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Abstract. The proportion of flaming and smouldering (or
smoldering) activity occurring in landscape fires varies with
fuel type and fuel characteristics, which themselves are in-
fluenced by ecology, meteorology, time since the last fire,
etc. The proportion of these combustion phases greatly in-
fluences the rate of fuel consumption and smoke emission,
along with the chemical composition of the smoke, which
influences the effects on the atmosphere. Earth observation
(EO) has long been suggested as a way to remotely map
combustion phase, and here we provide the first known at-
tempt at evaluating whether such approaches can lead to the
desired improvements in smoke emissions estimation. We
use intensively measured laboratory burns to evaluate two
EO approaches hypothesized to enable remote determina-
tion of combustion phase and concurrent measurements of
the smoke to determine how well each is able to improve es-
timation of smoke emission rates, smoke composition, and
the overall rate of fuel consumption. The first approach aims
to estimate the sub-pixel “effective fire temperature”, which
has been suggested to differ between flaming and smoulder-
ing combustion, and the second detects the potassium emis-
sion line (K-line) believed only to be present during flaming
combustion. We find while the fire effective temperature ap-
proach can be suited to estimating fire radiative power (FRP),
it does not significantly improve on current approaches to
estimate smoke chemical makeup and smoke emission. The
K-line approach does however provide these improvements
when combined with the FRP data, improving the accuracy
of the estimated CO2 emission rate by an average of 17±4 %
and 42±15 %, respectively, depending on whether the K-line
detection is used to simply classify the presence of flaming

combustion or whether its magnitude is also used to estimate
its relative proportion. Estimates of CO and CH4 emission
rates were improved to a lesser extent than that of CO2, but
the accuracy of the smoke modified combustion efficiency
(MCE) estimates increased by 30± 15 % and 46± 10 %, re-
spectively. MCE is correlated to the emissions factors (EFs)
of many smoke constituents, so remotely deriving MCE pro-
vides a way to tailor these during smoke emissions calcula-
tions. Whilst we derived and tested our approaches on labo-
ratory burns, we demonstrate their wider efficacy using air-
borne EO data of a boreal forest wildfire where we find that
combined use of K-line and FRP data significantly changed
estimated smoke MCE and CO2 and CO emission rates com-
pared to the standard approach. Our findings suggest that
satellite EO methods that jointly provide K-line and FRP data
could enable marked improvements in the mapping of land-
scape fire combustion phase, fuel consumption, and smoke
emissions rate and composition.

1 Introduction

Satellite Earth observation (EO) is the only approach able
to provide global, systematic, and regularly repeated es-
timates of landscape fire trace gas and aerosol emissions
(Chuvieco et al., 2019; Wooster et al., 2021). “Bottom-up”
EO-based emissions estimation approaches rely on calculat-
ing the amount of biomass burned, based on burned area
(BA) or fire radiative energy (FRE) measures (Giglio et al.,
2013; Kaiser et al., 2012; Wiedinmyer et al., 2011), which
is then multiplied by the emission factor (EFx) of the chem-
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ical species (X) of interest. EFx represents the mass of that
species that is emitted per unit of fuel burned (g kg−1; An-
dreae and Merlet, 2001). More recently developed EO-based
approaches now link EO-derived fire radiative power (FRP)
measures directly to emission rates of a trace gas or particu-
late species via an emission coefficient CXe (kg MJ−1; Ichoku
and Kaufman, 2005; Mota and Wooster, 2018; Nguyen et
al., 2023; Nguyen and Wooster, 2020). However, no EO ap-
proach currently takes into account combustion phase and
the proportion of flaming and smouldering (or smoldering)
activity, despite this being known to dramatically influence
fire and smoke characteristics (e.g. Freeborn et al., 2008; Ur-
banski, 2014; Zhang et al., 2015).

The proportion of flaming and smouldering combustion in
a landscape fire depends on fuel type and fuel condition –
for example being influenced by fuel load, fuel density, and
fuel moisture content (e.g. Burling et al., 2010; Garg et al.,
2024; Urbanski, 2013). It is well known that for most chem-
ical species released by landscape burning, the EFx (and
the Cxe ) changes markedly between the flaming and smoul-
dering combustion phase (e.g. Reid et al., 2005; Zhang et
al., 2015). Therefore, since the proportion of flaming and
smouldering combustion varies even between fires burning
in the same fuel type, smoke emissions characteristics can
also vary widely – which then has an impact on the fire’s ef-
fects on atmospheric composition (e.g. Mebust and Cohen,
2013; Zheng et al., 2018).

Biome-specific databases of EFX and/or Cxe do not gen-
erally report separate values for flaming and smouldering
combustion but rather overall “fire-average” values based on
laboratory and/or field measurements assumed to include a
“typical” amount of flaming and smouldering combustion
for that fuel type (see Akagi et al., 2011; Andreae, 2019;
Andreae and Merlet, 2001). Remote sensing measures of
FRP reflect an instantaneous observation, possibly at a time
when the amount of flaming and smouldering combustion
may be very atypical of the “average”. Furthermore, even
fire-average emission factors and coefficients likely vary be-
tween fires in the same fuel. For these reasons there is in-
creasing interest in providing more dynamic emission factors
and emissions coefficients, initially at least to cope with their
presumed seasonal variations (Vernooij et al., 2022, 2023).

There have long been suggestions that remote sensing may
be able to provide ways to specify more tailored emissions
factors or coefficients (e.g. Andreae and Merlet, 2001; Free-
born et al., 2008; Kaufman et al., 1998). The most common
approach suggested uses estimates of sub-pixel fire effective
temperature, for example, derived via the Dozier (1981) ap-
proach or similar multispectral analysis methods that can be
used with ground or airborne data (e.g. Dennison et al., 2006)
but also with spaceborne data to analyse fires covering only a
very small fraction of the pixel area (e.g. Giglio and Kendall,
2001). An alternative approach would be to remotely identify
a phenomenon which is characteristic of only a single com-
bustion phase, and most commonly suggested is the potas-

sium emission line (K-line) associated only with flaming ac-
tivity (Amici et al., 2011; Magidimisha and Griffith, 2017;
Vodacek et al., 2002). The current work aims to test these
remote sensing approaches to determine whether they re-
ally can improve smoke emissions rate and smoke compo-
sition estimation, in this case, of the three most dominant
trace gases (CO2, CO, and CH4). We use a series of inten-
sively instrumented combustion chamber burns for this and
also demonstrate the best approaches on real landscape fires
using airborne EO data – providing a demonstration that is
of intermediate scale to satellite EO.

2 Background

Though the burning of biomass involves multiple different
combustion phases, almost all the smoke is produced in
the flaming and smouldering phases (Bertschi et al., 2003;
Yokelson et al., 1997). The flaming phase generally involves
higher temperatures, and the resulting oxidation of fuel car-
bon is typically far more complete and leads to a higher CO2
emission factor (Zhang et al., 2015). EFs of species such as
NOX, SO2, and black carbon (BC) are also elevated in the
flaming phase (Andreae and Merlet, 2001; Reid et al., 2005).
Smouldering combustion commonly refers to a combination
of pyrolysis (thermal decomposition of the fuel) and glow-
ing combustion (of char), mostly involving lower tempera-
tures and more incomplete oxidation of the fuel carbon com-
pared to flaming. CO2 EFs are lower, but those of species
such as CO, CH4, organic carbon (OC), and volatile organic
compounds (VOCs) are higher (e.g. Zhang et al., 2015; An-
dreae, 2019; Bertschi et al., 2003; Reid et al., 2005; Yokel-
son et al., 1997, 1996). However, fuel combustion rate is also
important to consider in emissions rate calculations and is
far higher per unit area for flaming rather than smouldering
combustion (e.g. Lacaux et al., 1996; Wooster et al., 2011).
Furthermore, despite EFCO2 being typically 5 %–15 % lower
for smouldering than flaming combustion, smouldering fires
still release the majority of their carbon as CO2 as the emis-
sions factor of CO2 is still higher than for any other com-
pound (e.g. Reisen et al., 2018; Zhang et al., 2015). However,
the EF of “preferentially smouldering” compounds such as
CO, CH4, organic carbon (OC), and VOCs is typically many
times higher during smouldering than flaming phase com-
bustion, so along with the fuel consumption rate the amount
of smouldering activity plays a very significant influence in
their emission rate.

Whilst landscape fires often show periods of only smoul-
dering combustion, periods of “flaming-dominated” activity
are, typically, relatively short. Far more common are stages
with a mixed contribution, where some smouldering is hap-
pening behind the flaming front (e.g. Bertschi et al., 2003;
Burling et al., 2011; Rabelo et al., 2004; Urbanski, 2014;
Yokelson et al., 1997). Since combustion rate per unit area is
generally far higher in the flaming-dominated phase than the

Atmos. Meas. Tech., 17, 6247–6264, 2024 https://doi.org/10.5194/amt-17-6247-2024



F. Owsley-Brown et al.: Smoke emission estimates accounting for combustion phase via remote sensing 6249

smouldering-dominated phase, the total production of even
“preferentially smouldering” species can often be higher dur-
ing the flaming period rather than during pure smouldering,
depending on the area affected by each and their relative du-
rations. This complexity has led to metrics like the modi-
fied combustion efficiency (MCE), which aims to quantify
the balance between flaming and smouldering combustion in
the smoke production process, defined as

MCE=
1CO2

1CO2+1CO
, (1)

where 1X indicates the excess concentration of CO2 or CO
(commonly measured in ppmv).

Purely flaming combustion results in an MCE close to 1.0
due to minimal CO production, whilst purely smouldering
combustion can yield smoke with an MCE as low as 0.65
(depending on fuel type; Akagi et al., 2011; Andreae, 2019).
Smoke MCE has been shown to be negatively correlated with
the EFs of many preferentially smouldering species (Bertschi
et al., 2003; McMeeking et al., 2009; Urbanski, 2013; Yokel-
son et al., 1996), and understanding the MCE of the fire can
therefore enable more precision to be placed on the resulting
fire emissions. However, collecting MCE data on landscape
fires is challenging, even using in situ aircraft sampling due
to atmospheric mixing (Yokelson et al., 2013), and whilst
satellite EO has shown an ability to probe smoke emissions
ratios (e.g. Coheur et al., 2009; Ross et al., 2013), it has not
yet been possible to remotely sense smoke MCE. Currently,
therefore, remote sensing approaches potentially able to de-
termine the amounts of flaming and smouldering combustion
ongoing in a fire are based either on retrieving the fire’s ef-
fective temperature (e.g. Zhukov et al., 2006) or on detecting
the flaming-phase K-line signature (e.g. Amici et al., 2011).

Remotely sensed fire effective temperature estimation was
first proposed by Dozier (1981). Observations in two differ-
ent wavebands are used to retrieve a fire’s subpixel effective
temperature (Tr) and proportional area (p), with the fire as-
sumed to be thermally homogeneous and superimposed on
a thermally homogeneous background with temperature (Tb)
and proportional area (1-p). Blackbody behaviour is gener-
ally assumed, and estimation of Tr and p is conducted via
solution of

L1 = τ1pB (λ1,Tr)+ (1−p)Lb,1+Latm,1 (2)
L2 = τ2pB (λ2,Tr)+ (1−p)Lb,2+Latm,2, (3)

where L1 and L2 are spectral radiances (Wm−2 sr−1 m−1) in
wavebands λ1 and λ2, τ1 and τ2 are the atmospheric trans-
mittances in those wavebands, and Latm,1 and Latm,2 are the
atmospherically emitted radiances measured by the sensor
in those wavebands. Lb,1 and Lb,2 are the radiance contri-
butions from the non-burning uniform background, whose
temperature is generally estimated from neighbouring pixels.
The spectral emission at wavelength λ and retrieved temper-

ature Tr is given by Planck’s radiation law:

B (λ,Tr)=
2hc2

λ5
1

e
hc

λkBTr − 1
, (4)

where h is Planck’s constant (6.62607004×
10−34 kg m2 s−1), kB is Boltzmann’s constant
(1.38064852× 10−23 kg m2 s−2 K−1), and c is the ve-
locity of light in a vacuum (299 792 458 m s−1). Note that
“effective temperature” refers to an estimate of the radiant
temperature of the fire, rather than the kinetic temperature
one might measure with a thermometer. This assumes that
the fire is a grey body (Johnston et al., 2014) but makes no
assumptions with regards to the actual emissivity value.

Dennison et al. (2006), Dennison and Matheson (2011),
Matheson and Dennison (2012), and Zhukov et al. (2006)
provide examples of mapping sub-pixel fire effective temper-
ature, which can be expanded to estimate increased thermal
component fits if more than two wavebands are available,
such as in hyperspectral data (Dennison et al., 2006; Den-
nison and Matheson, 2011; Giglio and Justice, 2003; Giglio
and Kendall, 2001; Waigl et al., 2019). This could poten-
tially determine separate flaming and smouldering contribu-
tions. However, no studies have yet linked such retrievals
to an ability to better estimate smoke emission characteris-
tics (Wooster et al., 2021), despite that being a key aim for
such data.

The alternative K-line approach is based on the detec-
tion of an emission doublet in the near-infrared spectrum
(766.5 and 769.9 nm), which is caused by thermally ex-
cited potassium atoms within the burning fuel (Vodacek et
al., 2002; Amici et al., 2011; Dennison and Roberts, 2009;
Magidimisha et al., 2023; Magidimisha and Griffith, 2017).
Only flaming phase activity is hot enough to produce K-line
emission, and Amici et al. (2011) thus far provide its only
detection from space – defining the “advanced K-band dif-
ference” (AKBD) metric to quantify its strength:

AKBD=Max |BandKi| −Bkg, (5)

where Max |BandKi| is the maximum spectral radiance
recorded in the 764–772 nm range (the region that encom-
passes the NIR K-line doublet), and Bkg is that recorded
just outside the K-emission region, for example 779 nm. The
K-line signature can be seen superimposed on the back-
ground Planckian signal in data from our experiment shown
in Fig. 2a.

3 Laboratory experiment method

3.1 Experiment setup

Experiments were conducted at King’s College London’s
Wildfire Testing Chamber, located at Rothamsted Research,
Harpenden (UK). The physical arrangement and instruments
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Figure 1. Experimental setup for examining fire and smoke charac-
teristics: (A) fuel bed, (B) spectrometers and cameras viewing the
fuel bed and nadir through holes in the extraction flue, (C) gas anal-
ysers, and (D) air flow rate sensor.

are detailed in Fig. 1 and Table 1. The remote sensing instru-
ments were positioned to view the fuel bed at nadir (location
B in Fig. 1) through appropriately transparent windows (also
listed in Table 1) with high heat resistance. Pre-experiment
calibrations were undertaken to allow the non-unitary trans-
missivity of the windows to be taken account of during data
analysis.

3.2 Fuel

Three types of fuel were burned during these experiments:
oak kindling, pine forest litter, and soybean crop residue. Oak
kindling was selected for its relative uniformity, though the
thickness and dryness of the individual pieces were not iden-
tical and led to some intra-fire variability in the amount of
flaming and smouldering activity. The pine forest litter was
a mixture of needles, cones, and small branches collected
from the floor of a UK forest containing mainly Corsican,
Maritime, and Scots pine. This fuel mix was dried indoors
for a month prior to the burns, and the samples burned were
selected to maintain the proportions of needles, cones, and
branches found on the forest floor. The soybean residues
were sourced from China as an example of an agricultural
waste product commonly burned in open fields. All fuels
were arranged to fit within a 29 cm diameter circle to fit
within the measurement area of all remote sensing instru-
ments deployed.

3.3 Fire measurements

3.3.1 Optical and thermal imagery

A standard RGB camera recorded video imagery of each
fire for context, helping gauge how amounts of flaming
and smouldering combustion changed over each fire’s dura-

tion. A calibrated longwave infrared (LWIR) camera (Optris
PI400) recorded infrared brightness temperature imagery at
1 Hz, with the 3.3 mm pixel size allowing for an assumption
of pixel thermal homogeneity. A 1 Hz FRP record of the fire
could then be derived using the Stefan–Boltzmann law with
data from each image:

FRP=
∑
i

σaT 4
i , (6)

where σ is the Stefan–Boltzmann constant (5.670374×
10−8 Wm−2 K−1), a is the pixel area (1.109×10−5 m2), and
Ti is the pixel brightness temperature (K). This sum was over
the i pixels within each image that had T > 600 K, which ex-
cluded cooling non-combusting pixels (e.g. Freeborn et al.,
2008; Wooster et al., 2011).

3.3.2 Fire effective temperature and FRP retrieval
from spectral fits

Fire effective temperatures and FRP were also derived us-
ing UV–SWIR spectral radiance measurements collected
at 0.14–0.25 Hz from a calibrated field spectrometer (SVC
HR1024i; Table 1). Fire effective temperature estimates,
akin to those coming from the Dozier (1981) “dual-
band” approach, were retrieved from the measured spec-
tra (Lλ,measured) – though the use of hyperspectral data en-
abled three thermal components to be derived (similar to in
Wooster et al., 2005; Dennison et al., 2006; and Amici et
al., 2011). Modelled spectra (Lλ,modelled) that provided the
best fits to the measured spectra were constructed from three
individually modelled spectral radiances (LFD, LSD, and
LC) coming respectively from assumed flaming-dominated
(FD; range 923–2000 K), smouldering-dominated (SD; 623–
1023 K) and cooling (C; 280–623 K) emitters:

Lλ,modelled =

n=3∑
i
piBλ (Ti) , (7)

where the fractional areas sum to 1, and Bλ (TI ) the Planck
radiance emitted by each fractional component was calcu-
lated using Eq. (4). Brightness temperature (Ti) and frac-
tional area (pi) of each component were iterated to provide
the best match between Lλ,modelled and Lλ,measured.

A blackbody assumption was made during application of
Eq. (7), and burns were conducted in the dark to prevent con-
tamination by reflected sunlight. Due to the small distances
involved in the measurement setup, no atmospheric transmis-
sion adjustments were required to the spectra. CO2 and H2O
absorption and emission regions could be seen in the mea-
sured spectra (e.g. at 1400, 1900, and 2500 nm in Fig. 2a)
but were simply excluded from the model fitting process.
Since little thermal emission occurs in the HR1024i spec-
tral range from targets below ∼ 500 K, the approach is not
very well suited to retrieving temperatures below this limit.
As per Wooster et al. (2005), FRP estimates were derived as
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Table 1. Instruments used and their specifications, as well as the window compositions that protected the spectrometers and cameras viewing
through the holes shown in Fig. 1. n/a: not applicable.

Location Instrument Window Specifications

A Digital scales n/a 0.005 kg readability

B VIS–SWIR spectrometer
– SVC HR-1024i

Sapphire (AL2O3) Spectral range: 350–2500 nm
FWHM: 3.5 nm (700 nm), 9.5 nm (1500 nm),
6.5 nm (2100 nm)
Bandwidth: 1.5 nm (350–1000 nm), 3.8 nm
(1000–1890 nm), 2.5 nm (1890–2500 nm)
FOV: 14° foreoptic lens
Calibration accuracy: ±5 % (400 nm), ±4 %
(700 nm), ±7 % (2000 nm)
Measurement frequency: 0.14–0.25 Hz

B Thermal camera – Optris
PI 400

Zinc selenide (ZnSe) Spectral range: 7.5–13 µm
Optical resolution: 382× 288 pixels
Frame rate: 27 Hz
Temperature range: 150–900 °C
FOV: 62°× 49°
f = 8 mm
Measurement frequency: 1 Hz

B UV–NIR spectrometer
– Ocean Insight Ocean
HDX-XR

Fused silica (SiO2) Spectral range: 200–1100 nm
FWHM: 1.1 nm
FOV: 30° fibre-optic guide
Measurement frequency: 1 Hz

B RGB camera – Apeman
A79

Fused silica (SiO2) Resolution: 20 MP
Frame rate: 30 fps
FOV: 170°

C CO2, CO, and CH4 anal-
yser – customized Los
Gatos Research Ultra-
portable Greenhouse Gas
Emissions Analyzer

n/a CO2: 0–3000 ppm
CO: 0–1000 ppm
CH4: 0–100 ppm
H2O: 0 %–99 % relative humidity
Measurement frequency: 1 Hz

C CO2 and CO analyser –
GasLab CM-1000

n/a CO2: 0–10 000 ppm
CO: 0–5000 ppm
Measurement frequency: 0.5 Hz

D Air pressure differential
analyser – Testo 440

n/a Pressure differential measuring range: −150
to 150 hPa
Accuracy: ±0.2 hPa
Resolution: 0.01 hPa
Measurement frequency: 1 Hz

the sum of the radiative emissions from the retrieved flaming
and smouldering components:

FRP= A
n=2∑
i

σpiT
4
i , (8)

where σ is the Stefan–Boltzmann constant, andA is the field-
of-view (FOV) area (0.064 m2). This shall be referred to as
the FRP retrieved using the spectral-fitting method, FRPSF.

Figure 2 shows an example of modelled and measured
spectra from a single experimental burn, with excellent

agreement seen outside of the previously mentioned gaseous
absorption and emission regions.

FRP retrievals made using the thermal infrared brightness
temperatures from the PI400 appeared to show good agree-
ment with those derived from the HR1024i VIS–SWIR spec-
tra (see example in Fig. 3a). However, further validation in-
vestigations are required, such as in daytime retrievals. The
data from the PI400 were subsequently used for all analysis
since they provide a higher measurement frequency and one
that matches those of the AKBD measures (see Sect. 3.3.3).
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Figure 2. Snapshot of an exemplar 23× 23 cm experimental pine
forest litter fire viewed from nadir using the setup shown in Fig. 1.
Fire is shown at the time of maximum flaming activity. (a) Fire
radiative emission spectra as measured by the OCEAN-HDX-XR
(Ocean Insight, UV–NIR) and HR1024i (SVC, UV–SWIR) spec-
trometers, with magnitudes adjusted for the FOV difference be-
tween the two instruments. Modelled spectra derived from the
spectral-fitting method described in Sect. 3.3.2 and its three temper-
ature components (retrieved fractional area (%) and temperature (K)
are listed in the legend). (b) Temperature (K) measured by the PI400
(Optris). (c) Fire radiative power (FRP; kW m−2) derived from the
PI400 thermal imagery, as calculated via the Stefan–Boltzmann law
and omitting pixels below 650 K (see Sect. 3.3.1). (d) Frame from
RGB video camera.

The PI400 data also provide spatially mapped FRP data
rather than just a single “fire-integrated” value.

3.3.3 K-line measurements

An OCEAN-HDX-XR spectrometer (Table 2) was used to
provide 1 Hz K-line measurements of each fire. The instru-
ment measurement diameter was 53 cm at the fuel bed, and
the instrument calibrated to provide data in spectral radiance
units using an Ocean Insight HL-3P-CAL calibration lamp.
The resulting spectra were used to measure K-line strength
using the AKBD metric introduced in Sect. 2.

The HR1024i can also provide K-line spectra, though its
3.5 nm spectral resolution in the K-line region is coarser than
the 1.1 nm of the OCEAN-HDX-XR. Comparison of their
AKBD data (e.g. Fig. 3b) showed excellent agreement (R2

of 0.99; with a linear best fit of gradient of 0.381±0.002 and
negligible intercept). However, the AKBD measured by the
OCEAN-HDX-XR are more than twice as large as from the
HR1024i. This is despite the former’s larger measurement
area; this is due to its higher spectral resolution, which is ev-
ident in its ability to better resolve the individual potassium
emission lines (see Fig. 2a). Since the OCEAN-HDX-XR

Figure 3. Data from the exemplar pine forest litter fire shown in
Fig. 2. (a) FRP time series derived from brightness temperature
imagery collected by the Optris PI400 thermal imager and VIS–
SWIR spectral collected by the HR1024i. Data for a single time
step are shown in Fig. 2a. (b) Comparison of AKBD K-line met-
ric derived from spectra measured by the OCEAN-HDX-XR and
HR1024i spectrometers around the location of the potassium emis-
sion line (see Sect. 3.3.3). (c) Time series of excess (1) CO2, CO,
and CH4 (ppm) concentrations in the smoke from this fire, each
normalized by their maximum value (given in the legend). The time
flaming activity ceased as determined by the RGB video record is
marked by the vertical dashed line.

also provided a higher measurement frequency, its AKBD
data were used for all subsequent analysis.

3.4 Smoke measurements

3.4.1 CO2, CO, and CH4 mixing ratios

Trace gas measures of the smoke from every fire were con-
tinuously directed via the hood and through the extraction
flue (Fig. 1) and used to calculate smoke emission rates and
MCE. Continuous CO2, CO, and CH4 mixing ratio mea-
sures were taken at an inlet at location C (Fig. 1) using a
customized version of the Los Gatos Research (LGR) Ul-
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traportable Greenhouse Gas Analyzer laser absorption spec-
trometer (described in Zhang et al., 2015). However, for the
crop residue fires, the LGR was unavailable, so a GasLab
CM-1000 was deployed instead. This instrument uses a non-
dispersive infrared (NDIR) detector to assess CO2 mixing
ratios and an electrochemical sensor to assess CO. The dif-
fering response times of these two detectors were accounted
for using the method of Zhang et al. (2020) such that con-
tinuous MCE measurements could be derived using Eq. (1).
Excess concentrations of CO2, CO, and CH4, along with the
matching FRP and AKBD data, are shown in Fig. 3c and d
for an example pine forest litter fire.

3.4.2 Trace gas emission rates

To account for any variability in the extraction system, the
gas flow rates through the flue were calculated by combin-
ing the trace gas concentrations (Sect. 3.4.1), 1 Hz pressure
difference measurements (dP, in Pa) between the inside and
outside of the flue using a Testo 440, and the flue gas tem-
perature using two thermocouples. Gas velocity (v, in m s−1)
was derived from the pressure data using the Bernoulli equa-
tion:

v =

√
2dP
ρX

, (9)

where ρX is the density of speciesX (kg m−3). Temperatures
of the flue gases varied by up to 40 K over the course of indi-
vidual fires. Therefore, ρX was adjusted using

ρX =
MMXP

RTTC
, (10)

where MMX is the molar mass of gas species X; R is the
ideal gas constant (8.3145 mol−1 K−1); P is pressure, which
was assumed to be constant of 101 kPa as the pressure differ-
ence measurements from the Testo were negligible in com-
parison; and TTC is the temperature recorded by a thermo-
couple in the flue (in K). The measured emission rate of X,(

dMX

dt

)
m

(in g s−1), was then calculated by(
dMX

dt

)
m

= ACSρXv10−61X, (11)

whereACS is the cross-sectional area of the flue at locationD
(0.01767 m2), 1X is the excess concentration of X (in ppm)
in the flue, and 10−6 is a unit conversion factor for the gas
concentration.

3.4.3 Experimental procedure

In total, 12 pine forest litter, 12 oak kindling, and 8 crop
residue fires were conducted over a period of 1 week, dur-
ing which ambient air temperature in the chamber ranged
from 9 to 12 °C and relative humidity from 71 % to 75 %.

After preparation of each fuel bed, the extraction flue and
all instruments were turned on and the pre-fire trace gas am-
bient concentrations calculated as the mean of the 60 1 Hz
concentration measurements taken immediately before each
time of ignition. Ignition was done using a blowtorch ap-
plied to one edge of the fuel bed, with a small amount of
sawdust added to help ignite the oak kindling. Measurements
only ceased when concentrations of CO2 and CO closely ap-
proached those pre-fire. Post-fire, the cooling char, ash, and
any unburned fuel were removed and the next fuel bed pre-
pared. Fuel mass ranged from 125 to 250 g for the pine litter
fires, 220 to 410 g for oak, and 100 to 200 g for crop residue.
Fire duration across the 32 burns ranged from 16 to 42 min.

4 Laboratory experiment results

4.1 K-line detection

As with previous work (Amici et al., 2011; Magidimisha and
Griffith, 2017; Vodacek et al., 2002), the detection of a K-line
signature coincided with clear flaming combustion seen in
the RGB video record. An AKBD≥ 1.5 µW cm−2 sr−1 nm−1

was always recorded by the OCEAN-HDX-XR when flames
were visible. A higher MCE was also recorded when the
AKBD signal was high, indicating that a higher proportion
of fuel carbon was being completely oxidized to CO2 than
when the AKBD was low. We built on these observations to
attempt to link the K-line emission signal to quantitative im-
provements in our ability to estimate the trace gas emission.

4.2 Fire effective temperature and spectral fitting

Figure 4 shows the fire effective temperature and area pa-
rameters derived using fits to the spectra of a single pine
forest litter fire. Whilst the total FRP from these fits agrees
with that derived using the PI400 as already stated (Fig. 3a),
the individual FRP calculated for the separate flaming and
smouldering components does not appear very realistic. The
highest combustion rate is seen in the period from ignition
to when all flaming activity ceased, and it is here that the
highest rates of CO2 production occur (Fig. 3c). However,
the “flaming FRP” is reported as being far smaller than the
“smouldering FRP”, even during this period (Fig. 4a), even
though fuel consumption was clearly dominated by flaming
combustion at this time (also shown by the CO2 production
in Fig. 3c). Therefore, these separate flaming and smoulder-
ing FRP components do not appear well matched to how each
combustion phase is actually contributing to overall fuel con-
sumption.

Going further, for all fires on which this method was
tested, we found that retrievals of the second fire compo-
nent derived from the spectral fits and meant to represent the
smouldering combustion contribution always dominated the
total FRP. In contrast, retrieved temperatures in the flaming
zone (TFD) were frequently very high, often above 1600 K
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Figure 4. Time series of results of the spectral-fitting method for
the pine forest litter fire also shown in Fig. 3. (a) FRP derived from
the two separate fire components (Eq. 6); the first is meant to rep-
resent the flaming zone (923 K<TFD< 2000 K) and the second the
smouldering zone (623 K<TSD< 1023 K), and their sum is the to-
tal of these two. (b) The fractional area, pFD, and temperature, TFD,
of the first component representing flaming-dominated combustion.
(c) The fractional area, pSD, and temperature, TSD, of the sec-
ond component representing smouldering-dominated combustion.
(d) The fractional area, pC, and temperature, TC, of the third com-
ponent representing the cooling non-fire background. The end of
the flaming period, the time when all flames appeared to cease in
the RGB camera data, is indicated by the vertical dotted line.

during the flaming period of Fig. 4b for example, but those
of pFD (flaming proportional area) were very small (e.g.
never larger than 0.085 %) – which led to a low contribu-
tion to total FRP. As there is little emission from the cooler
smouldering component in the spectral region measured, this
“flaming” component is derived by fitting at shorter wave-
lengths, and some of this signal is coming from hot soot in
the flames rather than from the burning fuel itself. Param-
eters such as flame depth and soot concentration, which are
significant drivers of flame emissivity (Johnston et al., 2014),
therefore influence the retrievals. Similar to the AKBD mea-

surements, we observed that flames were present while f1 ≥

0.0016 % (Fig. 4a). However, any daytime measurements
will require the removal of the reflected solar radiation com-
ponent present at VIS–SWIR wavelengths (discussed further
in Sect. 5.1.2). This task can introduce large uncertainty, es-
pecially when dealing with course spatial resolution imagery,
where at the shorter wavelengths the solar-reflected signal
may be far larger than that from the fire. The AKBD calcula-
tion is unaffected by this issue since it quantifies the strength
of the K-line above the combination of reflected solar radia-
tion and Planckian emission signal.

4.3 Combustion phase emission relationships

Figure 5a, b, and c show, respectively, how emission rates
of CO2, CO, and CH4 vary with FRP – in this case for the
example pine forest litter fire. Each data point is coloured
by MCE, indicating the mix of smouldering and flaming
combustion ongoing at each measurement time. High MCE
(maximally dominated by flaming combustion) is yellow,
and lower MCE (maximally dominated by smouldering com-
bustion) is in dark blue. Points that have a contemporaneous
AKBD signal ≥ 1.5 µW cm−2 sr−1 nm−1 are outlined, indi-
cating the confirmed presence of flaming combustion via the
K-line signal.

It is clear from the hysteresis-shaped patterns present in
Fig. 5 that any assumption of a purely linear relationship be-
tween trace gas emission rate and FRP is flawed and that,
instead, such relationships are combustion-phase-dependent.
This agrees with previous lab-based studies comparing FRP
to CO2 and CO emission rates (e.g. Freeborn et al., 2008).

Generally, soon after ignition, the fires enter a “flaming-
dominated” stage that produces a steep linear increase in
CO2 production with increasing FRP (Fig. 5a). Smouldering
can and does occur during this “flaming-dominated” stage,
but it is consuming very little of the fuel compared to flam-
ing. This is different to the “flaming period” – which we
class as the period of the burn when flames are present as
defined via AKBD thresholding. During this time, signifi-
cant smouldering combustion can also occur, particularly as
the fire is transitioning away from the flaming-dominated
stage. As the smouldering-dominated stage begins (no flam-
ing activity), there also appears to be a linear relationship be-
tween FRP and CO2 emission but with a gradient far lower
than that found during the flaming-dominated stage. Dur-
ing the flaming period, the data of Fig. 5a fall between the
two linear clusters representing the flaming-dominated and
smouldering-dominated stages, with MCE values indicating
a mixed contribution from both flaming and smouldering ac-
tivity.

As expected, for the “preferentially smouldering” species
CO (Fig. 5b) and CH4 (Fig. 5c), the relationship between
FRP and trace gas emission rates is opposite in nature to
that of the “preferentially flaming” CO2 (Fig. 5a). The emis-
sion rates of CO and CH4 increase linearly with FRP but
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with a slope significantly lower than that for CO2 during
the early flaming-dominated stage. During the smouldering-
dominated stage, however, these slopes increase but the data
are less well fitted by a linear relationship than during the
flaming-dominated stage. The latter is possibly contributed
to by a lower plume buoyancy during the smouldering-
dominated stage, when some of the smoke may not have
made it directly into the extraction flue.

Based on these data, we developed and tested three dif-
ferent empirical models that use the remotely sensed mea-
sures to estimate the fires trace gas emission rates. The first
model uses only remotely sensed FRP measures – and sup-
poses a fire-average relationship between FRP and trace gas
emission rate, which is assumed for example within the clas-
sical Fire Radiative Energy eMissions (FREM) approach de-
veloped for use with satellite FRP data (Mota and Wooster,
2018; Nguyen et al., 2023; Nguyen and Wooster, 2020). The
second two models use the K-line measures in addition to
FRP and are aimed at providing a more nuanced trace gas
emission rate estimate by considering the different relations
seen during flaming and smouldering combustion. We used
data from 23 “training” fires across all fuel types to develop
the parameters of each model. Nine were randomly selected
from each of the pine forest litter and oak kindling burns and
five from the crop residue burns. Three fires of each fuel type
were then used to evaluate, or “test”, the models.

4.4 Emission models account for combustion phase

4.4.1 Model 1: fire average

As with the FREM approach this model assumes a simple
linear relationship between FRP and trace gas emission rate
of species X,

(
dMX

dt

)
modelled

.(
dMX

dt

)
modelled

= CXA FRP, (12)

where the average emission coefficient CXA was calculated by
dividing the sum of all emission rate measures by the sum of
all FRP measures. This model acts as a baseline to which the
performance of the further two models that incorporate K-
line information could be compared. CXA values for the three
fuels are presented in Table 2.

4.4.2 Model 2: FRP and AKBD magnitude (FAM)

In this second model, the emission rate of trace gas species
X was modelled as the sum of that coming from separately
considered flaming and smouldering activity:(

dMX

dt

)
modelled

= CXFDFRPFD+C
X
SDFRPSD, (13)

where FRPFD and FRPSD are the contributions of the
flaming-dominated (FD) and smouldering-dominated (SD)

Figure 5. Relationships between trace gas emission rate and
FRP for (a) CO2, (b) CO, (c) CH4, and (d) total carbon flux in
moles (i.e. moles of CO2, CO, and CH4). FRP here is derived
from the PI400 brightness temperature imagery as described in
Sect. 3.3.1. These data are from a single pine forest litter training
fire (Fire 11), and each point is coloured by its MCE at the time of
measurement, and those when AKBD > 1.5 µW cm−2 sr−1 nm−1

(as derived from the OCEAN-HDX-XR) indicating the pres-
ence of some flaming activity (flaming period) are distinguished
from smouldering-dominated points by their outline. Emissions
coefficients for flaming-dominated (MCE> 0.975), flaming-
identified (AKBD≥ 1.5 µW cm−2 sr−1 nm−1), fire-average, and
smouldering-dominated (AKBD< 1.5 µW cm−2 sr−1 nm−1)
phases, which were calculated from the “training” fires (including
Fire 11) and are presented in Table 2.

components of the fire to total FRP (i.e. FRPFD+

FRPSD =FRP). CXFD and CXSD are the flaming-dominated
and smouldering-dominated emission coefficients between
FRP and the emission rate of species X. Values for CXFD
were derived by ratioing the total amount of species X
emitted by the total FRP released for data during the time
when MCE exceeded a threshold that produced the high-
est R2 for a linear fit (e.g. MCE> 0.975 for pine). For
the smouldering emission coefficients (CXSD) only data when
AKBD< 1.5 µW cm−2 sr−1 nm−1 were used since this con-
firmed the absence of flaming combustion. Examples are
shown in Fig. 5, with the derived emissions coefficients for
each fuel shown in Table 2.

This model requires distinguishing the relative contribu-
tion of each combustion phase to the total FRP recorded at
any particular time. By assuming that FRPFD is directly pro-
portional to AKBD (i.e. FRPFD=mk AKBD, where mk is a
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Table 2. Emission coefficients, CXCPh, for the trace gas emission rates of CO2 and CO (and CH4 where measured), for each combustion
phase (CPh) scenario (fire-average, flaming-dominated, flaming-identified, smouldering-dominated) for pine forest litter, oak kindling, and
crop residue fires. Units are g s−1 MW−1.

Trace gas emission coefficients (g s−1 MW−1)

Fire- Flaming- Flaming- Smouldering-
average (A) dominated (FD) identified (FI) dominated (SD)

Pine forest litter CO2 880± 2 1560± 12 1100± 4 523± 2
CO 33.4± 0.1 15.0± 0.1 25.8± 0.1 45.5± 0.1
CH4 2.03± 0.01 0.586± 0.008 1.53± 0.005 2.82± 0.01

Oak kindling CO2 888± 2 1950± 44 1030± 3 464± 2
CO 22.8± 0.1 3.58± 0.08 18.0± 0.1 37.0± 0.1
CH4 0.792± 0.002 0.0741± 0.002 0.749± 0.002 0.922± 0.003

Crop residue CO2 804± 6 1670± 40 982± 10 434± 5
CO 42.4± 0.4 16.4± 1.1 43.3± 0.6 40.5± 0.8

constant), Eq. (13) becomes(
dMX

dt

)
modelled

= CXFD (mk AKBD)+CXSD (FRP−mk AKBD) , (14)

where AKBD> 1.5 µW cm−2 sr−1 nm−1 to exclude noise.
mk values were determined by solving Eq. (14) with the mea-
sured AKBD, FRP, and emission rates of the training fires
using a least-squares approach. Mean and standard errors for
the three fuels were 4.99± 0.04 W (µW cm−2sr−1 nm−1)−1

(pine), 5.90± 0.32 W (µW cm−2 sr−1 nm−1)−1 (oak), and
3.25± 0.79 W (µW cm−2 sr−1 nm−1)−1 (crop residue). Al-
though these standard errors do not overlap, the values of
mk are rather close to one another, and this was unex-
pected given that different fuels are likely to contain dif-
ferent concentrations of potassium. However, use of a sin-
gle fuel-independent mk is very useful as it means any fu-
ture application of the method would not need to know the
fuel type that is burning. Therefore, we selected the mean
mk , along with its propagated uncertainty, of 4.71± 0.28 W
(µW cm−2 sr−1 nm−1)−1 for use with all fuels to in the per-
formance assessment stage, which was based on the nine test
fires. Since this model relies on quantifying the strength of
the potassium emission signal, we refer to it herein as the
FRP and AKBD Magnitude (FAM) method or Model 2.

4.4.3 Model 3: FRP and AKBD identification (FAI)

As with the FAM model, this third model also considers the
K emission and FRP of the fire but only uses the K-line pres-
ence or absence, rather than its magnitude. The rationale for
this is that NIR wavelength radiation may be significantly
scattered by smoke in thick wildfire plumes, perhaps altering
the measured AKBD magnitude. The model therefore does
not attempt to separate FRPFD and FRPSD but instead multi-
plies the total FRP by different emission coefficients depend-

ing on whether or not a K-line is detected:(
dMX

dt

)
modelled

= CXFIFRP,when AKBD≥ 1.5µWcm−2 sr−1 nm−1 (15)

= CXSDFRP,when AKBD< 1.5µWcm−2 sr−1 nm−1, (16)

where CXSD is the same smouldering-dominated FRP–
emission rate gradient from the FAM method in Eq. (13)
for when no flaming is identified. Then, for when some
flaming combustion is detected, FRP is instead multiplied
by a “flaming-identified” ratio, CXFI. This was calculated by
dividing the total emission of X by the total FRP when
AKBD> 1.5 µW cm−2 sr−1 nm−1, i.e. during the flaming
periods of the training fires. Examples for the three trace
gases are shown in Fig. 5. The average across all fires for
every fuel type tested is presented in Table 2.

4.5 Emission model evaluation and intercomparison

The performance of the three different remote-sensing-based
models in estimating trace gas emission rates was evaluated,
with results for one of the pine forest litter fires shown in
Fig. 6. Figure 6a shows the FRP time series and Fig. 6b the
AKBD time series. Using combinations of these data, the
conventional, fire-average model (Model 1) underestimates
CO2 production compared to reality during the early stages
of a fire when flaming activity dominates and then over-
estimates it during the subsequent smouldering stage. This
can be seen in Fig. 6c, for example, and is a consequence
of the relationship found between FRP and CO2 emission
rate described in Sect. 4.3 and Fig. 5a. Likewise, the results
for CO and CH4 production act in the opposite direction to
those of CO2, these being generally overestimated during
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the flaming-dominated stage and underestimated during the
smouldering stage (see Supplement).

In addition to the total measured FRP, Fig. 6a also presents
the estimated contribution of flaming and smouldering com-
bustion to the FRP signal – based on the FAM (Model 2)
approach. The FRP is initially totally dominated by flam-
ing combustion, but variable amounts of smouldering com-
bustion then commence and eventually become dominant.
This pattern appears to be much more realistic than the flam-
ing and smouldering contributions to FRP calculated using
the spectral-fitting approach (Sect. 4.2), which significantly
underestimates flaming phase contributions to overall FRP.
Model 2 also produces an estimated trace gas emission rate
time series that is in far better agreement with the trace gas
measures than those from the fire-average Model 1 are. The
comparison in Fig. 6d indicates that RMSE for the FAM
model is less than half that of the fire-average approach,
and the average RMSE reduction is reported in Table 3. For
CO2 these reductions were very significant: 58± 4 % (pine),
46± 4 % (oak), and 35± 13 % (crop residue). For CO and
CH4 they are less significant, and the FAM (Model 2) ap-
proach showed little ability to improve upon the ability to
estimate CO emission rates of the oak fires compared to
Model 1 (−1.2±14.4 %). While the FAM approach produced
a smaller instantaneous error for estimating CO than the fire-
average approach for two of the three test fires, for the third
the estimate was much poorer (see Fig. A6), which affected
the average performance. However, there was some improve-
ment for the other two fuel types, and in general Model 2
improves CO and CH4 emission rate estimation compared
to Model 1 – but to a far lesser extent than for CO2. How-
ever, for MCE the improvements provided by Model 2 over
Model 1 are very significant, even for the oak fires. The
reduction in RMSE compared to the fire-average approach
ranges from 40± 7 % (soy) to 54± 6 % (pine).

Like the FAM approach, the FAI method (Model 3) also
uses AKBD measures – but now just in a binary “on–off”
fashion, as detailed in Sect. 4.4.3. The approach proves sig-
nificantly more accurate in terms of trace gas emission rate
estimation than the fire-average approach does (Model 1) but
does not perform as well as the FAM approach. For example,
the reduction in RMSE for instantaneous MCE estimations
is lower, ranging from 17± 6 % (soy) to 37± 12 % (pine).

Overall, our results from these combustion chamber burns
indicate that FRP-based estimates of trace gas release rates
can be greatly improved via the addition of K-line mea-
surements. We also tested modified versions of the Model 2
(FAM) and 3 (FAI) approaches that estimated fuel combus-
tion rate prior to trace gas emissions, but the performance
was almost identical to that without this additional step (see
Appendix B). This work indicates that the relationship be-
tween FRP and combustion rate differs significantly between
smouldering and flaming combustion.

Figure 6. FRP, AKBD, and trace gas emission rate time se-
ries for an exemplar pine forest litter “test” fire (Fire 3).
(a) FRP (W) calculated from the PI400 thermal imagery, along
with the estimated flaming and smouldering components derived
from this and the complementary AKBD measures. (b) AKBD
(µW cm−2 sr−1 nm−1) derived from spectra recorded by the
OCEAN-HDX-XR spectrometer. The trace gas emission rate of
CO2 (g s−1) is compared to that estimated with (c) the fire-average
approach (Model 1), (d) the FAM approach (Model 2), (e) the FAI
approach (Model 3), and (f) measured and modelled MCE. The
end of the flaming period as determined by the RGB video cam-
era record is denoted by the vertical dotted line.

5 Applications to airborne data

5.1 Methodology

5.1.1 Airborne data

The results in Sect. 4 show the benefits of combining re-
motely sensed FRP and AKBD measures when estimating
trace gas emission rates of small-scale laboratory fires. How-
ever, ultimately, we aim at applications based on satellite
EO measures and real landscape burning. Whilst satellite-
derived K-line measurements from space have only been
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Table 3. Mean RMSE between the measured and three modelled emission rates and MCE for each fuel type. The table also includes the
mean difference in RMSE for the FAM (Model 2) and FAI (Model 3) approaches compared to the fire-average (Model 1) method in bold
(%).

Approach used to estimate emissions

Fuel Trace gas Model 1: fire average Model 2: FAM Model 3: FAI

Species Mean difference with Mean difference with
and MCE Mean RMSE Mean RMSE fire average (%) Mean RMSE fire average (%)

Pine forest CO2 (g s−1) 0.18± 0.02 0.10± 0.02 −46± 7 0.13± 0.02 −27± 3
litter CO (mg s−1) 3.9± 0.3 3.5± 0.5 −12± 6 3.7± 0.6 −6.1± 9.2

CH4 (mg s−1) 0.49± 0.04 0.37± 0.04 −26± 2 0.44± 0.02 −9.6± 5.6
MCE 0.048± 0.003 0.022± 0.002 −54± 6 0.029± 0.004 −37± 12

Oak kindling CO2 (g s−1) 0.45± 0.14 0.24± 0.08 −46± 4 0.40± 0.13 −14± 3
CO (mg s−1) 6.1± 0.5 6.1± 1.1 −1.2± 14.4 5.7± 0.9 −8.8± 7.5
CH4 (mg s−1) 0.43± 0.04 0.41± 0.03 −4.9± 1.3 0.43± 0.06 −2.6± 4.6
MCE 0.056± 0.003 0.032± 0.001 −43± 3 0.035± 0.005 −37± 7

Crop residue CO2 (g s−1) 0.32± 0.03 0.19± 0.03 −35± 13 0.28± 0.02 −10± 1
CO (mg s−1) 8.0± 1.3 5.7± 0.3 −23± 12 7.0± 0.6 −7.7± 8.5
MCE 0.052± 0.007 0.030± 0.001 −40± 7 0.042± 0.002 −17± 6

Average across CO2 −42± 15 −17± 4
all fuels CO −12± 20 −7.5± 14.6

CH4 −15± 5 −6.1± 7.2
MCE −46± 10 −30± 15

demonstrated once (Amici et al., 2012), the increasing launch
of spaceborne imaging spectrometers provides the possibil-
ity for more routine observations with the necessary spa-
tial/spectral resolution. Whilst we wait for those data, here
we demonstrated the approach using airborne EO of real
wildfires burning in the boreal forests of northern Ontario,
Canada. The airborne remote data used come from the
Specim AisaFENIX VIS–SWIR hyperspectral imager, cov-
ering the same spectral range with the same full width at
half maximum (FWHM) spectral resolution in the K-line re-
gion as the HR1024i, meaning we could apply essentially
the same approaches and models developed in our laboratory
study (Sect. 3.3.2 and 3.3.3).

5.1.2 FRP and K-line retrievals

Our FRP retrieval process required slight modification for
the airborne EO application, in order to account for the re-
flected solar radiation present in the daytime imagery. For
this, areas of water were masked from the scene and the ac-
tive fire pixels detected using the HFDI index (Dennison and
Roberts, 2009). All “non-fire” pixels were then categorized
into “burned” and “unburned” using the classification pro-
cess of Waigl et al. (2019). Mean burned and unburned spec-
tra were calculated using 200 pixels of each class and incor-
porated into the spectral-fitting model (Eq. 6) applied to each

active fire pixel:

Lλ,measured = puLλ,u+pbLλ,b+

n=3∑
i

ε τpiBλ (Ti) , (17)

where Lλ, u and Lλ, b are the mean radiance calculated in
the neighbouring unburned and burned pixels at wavelength
λ, and pu and pb are their area fractions of the pixel. All
fractional areas sum to 1. The final component is the same as
that used previously.

For inclusion in Eq. (17), the MODTRAN atmospheric ra-
diative transfer model (Berk et al., 1999) was used to estimate
atmospheric transmittance (τ ) from the surface to the air-
craft altitude of 2500 m, assuming a 1976 US standard atmo-
sphere, a 23 km visibility, and an atmospheric CO2 concen-
tration of 420 ppm. As with the laboratory data, only wave-
lengths above 1200 nm were included in the spectral-fitting
approach and application of Eq. (16) to each active fire pixel,
in order to reduce the influence of atmospheric scattering by
smoke. Per-pixel FRP was again calculated from the derived
pi and Ti values using the Stefan–Boltzmann law (Eq. 7).
Figure 7c shows measured and modelled spectra of a sin-
gle example active fire pixel, and as with the HR1024i data
(Fig. 2a), the two agree extremely well.

As this FRP retrieval method relies mostly on the second,
smouldering temperature component (LSD), it is likely to still
be valid despite the unknown influence of reflected solar ra-
diation at the smaller wavelengths on LFD. However, further
validation efforts are required to confirm this. On the other
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Figure 7. Daytime airborne VIS–SWIR data taken on 11 Au-
gust 2018 using a Specim AisaFENIX hyperspectral imager flown
over a boreal forest wildfire burning in Northwestern Ontario,
Canada. (a) Map showing fire location (51.293° N, 94.805° W).
(b) Infrared colour composite image comprised of data collected
in bands centred at 2.2, 1.6 and 1.1µm (RGB) with spatial reso-
lution of 4 m, the scene is 1020 m× 2160 m. (c) Exemplar spectra
(VIS–SWIR) of an active fire pixel (location shown in the infrared
colour composite (b)), with the best-matched modelled spectra de-
rived using the spectral-fitting approach (Eq. 16), along with the
individual components that sum to that spectra: LFD (fire, flaming-
dominated), LSD (fire, smouldering-dominated), Lb (background/-
cooling fuel), and the reflected sunlight components LU (unburned)
and LB (burned).

hand, a non-zero value is relied on for the fractional area of
LFD to indicate flaming combustion is no longer valid. The
retrieved pFD for many pixels was often zero, whilst the mag-
nitude of the AKBD parameter indicated flaming combustion
was present. The opposite was also true: many pixels with a
significant pFD had a very low or zero AKBD. Therefore,
AKBD was more trusted than pFD for indicating the pres-
ence of flaming combustion since the measurement was not
influenced by reflected sunlight.

The emission coefficients for the pine forest litter fuel,
shown in Table 2, were used to convert the derived per-
pixel FRP values to trace gas emission rates. For the FAM
approach, the proportionality constant (mk) linking AKBD
and flaming FRP (Eq. 13) was taken from the mean of
0.0201± 0.0012 W (µW cm−2 sr−1 nm−1)−1 determined for
the three different fuels, with this value including an adjust-
ment for differences between the pixel size and FWHM of
the FENIX and HR1024i instruments. The same value was
used in all results presented in Sect. 4 (and the Appendix).

5.2 Airborne data results

Figure 8a shows a true colour composite of the wildfire, com-
plementing the infrared colour composite shown in Fig. 7.
Thick smoke blows away from the fire front, masking much
of the land and supporting the decision to base FRP re-
trieval on wavelengths longer than 1200 nm less affected by
Mie scattering (Sect. 5.1.2). By contrast, the longer NIR and
SWIR wavelengths are far less affected, and the land and fire
can be viewed clearly through the smoke (Fig. 8a). Figure 7b
maps the FRP of each active fire pixel based on the spectral-
fitting method (see the example at a single pixel shown in
Fig. 8b). Non-fire pixels are coloured here depending on their
proportion burned – pB and pU (Eq. 17). Overall, the im-
agery shows five fire front heads having high-FRP and likely
flaming activity advancing against the wind, with lower FRP
areas in the (presumed largely smouldering) zone behind.

Figure 8c maps AKBD, used to class fire pixels as flam-
ing or smouldering. The AKBD map indicates that flaming
activity is indeed present in the high FRP fire front pixels,
and only a few lower FRP spots of flaming activity exist in
the largely smouldering zone. Applying the FAM approach,
Fig. 8e, f, and g show estimated CO2, CO, and CH4 emission
rates for the fire and Fig. 8h the MCE. Higher MCE smoke is
emanating from the flaming fronts and lower MCE from the
smouldering zone apart from the few spots still flaming.

The total emission rate of CO2 for the entire fire is esti-
mated using the FRP and AKBD data by the FAM (Model
2) as 20.2± 0.1 kg s−1, with a relatively similar rate of
22.9± 0.2 kg s−1 estimated by Model 2 (FAI). Each is sig-
nificantly lower than the rate of 33.5± 0.2 kg s−1 estimated
using the Model 1 (FRP-only) approach with the fire-average
emissions coefficient, essentially because this approach over-
estimates the CO2 emission rate when smouldering combus-
tion is dominant (see Figs. 5a and 6c). The degree of over-
estimation could have been worse because only 1.4 % of the
detected active fire pixels in the airborne image of Fig. 8 con-
tain flaming activity.

Since the majority of the fuel consumption is coming from
smouldering combustion, the FAM and FAI approaches esti-
mate higher emission rates for CO and CH4 than the fire-
average approach does. For CO the models estimate 1270±
10 g s−1 (fire-average), 1720± 10 g s−1 (FAM), and 1630±
10 g s−1 (FAI) and for CH4 77.2± 0.6 g s−1 (fire-average),
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Figure 8. The 4 m spatial resolution airborne imagery and derived
fire and smoke characteristics of the wildfire shown in Fig. 7. This
scene is 700 m× 700 m wide. (a) RGB colour composite to com-
pare to the SWIR colour composite shown in Fig. 7b. (b) FRP de-
rived using spectral-fitting approach (Eq. 16), with non-fire pixels
coloured depending on whether they are classed as burned (brown)
and unburned (green) via the method discussed in Sect. 5.1.2, with
masked-out water pixels of a lake in the bottom right of the scene
shown in blue. (c) AKBD derived using Eq. (5) (Sect. 2). (d) Com-
bustion phase of each active fire pixel derived from an AKBD
threshold of 0.57 µW cm−2 sr−1 nm−1. The emission rate is derived
using the FAM approach of (e) CO2, (f) CO, and (g) CH4, along
with (h) the MCE estimated using the same approach.

107± 1 g s−1 (FAM), and 100± 1 g s−1 (FAI). Therefore,
whilst flaming combustion contributes around 2.4 % of total
CO2 production, it contributes only around 0.3 % and 0.2 %
of CO and CH4 production, respectively. Flaming combus-
tion is therefore responsible for around 2 % of the fuel con-
sumption rate.

Since the wildfire smoke contained copious amounts of
particulates (Fig. 8a), altered (and even missed) AKBD mea-
surements may have resulted from Mie scattering. Therefore,
this may make the FAI approach more appropriate than the
FAM approach. Overall, while the trace gas emission rate es-
timates from the FAM and FAI approaches are relatively sim-
ilar (535±6 and 592±9 mol−1 (of carbon)), they are very dif-
ferent to those of the fire-average approach (811± 10 mol−1

(of carbon)). Their application accounts for the fact that the
fire is mostly smouldering – information that would other-
wise be missed.

6 Summary and conclusions

The combustion phase and the proportion of flaming and
smouldering activity occurring in landscape fires vary with
fuel types and fuel characteristics. This, in turn, influences
the rate of fuel consumption and smoke emission, along with
the smoke emissions chemical composition via its effect on
the emissions factors (EFs) of the individual emitted chem-
ical species. There is increasing interest in tailoring the EFs
applied within fire emissions estimates, for example to cope
with the presumed seasonal variations in emissions factors
(Vernooij et al., 2022, 2023). Earth observation has long been
suggested as a way to do this, by remotely mapping the com-
bustion phase to improve global smoke emissions estimation.
We have provided the first attempt at evaluating whether such
methods actually lead to the desired improvements, using
laboratory burns of three fuel types to test two approaches of
determining combustion phase that (i) use remotely sensed
retrievals of sub-pixel fire temperature and (ii) utilize potas-
sium emission line (K-line) signatures that only occur during
flaming combustion.

Whilst the first approach produced fire temperature esti-
mates that were able to provide accurate FRP values, the in-
dividual fit parameters were not easily related to the smoke
emissions characteristics. On the other hand, measurements
of the K-line emission strength were related to the emission
rates of CO2, CO and CH4, leading us to develop two em-
pirical models that used (Model 2) the magnitude of the K-
line emission strength and (Model 3) only its identification
and combined these with the FRP data to better estimate fire
smoke emissions rate and smoke chemical composition.

When compared to the standard FRP-only approach
(Model 1) used to represent classical smoke emission esti-
mate methods, the combination of FRP and K-line data sig-
nificantly increased the accuracy of the resulting emission
rate estimates of the trace gases examined. It also signifi-
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cantly improved estimation of the modified combustion ef-
ficiency (MCE) of the fires smoke plumes, which directly
relates to the contribution of flaming and smouldering com-
bustion to the smoke. We did not find the ability to remotely
determine sub-pixel fire effective temperature to provide sim-
ilar improvements.

The FRP and K-line magnitude approach (Model 2) re-
duced the RMSE of the MCE estimates for the emitted
smoke by between 54± 6 % and 40± 7 %, depending on
fuel type, when compared to the FRP-only “standard” ap-
proach (Model 1). The equivalent RMSE reductions seen
for Model 3 were lower but still significant (−37± 12 %,
−37± 7 %, and −17± 6 %, respectively). These results pro-
vide evidence that complementary FRP and K-line data could
be used widely to improve fire emissions estimation, not only
for the gases tested here but also for many others since MCE
is well correlated to the EF of many species (Bertschi et al.,
2003; McMeeking et al., 2009; Urbanski, 2013; Yokelson
et al., 1996). Our findings point to the potential for using
this method with future spaceborne high-spectral-resolution
data that can map the K-line from space at the same time
as thermal remote sensing is used to retrieve the fires’ FRP.
According to our findings, such complementary data show,
for the first time, a proven ability to determine sub-pixel fire
combustion phase, which can provide an ability to signif-
icantly improve fire emission estimation. We then demon-
strate the value of the most effective approach for airborne
remote sensing data of real wildfires, pointing the way to
their ultimate application to potentially improving global fire
emissions estimation through their application to spaceborne
observations.

Appendix A: Spectral-fitting model

Reducing the modelled spectra to a single thermal compo-
nent for the fire resulted in far poorer fits than with two com-
ponents, particularly at shorter wavelengths, and increasing
the number of thermal components delivered results with
negligible fractional area, and thus there was no detectable
improvement in the modelled spectra. Thus, two fire thermal
components were seen as the optimum choice – and allowed
a high-quality fit to the measured spectra and a strong abil-
ity to estimate total FRP, but the retrieved fire temperatures
could not be used to reliably estimate extent of flaming and
smouldering activity.

Appendix B: Alternative approaches going via the
combustion rate

As detailed in Sect. 1, most conventional remote sensing ap-
proaches to estimating fire emissions rely on first estimating
the fuel mass burned. Therefore, FAM and FAD approaches
involving this step were also tested as an alternative to the
more direct approaches evaluated in Sect. 4.4. Combustion

rate (g s−1) was determined by first estimating total carbon
flux (Fig. 5d) in moles and multiplying this by 12 g mol−1,
the resulting figure agreeing well with the mass loss obtained
from the scales data. Both emission factors and relation-
ships between FRP and combustion rate were calculated for
the four combustion types: fire-average, flaming-dominated,
flaming-identified, and smouldering. Models analogous to
FAM and FAD were then tested. These models estimated
combustion rate, which was then multiplied by emission fac-
tors to give emission rates. These rates were then compared
to the measured rates. The results were almost identical to
those presented in Sect. 4.5 as the methods are also identical,
except for the step of converting to combustion rate. This
method did, however, indicate that the relationship between
measured FRP and rate of combustion was different between
the two combustion phases.
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