For the evaluation with the MOSAIC ra-
diosondes, we selected the NN that has a low RMSE and bias
in the validation dataset while also having the lowest RMSE
in the 5 % MOSAIC radiosonde subset that we included in
the validation process. Hereafter, this NN is referred to as the
final NN.

41 IWV

The performance of the IWV retrieval applied to the ERAS
and MOSAIC evaluation datasets can be seen in Fig. 3. For
the ERAS data, we can evaluate the robustness of the NN
through the spread of the errors among all 20 NNs. The
RMSE of IWV varies little over the 20 NNs for IWV up
to 24 kg m~2, indicated by the low spread (< 0.3kgm™2).
Only for higher IWV does the spread increase significantly to
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Figure 3. IWV errors (RMSE and bias) for certain bins of reference
IWV (0-2, 24, ..., 22-24, 24-35kg m_z). IWYV errors based on
the ERAS (MOSAIC) evaluation dataset are displayed in black (yel-
low). The maximum and minimum spread of RMSE and bias over
the 20 neural networks are indicated by grey shading. The RMSE
(bias) of the mean over the 20 neural networks is displayed as a thin
solid (dashed) black line. The RMSE (bias) of the final NN is shown
as a thick solid (dashed) black line.

0.8 kg m~2. However, only 41 of 70 080 (< 0.1 %) of the syn-
thetic dataset samples have an IWV above 24 kg m~2. There-
fore, errors are computed over a very low fraction of the data
and tend to vary more for different NNs. Most importantly,
statistical retrievals such as NNs struggle to capture extreme
conditions not well represented in the training dataset. This
can also be seen in the bias, which is close to zero for IWV
below 20 kg m~2, as expected for a well-trained NN, but de-
viates from zero for higher IWV. However, biases are still
small for both the ERAS5 and MOSAIC evaluation datasets,
staying below 2 %.

The RMSE of the final NN, which was selected based on
errors in the validation dataset, is about 2 % of the IWV and
therefore also at the lower end of the 20-NN ensemble for
the ERAS evaluation dataset. This shows that the retrieval is
well trained because it performs similarly well on the evalu-
ation dataset as on the validation dataset. For the comparison
with MOSAIC observations, where we also use the final NN,
the RMSE is slightly higher in most IWV regimes, reaching
up to 3 %—4 %. In absolute terms, the RMSE increases from
0.1to 0.7 kgm~2, with IWV increasing from 1 to 29 kg m~—2.
Here, the additional uncertainties in the radiosonde measure-
ments and matching the MWR data must be considered.

4.2 Specific humidity profiles

We evaluate the retrieved specific humidity profiles (g) in
terms of bias and RMSE,; for the ERA5 and MOSAIiC
evaluation datasets (Fig. 4). The RMSE values are similar
to RMSE,,: because of a small bias. For the MOSAIC data,
the RMSE,.,; increases from 0.25 gkg_1 at the surface to
0.5 gkg™! at 1500 m, which is 15 % to 30 % of the mean spe-
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Figure 4. Specific humidity g error profiles showing (a) the bias and
(b) the bias-corrected RMSE with respect to the reference from the
ERAS and MOSAIC evaluation datasets. The dashed black line in
each panel shows the mean over the 20 neural networks, while shad-
ing indicates the min—max spread. The prediction of the final neural
network is indicated by the thick black (yellow) lines for the ERAS
(MOSAIC) evaluation dataset. The mean MOSAIC radiosonde (RS)
profile and ERAS profile are shown as dotted yellow and black lines,
respectively, and serve as a reference for the absolute error values.
The mean retrieved profile from MOSAiIC microwave radiometer
(MWR) observations is also included as a dotted blue line.

cific humidity (Fig. 4b). At higher altitudes, the RMSE; is
lower but the relative error increases because the mean spe-
cific humidity also decreases. While the RMSE_,; values are
generally smaller for the ERAS data, the shape is similar,
with the highest RMSE. of about 0.25 gkg™! (15 % of the
mean ¢) at 1000 m and even lower values at the surface of
0.15¢g kg’] (8 %). The RMSE_,; spread across all 20 NN is
negligible, mostly ranging from 0.01 to 0.02 gkg~!.

The mean MOSAIC radiosonde g profile shows the max-
imum value about 250 m lower than the mean retrieved ¢
profile (Fig. 4). Because of the different heights of the hu-
midity inversion, we find the highest RMSE.q and bias
slightly above the height level of the maximum ¢ value (at
1500 m). At this height, the retrieved g profile overestimates
the radiosonde measurement by up to 0.15 gkg™! (see bias
in Fig. 4a). Above 3500 m, the bias remains negative, with
values up to —0.04 gkg~! at 5500 m. For the ERAS evalu-
ation dataset, the final NN, which was also used to derive
the g profile for MOSAiC, shows much smaller biases and is
slightly negative for all heights (only up to —0.025 gkg™").
However, in the lowest 2000 m, the bias varies much more
than the RMSE., ranging from —0.1 to +0.1 gkg™! de-
pending on the chosen NN.

The smaller magnitude of the error profiles in the ERAS
evaluation dataset is likely due to the lower complexity of
q profiles in ERAS5 compared to radiosonde observations.
Specific humidity profiles in reanalyses are typically much
smoother and do not resolve small inversions (Chellini and
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Figure 5. Error profiles of (a, b) zenith and (b, d) boundary layer
temperature 7 profiles. Panels (a) and (c) show the bias and pan-
els (b) and (d) the bias-corrected RMSE with respect to the refer-
ence from the ERAS5 and MOSAIC evaluation datasets. Shading and
different line types are similar to Fig. 4.

Ebell, 2022). Passive microwave observations cannot resolve
small inversions and average out strong vertical gradients.
Therefore, errors of retrieved profiles are large when com-
pared to radiosonde data in the presence of strong vertical
gradients (i.e. humidity inversions), while the smoother pro-
files of reanalyses can be captured better. As the retrieval has
been trained with reanalysis data, it is also expected to per-
form best when applied to the same reanalysis. Furthermore,
the errors of the evaluation based on real observations can
be higher due to measurement errors of radiosondes (noise,
sonde drift, systematic errors due to sensor response time,
etc.) and of the MWRs (noise, systematic errors).

4.3 Temperature profiles

For the evaluation of the retrieved temperature profiles, we
also analyse the bias and RMSE,, (Fig. 5) but distinguish
between profiles retrieved from zenith observations (hence-
forth, zenith temperature profiles) and boundary layer scans
(henceforth, BL temperature profiles). As for specific humid-
ity, the spread over the 20 NN is larger for the bias than for
RMSE_, but generally quite small (especially for BL tem-
perature profiles).
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Firstly, we evaluate the zenith temperature profiles: the bi-
ases and RMSE,,; of zenith temperature profiles are larger
for MOSAIC compared to the ERAS evaluation dataset be-
low 1500 m but mostly similar at higher altitudes (see Fig. 5a
and b). Within the lowest 150 m, the MOSAiC RMSE,,; de-
creases rapidly from 2.9 to 1.4 K. This large RMSE_,; is as-
sociated with near-surface temperature inversions that typi-
cally occur in the Arctic. In the ERAS evaluation dataset, this
steep error gradient is less pronounced because near-surface
temperature inversions over sea ice are not well represented
in ERAS. Between about 200 and 2000 m, the RMSE. ., is
between 1.2 and 1.6 K for MOSAIC and between 0.8 and
1.6 K for the ERAS evaluation dataset. At the top of the re-
trieval grid at 8000 m, the RMSE, .+ increases to 2.5 K for
MOSAIC and 3K for ERAS.

In the lowest 500 m, the bias of the zenith temperature pro-
files lies between —1 and 41K for MOSAIC and between
—0.2 and 4+-0.2 K for the ERAS5 evaluation dataset (final NN;
see Fig. 5a). Here, the strong surface temperature inversions,
which are not well resolved by the retrieved profile, are also
responsible for the large bias. Above 1500 m, the bias in
both datasets is generally smaller than +0.2 K. However, the
MOSAIC observation bias varies over the seasons: in winter
(22 October 2019-30 April 2020), the bias is mostly negative
in the mid-troposphere, ranging from —0.4 to —0.8 K, while
it is positive in summer (1 May-1 October 2020), ranging
from +0.5 to +0.9 K (not shown).

As expected, biases and RMSE,; are smaller for the BL
temperature profiles in the lowest 1500 m compared to the
zenith temperature profiles (see Fig. 5c¢ and d). This result is
consistent with the findings of Crewell and Lohnert (2007).
For the MOSAIC data, the RMSE.,; is 2K at the surface
(0.9K at 100m) and smaller than 1.2K up to 1 km height.
The error is therefore 1 K (0.5-0.6 K) lower compared to the
zenith temperature profile error. Based on the ERAS evalua-
tion dataset, the near-surface RMSE., values are only 0.4—
0.5 K, which is lower than for the MOSAiC data because of
the less complex temperature profile and the absence of mea-
surement uncertainties. In the lowest 1500 m, the bias is also
reduced, being nearly OK in the ERAS evaluation dataset
(with the final NN) and between —0.6 and 4+0.4K in the
MOSAIC data. Also, the seasonal variation of the MOSAiC
BL temperature profile bias is smaller than that of the zenith
temperature profiles. Above 2000 m, the RMSE_,; is similar
for both the zenith and BL temperature profiles, but the bias
above 2000 m is stronger (more negative) in BL temperature
profiles, especially for the MOSAIC data (up to —2 K).

We conclude that if the 30 min temporal resolution is suf-
ficient for the user, a combination of BL profiles and zenith
profiles provides optimal performance. We recommend that
BL temperature profiles be used in the lowest 1500 m, fol-
lowed by a linear transition to the zenith temperature profile
between 1500 and 2000 m, and only the zenith temperature
profile above 2000 m.
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Figure 6. RMSE (solid lines) and bias (dashed lines) of IWV re-
trieved from MOSAIC MWR observations for certain bins of ra-
diosonde IWV (0-2, 24, ..., 22-24, 24-35kg m_z). Yellow lines
indicate retrieved IWV from the synergy of HATPRO and MiRAC-
P, dark blue lines show HATPRO-only retrievals, and cyan lines
show MiRAC-P-only retrievals.

5 Information benefit analysis

After introducing the combined HATPRO and MiRAC-P re-
trieval, it still has to be demonstrated that the synergy is bene-
ficial compared to single-instrument retrievals. The benefit is
quantified through error reduction and gain in vertical infor-
mation content. We compare the errors of the synergy with
the single-instrument retrievals by Walbrdl et al. (2022c) for
MOSAIC observations to present the improvements for ac-
tual observations. As the retrieval methods also differ, we
also analysed the influence of different retrieval architec-
tures (i.e. NN instead of regression) and training datasets
(ERAS instead of Ny-Alesund radiosondes) on the error re-
duction compared to HATPRO-only retrievals. This helps to
isolate the pure benefit of the combination of low- and high-
frequency microwave observations from potential effects due
to different retrieval methods. In Sect. 5.1 and 5.2, the error
estimates for the synergy correspond to the ones shown with
respect to MOSAIC radiosondes in Sect. 4.1 and 4.2.

51 IWV

Figure 6 shows the RMSE and bias of IWV obtained from
single-instrument observations (HATPRO-only, MiRAC-P-
only) and from the synergy of both instruments, with ra-
diosonde IWV as a reference. As found in Walbrol et al.
(2022c), the HATPRO-only IWYV retrieval shows high rel-
ative errors and a positive bias (>20%) for IWV below
5kgm™2, while having lower relative errors (2 %—4 %) for
IWV greater than 10kgm~2. For MiRAC-P, the error be-
haviour is reversed: small biases and RMSE are found for
extremely dry conditions and errors become much larger than
the HATPRO-only retrieval for IWV greater than 10 kg m—2.

Atmos. Meas. Tech., 17, 6223-6245, 2024



6232 A. Walbrol et al.: Combining low- and high-frequency microwave radiometer measurements from MOSAiC

As expected, the synergy performs similarly well or even
better than the single-instrument retrievals. For IWV below
5kgm~2, the RMSE of the synergy is reduced by 75 % com-
pared to HATPRO, while being similar to MiRAC-P. The
RMSE of the synergy is also smaller by up to 0.2kgm™2
compared to HATPRO only when IWV is above 5kgm™2,
corresponding to an RMSE reduction of 15 %—50 %. How-
ever, the improvement of RMSE for high IWV is mainly
due to the bias reduction from more than —0.5 for HATPRO
to —0.1 to —0.5kgm™2 for the synergy. When considering
the bias-corrected error (RMSE.q,), the synergy shows up
to 20 % higher errors than the HATPRO regression retrieval
for IWV above 10kg m~2 (not shown). The error reduction
compared to MiRAC-P is even higher in this IWV range.

To study the influence of the different retrieval methods
and training datasets, we trained one NN with identical set-
tings as used in the final synergy (see Appendix A, Table A1)
but included only K-band TBs as the input vector. There-
fore, the only differences between this NN and the HATPRO
regression are the training data (ERAS vs. Ny-Alesund ra-
diosondes) and the retrieval type (regression vs. NN). With
this NN, we find that RMSE and biases of the retrieved IWV
are similar to those of the HATPRO regression retrieval in
almost the entire IWV range (see Appendix B, Fig. B1).
Only in very dry conditions IWV below 2 kg m~?) does the
K-band-only NN show 0.1 kg m~2 smaller bias and RMSE.
Thus, including the higher frequencies by MiRAC-P domi-
nates the improvement of the error.

5.2 Specific humidity profiles

In Fig. 7, the bias and RMSE,, for the specific humidity
profiles of the HATPRO regression retrieval and the syn-
ergy NN retrieval are shown with respect to MOSAIC ra-
diosondes. At altitudes below 1500 m altitude, the RMSE
is much smaller for the synergy compared to HATPRO. At
the surface, the reduction of RMSE,; is most prominent,
decreasing from 0.5gkg™! to less than 0.25gkg™! in ab-
solute terms and from 30 % to less than 15 % in relative
terms (Fig. 7b). Above 1500 m, the RMSE,,, difference be-
tween HATPRO and the synergy is marginal and the rela-
tive RMSE(q; gradually increases from 25 % to 80 % until
the top of the retrieval grid (10 000 m). Between the surface
and 1000 m, the synergy also shows a much smaller bias
(—0.05 to +0.1 gkg™") than HATPRO (0.1 to 0.4 gkg™!).
The strongest improvement was found near the surface,
where the bias is reduced by up to 75 %. Above 1000 m, the
bias reduction of the synergy compared to HATPRO is less
pronounced: the bias of HATPRO (the synergy) lies between
—0.1and +0.1 gkg™! (—0.05 and +0.15 gkg™!). Therefore,
combining the two instruments is most beneficial in altitudes
below 1500 m in the real-world application.

Because of the different magnitude of specific humidity
and the different performances of HATPRO and MiRAC-P
over the seasons, we also investigated seasonal differences
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Figure 7. Specific humidity g error profiles showing (a) the bias and
(b) the bias-corrected RMSE in absolute (solid lines) and relative
terms (dashed lines) with respect to MOSAIC radiosondes. Specific
humidity errors of the synergy (HATPRO) retrieval are shown in
yellow (blue).

in error reduction (not shown): in winter (here, 22 Octo-
ber 2019-30 April 2020), the RMSE,, is lower for both
HATPRO and the synergy as the water vapour amount is
also lower. However, the relative RMSE . of the synergy
is similar to the error for the full MOSAIC year in the low-
est 1000 m, while the relative error of the HATPRO retrieval
is increased. Therefore, the benefit of the synergy in the
lower troposphere is even more pronounced. The synergy
also shows smaller errors than HATPRO in the middle and
upper troposphere, which was not found for the entire MO-
SAIC year. The bias reduction of the synergy compared to
HATPRO-only is also stronger in winter. In summer (here,
1 May—1 October 2020), the overall picture of the error pro-
files is similar to the full MOSAIC year, except that the
RMSE_,; values (relative RMSE,;) for both retrievals are
shifted to slightly higher (lower) values. The bias reduction
of the synergy compared to HATPRO is also a little less pro-
nounced.

As in Sect. 5.1, to identify whether the error reduction is
mainly due to the inclusion of the higher frequencies or due
to the different training data and retrieval method, we trained
one NN with the same setup as the final synergistic retrieval
but used only K-band TBs as input. We applied this K-band-
only NN retrieval and the HATPRO regression to the ERAS
and MOSAIC evaluation datasets as in Sect. 4.2 and found
that the RMSE_,,; was almost identical for both retrievals at
all height levels (see Appendix B, Fig. B2b). Only the bias
is closer to O for the K-band-only NN than for the regression
(Fig. B2a). As the results for both retrieval architectures are
mostly similar when using the same input vector (K-band
TBs), it follows that the inclusion of the higher frequencies
contributes most to the overall error reduction.

We also investigated the influence of the additional input
parameters (2 m temperature, IWV, day of the year) on the re-
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trieved specific humidity profile. In one experiment, we ex-
cluded the MiRAC-P TBs from the input vector of the NN
but kept the HATPRO TBs, as well as the day of the year, the
IWYV, and the 2 m temperature. The resulting retrieved spe-
cific humidity also shows lower errors than the HATPRO-
only regression at the surface (not shown). However, the ver-
tical extent of the benefit is smaller, being mainly confined
to the lowest 500 m, compared to the synergistic retrieval in-
cluding the MiRAC-P TBs. Another experiment, where we
used HATPRO and MiRAC-P TBs, as well as the IWV and
day of the year, as input but excluded the 2 m temperature
showed higher errors in the lowest 100 m. These experiments
demonstrate that the MiRAC-P observations are needed to
have a higher vertical extent of the error reduction and that
the 2 m temperature effectively reduces errors at the surface.

To quantify the synergy benefit, it is interesting to analyse
not only the error of the retrieved profiles but also their ver-
tical information content. This also offers the opportunity to
investigate the impact of the different frequency bands. Thus,
we computed the degrees of freedom (DOF) as a measure of
the vertical information content for various frequency com-
binations as described in Sect. 3.3. In Fig. 8, the statistics
of the DOF over a 4 % subset of the ERAS evaluation dataset
are visualized. When using only K-band frequencies, the spe-
cific humidity profile has about 1.7 DOF. Adding the V-band
TBs only has a small effect as these frequencies are hardly
sensitive to the water vapour amount. The largest increase
in the DOF (from 1.7 to 2.4) is caused by the addition of
G-band frequencies to the K-band frequencies. This increase
is even more pronounced in cold, dry, and clear-sky condi-
tions, where the DOF is increased from 1.9-2.1 to 2.7-3.0
(Fig. 8). In contrast, the DOF hardly improved from 1.6 to
1.8-2.0 in warm and humid conditions. Clear-sky scenes are
typically associated with cold and dry conditions during the
Arctic winter. The DOF is larger during cold and dry condi-
tions than during warm and humid conditions because the G-
band TBs are partly saturated. This means they no longer ob-
serve the entire tropospheric column and cannot add as much
information. Adding the V-band or the 243 and 340 GHz fre-
quencies to K- and G-band TBs only has a minor impact on
the DOF distribution.

Ebell et al. (2013) and Lohnert et al. (2009) analysed the
vertical information content of absolute humidity profiles
from ground-based MWRs using K-band TBs at different
mid-latitude sites and found 2.4 and 1.6 DOF, respectively.
Additionally, Lohnert et al. (2009) obtained 2.7 DOF for a
tropical site with a much higher mean IWV. Thus, the DOF
depends strongly on the frequencies used to derive the hu-
midity profile and the atmospheric conditions. In the Arctic,
humidity profiling is more challenging with K-band frequen-
cies due to the lower sensitivity, which is why the higher-
frequency observations are needed to obtain similar DOF
(see also Fig. 1).

Based on the averaging kernel and the vertical height grid
spacing, we can also estimate the theoretical vertical reso-
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lution of the specific humidity profiles (e.g. dz;/Aj;, where
dz is the height grid spacing and A j; the diagonal entries of
the averaging kernel at height level j). In Fig. 9, the esti-
mated vertical resolution (effective resolution) is shown for
the K-band only and for all frequencies. The other frequency
combinations are not discussed as their averaging kernel val-
ues lie between those of the K-band and all frequencies. The
effective resolution at a certain height level indicates to what
vertical resolution the specific humidity profile is smoothed
by the microwave observations. Generally, larger values of
the effective resolution are found at higher altitudes, con-
sistent with the decreased sensitivity of ground-based mi-
crowave observations at these altitudes. The jump of the ef-
fective resolution at 5000 m height is due to a strong change
in height grid spacing. At the surface, using all frequencies
instead of just the K-band improves the effective resolution
by a factor of 2 (from 1200 m for K-band to 600 m for all
frequencies). At higher altitudes, the relative improvement
is smaller, but the absolute resolution improvement is still
mostly between 1000 and 2000 m.

5.3 Relative humidity profiles

Relative humidity is an important parameter, particularly for
cloud processes, and a desired variable for the modelling
community. We computed relative humidity from the re-
trieved temperature, specific humidity profiles, and surface
air pressure measured by the weather station attached to
HATPRO using the hypsometric equation. For HATPRO, the
conversion from absolute humidity to relative humidity pro-
files was straightforward. Due to the bias reduction that we
achieved with the new NN retrievals in the retrieved temper-
ature and specific humidity profiles, we also expect to see
lower biases in relative humidity. In the following, we com-
pare the relative humidity bias and RMSE.q; of HATPRO
and the synergy with respect to the MOSAIC radiosondes,
which are shown in Fig. 10.

The bias of the synergy (5 %) is much smaller compared
to HATPRO (40 %) in the lowest 1000 m (Fig. 10a). Simi-
larly strong improvements can be found in the lowest 1000 m
of the RMSE. profile (Fig. 10b), where errors are re-
duced from more than 60 % to 15 % at the surface and from
35 %-45 % to 15 % at higher altitudes. Above 2000 m, the
RMSE o of HATPRO and the synergy are similar (about
20 %), but the bias is closer to 0 %, while HATPRO shows a
negative bias up to —10 %.

In cold and clear-sky conditions, where IWV and 2m
temperatures were below 10kgm~2 and 273.15K, respec-
tively, and no clouds were detected by Cloudnet as described
in Sect. 2.2.2, the bias reduction is even stronger below
1500 m (Fig. 10a). In warm conditions (IWV > 10kgm~2,
2m temperature > 273.15 K), both retrievals perform simi-
larly well, suggesting no benefit of the synergy compared to
the HATPRO-only retrieval. If low-level stratus clouds were
not respected in the clear-sky detection, the RMSE,, values
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Figure 8. Distribution of the degrees of freedom (DOF) over 2803 samples visualized as a box plot for different frequency combinations (all
frequencies; K- and V-band; K- and G-band; K-, V-, and G-band). The box indicates the interquartile range (IQR; 1st-3rd quartile) of the
distribution, and the horizontal line within the box shows the median. The whiskers extend from below the 1st quartile and above the 3rd
quartile by 1.5xIQR, respectively. Additionally, the median DOF of different atmospheric conditions has been highlighted.
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Figure 9. Vertical resolution of the specific humidity profiles esti-
mated with the mean averaging kernel over the 2803 samples and
vertical grid spacing for all frequencies (yellow) and for the K-band
only (blue).

of the HATPRO retrieval would be up to 10 percentage points
higher in the lowest 1000 m, while the errors of the synergy
would only slightly increase (not shown). In general, the rel-
ative humidity errors of the synergy are much less sensitive
over these two types of atmospheric conditions (or over the
seasons; not shown).
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Figure 10. Relative humidity error profiles showing (a) the bias
and (b) the bias-corrected RMSE with respect to MOSAIC ra-
diosondes. Relative humidity errors of the synergy (HATPRO)
retrieval are shown in yellow (blue). Errors are also displayed
for different atmospheric conditions: cold and clear-sky condi-
tions (integrated water vapour (IWV) <10kg m~2, 2m temper-
ature (Thy) <273.15K) as dotted lines and warm conditions
IWV =>10kg m~2, Tr 1 = 273.15K) as dashed lines.

6 Conclusions

In this study, we demonstrate the benefit of combining low-
(22-58 GHz, HATPRO) and high-frequency (175-340 GHz,
MiRAC-P) microwave radiometer (MWR) observations for
humidity profiling and integrated water vapour (IWV) esti-
mates in Arctic conditions. The newly developed neural net-
work (NN) retrievals for IWV and for specific humidity and
temperature profiles have been applied to synthetic measure-
ments based on ERAS and real observations from the MO-
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SAIC expedition. Subsequently, they have been evaluated
with ERAS data and MOSAIC radiosondes, respectively, and
compared to the retrievals by Walbrol et al. (2022c). Re-
trieved temperature and specific humidity profiles were used
to compute relative humidity together with the surface air
pressure from the weather station attached to HATPRO.

We illustrate the sensitivity of the NN to random pertur-
bations with an ensemble of 20 NNs. The spread of errors
over the 20 NNs is generally small, except for specific hu-
midity biases. We selected one NN, whose errors were on
the lower end of the spread during the retrieval development,
as the final NN. Also in the final evaluation, the final NN
showed one of the smallest errors of all 20 NNs. In the fol-
lowing paragraphs, we only summarize retrieval errors with
respect to MOSAIC radiosondes as these errors are typically
larger than the theoretical ones based on the ERAS evalua-
tion dataset: for IWV, the RMSE is about 3 %—4 % and biases
are smaller than 2 % over a wide range of IWV conditions.
Specific humidity is overestimated by up to +0.15 gkg™! at
1500 m relative to radiosondes. At other height levels, the
biases are smaller. The bias-corrected RMSE (RMSE.q;) is
also highest at 1500 m with 0.5 gkg™" (about 30 %). Tem-
perature profile RMSE.,; values (biases) from zenith MWR
observations lie between 1.4 and 2.9 K (—1 and +1 K) in the
lowest 1500 m. Temperature profiles retrieved from bound-
ary layer MWR observations showed much smaller errors in
that height range, which is consistent with the findings of
Crewell and Lohnert (2007).

In the next step, we compared the errors of the new syner-
gistic NN retrievals to the single MWR retrievals of Walbrol
et al. (2022c) to estimate the information benefit. Addition-
ally, we computed the vertical information content of specific
humidity profiles as degrees of freedom (DOF). The informa-
tion benefit is only shown for MOSAIC observations to ob-
tain the benefit for the real measurements. IWV errors of the
synergy are generally smaller than or similar to those of the
single MWR retrievals. In cases when IWV is greater than
10kg m~2, the RMSE of the synergy is at least 15 % smaller
than the HATPRO-only retrieval, which is mainly due to the
lower biases of the synergy.

For specific humidity profiles, the largest information ben-
efit was found. The combination of HATPRO and MiRAC-P
increased the DOF from 1.7 to 2.4 and reduced the RMSE.
by up to 50 %. Through the synergy, strong positive biases
below 1000m could also be reduced by up to 75 %. The
benefit is most distinct in the lowest 1500 m because this is
where the error reduction is the strongest. At these heights,
the synergy enhanced the effective vertical resolution of the
specific humidity profile by a factor of up to 2 compared to
the HATPRO-only retrieval (from 1200 to 600 m). In cold
and dry conditions, the DOF increase and the error reduction
were even more pronounced.

We also analysed the influence of additional NN input pa-
rameters (2 m temperature, day of the year, and IWV) on the
specific humidity profile errors and found that including the
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2 m temperature is important to minimize errors at the sur-
face. Because of the improvements in specific humidity (and
temperature) profiles, the synergy also results in lower rela-
tive humidity errors compared to the HATPRO-only retrieval,
which is particularly evident in the lowest 1500 m. Addition-
ally, the errors of the relative humidity profiles from the syn-
ergy vary much less over different atmospheric conditions
than those from the HATPRO-only retrieval.

Coming back to the research questions listed in Sect. 1, we
can conclude the following.

1. For specific humidity profiles, the bias-corrected RMSE
could be reduced by up to 50 %. Bias reductions are
partly even higher. The information benefit is mainly at-
tributed to the combination of HATPRO and MiRAC-P.
The different retrieval training data and methods only
had a small influence.

2. The vertical information content in the specific humid-
ity profile was increased by 40 %.

3. The combination of HATPRO and MiRAC-P frequen-
cies increased the vertical information content the most
during cold and dry conditions and the least during
moist and warm conditions.

HATPROs are used at different sites worldwide (polar,
mid-latitude, and subtropical regions). In dry regions (high-
altitude or polar sites), the observation network would clearly
benefit from an instrument that includes the G-band frequen-
cies for IWV and humidity profiling (relative and specific hu-
midity) as these frequencies increased the DOF the most. It
is planned to install MiRAC-P at Ny-Alesund again in 2025
to enhance the continuous atmospheric observations at the
German-French research station AWIPEV. We are confident
that adding MiRAC-P to the already installed HATPRO will
improve humidity profiling similarly as demonstrated for the
MOSAIC expedition. The low specific humidity profile er-
rors give us confidence that the synergy is suitable for gaining
insights into the general structure of Arctic humidity profiles
(i.e. inversions). However, a detailed analysis of the ability of
the synergy to identify humidity inversions is still missing.

In the next step, the enhanced water vapour products
from the synergy of HATPRO and MiRAC-P, as well as the
radiosonde measurements from MOSAIC, will be used to
quantify IWV and specific humidity errors of satellite prod-
ucts and reanalyses. As reanalyses assimilated the MOSAiC
radiosonde observations, this comparison likely does not re-
flect the true performance of the reanalyses in the central
Arctic. With the considerable specific humidity profile im-
provements of the synergy compared to HATPRO, the ques-
tion arises of how well humidity inversions, which are im-
portant for cloud formation and maintenance, are captured.
This question will be answered with a statistical analysis for
the entire MOSAIC period. We will then evaluate the rep-
resentation of humidity inversions in satellite products and
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reanalyses compared to observations from the MWRs and
radiosondes. Radiative transfer simulations allow us to as-
sess how biases in humidity inversion characteristics affect
the downwelling thermal infrared radiation.

Appendix A: Neural network retrieval details

As noted in Sect. 3.2, all NN in this paper are multilayer per-
ceptrons (fully connected layers), but some include dropout
layers and batch normalization (see Table A1), and have been
created with Python’s Keras module (contained in Tensor-
flow; Abadi et al., 2015). The forward propagation of a sim-
ple, fully connected NN starts with an input layer whose
number of nodes equals the number of components of the
input vector. The mathematical operations to propagate to
the next layer of the network are similar to multiple linear
regression: each node is multiplied by a randomly initial-
ized weight before being summed up and a bias coefficient
is added. Afterwards, the result is used as input to a so-called
activation function (e.g. exponential or rectified linear unit,
also known as ReL.U). The output of the activation function
is then forwarded to each node of the next layer where the
process is repeated until the output layer is reached. We al-
ways use a linear activation function between the last hid-
den layer and the output layer. The output layer represents
the prediction of the NN and is compared to the truth of the
training and validation datasets using a certain loss function
(here, mean squared error).

To minimize the loss function, an optimization algorithm
(e.g. gradient descent) adapts the weights of each node in a
backpropagation process. In this study, we used the Adam
optimization algorithm (Kingma and Ba, 2017). The learn-
ing rate can be adjusted to reduce or enhance the magnitude
of the gradient during backpropagation, leading to slower
and smoother or faster and more erratic learning. The NN
typically processes a specific number of training data sam-
ples, determined by the chosen batch size, before updating
the weights. The epoch number determines the maximum
number of times the training dataset is cycled through. In
our retrievals, we activated the EarlyStopping function im-
plemented in Keras that monitors the loss of the validation
dataset over the epoch numbers. The training was terminated
if the validation loss did not improve by more than the min-
imum delta value for a certain number of epochs (callback
patience).

Dropout and batch normalization layers are tools to reg-
ularize the NN to make it less prone to overfitting. If batch
normalization is set to true for a retrieval (see Table A1), we
include a batch normalization layer after each hidden layer.
It normalizes the output of the preceding hidden layer so that
its mean (standard deviation) is close to O (1). The dropout
chance noted in Table A1 indicates the chance that the value
of a node is set to 0 during training. If the dropout chance is
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> 0.0, we add a dropout layer after each hidden layer or, if
applicable, after each batch normalization layer.
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Table A1. Neural network settings for each retrieved variable IWYV, specific humidity — ¢, zenith and boundary layer temperature profiles —
Tenith> IBL)- DOY_1 and DOY_2 are the cosine and sine of the day of the year, and 75, is the 2 m air temperature. Details can be found in

the text.
Settings wv q Tsenith TBL
Input vector TBsatK, G, 243,340, TBsatK,V, G, 243, 340, TBs atK, V, 243,340, TBs at V, different
DOY_1, DOY_2 Trm, IWV,DOY_1,DOY_2 DOY_1,DOY_2 elevation angles
N hidden layers 2 3 2 2
N nodes per layer (16, 16) (64, 64, 64) (256, 256) (256, 256)
Activation function  exponential softmax ReLU linear
Dropout 0.0 0.2 0.1 0.0
Batch normalization ~ False True True True
Batch size 64 256 256 256
Epoch number 15 100 150 800
Learning rate 0.0005 0.0005 0.0003 0.00005
Callback patience 3 30 15 80
Minimum delta 0.001 0 0 0
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Appendix B: Information benefit: influence of different
methods

Figure B1 shows the IWV error with respect to MOSAIC ra-
diosondes for the old single-instrument retrievals (HATPRO
regression, MiRAC-P-only NN) and the new NN retrieval.
However, in this case, the input vector of the NN consists
of K-band TBs only. This demonstrates that the different re-
trieval method and training data compared to the HATPRO
regression are not responsible for the error reduction in dry
conditions seen in Fig. 6 and discussed in Sect. 5.1.

Similarly, the specific humidity error profiles for the HAT-
PRO regression and the NN using only K-band TBs are
shown in Fig. B2. The RMSE_,; of both retrievals is compa-
rable for all height levels, but the lower-tropospheric bias of
the NN, labelled as synergy, is smaller. Therefore, the strong
RMSE_,; reduction is solely caused by including the higher
frequencies in the retrieval. However, the different method
and training dataset seem to contribute a little to the bias re-
duction.
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X
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—
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-15
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Figure B1. As Fig. 6 but using only K-band TBs as the input vector
to the new NN retrieval.
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Figure B2. As Fig. 7 but using only K-band TBs as the input vector
to the NN retrieval (yellow).
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Appendix C: Comparison with smoothed radiosonde
profiles

For a fair comparison of the retrieved and radiosonde specific
humidity profiles, the latter can be smoothed to the retrieval
height resolution when the averaging kernel (AK) is avail-
able. Following Lohnert and Maier (2012), we compute the
smoothed specific humidity profiles as

9 smoothed = Gret + A (qrs - qret) ’ (CD)

where ¢, and g, are the retrieved and radiosonde specific
humidity profiles, respectively, and A is the AK. In Fig. C1,
the specific humidity errors with respect to the smoothed
radiosonde profiles are shown. The displayed errors are
therefore resolution-corrected. For HATPRO, the smoothing-
based errors are much smaller compared to the true errors
shown in Fig. 7 because the smoothing filtered out the hu-
midity inversions. At the resolution of the retrieved HAT-
PRO profile, the HATPRO-only retrieval can extract more
information than the synergistic retrieval at the resolution
of the synergy profile because the errors are slightly smaller
(solid yellow and blue lines in Fig. Cla, b). However, when
comparing the specific humidity from HATPRO with the ra-
diosonde profile smoothed with the synergy (thus, slightly
higher resolution), the errors are again similar to Fig. 7. Thus,
the radiosonde profile smoothed with the synergy seems to
represent the average true radiosonde profile relatively well.
At the surface, the resolution-corrected RMSE ., (Fig. C1b)
of the synergy is similar to the true RMSEq (Fig. 7b). At
heights where the resolution-corrected errors are lower than
the true errors, e.g. around 1500 m, the low vertical resolu-
tion of the retrieval is a significant limitation.

In the specific humidity profile example (Fig. Clc), the
effect of the different smoothing strengths can be seen. The
synergistic retrieval and the radiosonde profile at the resolu-
tion of the synergy can both identify the inversion observed
by the radiosonde well. However, the specific humidity re-
trieved by HATPRO does not sense a strong humidity inver-
sion near the surface. The strong overestimation of the HAT-
PRO specific humidity compared to the HATPRO-smoothed
radiosonde profile near the surface suggests that the resolu-
tion could only partly explain this deviation from the true
radiosonde profile.

(c) 27 Dec 2019, 10:50 UTC
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Figure C1. Specific humidity g error profiles showing (a) the bias, (b) the bias-corrected RMSE of ¢ retrieved from HATPRO (blue) and the
synergy (yellow), and (c¢) an example specific humidity profile from 27 December 2019 at 10:50 UTC. In panels (a) and (b), the errors are
computed with respect to radiosonde profiles that have been smoothed with the K-band-based averaging kernel (AKk) and the all-frequency
averaging kernel (AK,y)), respectively. In panel (c), the original radiosonde profile is shown as a solid black line, while the profile smoothed
with AKg (AKjy) is visualized as a dotted (dashed) black line. The retrieved profiles from HATPRO (synergy) are displayed as solid blue
(yellow) lines.
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Code and data availability. The retrieved synergistic profiles of
temperature, specific humidity, and relative humidity, as well as
integrated water vapour, are available on PANGAEA (https://doi.
org/10.1594/PANGAEA.968760, Walbrol et al., 2024b; https://doi.
org/10.1594/PANGAEA.968778, Walbrdl et al., 2024a). The re-
trievals are based on brightness temperature observations from
HATPRO (https://doi.org/10.1594/PANGAEA.941356, Engelmann
et al.,, 2022) and MiRAC-P (https://doi.org/10.1594/PANGAEA.
941407, Walbrdl et al., 2022a). We used the single-instrument re-
trievals of temperature, absolute humidity, and IWV from HATPRO
(https://doi.org/10.1594/PANGAEA.941389, Ebell et al., 2022) and
IWV from MiRAC-P (https://doi.org/10.1594/PANGAEA.941470,
Walbrol et al., 2022b) for the benefit estimation. Radiosonde
measurements from MOSAIC (https://doi.org/10.1594/PANGAEA.
928656, Maturilli et al., 2021) and the Polarstern track data
(https://doi.org/10.1594/PANGAEA.924668, Rex, 2020; https:/
doi.org/10.1594/PANGAEA 924674, Haas, 2020; https://doi.org/
10.1594/PANGAEA.924681, Kanzow, 2020; https://doi.org/10.
1594/PANGAEA.926829, Rex, 2021a; https://doi.org/10.1594/
PANGAEA.926910, Rex, 2021b) are also available on PANGAEA.
Cloudnet target classifications, as well as the low-level stratus
mask and the additional quality flag data, are available and can be
accessed via https://doi.org/10.60656/60EAODDOA99746BA (En-
gelmann et al., 2023), https://doi.org/10.1594/PANGAEA.961789
(Griesche et al., 2023), and https://doi.org/10.5281/ZENODO.
7310858 (Griesche and Seifert, 2023), respectively. Met City ob-
servations have been downloaded from https://doi.org/10.18739/
A2PV6BS3F (Cox et al., 2023). ERAS data on single and model
levels used for the retrieval development and evaluation are ac-
cessible via https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al.,
2018) and https://doi.org/10.24381/cds.143582cf (Hersbach et al.,
2017), respectively. On Zenodo, we published the retrieval training,
test, and evaluation data (https://doi.org/10.5281/zenodo.10997365,
Walbrol and Mech, 2024); the information content estimation
output (https://doi.org/10.5281/zenodo.10997692, Walbrdl, 2024b);
and the ERAS evaluation data predictions and reference (https:
//doi.org/10.5281/zenodo.10998146, Walbrdl, 2024a). A snapshot
of the GitHub repository containing the scripts is also archived
(https://doi.org/10.5281/zenodo.13750797, Walbrol, 2024d). The
PAMTRA code can be accessed via https://doi.org/10.5281/zenodo.
3582992 (Mech et al., 2019b). The simulated brightness tempera-
tures of the two radiosoundings shown in Fig. 1 can be found at
https://doi.org/10.5281/zenodo.11092210 (Walbrol, 2024c).
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