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Abstract. The turbulent kinetic energy dissipation rate is one
of the most important quantities characterizing turbulence.
Experimental studies of a turbulent flow in terms of the en-
ergy dissipation rate often rely on one-dimensional measure-
ments of the flow velocity fluctuations in time. In this work,
we first use direct numerical simulation of stationary homo-
geneous isotropic turbulence at Taylor-scale Reynolds num-
bers 74≤ Rλ ≤ 321 to evaluate different methods for infer-
ring the energy dissipation rate from one-dimensional veloc-
ity time records. We systematically investigate the influence
of the finite turbulence intensity and the misalignment be-
tween the mean flow direction and the measurement probe,
and we derive analytical expressions for the errors associ-
ated with these parameters. We further investigate how sta-
tistical averaging for different time windows affects the re-
sults as a function of Rλ. The results are then combined with
Max Planck Variable Density Turbulence Tunnel hot-wire
measurements at 147≤ Rλ ≤ 5864 to investigate flow condi-
tions similar to those in the atmospheric boundary layer. Fi-
nally, practical guidelines for estimating the energy dissipa-
tion rate from one-dimensional atmospheric velocity records
are given.

1 Introduction

Turbulence is fundamental to many natural and engineer-
ing processes, such as transport of heat and moisture in the
Earth’s atmosphere (e.g., Wyngaard, 1992; Garratt, 1994;

Muschinski and Lenschow, 2001; Fairall and Larsen, 1986;
Hsieh and Katul, 1997), wind energy conversion (Smalikho
et al., 2013), entrainment and mixing (e.g., Warhaft, 2000;
Sreenivasan, 2004; Deshpande et al., 2009; Gerber et al.,
2008, 2013; Siebert et al., 2013; Fodor and Mellado, 2020),
and warm rain initiation (e.g., Shaw, 2003; Devenish et al.,
2012; Pumir and Wilkinson, 2016; Li et al., 2020), to name
just a few. In three-dimensional turbulence, the kinetic en-
ergy is typically injected into the flow at the largest scales and
is successively transferred to smaller eddies by means of the
direct energy cascade. At the smallest scales characterized by
the Kolmogorov length scale (or the dissipation scale) ηK ,
kinetic energy is dissipated by viscous effects at the energy
dissipation rate (a list of all the parameters and symbols used
in this study can be found in Tables A1 and A2). The energy
dissipation rate is one of the most fundamental quantities in
turbulence and is used to estimate many relevant features of a
turbulent flow, such as the Kolmogorov length scale ηK ; the
Taylor microscale λ; the Taylor-scale Reynolds number Rλ;
and, by means of dimensional estimates, the energy injection
scale.

The instantaneous energy dissipation field ε0(x, t), which
is a function of the fluid kinematic viscosity ν and the
velocity gradient tensor, is highly intermittent with strong
small-scale fluctuations (Pope, 2000; Davidson, 2015, and
references therein), which are at the core of the intermit-
tency problem in turbulence (Sreenivasan and Antonia, 1997;
Muschinski et al., 2004; Buaria et al., 2019). By “instanta-
neous” we want to emphasize here that ε0 is the energy dis-
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sipation rate at one point in space and time within the flow.
It also plays an important role in turbulent mixing in react-
ing flows (e.g., Sreenivasan, 2004; Hamlington et al., 2012;
Sreenivasan, 2019) or turbulence-induced rain initiation in
warm clouds (Devenish et al., 2012). ε0(x, t), however, is
extremely difficult to measure experimentally because it re-
quires complete knowledge of the three-dimensional veloc-
ity field with spatial and temporal resolution that can resolve
scales smaller than or at least comparable to the Kolmogorov
scales.

Apart from the instantaneous dissipation field ε0(x, t), the
energy dissipation in a turbulent flow can be statistically de-
scribed by either the local or global mean energy dissipation
rate, which are both important. Local volume averages of the
instantaneous dissipation field 〈ε0〉R and related surrogates,
e.g., diagonal or off-diagonal components of the velocity gra-
dient, can capture intermittency of turbulence (Lefeuvre et
al., 2014; Almalkie and de Bruyn Kops, 2012, and refer-
ences therein). The local volume averages of the dissipation
field converge to the global mean energy dissipation rate 〈ε〉
for statistically converged sampling. The mean dissipation
rate 〈ε〉 can be used to parameterize the statistics of statisti-
cally homogeneous and locally isotropic turbulence based on
Kolmogorov’s phenomenology (K41) (Kolmogorov, 1941).
Note that even if the global mean energy dissipation rate 〈ε〉
is known, it is also of high interest to know how locally aver-
aged dissipation rates 〈ε0〉R differ from the global mean en-
ergy dissipation rate 〈ε〉. For example, the local dissipation
rate determines whether droplets in a cloud behave as tracer
or inertial particles, which in turn can affect the probability
of collision and coalescence of the droplets and thus the like-
lihood of precipitation initiation (e.g., see Shaw, 2003).

For a statistically stationary homogeneous isotropic
(SHI) turbulent flow, 〈ε〉 can be estimated from time-
dependent single-point one-dimensional velocity measure-
ments through different methods, such as longitudinal or
transverse velocity gradients (Wyngaard and Clifford, 1977;
Elsner and Elsner, 1996; Antonia, 2003; Siebert et al., 2006,
among others), inertial-range scaling laws comprising the
famous 4/5 law (Kolmogorov, 1941, 1991; Muschinski et
al., 2001), counting zero crossings of the velocity fluctua-
tion time series (Sreenivasan et al., 1983; Wacławczyk et al.,
2017), or dimensional arguments (e.g., Taylor, 1935; Mc-
Comb et al., 2010; Vassilicos, 2015). These methods usu-
ally invoke Taylor’s hypothesis to map temporal signals onto
spatial signals, which requires a sufficiently small turbulence
intensity. The turbulence intensity is defined as the ratio of
the root mean square velocity fluctuations σu′ to the mean
velocity U . When all of these criteria are met, single-point
velocity measurements with hot-wire anemometers at a high
temporal resolution have been shown to be suitable for accu-
rately estimating the global energy dissipation rate (see also
below) (Lewis et al., 2021; Sinhuber, 2015; Elsner and El-
sner, 1996; Antonia, 2003; Frehlich et al., 2003). However,
in atmospheric flows, the assumption of ideal stationary ho-

mogeneous isotropic turbulence needs to be considered very
carefully, as, for example, thermals change in local weather
conditions, and of course the diurnal cycle may lead to non-
stationarity and inhomogeneity.

Then the global mean energy dissipation rate 〈ε〉 is not rep-
resentative, as the turbulence can be highly time- and space-
dependent even at the energy injection scales. As a result,
one needs to calculate a local 〈ε0〉τ and 〈ε0〉R , respectively,
based on velocity statistics for a properly chosen averaging
window τ in time and R in space, which is short enough
for resolving the temporal or spatial variations but also long
enough to obtain statistically representative values with ac-
ceptable systematic and/or random errors (e.g., Wyngaard,
1992; Lenschow et al., 1994). Therefore, a conflict arises
with respect to the averaging time between resolving small-
scale features of a turbulent flow and statistical convergence
under non-stationary and inhomogeneous conditions.

In the case of atmospheric flows, in situ measurements
made via airborne (e.g., Malinowski et al., 2013; Siebert et
al., 2006, 2013; Muschinski et al., 2004; Frehlich et al., 2004;
Nowak et al., 2021; Dodson and Small Griswold, 2021)
as well as ground-based (e.g., Chamecki and Dias, 2004;
O’Connor et al., 2010; Risius et al., 2015; Siebert et al.,
2015) platforms can typically only resolve the coarse-grained
time series of the local mean energy dissipation rate 〈ε0〉τ .
However, it remains unclear how large the errors in estimat-
ing the coarse-grained time series of the local mean energy
dissipation rate are due to individual choices of the averag-
ing window, since there is currently no high-resolution three-
dimensional velocity measurement available during in situ
measurements to serve as the ground truth. In the absence of
a ground-truth reference, the comparison between different
methods was used as the next best benchmark for validity
of a given method (Siebert et al., 2010; Wacławczyk et al.,
2020; Siebert et al., 2006; Risius et al., 2015; Wacławczyk
et al., 2017), which in some cases makes the interpretation
of the data difficult due to the large discrepancies between
the estimates obtained by different methods. As an example,
Wacławczyk et al. (2020) found deviations of about 5 %–
50 % with respect to estimating the mean energy dissipation
rate depending on the method and averaging windows using
synthetic data modeled via a von Kármán spectrum. Another
example is the work of Akinlabi et al. (2019), who found
that estimates of the mean energy dissipation rate by one-
dimensional longitudinal velocity can differ by a factor of 2
to 3 from those calculated using direct numerical simulations
(DNSs), depending on the method used.

Our literature review indicates that a systematic investiga-
tion is still needed to fully understand how the choice of av-
eraging window, analysis methods, turbulence intensity and
large-scale random flow velocities can influence estimating
the mean energy dissipation rate and its deviations from the
instantaneous energy dissipation rate. To this end, we sys-
tematically benchmark different techniques available in the
literature using fully resolved DNS of statistically stationary,
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homogeneous, isotropic turbulence. Since the full dissipation
field is available from DNS, this approach provides a ground-
truth reference for comparisons with various estimation tech-
niques. To bridge the gap between typical Rλ of DNS and
atmospheric flows, we use high-resolution measurements of
the longitudinal velocity components of the Variable Den-
sity Turbulence Tunnel (VDTT) (Bodenschatz et al., 2014;
Sinhuber, 2015; Küchler et al., 2019) at various Taylor-scale
Reynolds numbers Rλ between 140 and 6000. The impact of
turbulence intensity, large-scale random-sweeping velocities,
the size of the averaging window, the Reynolds number and
also possible experimental imperfections such as anemome-
ter misalignment are investigated in detail. Our work aims to
be a step towards the goal of extracting the time-dependent
energy dissipation rate from non-ideal naturally occurring
turbulent flows, mitigating the impact of non-ideal features
of the flow, e.g., anisotropy or inhomogeneity. In Sect. 2, we
first define the central statistical quantities and the individual
methods for estimating the energy dissipation rate in detail.
An analysis of the individual methods including discrepan-
cies, errors due to finite turbulence intensity and alignment
errors are discussed in Sect. 3 followed by a summary of our
findings.

2 Methods

Suppose u(x, t)= u1(x, t)e1+ u2(x, t)e2+ u3(x, t)e3 de-
notes the three-dimensional velocity vector of the turbulent
flow, where x = x1e1+x2e2+x3e3 is the position and t is the
time. We assume that the streamwise direction of the global
mean flow U is in the direction of e1 such that U = Ue1 is
(by definition) constant in space and time. We refer to e1 as
the longitudinal direction and the components normal to that,
i.e., e2 and e3, as the transverse directions of the flow. As
mentioned earlier, many experimental setups record only a
one-dimensional flow velocity at one location and as a func-
tion of time. We consider this one-dimensional velocity time
record to be in the longitudinal flow direction unless oth-
erwise stated, e.g., when the probe misalignment is inves-
tigated. In the following, we first introduce different averag-
ing principles that can be used to analyze turbulence statis-
tics and Taylor’s frozen hypothesis, and then we present the
commonly used methods for extracting the energy dissipa-
tion rate. An introduction of the basic statistical description
of turbulent flows is provided in the Appendix (Appendix A)
for the sake of completeness.

2.1 On averaging, Reynolds decomposition and
Taylor’s hypothesis

Most methods used to retrieve the dissipation rate require
spatially resolved velocity statistics, although the velocity is
recorded only at a single point and as a function of time in
many experiments. Therefore, prior to estimating the energy

dissipation rate, the one-dimensional velocity time record
should first be mapped onto a spatially resolved velocity
field. This is achieved by invoking Taylor’s hypothesis (Tay-
lor, 1938), which requires a Reynolds decomposition of the
velocity time record by separating the velocity fluctuations
from the mean velocity. To perform the Reynolds decompo-
sition, we first have to clarify what is meant by the mean
velocity.

Generally, we have to distinguish between the global mean
velocity U = 〈u(x, t)〉 = Ue1, the volume-averaged velocity
〈u(x, t)〉R over a sphere of radius R (for one-dimensional
data 〈·〉R denotes spatial averages over a window of size R),
the time-averaged velocity 〈u(x, t)〉τ over a time interval τ
and the ensemble-averaged velocity 〈u(x, t)〉N over N re-
alizations (Wyngaard, 2010; Pope, 2000, among others). In
this work, 〈·〉 denotes the global mean, i.e., for infinitely
large averaging windows in time or space. Thus, U is by
definition independent of time and space, which in reality is
valid only when u(x, t) is statistically stationary and homo-
geneous. Implicitly, 〈u(x, t)〉R = 3/(4πR3)

∫ ∫ ∫ R
0 dx u(x, t)

and 〈u(x, t)〉τ = 1
τ

∫ τ/2
−τ/2dt ′u(x, t ′) are, respectively, local

volume and time averages, as both R and τ are typically fi-
nite. In the limit ofR, τ →∞, 〈u(x, t)〉R and 〈u(x, t)〉τ tend
toward U . For repeatable experiments where identical exper-
imental conditions are guaranteed, 〈u(x, t)〉N tends toward
U when N→∞.

The mean of a one-dimensional velocity time record in the
longitudinal direction Uτ here is defined by

Uτ = 〈u1(t)〉τ =
1
τ

τ/2∫
−τ/2

dt ′u1(t
′) (1)

such that the global mean U = limτ→∞Uτ , where τ is the
averaging window. It should be noted that the global mean of
the transverse velocity will be equal to zero; i.e., 〈u2,3(t)〉τ =

0 when τ →∞, since here it is assumed that they are orthog-
onal to the mean flow direction. According to the Reynolds
decomposition, the longitudinal velocity time record is com-
posed of the mean velocity U and the random velocity fluc-
tuation component u′1(t)= u1(t)−U so that the mean of the
longitudinal velocity fluctuations 〈u′1(t)〉 = 0.

In certain circumstances, it is possible to map u′1(t) from
time to space coordinates by applying Taylor’s (frozen-eddy)
hypothesis (Taylor, 1938; Wyngaard, 2010), which relates
temporal and spatial velocity statistics. Taylor (1938) argues
that eddies can be regarded as frozen in time if they are pass-
ing the probing volume much faster than they evolve in time.
This is the case if the turbulence intensity I = σu′1/U is much
smaller than unity, i.e., I � 1, where σu′1 = 〈u

′2
1 〉

1/2 is the
root mean square (rms) velocity fluctuation. Then, the se-
ries of time lags 1t = t − t0 relative to the start time t0 is
mapped onto a distance vector with x = x0+U1t e1 (Tay-
lor, 1938), where x0 is the initial position at time t0. This
approach is found to be reliable for I . 0.25 (Nobach and
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Tropea, 2012; Wilczek et al., 2014; Risius et al., 2015), while
it has been shown to fail when I > 0.5 (Willis and Deardorff,
1976). The application of Taylor’s hypothesis is inaccurate in
the case of large-scale variations in the velocity fluctuation
field comparable with the mean velocity, which are known
as “random-sweeping velocity” (Kraichnan, 1964; Tennekes,
1975). Complicating the estimation of the mean velocity,
random-sweeping causes the mean energy dissipation rate to
be consistently overestimated (Lumley, 1965; Wyngaard and
Clifford, 1977).

One way to cope with non-stationary velocity time records
is to evaluate the mean velocity for a subset of this signal.
If the averaging time τ is finite, the time average Uτ may
differ from the mean velocity U , causing a systematic bias in
the subsequent data analysis. The estimation variance of the
time average Uτ can be analytically expressed as (Wyngaard,
2010; Pope, 2000, among others)

〈(Uτ −U)
2
〉 ≈

2〈u′21 〉T
τ

, (2)

where T is the integral timescale and 〈u′21 〉 the variance of
the velocity time series. Notably, the size of the averaging
window has to be large enough such that it fulfills 〈u′1(t)〉τ ≈
0 to apply the Reynolds decomposition.

2.2 Estimating the energy dissipation rate

The energy dissipation rate can be derived from various sta-
tistical quantities. A non-exhaustive list of the most common
methods applicable to single-point measurements is shown in
Table 1. Details of selected methods considered in this study
are presented in the following subsections. If not explicitly
mentioned, the averages denoted with 〈·〉 are defined glob-
ally.

2.2.1 Dissipative sub-range

Proceeding from the Navier–Stokes equations for an incom-
pressible Newtonian fluid, the instantaneous energy dissipa-
tion rate is given by 2ν

(
SijSij

)
(e.g., Pope, 2000; Davidson,

2015). As the velocity gradients are dominated by small-
scale fluctuations, turbulent kinetic energy is dissipated into
heat at small scales. Therefore, the contribution of large-
scale variations in the velocity is small compared with the
contribution of the small scales (Pope, 2000; Elsner and El-
sner, 1996). Hence, the instantaneous energy dissipation rate
can be defined in terms of the velocity fluctuations only,
i.e., replacing Sij with the fluctuation strain-rate tensor sij =
(∂u′i(x, t)/∂xj + ∂u

′

j (x, t)/∂xi)/2 (Pope, 2000):

ε0(x, t)= 2ν
(
sij sij

)
. (3)

Averaged over a sphere with radius R and volume V(R),
the (local) volume average of the instantaneous energy dissi-

pation rate is (Pope, 2000)

εR(x, t)= 〈ε0(x, t)〉R =
3

4πR3

∫ ∫ ∫
V(R)

ε0(x+ r, t)dr . (4)

The local volume average εR(x, t) converges to the global
mean energy dissipation rate ifR tends toward infinity (Pope,
2000):

〈ε〉 = lim
R→∞
〈ε0(x, t)〉R . (5)

In experiments, it is often not possible to measure ε0(x, t).
Under the assumption of statistically homogeneous and
isotropic turbulence, the volume- and time-averaged energy
dissipation rate are typically inferred from one-dimensional
surrogates (Taylor, 1935; Elsner and Elsner, 1996; Siebert et
al., 2006; Almalkie and de Bruyn Kops, 2012; Champagne,
1978; Donzis et al., 2008, among others), such as from the
longitudinal velocity gradient (hence, the subscript G):

εG =−15ν lim
|r|→0

∂2
r1
R11(r, t)= 15ν

〈(
∂u′1(x, t)

∂x1

)2
〉

=
15ν
U2

〈(
∂u′1(t)

∂t

)2
〉
, (6)

where the mapping between space and time domains is pos-
sible by applying Taylor’s hypothesis if σu′1/U � 1 and R11
is the longitudinal component of the velocity covariance ten-
sor defined in Eq. (A1) (Siebert et al., 2006; Muschinski et
al., 2004). The relationship shown in Eq. (6) is often called
the “direct” method in the literature (e.g., Muschinski et al.,
2004; Siebert et al., 2006) and requires a spatial resolution
higher than the Kolmogorov length scale ηK to be accurate
within ∼ 10 % (see Fig. A8).

2.2.2 Inertial sub-range: structure functions

Kolmogorov’s second similarity hypothesis from 1941 (Kol-
mogorov, 1941) provides another method for estimating the
energy dissipation rate in the inertial range. Based on the
inertial-range scaling of the nth-order longitudinal structure
function, the mean energy dissipation rate can be calculated
by (Pope, 2000)

DL...L(r)= Cn(εInr)
ζn ⇔ εIn =

(
DL...L(r)

Cn

)1/ζn 1
r
, (7)

where Cn is a constant, e.g., C2 ≈ 2 (Pope, 2000), and
ζn = n/3 according to K41 by dimensional analysis. In prac-
tice, εI2 (Table 1) is retrieved by fitting either a constant to
the compensated longitudinal second-order structure func-
tion DLL(r), n= 2 in Eq. (7), or a power law (∝ r2/3) to
the inertial range of DLL, defined in Eq. (A3), if the iner-
tial range is pronounced over at least a decade. Accounting
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Table 1. Various definitions of the energy dissipation rate from the dissipative and inertial sub-range to the energy injection range. Here,
the definitions for various dissipation estimates are given in the space or wavenumber domain, where ν is the viscosity, sij is the velocity
fluctuation strain-rate tensor, R is the radius of the averaging volume V(R) (window size for one-dimensional data), u′1(x) is the longitudinal
velocity fluctuation field along e1,DL...L(r) is the nth-order longitudinal structure function (SF) for distance r , 〈u′21 〉 is the variance of u′1(x),
σu′1

is the standard deviation of u′1(x), NL is the number of zero crossings of a velocity fluctuation signal per unit length, C2 ≈ 2, E11(κ1) is

the one-dimensional energy spectrum with wavenumber κ1, CK ≈ 1.5, 〈u′2
C
〉 is the variance of a band-pass-filtered signal for wavenumbers

κ1 ∈ [κ1,low,κ1,up], Cε is the dissipation constant, L11 is the longitudinal integral scale and ηK is the Kolmogorov length scale. Dissipation
estimates indicated with ∗ are not considered in detail in this work. The assumptions of stationarity (S), homogeneity (H), local isotropy (I)
and Kolmogorov’s second similarity hypothesis from 1941 (K41) are represented by their individual abbreviations. References are given in
the corresponding sections in the main text.

Range Dissipation estimate (equation) Symbol Definition Assumption

Dissipative sub-range Instantaneous (3) ε0 2ν
(
sij sij

)
(Local) volume average (4) εR(x, t)

3
4πR3

∫ ∫ ∫
V(R)ε0(x+ r, t)dr SHI

(Longitudinal) gradient (6) εG 15ν

〈(
∂u′1(x,t)
∂x1

)2
〉

SHI

Second-order SF (dissipation range)∗ εD2 15νDLL(r)/r
2 SHI, r . ηK

Zero crossings∗ ε+ 15π2ν〈u′21 〉N
2
L

SHI

Inertial sub-range 4/5 law∗ (7, n= 3) εI3 −5/4DLLL(r)/r SHI, K41

Second-order SF (inertial range) (7, n= 2) εI2 (DLL(r)/C2)
3/2/r SHI, K41

Spectral (9) εS

(
κ

5/3
1 E11(κ1)

18/55CK

)3/2
SHI, K41

Cutoff filter∗ εC

(
2
3

2〈u′2C 〉

18/55CK
(
κ
−2/3
1,low−κ

−2/3
1,up

))3/2

SHI, K41

Energy injection scale Scaling argument (10) εL Cεσ
3
u′1
/L11 SHI

Global mean (5) 〈ε〉 lim
R→∞

〈ε0(x, t)〉R SHI

for intermittency, the scaling exponent of the nth-order struc-
ture function is modified to ζn = n

3

[
1− 1

6µ(n− 3)
]
, where

µ is the internal intermittency exponent (Kolmogorov, 1962;
Obukhov, 1962; Pope, 2000). The inertial range is bounded
by the energy injection scale L at large scales and by the dis-
sipation range at small scales. That is why the fit range has
to be chosen such that ηK � r � L. If the inertial range is
not sufficiently pronounced, the extended self-similarity may
be used to extend the inertial range (Benzi et al., 1993b, a).
Otherwise, εI2 can also be approximated by the maximum of
Eq. (7) (for n= 2) within the same range as before. This is
possible because the maximum lies on the plateau in the case
of a perfect K41 inertial-range scaling.

In the inertial range, the transverse second-order structure
function DNN(r) is equal to 4DLL(r)/3 in a coordinate sys-
tem where r = re1 is parallel to the longitudinal flow direc-
tion (Pope, 2000), highlighting the importance of the mea-
surement direction.

2.2.3 Inertial sub-range: spectral method

According to K41 (Kolmogorov, 1941), the inertial sub-
range of the energy spectrum function scales as E(κ)∝
〈ε〉2/3κ−5/3 with the wavenumber κ by dimensional anal-
ysis. In isotropic turbulence, the energy spectrum function
can be converted into a one-dimensional energy spectrum
E11(κ1); see Eq. (A7). The wavenumber space is not directly
accessible from one-dimensional velocity time records. Re-
lying on Taylor’s hypothesis, the one-dimensional energy
spectrumE11(κ1) transforms into the frequency domain with
F11(f )= 2πE11(κ1)/U , where κ1 = 2πf/U (e.g., Wyn-
gaard and Clifford, 1977; Oncley et al., 1996), yielding

F11(f )=
18
55
CK

(
U

2π
εS

)2/3

f−5/3 , (8)

which yields

εS =
2π
U

(
f 5/3F11(f )

18/55CK

)3/2

, (9)
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with the Kolmogorov constant CK = 1.5 (Sreenivasan, 1995;
Pope, 2000). Applying Taylor’s hypothesis to a flow with a
randomly sweeping mean velocity causes the Kolmogorov
constant to be systematically overestimated, whereas the
scaling of power-law spectra remains unaffected (Wyngaard
and Clifford, 1977; Wilczek and Narita, 2012; Wilczek et al.,
2014). Hence, Eq. (9) is still valid for a randomly sweeping
mean velocity, although εS is overestimated if CK is not cor-
rected for random sweeping.
F11 has the units of a power spectral density of square me-

ters per second (m2 s−1), and 〈u′21 〉 =
∫
∞

0 F11(f )df . Under
the assumption of Kolmogorov scaling in the inertial sub-
range, this identity can be adopted to estimate the mean en-
ergy dissipation rate from low- and moderate-resolution ve-
locity measurements of a finite averaging window (Fairall
et al., 1980; Siebert et al., 2006; O’Connor et al., 2010;
Wacławczyk et al., 2017).

2.2.4 Energy injection scale

In equilibrium turbulence, the rate at which turbulent kinetic
energy is transported across eddies of a given size is constant
in the inertial range assuming high enough Reynolds num-
bers (e.g., Lumley, 1992). In a dimensional argument, this
rate is proportional to u3(l)/ l, where u(l) is the characteristic
velocity scale of eddies of length l. Considering the integral
scale L11 and its characteristic velocity scale u(L11), namely
the rms velocity fluctuation σu′1 , the mean energy dissipation
rate can be calculated by (Taylor, 1935)

εL = Cε

σ 3
u′1

L11
, (10)

where Cε is the dissipation constant, and for time- and space-
varying turbulence, it depends on both initial and boundary
conditions as well as the large-scale structure of the flow
(Sreenivasan, 1998; Sreenivasan et al., 1995; Burattini et al.,
2005; Vassilicos, 2015). Cε is found to be about 0.5 for
shear turbulence (Sreenivasan, 1998; Pearson et al., 2002)
and 1.0 (Sreenivasan, 1984; Sreenivasan et al., 1995) or 0.73
(Sreenivasan, 1998) for grid turbulence. In this work, Cε is
assumed to be 0.5, which holds approximately in a variety of
flows (Risius et al., 2015; Sreenivasan, 1995, and references
therein).

Usually, the longitudinal integral length scale L11 is de-
fined as (Pope, 2000)

L11 = lim
r0→∞

r0∫
0

drf (r)=
πE11(0)

2〈u′21 〉
, (11)

where f (r)= R11(re1)/R11(0) is the longitudinal autocor-
relation function (see also Eq. A1 and Table A1). How-
ever, due to experimental limitations, r0 is often given by
the first zero crossing of f (r) in both laboratory and in situ
measurements (e.g., Risius et al., 2015) or, alternatively, by

the position where f (r)= 1/e (Tritton, 1977; Bewley et al.,
2012). Griffin et al. (2019) carried out an integration for
r→∞ by performing an exponential fit in the vicinity of
f (r)= 1/e. Notably, E11(0)=

∫
∞

0 dκE(κ)/κ so that the es-
timation of L11 from the power spectrum is only recom-
mended if E(κ)= 1

2κ
3 d

dκ

(
1
κ

dE11(κ)
dκ

)
(Pope, 2000) is accu-

rately determined like in DNS. This approach requires not
only a fully resolved velocity measurement but also a well-
converged E11(κ1) as the conversion is highly sensitive to
statistical scatter. Ultimately, the choice of L11 strongly af-
fects εL. In this work, we integrate f (r) to the first zero
crossing because it does not depend on assumptions on the
decay of f (r) and the choice of the fit range.

2.3 Simulations of homogeneous isotropic turbulence

In this study, the direct numerical simulations of statistically
homogeneous isotropic turbulent flow with 74≤ Rλ ≤ 321
are used as the basis for evaluating the different methods for
determining the dissipation rate (see Table 2). Thereby, the
performance of the different methods in estimating the en-
ergy dissipation rate is not affected by violating fundamental
assumptions, e.g., isotropy or homogeneity. The simulations
are carried out with the parallel solver TurTLE (Lalescu et
al., 2022), which solves the Navier–Stokes equations on a
periodic domain using a pseudo-spectral method with a third-
order Runge–Kutta time stepping. Here, we use a forcing
scheme with a fixed energy injection rate on large scales.

To mimic an ensemble of single-point measurements, we
introduced 1000 virtual probes into the flow (one-way cou-
pled, i.e., without back reaction on the flow), which move
with a given constant speed in randomly directed straight
paths to record the local flow velocity. Since the trajecto-
ries of the virtual probes are randomly oriented and the
probability that they are exactly aligned with the simula-
tion boundaries is low, the effect of periodic boundaries on
the recorded velocity signal is expected to be small. We as-
sume that the virtual probe records idealized velocity time
series, neglecting the effect of transfer function associated
with the anemometer (e.g., Horst and Oncley, 2006; Freire et
al., 2019) or noise (Lenschow and Kristensen, 1985; Antonia,
2003; Lewis et al., 2021). While the root mean square veloc-
ity fluctuation is determined by the Navier–Stokes simula-
tion, we can control the mean flow speed through the speed
of the virtual probe. The range of constant speeds used cor-
responds to turbulence intensities of 1 %–50 %. Along the
trajectories, we then sample the local three-dimensional ve-
locity field (see Fig. 1) as well as the velocity gradient field,
where we use spline interpolation to determine values in be-
tween grid points (Lalescu et al., 2010, 2022). By projecting
the velocity vector onto the direction of the trajectory, e1,
and the orthogonal directions, e2 and e3, we split the veloc-
ity field into longitudinal and transverse components, respec-
tively. From the sampled velocity gradient tensor, we com-
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pute the local instantaneous dissipation ε0. The time step is
limited either by the stability requirements of the flow solver
or, for smaller turbulence intensities, by the sampling fre-
quency required to capture the underlying flow. Here, we
choose the time step such that the distance traveled by the
probe within one step is around 1/10 of the grid spacing,
U1t ≈ 0.11x. The grid spacing 1x is chosen such that the
highest resolved wavenumber kmax satisfies kmaxηK ≈ 3.

Using Taylor’s hypothesis, the longitudinal velocity time
series correspond to at least 13L11 (for more details, see
Table 2) so that second- and third-order moments of both
longitudinal velocity fluctuations and increments are reason-
ably converged (see Fig. A3). To estimate εI3, εI2 and εS ,
the longitudinal structure functions are evaluated for scales
20ηK ≤ r ≤ 500ηK or in the frequency domain for U

500ηK
≤

f ≤ U
20ηK

. The ground-truth reference for the mean energy
dissipation rate per virtual probe is given by 〈ε0(x, t)〉VP,
i.e., the average of the dissipation field along the trajectory
of each virtual probe. The global mean energy dissipation
rate can be approximated by the ensemble average of all
〈ε0(x, t)〉VP from all virtual probes, i.e., 〈〈ε0(x, t)〉VP〉N .

2.4 Variable Density Turbulence Tunnel (VDTT)

To evaluate the performance of different methods at
Reynolds numbers applicable to atmospheric flows, we use
the high-resolution hot-wire measurements of the longitu-
dinal velocity components in the MPIDS VDTT (Boden-
schatz et al., 2014). The VDTT datasets used here are asso-
ciated with 147≤ Rλ ≤ 5864, which enables us to bridge the
gap between DNS (74≤ Rλ ≤ 321) and atmospheric Rλ ∼
O(103) (Risius et al., 2015).

The VDTT is a recirculating wind tunnel where the work-
ing gas SF6 is pressurized up to 15 bar to increase its den-
sity, thereby enhancing the Taylor-scale Reynolds number.
To achieve the same density in air, the pressure would have
had to be about 100 bar, which would have required a much
thicker tunnel wall and more expensive construction. The
VDTT has a horizontal length of 11.68 m and an inner di-
ameter of 1.52 m where the rotation frequency of the fan sets
the mean flow velocity ranging from 0.5 to 5.5 m s−1 (Boden-
schatz et al., 2014). Long-range correlations of the turbulent
flow determine its anisotropy. These long-range correlations
are shaped with the help of an active grid consisting of 111
independently rotating winglets (Küchler et al., 2019; Küch-
ler, 2021).

Longitudinal velocity fluctuations are temporally recorded
with 30 to 60 µm long nanoscale thermal anemometry probes
(NSTAPs; Bailey et al., 2010; Vallikivi et al., 2011, among
others) or a 450 µm long conventional hot wire from Dantec
(Jørgensen, 2001) corresponding to a resolution of < 3ηK
and < 5ηK , respectively (Küchler et al., 2019), at variable
distances from the active grid ranging from ≈ 6–9 m. The
velocity measurements have been extensively characterized
in terms of the mean flow profiles (Küchler, 2021) as well

as the decay of turbulent kinetic energy (Sinhuber et al.,
2015; Sinhuber, 2015), exposing velocity probability dis-
tribution functions (PDFs) as being flatter than Gaussian
(Küchler, 2021). The inertial-range scaling exponent ζ2 of
the longitudinal second-order structure function is in agree-
ment with Kolmogorov’s revised phenomenology from 1962
(ζ2 = 0.693± 0.003 for Rλ > 2000) for a large variety of
wake generation schemes (Küchler et al., 2020). In the case
of hot-wire measurements in the VDTT, the ground-truth en-
ergy dissipation rate for a given averaging window R is given
by the gradient method 〈εG〉R , which converges the fastest,
as shown in Sect. 3.5.

2.5 Strategies for the evaluation of systematic and
random errors

The virtual probes record one-dimensional time records of
the DNS longitudinal velocity component, from which the
mean energy dissipation rate can be estimated by various
methods and compared with the energy dissipation rate ob-
tained directly from the DNS dissipation field. Generally,
there are two different errors when estimating the mean en-
ergy dissipation rate, namely the systematic errors and ran-
dom errors. The latter is related to the estimation variance of
the mean energy dissipation rate, i.e., the statistical scatter of
the 〈ε〉R estimates around the ground truth of the local mean
energy dissipation rate defined in Eq. (4). The systematic er-
ror in the mean energy dissipation rate estimates expresses
itself in a non-vanishing ensemble average of the deviations
from the ground truth, i.e., the global volume average defined
in Eq. (5).

Systematic errors are an inherent feature of the methods
used for estimating the dissipation rate but are also affected
by experimental limitations and imperfections such as aver-
aging windows and finite turbulence intensity parameterized
by R and I , respectively. One way to estimate these errors
is to compare the estimated mean energy dissipation rate for
a given averaging window R with the ground truth of the
DNS defined by the mean energy dissipation rate per vir-
tual probe track, i.e., 〈ε0(x, t)〉VP, R . Another possibility is
to compare the estimates with the ensemble average of the
mean energy dissipation rate from all virtual probes, i.e.,
〈〈ε0(x, t)〉VP, R〉N , where N = 1000 is the total number of
virtual probes. Either of these possibilities is valid and would
be interesting to understand. However, our analysis (not pre-
sented here) shows that the second approach is associated
with a slightly higher value for the systematic error and a
slightly higher standard deviation. For that reason, we have
chosen the second approach to make a conservative assess-
ment of the systematic errors; i.e., we compare the estimates
of each method against 〈〈ε0(x, t)〉VP, R〉N by

βi =
〈εi〉R

〈〈ε0(x, t)〉VP, R〉N
− 1 , (12)
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Table 2. Parameter overview for each DNS. Rλ is the Taylor-scale Reynolds number, ηK is the Kolmogorov length scale, I = σu′1/U is the
turbulence intensity, L11 is the longitudinal integral length scale derived from E(κ), L is the average probe track distance and Np is the
number of virtual probes. The turbulence intensity I is controlled by setting the probe mean velocity where σu′1 ≈ 1 is the root mean square
longitudinal velocity fluctuation. For all cases kmaxηK ≈ 3, with kmax being the largest resolved wavenumber. For DNS 1.x and 2.x, the
energy injection rate Ėin in code units is 0.4, while for DNS 3.x it is set to 0.5. The number of virtual probes Np for DNS 1.x is 10 000,
whereas for DNS 2.x and DNS 3.x Np = 1000.

Case ID Box size Rλ ηK [c.u.] I L11/ηK L/L11

DNS 1.1 512 74 0.015 0.01 41.2 161
DNS 1.2 512 74 0.015 0.05 41.4 160
DNS 1.3 512 74 0.015 0.10 41.3 160
DNS 1.4 512 74 0.015 0.24 41.3 21
DNS 1.5 512 74 0.015 0.50 41.4 16

DNS 2.0 1024 142 0.007 0.11 99.0 332.8
DNS 2.1 1024 219 0.007 0.01 147.8 15.6
DNS 2.2 1024 217 0.007 0.06 147.6 15.7
DNS 2.3 1024 216 0.007 0.11 147.9 15.6
DNS 2.4 1024 212 0.007 0.27 146.8 15.7
DNS 2.5 1024 207 0.007 0.53 145.5 15.8

DNS 3.1 2048 302 0.003 0.01 260.9 13.6
DNS 3.2 2048 299 0.003 0.05 258.2 13.8
DNS 3.3 2048 295 0.003 0.11 254.8 14.0
DNS 3.4 2048 314 0.004 0.26 275.6 20.2
DNS 3.5 2048 321 0.004 0.53 282.9 14.7

where i ∈ {G,I3,I2,S,L} and 〈εi〉R are the estimates of the
energy dissipation rate via method i under the experimental
limitation and imperfection such as the size of the averag-
ing window or finite turbulence intensity. To distinguish be-
tween the different error terms in this paper, we refer to β as
a “reference-compared” systematic error.

In addition, the systematic error can be evaluated by com-
paring the estimates of the energy dissipation rate obtained
by a method with imperfect data against the estimates ob-
tained by the same method with optimal data. We denote
these types of errors with δ and refer to them as “self-
compared” errors. An experimental imperfection we consid-
ered here is the sensor misalignment: this is a non-zero angle
of incidence θ between the true longitudinal flow direction
along U and the one expected based on the sensor orientation.
To investigate the isolated effect of sensor misalignment, we
consider a specific set of DNSs with constant turbulence in-
tensity (I = 1 %) and the entire track length for each virtual
probe. The self-compared systematic error in each method
due to misalignment is defined as

δi(θ)=
εi(θ)

εi(0)
− 1 , (13)

where εi(θ) is the estimate of the energy dissipation rate via
method i ∈ {G,I3,I2,S,L} from data with misalignment θ
and εi(0) is the estimated dissipation rate from the same
method and flow conditions but with an aligned sensor; i.e.,
θ = 0.

Estimates of the mean energy dissipation rate are suscep-
tible not only to systematic errors, but also to random errors
due to statistical uncertainty. For the averaging window, er-
rors given by Eq. (12) would be the best indicator of sys-
tematic errors. However, random errors due to the size of the
averaging window can also be significant. When the spatial
averaging window R (or temporal averaging window τ ) is
finite, we capture the self-compared random error for each
individual method by

δi(R)=

√√√√〈( 〈εi〉R
〈〈εi〉R〉N

− 1
)2
〉
N

, (14)

where 〈εi〉R is the local mean energy dissipation rate based
on the averaging window R normalized by its ensemble aver-
age, i.e., 〈〈εi〉R〉N . Equation (14) indeed calculates the stan-
dard deviation of the normalized 〈εi〉R , which is used here as
a proxy for the random error. Table 3 provides an overview
of the different error types and terminologies used here.

3 Results and discussion

In the following, we first focus on the DNS data to calcu-
late εG, εI3, εI2, εS and εL from the entire longitudinal ve-
locity time records of all virtual probes and compare these
estimates against the ground-truth reference. Then, we sys-
tematically investigate the impact of the turbulence intensity,
(virtual) probe orientation and averaging window size for all
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Figure 1. Schematic representation of the procedure for calculating energy dissipation rates from single-point velocity time records. (a) Vir-
tual probe sampling the three-dimensional velocity field of the DNS 3.1 (see Table 2) in time and space at a mean velocity U along its e1
direction corresponding to a turbulence intensity of 1 %. (b) One-dimensional velocity time series u1(t) (blue solid) with its correspond-
ing time average U = 〈u1(t)〉 (dashed red line, i.e., Eq. (1)) of the same DNS 3.1, where u1(t) is re-scaled by 〈u1(t)〉. (c) Visualization
of the workflow from the one-dimensional velocity time record u1(t) to the energy dissipation rate via different methods. First, u1(t) is
decomposed in its mean and fluctuating part according to Reynolds decomposition (RD). Then, the velocity time series is converted into a
one-dimensional velocity field by invoking Taylor’s hypothesis (TH). Subsequently, second-order statistics (2nd-ord. St.) of the longitudinal
velocity fluctuations, their increments and their first spatial derivative are inferred, from which the energy dissipation rate is estimated with
the help of different methods.

Table 3. Different types of errors investigated in this study and their definitions. Subscript i ∈ {G,I3,I2,S,L}, where G stands for the
gradient method, I3 for the 4/5 law, I2 for the second-order structure function in the inertial range, S for the spectral method and L for the
scaling argument. The averaging window is denoted spatially by R and temporally by τ . The misalignment angle is represented by θ .

Symbol Definition Equation

βi Reference-compared systematic error, i.e., relative to the ground-truth reference 〈〈ε0(x, t)〉R〉N (12)

δi(θ) Self-compared (systematic) error in each method at a given misalignment angle θ relative to the estimates (13)
provided by the same method but at θ = 0

δi(R) Self-compared (random) error at a given averaging window of R or τ relative to the average value from (14)
all virtual probes at the same averaging window of R or τ

methods of interest. The influence of the flow Reynolds num-
ber on the presented results is then discussed by taking into
account the VDTT data together with the DNS data. Finally,
we provide a proof of concept for a time-dependent dissipa-
tion rate calculation by comparing the dissipation time series
measured by εG, εI2 and εL and its coarse-grained surrogate.
In the following, we use the definitions of systematic and
random errors as mentioned in Sect. 2.5 and Table 3.

3.1 Verification of the analytical methods and a first
insight into their performance under ideal
conditions

To verify the implementation of our methods, only data from
cases with a low turbulence intensity of 0.01 and an aver-
aging window covering the entire size of the probe track are
used in this section. Furthermore, εI2 and εI3 are obtained by
a fit according to Eq. (7) with n= 2 and n= 3, respectively,
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Figure 2. Validation of estimating the energy dissipation rate from
εG,εI2,εI3,εS and εL re-scaled by the energy injection rate Ėin.
The data are taken from DNS 3.1 with 1000 probes, Rλ = 302,
I = 1 %, θ = 0◦ and the maximal available averaging window (R ≈
3550ηK ). The ensemble mean of each method 〈εi〉N is denoted by
red dots where the whiskers extend from the minimal to maximal
estimate of εi where i ∈ {G,I3,I2,S,L}. The reference mean en-
ergy dissipation rate for each probe is given by εref. The dashed
line represents the re-scaled global mean energy dissipation rate of
DNS 3.1, which is approximated by the ensemble average of the
true mean energy dissipation rate along the trajectory of each vir-
tual probe.

Table 4. Statistics (mean, median, standard deviation (SD) and
range) of the reference-compared systematic errors for different
methods and case DNS 3.1 with Rλ = 302. Here βref is defined as
= 〈ε0(x, t)〉VP/〈〈ε0(x, t)〉VP〉N − 1, which shows the actual vari-
ability in the dissipation rate field. The last column shows the range
of the minimum to maximum percentage deviation from the mean.

β errors Mean Median SD Range
(%) (%) (%) (%)

βref 0.0 −0.7 18.6 −49.8 . . . 68.2
βG −0.5 −1.7 19.3 −48.1 . . . 75.4
βI2 8.8 3.1 41.7 −69.6 . . . 199.8
βI3 49.2 10.1 123.1 −93.1 . . . 822.2
βS 4.1 −2.0 32.1 −55.2 . . . 210.4
βL 40.0 31.5 59.6 −69.5 . . . 352.9

in the inertial range with r ∈ [20ηK ,500ηK ] for DNS 2.1
and 3.1. Analogously, εS is inferred from the inertial-range
fit in Eq. (9) in the range f ∈ [U/(500ηK),U/(20ηK)]. For
DNS 1.1 with Rλ = 74, due to the absence of an inertial
range for low Taylor-scale Reynolds numbers (see Fig. A7),
the maximum of Eq. (7) is used to infer εI2 and εI3 instead
of fitting the inertial range.

The distribution of the mean energy dissipation rate esti-
mated by εG,εI2,εI3,εS and εL for each probe at Rλ = 302
is shown in Fig. 2 and Table 4. Estimations for other Rλ
values are shown in Fig. A1. The best-performing method
is the gradient method εG, with the range also being very

close to the range of βref, whereas εI3 is associated with
the mean highest deviation. The superior performance of εG
compared with the others is mainly due to the fact that it
relies on (dissipation-range) second-order statistics that can
be captured with fast statistical convergence within a short
sampling interval. Hence, the distributions of εG and εref
are similar. εI3, on the other hand, relies on third-order mo-
ments of the velocity increments of inertial scales associated
with slower statistical convergence compared to εG. There-
fore, εI3 requires longer velocity records than εG to converge
under stationary conditions. For this reason, the third-order
structure function is not considered further in this study, as
one of the main objectives of this study is to evaluate differ-
ent methods suitable for extracting the time-dependent en-
ergy dissipation rate.

Figure 2 and Table 4 also show that the estimates of the
energy dissipation rate provided by DLL(r) and E11(κ1) are
close to each other, which can be explained by the fact that
they are both second-order quantities (in real and Fourier
space, respectively) connected by f (r). Unlike εG, both εI2
and, to a lesser extent, εS tend to overestimate the energy dis-
sipation rate. However, εS more strongly depends on properly
setting the fit range than εI2 (Fig. A2). The spectral method
εS can differ by a factor of 2 from εI2 depending on the high-
frequency limit. This factor of 2 is in accordance with a com-
parison of εI2 and εS by a linear fit, resulting in a slope close
to 0.5 (Akinlabi et al., 2019). In the DNS, the power spectrum
is subject to strong statistical uncertainty at high frequencies
without ensemble averaging the spectra of each virtual probe
or longer DNS runtimes. As the high-frequency limit of the
inertial range of the spectrum is hardly distinguishable from
its dissipation range, the choice of the fit range for εS is re-
lated to the fit range of the longitudinal second-order struc-
ture function by f ∈

[
U/(500ηK),U/(20ηK)

]
as mentioned

above. Wacławczyk et al. (2020) found that the estimation
of the energy dissipation rate from the power spectral den-
sity is generally robust at small wavenumbers (i.e., larger
length scales), whereas the second-order structure function
performs better at small length scales (i.e., larger wavenum-
bers). With our choice of the fit range r ∈ [20ηK ,500ηK ] for
the DNS 3.1 dataset shown in Fig. 2, we confirm that εI2 is
already reliable at the lower end of the inertial range where
dissipative effects are negligible.

Lastly, εL overestimates by 40 % on average. This sys-
tematic overestimation might be due to the difficulty in de-
termining L11, as different methods for estimating the in-
tegral length L11 can contribute to the systematic bias in
εL. As mentioned above, we infer the longitudinal integral
length from fitting f (r) to the first zero crossing which
yields, at least in the DNS of this work, a systematic un-
derestimation due to the scatter in both σu′1 and L11, as il-
lustrated in Figs. A3 and A4. However, the accuracy of the
dissipation constant Cε , which is a function of large-scale
forcing and initial conditions (Vassilicos, 2015; Sreenivasan,
1998; Sreenivasan et al., 1995; Burattini et al., 2005), can
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potentially cause larger mean deviations. Advantageously,
the large-scale estimate εL is applicable to low-resolution
measurement. Figure A1 and Table A3 give an overview of
the systematic errors in the different methods at different
Reynolds numbers, showing that the above conclusions are
also valid for lower Rλ.

3.2 The validity of Taylor’s hypothesis and the impact
of random-sweeping effects

For a large turbulence intensity the local speed and direction
of the flow vary significantly in time and space, which hin-
ders the applicability of Taylor’s hypothesis. Here, we quan-
tify the impact of random sweeping on the accuracy of deter-
mining the mean energy dissipation rate. Therefore, we set
the mean speed of the virtual probes in each DNS so that the
turbulence intensity, and consequently the random sweeping,
is a control parameter.

Figure 3 shows the systematic error βi for εG, εI2, εS and
εL at different turbulence intensities for DNS 3.1–3.5. For
each virtual probe taken into account in Fig. 3, we used the
entire time series so that the size of the averaging window is
maximal. While each method has a different systematic error
and scatter, Fig. 3 indicates that the mean relative deviation
of each estimate from the global mean 〈〈ε0(x, t)〉VP〉N in-
creases with turbulence intensity. This is particularly strong
for the gradient method. For I = 1 % and I = 10 %, the gra-
dient method has the lowest scatter in terms of the standard
deviation σβG (19.3 % and 27.3 %) and the lowest systematic
error in terms of 〈βG〉N (−0.5 % and 6.1 %), respectively. At
higher turbulence intensities, εI2 is the least affected method,
with 〈βI2〉N = 6.5 % and σβI2 = 37.2 % for I = 25 % as well
as 〈βI2〉N = 24.5 % and σβI2 = 56.9 % for I = 50 %. At the
highest turbulence intensities, both εL and εS are associated
with lower mean β than that of εG.

The fraction of track samples that can lead to a deviation
of larger than 100 % increases from 0 % to ∼ 60 % for εG
as the turbulence intensity increases from 1 % to 50 %. We
hypothesize that these deviations of the mean are the result
of random-sweeping effects, which limit the applicability of
Taylor’s hypothesis. In frequency space, Taylor’s hypothesis
(Taylor, 1938) establishes a one-to-one mapping between the
frequency and the streamwise wavenumber; i.e., ω = κ1U .
As the turbulence intensity grows, a randomly sweeping
mean velocity smears out this correspondence between fre-
quencies and wavenumbers. For the spectrum, this smearing
out effectively moves energy from larger scales to smaller
and less energetic ones (Lumley, 1965; Tennekes, 1975).
Therefore, it leads to an overestimation in the inertial and
dissipation range of the spectrum, thus affecting the inertial
range and gradient method. To visualize this overestimation,
we evaluate the effect of random sweeping on the spectrum
(Eq. B2) numerically for different turbulence intensities at
the example of a model spectrum (Eq. B4). The result is
shown in Fig. 4, where the spectrum is premultiplied by κ2

1

Figure 3. Systematic error βi in Eq. (12) as a function of turbulence
intensity I ∈ {0.01,0.05,0.1,0.25,0.5} for εG (•), εI2 (I), εS (�)
and εL (N). The energy dissipation rates are estimated from each
longitudinal velocity time series of DNS 3.1–3.5 with ideal align-
ment (θ = 0◦) where the maximal available window size was used.
The fit range for the inertial range of the power spectral density
is chosen to be within U/(500ηK )≤ f ≤ U/(20ηK ), where ηK
is the Kolmogorov length scale, and, equivalently in the space do-
main, 20ηK ≤ r ≤ 500ηK for the longitudinal second-order struc-
ture function. The upper limit of the y axis is chosen to be 7.1 in or-
der to improve the plot visibility (upper whiskers of εG for I = 50 %
are not shown for better visibility of other cases).

to later highlight the effect on the gradient method. Here, the
overestimation is most pronounced in the dissipative range.

To quantify the impact of random sweeping on estimates
of 〈ε〉, we first consider the influence of random sweeping
on the gradient method. For the gradient method, Lumley
(1965) and Wyngaard and Clifford (1977) have shown that
in isotropic turbulence, random sweeping leads to an relative
deviation of the volume-averaged mean energy dissipation
rate by

εG

〈ε〉
− 1= βG = 5I 2 with

εG = 15ν
∫
κ2

1E11(κ1)dκ1 = 〈ε〉
[
1+ 5 I 2

]
. (15)

We illustrate this result in Appendix B, where we consider
a model wave-number–frequency spectrum (Wilczek and
Narita, 2012; Wilczek et al., 2014), which is based on the
same modeling assumptions used in Wyngaard and Clifford
(1977). Due to the κ2

1 weighting of the gradient method, the
mean dissipation rate estimate is highly sensitive to the vis-
cous cutoff of the energy spectrum, which is overestimated
by random-sweeping effects (see Fig. 4). As a consequence,
deviations in the estimated dissipation rate grow rapidly with
turbulence intensity. In the right panel of Fig. 4, we compare
the effect of random sweeping on the gradient method ob-
tained with a model spectrum, the one computed by Lumley
(1965) and the observed deviations by measurements of the
virtual probes in a DNS flow; shown here are the DNS 3.1–
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Figure 4. The effects of random sweeping on the energy dissipation estimates. (a) Premultiplied model energy spectrum with random-
sweeping effects in Eq. (B2) for turbulence intensities I ∈ {0.1,0.25,0.5}, where the original energy spectrum corresponds to I = 0. uK =
(ν〈ε〉)1/4 is the Kolmogorov velocity scale. (b) Systematic overprediction illustrated by the relative error βi in Eq. (12) at different turbulence
intensities. The systematic overprediction by Lumley (1965) (solid black) matches the numerically obtained systematic error βG for the
gradient method relative to the ground-truth reference 〈ε〉 by using the model spectrum and numerically evaluating the integral in Eq. (B3)
(green squares). Both estimate the data obtained from DNS 3.1–3.5 (blue diamonds) up to a turbulence intensity of I = 25 % reasonably
well. Moreover, we show the systematic overprediction of inertial-sub-range methods (βS : orange triangles and βI2: red circles, both from
Eq. 12) compared with the analytically derived error obtained by the random-sweeping model (βI2,S , Eq. 16, grey dashed).

3.5 cases. In fact, the estimate from Lumley (1965) can ex-
plain the magnitude of deviations observed by the virtual
probes in the case of εG up to I = 25 %. The strong devi-
ation in βG at I = 50 % is likely due to the sensitivity of
the gradients to the space-to-time conversion via Taylor’s hy-
pothesis: at high turbulence intensities, the mean velocity be-
comes smaller compared with the fluctuations. Therefore, the
error in estimating the mean velocity due to the finite aver-
aging window (Eq. 2) increases relative to the mean veloc-
ity. Larger relative errors in the estimated mean velocity lead
– applying Taylor’s hypothesis – to both under- and over-
estimated spatial gradients for the individual averaging win-
dows, in addition to the effect of random sweeping. Similarly
this results in an additional overestimation of the dissipation
rate. These deviations do not appear in evaluating random-
sweeping effects based on a model spectrum, as there the
mean velocity is a parameter we choose.

Now let us consider the two inertial-sub-range methods.
Here, as one can see in Figs. 3 and 4, the increase in the
mean relative deviation, βi , is less pronounced. In the iner-
tial sub-range, random sweeping causes an overestimation of
the spectrum of merely several percent, while the inertial-
range scaling is preserved as shown in Wyngaard and Clif-
ford (1977) and Wilczek et al. (2014). As both the second-
order structure function and the spectral method are based on
the inertial sub-range of the energy spectrum, the effect of a
randomly sweeping mean velocity on εI2 and εS is expected
to be small. Here, the overestimation of the spectrum can be
used to express the relative systematic deviation in both εI2

and εS for different turbulence intensities analytically:

εI2/S

〈ε〉
− 1= βI2/S = (CT(I ))

3/2
− 1 with

CT(I )=
5
6

∞∫
0

[
erf
(
y+ 1
√

2I

)
− erf

(
y− 1
√

2I

)]
y2/3 dy , (16)

where CT(I ) quantifies the spectral overestimation as a func-
tion of mean wind and fluctuations defined as in Wilczek
et al. (2014). In Fig. 4b, we compare the observed devia-
tions from the DNS to Eq. (16). This shows that Eq. (16)
underestimates βI2 for I ∈ {0.01,0.05,0.1} (i.e., DNS 3.1,
3.2 and 3.3). The underestimation is most likely due to ad-
ditional random errors associated with finite averaging win-
dow lengths. It is obvious from Table 2 that DNS 3.3 statis-
tically has the shortest probe tracks of ∼ 3440ηK (DNS 3.1:
∼ 3550ηK , DNS 3.2: ∼ 3560ηK ). Nonetheless, βI2 matches
the prediction of Eq. (16) for I ∈ {0.25,0.5} where the cor-
responding probe tracks statistically amount to ∼ 5570ηK
and∼ 4260ηK , respectively. The effect of the averaging win-
dow size on εI2 is explored in Sect. 3.4. We conclude that
Eq. (16) can be used to estimate the error introduced by ran-
dom sweeping of εI2.

For the spectral method, Eq. (16) underestimates the rela-
tive error βS for all turbulence intensities. This may be due
to the strong dependence of εS on the U -based fitting range
(see Fig. A2), i.e., f ∈

[
U/(500ηK),U/(20ηK)

]
, which can

differ significantly between virtual probes at high turbulence
intensities. Further work is needed to assess the dependence
of the spectral method on the choice of the fit range for finite
turbulence intensities.
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Overall, random-sweeping effects explain why the gra-
dient method is more sensitive to turbulence intensity than
inertial-range methods. Here, random sweeping accurately
captures the deviations of the second-order structure func-
tion method as a function of turbulence intensity, whereas it
can only partially account for the observed deviations for the
spectral method.

3.3 Probe misalignment

In this section, we assess the influence of probe misalignment
with respect to the mean flow direction on estimating the en-
ergy dissipation rate at the energy injection scale, the inertial
range and the dissipation range. Here, we assume the angle θ
between the (virtual) anemometer and the global mean wind
direction U

|U |
to be constant throughout the sampling trajec-

tory. As can be seen from Eq. (C6), εL depends on θ . Then,
the analytically derived error for εL due to misalignment of
the sensor and the longitudinal wind direction is given by

δL(θ)=
εL(θ)

εL(0)
− 1=

2
cosθ(1+ cos2θ)

− 1 , (17)

where εL(θ) represents the energy dissipation that is derived
given an angle of incidence θ , and εL(0) is the reference
value for perfect alignment of the mean flow direction and
the probe, i.e., when θ = 0.

Analogously, the second-order structure function tensor is
affected by misalignment (cf. Appendix C). Thus, it can be
shown that the analytically derived error δI2(θ) as a function
of θ reads

δI2(θ)=
εI2(θ)

εI2(0)
− 1=

(
4− cos2θ

3

)3/2 1
cosθ

− 1 , (18)

where εI2(θ) represents the energy dissipation that is derived
given an angle of incidence θ , and εI2(0) is the reference
value for perfect alignment of the mean flow direction and
the probe. As outlined in Appendix C and with Eq. (5), the
analytically derived error in εG as a function of θ can be cal-
culated to

δG(θ)=
εG(θ)

εG(0)
− 1= 2

(
1

cos2θ
− 1

)
, (19)

where εG(θ) represents the energy dissipation that is derived
given an angle of incidence θ , and εG(0) is the reference
value for perfect alignment of the mean flow direction and
the probe.

To compare the analytical expressions with DNS results,
the sensing orientation of the virtual probes is rotated around
the e3 axis in the coordinate system of each virtual probe
by an angle θ relative to their direction of motion, i.e., the
e1 axis. Then, εL(θ), εI2(θ) and εG(θ) are inferred from
the new longitudinal velocity component. The ensemble-
averaged relative errors in the estimated energy dissipation
rates δ(θ) due to misalignment are shown as a function of θ

Figure 5. Influence of misalignment between probe orientation and
the mean flow directionU in terms of the average error in the energy
dissipation rate δi(θ) as a function of the angle of attack θ . The
energy dissipation rates are derived from DNS 3.1 with a turbulence
intensity of 1 %, an Rλ = 293 and the maximally available window
size. The error bars are given by the standard error of the mean. The
analytically derived errors δL(θ), δI2(θ) and δG(θ) are given by
Eqs. (17), (18) and (19), respectively. The ordinate is limited from 0
to 2.2 to guarantee better visibility for δL(θ) and δI2(θ). The inset
visualizes the misalignment angle θ between the probe orientation
and the mean flow direction U . The rotation axis is denoted by n̂.
As mentioned above, the mean flow direction U is considered to be
the longitudinal direction of the flow.

in Fig. 5 in the range of ±50◦ both for DNS and for the an-
alytically derived Eqs. (17)–(19). In general, the ensemble-
averaged systematic errors follow the analytically derived
errors reliably in terms of the limits of accuracy for all
Rλ values at turbulence intensity I = 1 %. The longitudi-
nal second-order structure function is the best-performing
method, with a systematic error 〈δI2〉N of lower than 20 %
for θ ∈ [−25◦,25◦], which increases to 100 % at θ =±50◦.
〈δL〉N is similarly affected by misalignment but is slightly
larger than 〈δI2〉N . Despite its rapid statistical convergence,
εG is the method most vulnerable to misalignment compared
with the other two methods.

In experiments where the sensor can be aligned to the
mean wind direction within θ ∈ [−10◦,10◦] over the entire
record time, δi(θ) is expected to be small. Further work is
needed to evaluate the impact of a time-dependent misalign-
ment angle θ(t). We suppose that keeping the angle of attack
θ fixed over the entire averaging window, here the entire time
record of each probe, potentially leads to overestimation of
δi(θ), with θ being a function of time in practice.

3.4 Systematic errors due to the finite averaging
window of size R

Here, our goal is to investigate how the accuracy of estimat-
ing the global mean energy dissipation rate depends on the
averaging window size by investigating the associated sys-
tematic and random errors individually. To do this, we se-
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lect an averaging window of size R from the beginning of
each track of virtual probes for the DNS 3.1 case. In this
way, we obtain one subrecord for each virtual probe, which
amounts to a total of 1000 subrecords for each averaging
window R. From each of these subrecords, mean values of
ε0 (i.e., 〈ε0(x, t)〉VP, R), 〈εG〉R , 〈εL〉R and 〈εI2〉R are then
evaluated. The smallest R considered for these analyses is
501ηK , which is limited by the upper bound of the fitting
range r ∈ [20ηK ,500ηK ] for estimating εI2. The largest win-
dow size considered in this section is 3000ηK , which is lim-
ited by the total length of the virtual probe track (Table 2).

Before comparing estimates of the energy dissipation rate
using different methods, let us first compare the locally aver-
aged energy dissipation rate 〈ε0(x, t)〉VP, R with the instan-
taneous energy dissipation rate, which is shown in Fig. 6a.
All averaging window sizes create PDFs with similar shapes
but significantly different from the shape of the instantaneous
field. The larger the volume over which the dissipation field
is averaged, the more the PDF(〈ε0(x, t)〉VP, R) converges to
a peak at the global mean energy dissipation rate normalized
by Ėin, i.e., 〈ε0(x, t)〉/Ėin ≈ 1.0.

We can further explore the influence of the averaging win-
dow R for each method by examining the distribution of sys-
tematic errors, i.e., βi , as shown in Fig. 6b–d. The first main
point to note is the fact that at small R all methods tend to
peak at a dissipation rate lower than the global. Hence, the
mean energy dissipation rate is most likely underestimated.
All PDF(βi(R)) values become narrower, and the mean rela-
tive error βi(R) converges to zero asR increases. The second
main point to consider is the statistical uncertainty, causing a
random error in estimating the local mean energy dissipation
rate 〈ε0(x, t)〉VP, R . As can be seen in Fig. 6b–d, the width
of the distribution is wide with asymmetric long tails, espe-
cially for βI2 and βL. This is an indication that high random
errors are to be expected in the estimation of the mean energy
distribution rate.

3.5 Random errors due to the finite averaging window
of size R

We now analytically focus on random errors associated with
εG, εL and εI2. We denote 〈εG〉R , 〈εL〉R and 〈εI2〉R as the
energy dissipation rates that are estimated for a longitudinal
velocity time record for a window of size R. For the calcu-
lation of random errors caused by the choice of the size of
the averaging window, we consider DNS 1.3, 2.3 and 3.3, as
well as wind tunnel experiments that all have a comparable
turbulence intensity of I ≈ 10 %.

Both the second-order structure function in Eq. (A3) and
the scaling argument in Eq. (10) depend on the variance 〈u′21 〉
of the longitudinal velocity time record. εG is also related to
〈u′21 〉 through Eqs. (6) and (A1). The variance 〈u′21 〉 itself is
subject to both systematic and random errors in the case of
a finite averaging window R <∞. Assuming an ergodic and
hence stationary velocity fluctuation time record with a van-

ishing mean, the systematic error in estimating the variance
over an averaging window of size R is given by (following
Lenschow et al., 1994, while applying Taylor’s hypothesis)

1
〈u′21 〉
=

〈
〈u′21 〉R

〈u′21 〉
− 1

〉
N

≈−2
L11

R
, (20)

where 〈u′21 〉R is the estimated variance based on the (finite)
averaging window R, 〈u′21 〉 is the true variance and it is
assumed R� L11. The always negative error predicted by
Eq. (20) indicates that, for finite averaging window sizes, the
variance 〈u′21 〉 is always statistically underestimated, which
agrees with Fig. A3a. Equation (20) furthermore indicates
that the systematic error in the variance estimates can be ne-
glected for sufficiently long averaging windows R� L11.

The variance estimates are also subject to statistical uncer-
tainty, which is also known as the random error in variance
estimation (Lenschow et al., 1994). Assuming that u′1(t),
which has a zero mean, can be modeled by a stationary Gaus-
sian process and that its autocorrelation function is suffi-
ciently well represented by an exponential, the random er-
ror in estimating the variance can be expressed as (following
Lenschow et al., 1994, while applying Taylor’s hypothesis)

erand =

√√√√〈( 〈u′21 〉R − 〈〈u′21 〉R 〉N
〈u′21 〉

)2〉
N

≈

√√√√〈( 〈u′21 〉R〈
〈u′21 〉R

〉
N

− 1

)2〉
N

≈

√
2L11

R
, (21)

where it is assumed R� L11 such that the systematic er-
ror can be neglected and, hence,

〈
〈u′21 〉R

〉
N
≈ 〈u′21 〉. Here,〈

〈u′21 〉R
〉
N

is the ensemble average of the variance estimates
〈u′21 〉R for an averaging window R. It can be seen that erand is
larger than the systematic error in Eq. (20) when R > L11.

Consequently, the estimation of the mean energy dissipa-
tion rate by the scaling argument in Eq. (10) is affected by
the (absolute) random error in the variance estimation given
by the product of erand and

〈
〈u′21 〉R

〉
N

. Invoking the Gaussian
error propagation, the analytically estimated error reads

δL(R)

=
1
〈εL〉R

∂〈εL〉R

∂〈u′21 〉R
erand︸︷︷︸

relative random error in 〈u′21 〉R

〈
〈u′21 〉R

〉
N︸ ︷︷ ︸

absolute random error in 〈u′21 〉R

≈
3
2

√
2L11

R
, (22)

where erand is the relative random error in the variance esti-
mate of the velocity fluctuations 〈u′21 〉R defined in Eq. (21),
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Figure 6. The effect of the averaging window size R (a) on the distribution of 〈ε0(x, t)〉VP,R/Ėin and on the accuracy of estimates obtained
via (b) 〈εG〉R , (c) 〈εI2〉R and (d) 〈εL〉R in terms of the systematic errors βG, βI2 and βL, respectively, from the ground-truth reference
〈ε0(x, t)〉VP,R as given by Eq. (12). The velocity time records of the longitudinal component are taken from DNS 3.1 (Rλ = 302, I = 1 %,
θ = 0◦). In panel (a), the distribution of the instantaneous dissipation rate ε0(x, t)/Ėin sampled by all virtual probes is shown by the dashed
line, and the global average energy dissipation rate normalized by Ėin is shown by the vertical dotted line. The other PDFs in (a) are from
the local average of the energy dissipation rate obtained from a window of size R at the beginning of each virtual probe, i.e., 1000 averaged
values for a given R. In panels (b), (c) and (d) the vertical dotted lines correspond to the ensemble averages of the systematic errors βi .
The ensemble average of βG decreases slightly from 0.4 % for R = 501ηK to −0.7 % for R = 2815ηK where the standard deviation of βG
decreases from 50 % to 22 %. The ensemble average of βI2 decreases from 41 % to 10 % and the standard deviation from 185 % to 5 %. βL
exhibits stronger deviations (mean βL of ∼ 44 % and standard deviation of ∼ 67 % for R = 2816ηK ).

and 〈u′21 〉R is the variance estimate of u′1 based on the av-
eraging window R. Then, the absolute random error in the
variance estimate of the velocity fluctuations 〈u′21 〉R is given
by erand〈u

′2
1 〉R . δL(R) is a relative error itself, hence the pref-

actor 1/〈εL〉R . Notably, δL(R) scales as R−1/2.
Similarly, the longitudinal second-order structure function

is also affected by the estimation variance 〈u′1
2
〉R ,

eDLL =

√√√√〈( DLL(r;R)

〈DLL(r;R)〉N
− 1

)2
〉
N

=

√√√√〈( 2〈u′21 〉R (1− f (r))

2
〈
〈u′21 〉R

〉
N
(1− f (r))

− 1

)2〉
N

≈

√
2L11

R
, (23)

where DLL(r;R) is the longitudinal second-order structure
function evaluated over an averaging window of size R and
under the assumption that the longitudinal autocorrelation

function f (r) is sufficiently converged over the range of the
averaging window. This is a simplistic assumption that may
be questionable in some cases, but a more robust evaluation
of the validity of the assumption is complex and beyond the
scope of this study.

Thus, the uncertainty in estimating the variance propagates
to 〈εI2〉R relying onDLL(r;R) (Eq. 7 for n= 2). The random
error δI2(R) can be analytically inferred from the random
error in the second-order structure function σDLL by Gaussian
error propagation, yielding

δI2(R)=
1
〈εI2〉R

∂〈εI2〉R

∂DLL
eDLL〈DLL(r;R)〉N ≈

3
2

√
2L11

R
, (24)

which shows that δI2(R) scales as R−1/2 similar to δL(R).
Considering Eqs. (6) and (A1), the gradient method can also
be expressed as a function of the variance 〈u′21 〉. Hence, Gaus-
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sian error propagation yields

δG(R)=
1
〈εG〉R

∂〈εG〉R

∂〈u′21 〉R
erand

〈
〈u′21 〉R

〉
N

=−15ν
1
〈εG〉R

lim
|r|→0

∂2
r f (r)erand

〈
〈u′21 〉R

〉
N

≈

√
2L11

R
, (25)

assuming R� L11 such that the systematic error is negligi-
ble so that

〈
〈u′21 〉R

〉
N
≈ 〈u′21 〉.

Equations (22), (24) and (25) are expressed as a function
of R and L11, which do not reveal the dependency of random
errors on the Reynolds number. In addition, this expression
relies on large scales that depend on the scale of the energy
injection, which makes it difficult to fairly compare the er-
rors between different flows as it is not a universal feature.
Therefore, we want to link the averaging window to the Kol-
mogorov length scale ηK , which only depends on the vis-
cosity and the mean energy dissipation rate. We can rewrite
these equations in terms of ηK , R and Rλ as follows:

δI2(R)= δL(R)=
3
2

√
2L11

R
=

3
2

√
2
ηK

R

L11

L

(
3
20
R2
λ

)3/4

≈
3
2

√
ηK

R

(
3
20
R2
λ

)3/4

, (26)

δG(R)=

√
2L11

R
≈

√
ηK

R

(
3

20
R2
λ

)3/4

, (27)

where we have invoked L11/L∼ 1/2, which is valid at suf-
ficiently high Rλ, and have used the relationship L/ηK =(

3
20R

2
λ

)3/4
(Pope, 2000). Following the intuition, the longer

the averaging window, the smaller the random error in each
method.

Furthermore, Eqs. (26) and (27) provide means to choose
a suitable averaging window size to achieve a given random-
error threshold a. Let Ra be the averaging window of size
R such that δi(R) < a. Then, the required averaging window
Ra for εI2 and εL is

Ra/ηK =
9
4

(
3

20
R2
λ

)3/4 1
a2 , (28)

where the required averaging window size Ra scales with
R

3/2
λ . Similarly, the required averaging window for εG is

Ra/ηK =

(
3

20
R2
λ

)3/4 1
a2 . (29)

For example, for the random errors of εI2 and εL to be
less than 10 % at Rλ = 1000, the averaging window should
be R ∼ 2× 106ηK ∼ 2× 104L11, while for εG the required
averaging window is R ∼ 8× 105ηK ∼ 104L11.

Figure 7 shows the empirical random errors δG(R)

(Fig. 7a) and δI2(R) (Fig. 7b) as a function of the averag-
ing window size for various Rλ values based on VDTT data
(for εL, see Fig. A5). To do this, we select an averaging win-
dow of size R, where 1000ηK <R <O(106ηK), from the
beginning of each 30 s time segment of the VDTT longitu-
dinal velocity records (a total of 47 to 597 time segments
depending on Rλ).

The scaling of δG(R) and δI2(R) is predicted well for
R & 10L11 as expected from Eqs. (25) and (24) and the as-
sumptions we made to derive them. However, for smaller R
a statistical convergence of εG, εI2 or εL against the mean
energy dissipation rate cannot be expected, in particular if
R/L11 < 1.

Furthermore, it is evident from Fig. 7 that the random er-
rors do not fully collapse on each other for different Reynolds
numbers and at a givenR/L11. Moving horizontally on a line
of constant random error, e.g., the dashed line of 50 % error,
the required window size increases with Rλ, as shown in the
insets of Fig. 7a and b. Predictions of Eqs. (28) and (29) are
also shown in these plots via solid blue lines.

For both εG and εI2, the theoretical expectation for Ra
tends to overestimate the actual averaging window size at
which a random error of 50 % is achieved. This overesti-
mation is expected as the theoretical expectation for Ra in
Eqs. (28) and (29) is derived assuming that large-scale quan-
tities such as f (r) and L11 are fully converged. However,
εG is technically relying on small scales. εG depends on ve-
locity fluctuation gradients, which are numerically obtained
by central differences. Hence, each increment in the veloc-
ity record contributes to the average in the gradient method
(Eq. 6). In the case of εI2, the number of possible increments
reduces for larger separations for a finite averaging window.
By definition, the exact computation of L11 even requires a
fully converged f (r) for all r values.

However, VDTT experiments with Rλ > 3000 underesti-
mate the prediction of Eq. (20) by about a factor of 2. This
is particularly clear for εL shown in Fig. A5. This deviation
at high Rλ can be explained, at least in part, by the strong
assumptions made for the derivation of the random errors,
i.e., Eqs. (24), (22) and (25). In particular, for experiments
with high Re in VDTT, the assumption of Gaussian veloc-
ity fluctuations with zero skewness is questionable, as shown
in Fig. A6. Lenschow et al. (1994) have already established
that the size of the averaging window for a skewed Gaussian
process (see Eq. 19 in Lenschow et al., 1994) must be twice
as large as for a Gaussian process with vanishing skewness.
However, further work is needed to investigate these devia-
tions and improve the theoretical prediction.

3.6 Estimating the transient energy dissipation rate

As has been shown previously in Figs. 6 and 7, both system-
atic and random errors decrease with the size of the averaging
window. For a correct estimate of the magnitude, it is there-
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Figure 7. Random errors δG(R) (a) and δI2(R) (b) as a function of the re-scaled averaging window size R/L11 obtained from VDTT data
at various Rλ values shown by the color bar. The analytical results for δG(R) (a, Eq. 25) and δI2(R) (b, Eq. 24) are shown by the dashed
black lines. The dotted black line annotated with 50 % in each subplot corresponds to a 50 % error threshold. The insets show the sizes of the
averaging windows in terms of ηK when δG,I2(R)≤ 0.5 as a function of the Taylor-microscale Reynolds number Rλ. The inset plots include
data from both the DNS (red triangles) and the VDTT (grey circles). DNS data used for the inset plots are from cases 1.3, 2.3 and 3.3 with
I = 10 % and θ = 0◦. The solid blue lines show the prediction of the required averaging window according to Eq. (29) (a – inset) and Eq. (28)
(b – inset). The black dash-dotted line in the inset plots is a fit to the data: logR/ηK = 3

4 log 3
20−2logafit+α logRλ, yielding α = 1.70±0.18

and afit = 1.67±0.64 (a – inset); logR/ηK = log 9
4

3
20

3/4
−2logafit+α logRλ, yielding α = 1.57±0.09 and afit = 0.95±0.32 (b – inset).

fore advantageous to choose the averaging window as large
as possible, but the price of this is that the transient trend
smaller than the selected window size cannot be reproduced.
In addition, it is also important to know to what extent sta-
tistical uncertainties originating from the estimation methods
themselves disguise the true trends of the underlying turbu-
lent flow. Given a certain averaging window size R, here, we
empirically evaluate if trends in the coarse-grained time se-
ries are physical or rather statistical. In other words, we ask
the question whether local estimates of the mean energy dis-
sipation rate follow the ground-truth reference 〈ε0(x, t)〉VP, R
or not. Respecting the intermittent nature of turbulence and
energy dissipation, the standard deviation of 〈ε0(x, t)〉VP, R is
a first proxy for the variability of the trend in 〈ε0(x, t)〉VP, R .
Hence, detecting the true trend requires that βi and δi(R) are
smaller than the standard deviation of 〈ε0(x, t)〉VP, R .

It can already be concluded from Figs. 2, 7, A1 and A5
that εG is the most promising candidate to capture the true
trend. However, to fully answer the above questions, we
need to conduct a more in-depth analysis. The upper plot
in Fig. 8 shows the re-scaled and coarse-grained dissipa-
tion field 〈ε0(x, t)〉VP, R for a sliding window of size R ≈
5500ηK and a turbulence intensity I = 10 % obtained from
the time series of one virtual probe for case DNS 2.0 (“probe
0”). Consistent with results shown earlier, 〈εG〉R follows
〈ε0(x, t)〉VP, R best in comparison with 〈εI2〉R and 〈εL〉R .
Both 〈εI2〉R and 〈εL〉R are associated with substantial scatter,
although 〈εI2〉R has smaller deviations from the ground truth
overall. Other probe tracks sample different portions of the
flow, which is why a quantitative conclusion is not possible
from one single probe. A more comprehensive evaluation of

which method is able to capture the true trend is conducted
below.

The lower plot in Fig. 8 shows 〈εI2〉R together with the
random error of εI2 as defined by Eq. (24). Despite the strong
scatter, the ground-truth reference is nearly always within the
error bar of εI2, with some exceptions, e.g., r/ηK < 5000
or r/ηK ≈ 60 000. It can also be seen that 〈εI2〉R is, if at
all, only weakly correlated with the ground-truth reference
〈ε0(x, t)〉VP, R for a window size of R/ηK ≈ 5500. This
shows that it is extremely difficult, if at all possible, to track
the true trend with low-resolution time records.

To assess this correlation more quantitatively, we evaluate
the Pearson correlation coefficient between the ground-truth
reference 〈ε0(x, t)〉VP, R and εG, εI2 as well as εL, respec-
tively, as a function of the re-scaled averaging window size
R/ηK for all virtual probes of case DNS 2.0. As an exam-
ple, the Pearson correlation coefficient between ε0(x, t)〉R
and εI2 is 0.33 in Fig. 8 (upper plot). Figure 9a shows the
ensemble averages of the Pearson correlation coefficient to-
gether with the standard error (shaded area). While 〈εG〉R
has a pronounced correlation with the ground-truth reference
〈ε0(x, t)〉VP, R , both 〈εI2〉R and 〈εL〉R are only very weakly
correlated with 〈εG〉R .

The effect of Rλ on the Pearson correlation coefficient is
also shown in Fig. 9b for the VDTT experiments at various
Rλ values. Here, we compare εI2 and εL to εG in the absence
of a ground-truth reference. To ensure a negligible system-
atic error, we chose a fixed averaging window of R = 30L11
for each Rλ. Figure 9b shows that the correlation for εI2 is
always higher than that of εL, except for very low Rλ. There
is a non-monotonic behavior in the correlation coefficients in
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Figure 8. (a) Proof of concept for estimating the coarse-grained
energy dissipation rate 〈ε0(x, t)〉VP,R re-scaled by the energy in-
jection rate Ėin via the one-dimensional surrogates 〈εG〉R , 〈εI2〉R
and 〈εL〉R for Rλ = 142, R/ηK ≈ 5500, θ = 0◦ and a turbulence
intensity I = 10 % (DNS 2.0). All estimates are re-scaled by the
energy injection rate Ėin, too. We narrowed the fit range to 20ηK ≤
r ≤ 200ηK , ensuring optimal fit results. (b) Comparison between
〈εI2〉R/Ėin with the estimated random error according to Eq. (24)
for the averaging window R and 〈ε0(x, t)〉VP,R .

Fig. 9b that seems to be related to the skewness values shown
in Fig. A6. Nonetheless, there is a clear increase in correla-
tion coefficients with Rλ. Firstly, the random error in δI2(R)

ranges from 20 % to 40 % at R = 30L11. Secondly, the kur-
tosis of the instantaneous energy dissipation field scales with
R

3/2
λ (Pope, 2000), which is why the variability in the instan-

taneous energy dissipation field increases with Rλ. Hence,
at small R3/2

λ and R = 30L11, 〈εI2〉30L11 scatters only ran-
domly around the global mean energy dissipation rate (with
a 3 % standard deviation of 〈εG〉30L11 ), which is why the
correlation coefficient is low. In contrast, at large Rλ and
R = 30L11, the locally averaged mean energy dissipation
rate 〈εG〉30L11 fluctuates more strongly (≈ 30 % standard de-
viation of 〈εG〉30L11 ) where δI2(R) is already comparable.

4 Practical guidelines

Up to this point, we have presented the results largely as is
so that one can interpret them with minimal bias. However,
the amount of data and details given may make the use of
the results in practice difficult. Therefore, we propose here
practical guidelines for measuring the energy dissipation rate
from one-dimensional velocity records in atmospheric flows.

The gradient method should be preferred over other meth-
ods for conditions where the turbulence intensity is low and
where the probe could be perfectly aligned in the direction
of the mean wind. In particular, the gradient method is more
sensitive to turbulence intensity than inertial-range methods
due to random-sweeping effects. Low values of turbulence
intensity and ideal alignment of probes can be best controlled
in ground-based measurements. Measurements aboard re-
search aircraft traveling at a true speed of 100 m s−1 can also
satisfy these conditions, but the spatial and temporal resolu-
tion required to measure the velocity gradients (see Fig. A8)
is challenging to achieve; i.e., a robust probe with a wire
length ideally smaller than 1 mm (or of the same order as ηK )
and a true response frequency of 105 Hz are needed. Other
airborne platforms, such as helicopters, balloons and kites,
would encounter higher turbulence intensities, making Tay-
lor’s frozen flow assumption more difficult to satisfy. Most
importantly, however, they all suffer from probe alignment
into the local wind at the scale of the measurement platform.

Other estimates based on inertial-sub-range methods
(cf. Table 1) are less sensitive to a high turbulence inten-
sity and probe alignment. Regarding the impact of a high
turbulence intensity, we find the most reliable method for
most field applications to be the second-order structure func-
tion. However the accuracy is at least 10 %, even in most
ideal conditions considered here (Table 4). Considering ex-
perimental imperfections, the actual deviation is expected to
be of the order of 100 % (Figs. 3 and 5).

Given atmospheric turbulence with ηK ∼ 1 mm and L11 ∼

100 m, the inertial range of the second-order structure func-
tion extends from about 60ηK (Pope, 2000) to at most the in-
tegral scale, if at all. However, for applying the second-order
SF method (inertial range), at least 1 to 2 decades of the iner-
tial range are needed. Assuming that the fitting range is cho-
sen from 0.1 to 10 m, a measurement platform with a true air
speed of 10–100 m s−1 requires an anemometer with a sam-
pling frequency of 100–1000 Hz in order to provide about 2
decades of data within the inertial range.

Our analysis further shows that estimating the transient
energy dissipation in atmospheric clouds (L11 ∼ 100 m,
O(Rλ)∼ 103–104) via the second-order structure function
(inertial range) with an averaging window of R = 100 m is
prone to random errors of the order of 100 % (Fig. 7b).
Shorter averaging windows involve even higher random er-
rors. It is therefore recommended to choose the averaging
window as large as possible but still smaller than length and
timescales on which the atmosphere remains homogeneous
and stationary, respectively. This recommendation is not easy
to achieve in an atmosphere. For example, measurements in
the marine boundary layer with intermittent shallow cumulus
clouds require a careful consideration in regard to station-
ary conditions. Then, two approaches can be recommended.
On the one hand, one can choose a very long averaging win-
dow to average over many individual clouds associated with
a small random error but potentially violating the stationary
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Figure 9. (a) Dependence of the Pearson correlation coefficient between 〈εi〉R and 〈ε0(x, t)〉VP,R as a function of the re-scaled averaging
window R/ηK where i ∈ {G,I2,L}. Time records of the longitudinal velocity by all virtual probes and 〈ε0(x, t)〉VP,R are taken from
DNS 2.0 with Rλ = 142, turbulence intensity I = 10 % and perfect alignment (θ = 0◦). The shaded region is given by the standard error.
(b) Dependence of the Pearson correlation coefficient between 〈εI2,L〉R and 〈εG〉R as a function Rλ for a fixed re-scaled averaging window
R = 30L11. The error bars of the ensemble-averaged coefficients are given by the standard error.

and homogeneity condition. On the other hand, one could
investigate the transient mean energy dissipation rate (as a
proxy for the local mean energy dissipation rate per cloud),
while accepting a large random error.

The large random errors also preclude the possibility of in-
terpreting trends in the measured energy dissipation rate via
the second-order structure function if we consider the results
shown in Figs. 8 and 9a. Even if we consider the promising
correlations shown in Fig. 9b at high Reynolds numbers, in-
terpreting trends and patterns in atmospheric data from one-
dimensional time records remains a challenge, especially in
an atmosphere with intermittent cloudiness. As an example,
in a cloud with a horizontal extent of 1 km, one can obtain 10
non-overlapping data blocks with a window length of 100 m,
which corresponds to a random error of about 100 % to be
combined with a systematic error of the same order of mag-
nitude. With 10 data points combined with such large uncer-
tainties, it would be extremely difficult to interpret the change
in the dissipation rate in this cloud. Interpretations of trends
in the energy dissipation rate would be particularly flawed if
the size of the averaging window is< 10L11. At best, one av-
erage value can be determined for such small clouds, which
would still deviate from the global mean by at least 50 %–
100 % if (and this is a big if) the cloud is sufficiently sta-
tionary and homogeneous for averaging. However, the limi-
tations imposed by the validity of the Taylor hypothesis can
be mitigated by using an array of high-resolution anemome-
ters. The array should be oriented so that the anemometers
point in the mean local wind direction. The calculation of
transverse velocity gradients or second-order structure func-
tions would no longer depend on the applicability of the Tay-
lor hypothesis, since the distances between the sensors are
predefined by the design.

5 Summary

We have presented an extensive review on the analysis pro-
cedure for estimating the energy dissipation rate from single-
point one-dimensional velocity time records along with an
overview of the advantages and disadvantages (see Table 1).
To conclude, this paper provides means to estimate errors
in the global and local mean energy dissipation rates due to
experimental imperfections and limitations. These estimated
errors can be used to assess the quality and accuracy of the
measurement. Furthermore, error estimates of the global and
local mean energy dissipation rates can be used to assess the
errors in other turbulence and cloud droplet parameters, e.g.,
various turbulence length scales and the cloud droplet Stokes
number, with the help of Gaussian error propagation. A set of
practical guidelines for measurement and analysis strategies
has been provided in the previous section, and the following
presents a technical summary of the main results.

The main methods considered in this study are the gradient
method εG, the second-order SF (inertial-range) method εI2,
the spectral method εS and the scaling argument εL. We have
provided a systematic assessment of the accuracy of inferring
the energy dissipation rate from such one-dimensional ve-
locity time series as a function of turbulence intensity, probe
orientation with respect to the longitudinal direction and the
effect of a finite averaging window size. We used DNS data
with Reynolds numbers in the range 74≤ Rλ ≤ 321 as well
as experimental data from high-resolution one-dimensional
wind tunnel measurements with Reynolds numbers in the
range 147≤ Rλ ≤ 5864 to evaluate the performance of dif-
ferent methods against robust benchmark values. The results
presented in this study help to assess the accuracy of the
energy-dissipation-rate estimates as a function of several pa-
rameters, such as finite turbulence intensity, misalignment
between sensor and longitudinal flow direction, and finite
size of the averaging window. The main results are as fol-
lows:
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– Each method could reproduce the ground-truth ref-
erence 〈ε(x, t)〉 to within less than 10 % for well-
converged statistics and at low turbulence intensity. The
most accurate method is the gradient method (εG), and
the least accurate method is the one based on the 4/5
law (εI3) (see Fig. 2). The reference-compared system-
atic error tends to be overestimated due to the global
choice of the fit range; e.g., lower systematic errors for
εI2 can be obtained by choosing a fit range for each
DNS dataset that is in a range where the scaling of the
structure function is closest to the expected scaling.

– In the case of finite turbulence intensities, εG, εS and
εI2 systematically overestimate the ground-truth energy
dissipation rate. The gradient method (εG) is the most
affected by a finite turbulence intensity I , whereas εI2
is the least affected (see Figs. 3 and 4b). The overesti-
mation can be captured by a random-advection model
(Fig. 4). Regarding the small-scale estimate εG, the
error formula provided by Lumley (1965) (βG ∝ 5I 2)
captures the effect of random advection.

– Considering the probe orientation, the gradient method
(εG) is the most affected by misalignment between
the probe orientation and the longitudinal flow direc-
tion, whereas εI2 is the least affected (Fig. 5) (compare
Eqs. 19, 17 and 18).

– We provide scaling arguments δi(R) to estimate the
required averaging window size optimized for a de-
sired random-error threshold for εG in Eq. (29), εI2 in
Eq. (28) and εL in Eq. (28). With this, we can estimate
a coarse-grained energy dissipation rate to within a pre-
dicted uncertainty as shown in Fig. 8. Systematic errors
βi are smaller than random errors δi(R) for R > 2L11.

– The random error in the gradient method δG(R) con-
verges at least 4–5 times faster than εI2 (compare
Eqs. 28 and 29).

– Only εG estimates the transient energy dissipation rate
〈ε0〉R reliably, although it is the most vulnerable to ex-
perimental imperfections/limitations.

Appendix A: Preliminaries on second-order statistics

As discussed in detail below, the mean energy dissipation rate
can be related to second-order statistics of the velocity field,
either in terms of velocity gradients or in terms of velocity
increments. In any case, the two-point velocity covariance
tensor turns out to be the central quantity of interest from
which the second-order structure function tensor, the spectral
energy tensor and the velocity gradient covariance tensor can
be obtained.

In the following, we assume a zero mean SHI turbulence
so that two-point quantities depend only on the separation

vector r . All averages are invariant under rotations of the co-
ordinate system, and the mean squared velocity fluctuation
is identical for all velocity components; i.e., 〈u′2〉 = 〈u′21 〉 =
〈u′22 〉 = 〈u

′2
3 〉. We provide an overview of the most relevant

definitions, their notations and their conventions. This sec-
tion does not explicitly discuss the effect of the averaging
window, but the definitions presented can be applied to win-
dowed inputs with no or straightforward modifications.

Under the given assumptions, the two-point velocity co-
variance tensor takes the form (e.g., Pope, 2000; Robertson,
1940; Batchelor, 1953)

Rij (r)= 〈u
′

i(x+ r, t)u
′

j (x, t)〉

= 〈u′2〉
(
g(r)δij +

[
f (r)− g(r)

] rirj
r2

)
, (A1)

where f (r)= R11(r)/R11(0) and g(r)= f (r)+ r∂rf (r)/2
are the longitudinal and transverse autocorrelation functions,
respectively, with f (0)= g(0)= 1. Notably, if one chooses
r = re1, then R11(r)= 〈u

′2
〉f (r) and R22(r)= R33(r)=

〈u′2〉g(r) as well as all other components vanish (e.g., Pope,
2000). As a remarkable consequence, Rij (r) is uniquely de-
fined by f (r) in isotropic turbulence. As mentioned below,
the integral length scale as well as the Taylor microscale are
determined by f (r) (Pope, 2000).

Analogously, a covariance tensor can be defined for veloc-
ity increments, i.e., the second-order velocity structure func-
tion tensor (Pope, 2000; Davidson, 2015)

Dij (r)

=

〈[
u′i(x+ r, t)− u

′

i(x, t)
][
u′j (x+ r, t)− u

′

j (x, t)
]〉

=DNN(r)δij + [DLL(r)−DNN(r)]
rirj

r2 . (A2)

The longitudinal second-order structure functionD11(r) is
related to f (r) by (e.g., Pope, 2000; Davidson, 2015)

D11(r = re1)=DLL(r)

= 〈(u′1(x+ re1, t)− u
′

1(x, t))
2
〉

= 2〈u′2〉(1− f (r)) . (A3)

As explained below, by measuring the longitudinal second-
order structure functionDLL(r), the mean energy dissipation
rate can be inferred from the inertial-range scaling of the lon-
gitudinal structure function (cf. Eq. 7).

Furthermore, the velocity gradient covariance tensor can
also be defined in terms of the velocity covariance tensor

Rijkl(r)=

〈
∂u′i(x, t)

∂xk

∂u′j (x
′, t)

∂x′l

〉
=−∂rk∂rlRij (r) . (A4)

Since the local and instantaneous energy dissipation rate (cf.
Eq. 3) is defined in terms of the strain-rate tensor Sik =(
∂u′i(x, t)/∂xk + ∂u

′

k(x, t)/∂xi
)
/2, the mean energy dissi-

pation rate can be directly related to contractions of the ve-
locity gradient covariance tensor evaluated at zero. Note that
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in a turbulent flow with a zero mean velocity, the strain-rate
tensor Sik is equal to the fluctuation strain-rate tensor sik .

The two-point velocity covariance tensor can be expressed
in Fourier space through the energy spectrum tensor (Pope,
2000)

8ij (κ)=
1

(2π)3

+∞∫ ∫ ∫
−∞

Rij (r)e
−iκ ·rdr , (A5)

where κ is the wave vector. For SHI turbulence,8ij (κ) takes
the form

8ij (κ)=
E(κ)

4πκ2

(
δij −

κiκj

κ2

)
, (A6)

where E(κ) is the energy spectrum function.
Since access to the full energy spectrum function is not al-

ways available, one-dimensional spectra are of interest, too.
The mean energy dissipation rate can be estimated from the
inertial-range scaling of the longitudinal one-dimensional
spectrum (as shown in Eq. 9), which can be calculated by
both the energy spectrum function and the velocity covari-
ance tensor (Pope, 2000)

E11(κ1)=

∞∫
κ1

E(κ)

κ

(
1−

κ2
1
κ2

)
dκ

=
1
π

∞∫
−∞

R11(e1r1)e
−iκ1r1dr1 , (A7)

with the wavenumber κ1 corresponding to the e1 direction
and R11(0)= 〈u′2〉 =

∫
∞

0 E11(κ1)dκ1.
This concludes the second-order statistics in terms of the

velocity that we consider in the main text to determine the
mean energy dissipation rate.
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Table A1. Nomenclature for the turbulent flow. If our naming convention differs from the terminology in Pope (2000), we add the convention
of Pope (2000) in parentheses. Equations are either directly given or referenced from definitions below.

Symbol Definition Equation Unit

A Large-scale anisotropy parameter 3〈u′21 〉/(2k)

CK Kolmogorov constant related to E(κ) 1.5

Cε Dissipation constant 0.5

Dij (r) Second-order velocity structure function tensor (A2) L2 T−2

E(κ) Energy spectrum function
∫ ∫ ∫

∞

−∞
1
28ii(κ)δ(|κ | − κ)dκ L3 T−2

E11(κ1) One-dimensional energy spectrum (A7) L3 T−2

Ėin Energy injection rate of the DNS L2 T−3

F11(f ) Power spectral density of longitudinal velocity 1t
N
F(u1(t))F∗(u1(t)) L2 T−1

F(x) (Discrete) Fourier transform
∑N−1
j=0 x(tj )exp(−2πitj /1t)

I Turbulence intensity σu′1
/U

L Length-scale characteristic of large eddies, e.g., energy injection scale k3/2/ε L

L11 Longitudinal integral length scale of the turbulent flow (11) L

Rij (r) Velocity, two-point, one-time velocity (auto)covariance tensor (A1) L2 T−2

Rijkl(r) Velocity gradient covariance tensor (A4) T−2

Re Reynolds number UL
ν

Rλ Taylor-scale Reynolds number

√
15σ 4

u1
ν〈ε〉

ReL Turbulence Reynolds number k1/2L
ν

Sij Strain-rate tensor
(
∂ui (x,t)
∂xj

+
∂uj (x,t)

∂xi

)
/2 T−1

T Longitudinal integral timescale of the turbulent flow
∫
∞

0 f (τ)dτ T

U , Uτ Global mean velocity vector of the flow and the local mean of the longitudinal velocity (1) L T−1

component for the averaging window of duration τ relative to the virtual probe

afit Fit parameter related to Eq. (28)

f Frequency T−1

f (r) Longitudinal velocity autocorrelation (coefficient) function R11(re1)/R11(0)

g(r) Transverse velocity autocorrelation (coefficient) function f (r)+ r∂rf (r)/2

k Turbulent kinetic energy (u′21 + u
′2
2 + u

′2
3 )/2 L2 T−2

r , r Distance vector and its absolute value L

sij (Velocity) fluctuation strain-rate tensor
(
∂u′i (x,t)

∂xj
+
∂u′j (x,t)

∂xi

)
/2 T−1
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Table A1. Continued.

Symbol Definition Equation Unit

t Time T
u (Eulerian) velocity vector of the flow u1e1+ u2e2+ u3e3 L T−1

u′ Velocity fluctuation vector of the flow u−U L T−1

〈u′21 〉 Variance of longitudinal velocity fluctuations L2 T−2

x Position vector x1e1+ x2e2+ x3e3 L
8ij (κ) Energy spectrum tensor (velocity spectrum tensor) (A5) L5 T−2

α Fit parameter related to Eq. (28)
δij Kronecker delta
1t Time increment T
ε0(x, t) Instantaneous energy dissipation rate (3) L2 T−3

εR Locally volume-averaged energy dissipation rate (4) L2 T−3

〈ε〉 Global mean energy dissipation rate (rate of dissipation of turbulent kinetic energy) (5) L2 T−3

εijk Levi-Cevita tensor

ζn nth-order structure function exponent dlogDL...(r)
dlogr

ηK Kolmogorov length scale (ν3/〈ε〉)1/4 L
θ Angle of incidence between probe orientation and longitudinal flow direction ◦

κ Wave vector L

λ Longitudinal Taylor (micro)scale

√
30νu′21
〈ε〉

L

ν Kinematic viscosity L2 T−1

σx Standard deviation of quantity x
σu′1

Root mean square of longitudinal velocity fluctuations L T−1

ω Angular frequency 2πf T−1

〈. . .〉N Ensemble average over trajectories of N virtual probes or N realizations
〈. . .〉R Volume average (line average for one-dimensional signal)
〈. . .〉VP Average over trajectory of a virtual probe

Table A2. Nomenclature for the subscripts.

Symbol Definition

1, 2, 3 Indices of vectors and tensors
C Cutoff
D Dissipation range
D2 Dissipation range of the second-order structure function
G Gradient
I2 Inertial range of the second-order structure function
I3 Inertial range of the third-order structure function
L Longitudinal
N Number of virtual probes used in the DNS simulations, number of realizations
N... Transverse (e.g., NN for the transverse second-order structure function)
R Averaging window size in space
S Inertial range of the power spectral density
p Probe
ref (Ground-truth) reference
VP Virtual probe
τ Averaging window size in time
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Table A3. The systematic error in each method βi relative to the global mean energy dissipation rate in Eq. (12) of each DNS where
i ∈ {G,I3,I2,S,L}. The error is given by the standard error, which is defined as the standard deviation divided by the square root of the
number of samples. In both DNS 2.1 and DNS 3.1, εI2 and εI3 were obtained by fitting Eq. (7) for n= 2 and n= 3, respectively, in the
range r ∈ [20ηK ,500ηK ]. This fit range is also used for calculating εS , and it was converted into the frequency domain by f = U/r , where
U is the mean velocity. In the case of DNS 1.1, the maximum of Eq. (7) was used to infer εI2 due to the absence of a pronounced inertial
range. We used the maximum available window size R in all cases and fixed turbulence intensity I = 1 % and considered perfect alignment;
i.e., θ = 0◦.

DNS 〈βG〉N 〈βI3〉N 〈βI2〉N 〈βS〉N 〈βL〉N

1.1 −0.003± 0.001 0.132± 0.005 −0.047± 0.002 0.011± 0.002 −0.044± 0.003
2.1 −0.002± 0.006 0.506± 0.038 −0.011± 0.014 0.074± 0.010 0.313± 0.017
3.1 −0.005± 0.006 0.492± 0.039 0.088± 0.013 0.041± 0.010 0.400± 0.020

Figure A1. Validation of estimating the energy dissipation rate from εG,εI2,εI3,εS and εL. All estimates are re-scaled by the energy
injection rate Ėin. The data are taken from DNS 1.1 (a) and 2.1 (b); turbulence intensity I = 1 %. The ensemble mean of each method 〈εi〉N
is denoted by red dots where the whiskers extend from the minimal to maximal estimate of εi where i ∈ {G,I3,I2,S,L}. As the inertial
range of DNS 1.1 (I = 1 %, θ = 0◦ and maximal available averaging window) is not pronounced well due to the low Rλ ∼ 74, we used
the maximum of Eq. (7) in order to retrieve εI2,3. The dashed line represents the global mean energy dissipation rate of DNS 1.1 and 2.1
(Rλ = 219, I = 1 %, θ = 0◦ and maximal available averaging window), respectively, which is approximated by the ensemble average of the
true mean energy dissipation rate along the trajectory of each virtual probe. εref is the reference distribution of the ground-truth global mean
energy dissipation field originating from the dissipation field along the trajectory of each virtual probe.

Figure A2. Estimates of the mean energy dissipation rate as a func-
tion of the fit range for εI2 and εS for DNS 3.1 (1000 probes,
Rλ = 302, I = 1 %, θ = 0◦ and maximal available averaging win-
dow) re-scaled by the energy injection rate Ėin. The solid line rep-
resents the ensemble average, whereas the shaded region is given
by the standard deviation. r0 ∈ [10ηK ,100ηK ] is the lower bound-
ary of the fit range for εI2 where the upper boundary is fixed at
r1 = 500ηK . For εS , the fit range is given by f ∈ [U/r1,U/r0]. The
dashed line denotes the global mean energy dissipation rate.
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Figure A3. Convergence of higher-order statistical quantities and longitudinal integral length scales as well as small- and large-scale
anisotropy obtained from all virtual probes of DNS 1.1 (Rλ = 74, I = 1 %, θ = 0◦). (a) The variance of the longitudinal velocity fluctu-
ations 〈u′21 〉 and the longitudinal integral length scale LR11 as a function of the averaging window size R normalized by the Kolmogorov
length scale ηK . 〈u′21 〉 is re-scaled by the ensemble-averaged variance of the longitudinal velocity fluctuations. For large R, 〈〈u′21 〉R〉N
converges to 〈u′21 〉 ≈ 〈〈u

′2
1 〉〉N (blue-dotted line) and the systematic error in the variance (solid black line), Eq. (20), decays to zero. LR11

is the longitudinal integral length scale obtained from averaging windows of size R. For large R, LR11 should converge to L11 (red-dotted
line), which is not fully achieved in this range of R. (b) Premultiplied PDFs of second- and third-order velocity increments over distances
r = 50ηK and r = 150ηK . The tails of the premultiplied PDFs have decayed to zero for large (and re-scaled) increments 1ru′1/σu′1 so that
they can globally be considered converged. (c) Small-scale anisotropy based on the ratio of longitudinal gradients to the instantaneous en-
ergy dissipation B = εG/〈ε0(x, t)〉. In isotropic turbulence, B = 1 on average. (d) Large-scale anisotropy parameter A= 3〈u′21 〉/(2k) as a
function of the averaging window R where k is the turbulent kinetic energy and 〈u′21 〉 the variance of the longitudinal velocity fluctuations.
In isotropic turbulence, A= 1 on average.

Figure A4. Different estimates of the integral length from DNS 3.1
with Rλ = 302, I = 1 %, θ = 0◦ and the maximal available averag-
ing window. L0

11 is inferred from integrating f (r) to its first zero,

whereas L1/e
11 refers to the integration of f (r) > 1/e. Lfit

11 extends
f (r) with an exponential tail where the integration is performed
up to infinity. The dotted black line is the reference from DNS 3.1
obtained by Eq. (11). All estimates are re-scaled by ηK .
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Figure A5. Convergence of energy dissipation rate estimates for
εL. The empirical random error δL(R) is plotted as a function of
the re-scaled averaging window size R/L11 from VDTT experi-
ments at various Rλ values. The analytical result for the random er-
ror (Eq. 22) is shown by the dashed black line. Inset: the insets show
the length of the averaging window in terms of ηK where δL(R)
is less than 50 % as a function of the Taylor-microscale Reynolds
number Rλ. The inset plot shows data from DNS 1.3, 2.3 and 3.3
(red triangles) and the VDTT (grey circle). The three red dots mark
the experiments with the highest Rλ where the isotropy of the grid
forcing in the VDTT is not guaranteed anymore. The solid blue line
shows Eq. (28) resolved for R0.5/ηK . The double logarithmic fit
(logR/ηK = 3

4 log 9
4

3
20 − 2logafit+α logRλ) is performed for the

scaling argument, resulting in α = 1.87±0.06 and afit = 1.75±0.22
(dash-dotted black line).

Figure A6. Skewness and kurtosis of all VDTT experiments as a
function of Rλ. The skewness vanishes for normally distributed ve-
locity time records. Similarly, the kurtosis equals zero for normally
distributed velocity time records, according to Fisher’s convention,
which is a measure for the excess kurtosis.

Figure A7. Compensated longitudinal second-order structure func-
tions for DNS 1.1 (a), DNS 2.1 (b) and DNS 3.1 (c). The grey
shaded region represents the fit range (Eq. 7) for each DNS. The
individual longitudinal second-order structure functions are cal-
culated from the velocity time records along the e1 direction of
each virtual probe (blue lines). The ensemble-averaged longitudi-
nal second-order structure functions are shown in red.

Figure A8. Resolution effect on εG. εc
G

refers to the coarse-grained
velocity time record. Coarse graining is realized by taking only
every nth value of the fully resolved velocity time record where
n ∈ [1,512], thereby controlling the resolution kmaxηK . Velocity
data are taken from DNS 2.0 (Rλ = 142, R ≈ 32000ηK , I = 10 %,
θ = 0◦).
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Appendix B: Impact of random-sweeping effects on the
gradient method

In the following, we illustrate how one obtains an expres-
sion for the impact of random-sweeping effects on the dissi-
pation rate estimate in terms of the turbulence intensity us-
ing the gradient method εG = 〈ε〉[1+ 5I 2

] (Lumley, 1965;
Wyngaard and Clifford, 1977). We consider a model wave-
number–frequency spectrum (Wilczek and Narita, 2012;
Wilczek et al., 2014), which is based on the same model-
ing assumptions used in Wyngaard and Clifford (1977). It
enables us to conduct a systematic assessment of the inter-
play between Taylor’s hypothesis and the random-sweeping
effects. The model wave-number–frequency spectrum tensor
8ij (κ,ω) can be derived from an elementary linear random-
advection model (Kraichnan, 1964; Wilczek and Narita,
2012; Wilczek et al., 2014), which in the case of SHI tur-
bulence can be expressed in terms of the energy spectrum
tensor 8ij (κ):

8ij (κ,ω)=
8ij (κ)

√
2πκ2I 2U2

exp
(
−
(ω/U − κ1)

2

2κ2I 2

)
. (B1)

Within the model, the wave-number–frequency spectrum
8ij (κ,ω) consists of the energy spectrum tensor in
wavenumber space 8ij (κ) multiplied by a Gaussian fre-
quency distribution. 8ij (κ,ω) has a mean value determined
by ω = κ1U , i.e., Taylor’s hypothesis expressed in Fourier
space, and a variance proportional to the turbulence intensity.
When the turbulence intensity tends toward zero at a fixed
mean velocity, the frequency distribution tends toward a delta
function, re-establishing the one-to-one correspondence be-
tween the frequency and the wavenumber in the direction of
the mean flow. To establish the connection to the different
methods using longitudinal components and Taylor’s hypoth-
esis, we consider the i = j = 1 component of Eq. (B1). One
obtains the estimate for the longitudinal wavenumber spec-
trum based on Taylor’s hypothesis, which includes the effect
of random sweeping, by first integrating over the wave vec-
tor space. This leads to the frequency spectrum, which corre-
sponds to the one obtained from temporal single-point mea-
surements of the longitudinal velocity component. Then, one
applies Taylor’s hypothesis, corresponding to the substitution
ω = κ1U , which leads to

2
[∫

811(κ
′,ω)dκ ′

]
dω

ω=κ1U
= E11(κ1)dκ1 . (B2)

Finally, this enables us to evaluate the influence of random
sweeping on the gradient method since it is closely related to
the wavenumber spectrum. Expressed in wavenumber space,
the relation (Eq. 6) takes the following form, where we insert
Eqs. (B1)–(B2) and solve the corresponding Gaussian inte-
gral over ω in the second step:

εG = 15ν
∫
κ2

1E11(κ1)dκ1 = 〈ε〉[1+ 5I 2
] . (B3)

Hence, we recover, as expected, the result by Lumley (1965)
and Wyngaard and Clifford (1977).

To numerically assess how random sweeping smears out
the spectrum at finite turbulence intensities (see Fig. 4),
we assumed a model wavenumber spectrum (Pope, 2000,
Eq. 6.246 ff.):

E(κ)=CK 〈ε〉
2/3κ−5/3

(
κL[

(κL)2+ cL
]1/2

)5/3+p0

exp(−βκηK) , (B4)

where L is the energy injection scale and cL = 6.78, p0 =

2 and β = 2.094 are positive constants. Based on this
model wavenumber spectrum, we first obtainE11(κ) through
Eq. (A7). One can then evaluate Eq. (B2), resulting in the
spectrum being smeared out by random sweeping.

Appendix C: Effect of probe misalignment

Due to the misalignment, the probe frame of reference is ro-
tated with respect to the frame given by the mean velocity.
Without loss of generality, we assume that the misalignment
is due to a rotation around the n̂= e3 axis with the angle θ ;
see Fig. 5.

The misalignment has two consequences. First, the esti-
mated mean velocity differs from the true mean velocity,
which leads to errors when evaluating Taylor’s hypothesis.
Second, the measured velocity component is not the true ve-
locity component but rather a combination of the longitudinal
and transverse components.

In the probe frame of reference, we assume that we mea-
sure the longitudinal velocity field component, i.e., the com-
ponent along the probe orientation e′1. The mean of this com-
ponent gives us the estimate of the mean velocity of the probe
U ′. Due to the misalignment between probe and true mean
velocity, we underestimate the mean velocity U ′ = U cosθ
compared to the true mean velocity U . As we apply Taylor’s
hypothesis to convert temporal increments into spatial dis-
tances, we therefore also underestimate the spatial distances:

r̃ = U ′1t = cosθ U1t = cosθ r . (C1)

Here r̃ denotes the estimated spatial distance and r the true
distance that the probe moved.

The sampling direction of the probe, given by the direction
of the mean velocity, e1, can be expressed in the probe frame
of reference:

e1 = cosθ e′1− sinθ e′2 . (C2)

Combining these two aspects, the vectorial distance cov-
ered by the probe in terms of the estimated one, therefore,
becomes

re1 =
r̃

cosθ
(cosθ e′1− sinθ e′2) . (C3)
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In the probe frame of reference, the covariance tensor is given
by (see Eq. A1)

R′ij (r
′)= 〈u′

2
〉

(
g(r ′)δij +

[
f (r ′)− g(r ′)

] r ′ir ′j
r ′2

)
. (C4)

By application of Taylor’s hypothesis, we can evaluate this
tensor at r ′ = r̃/cosθ(cosθe′1+ sinθe′2). So the correspond-
ing longitudinal component i = j = 1 in terms of the esti-
mated distance r̃ becomes

R′11(r
′(r̃))/〈u′

2
〉 = g(r̃/cosθ)+

[
f (r̃/cosθ)

−g(r̃/cosθ)
]

cos2θ , (C5)

which, due to the misalignment, we interpret as the measured
autocorrelation function. Then, the measured longitudinal in-
tegral length scale, Eq. (11), amounts to

L′11(θ)=

∞∫
0

dr̃ R′11(r
′(r̃))/〈u′

2
〉

=

∞∫
0

dr cosθ(cos2θf (r)+ (1− cos2θ)g(r))

=
1
2
L11 cosθ

(
1+ cos2θ

)
, (C6)

where the integration of f (r) and g(r) is carried out in
the last step (see Eq. 11) while considering the fact that
L22 = L11/2 for isotropic turbulence (Pope, 2000). There-
fore, the energy injection scale estimate of the dissipation
rate, Eq. (10), overestimates the dissipation rate due to mis-
alignment as follows:

εL(θ)= Cε

σ 3
u′1

L′11
=

2
cosθ

(
1+ cos2θ

)εL(0) . (C7)

The same arguments that we applied to the covariance ten-
sor, of course, also hold for the second-order structure func-
tion tensor, Eq. (A2). Due to the effects of misalignment, it
takes the form
D11(r

′(r̃))=DNN(r̃/cosθ)+
[
DLL(r̃/cosθ)

−DNN(r̃/cosθ)
]

cos2θ

=DLL(r̃/cosθ)
(

4− cos2θ

3

)
, (C8)

where in the inertial range of SHI turbulence the transverse
second-order structure function DNN(r)=D22(r)=D33(r)

can be expressed as DNN(r)= 4DLL(r)/3= 4C2(rε)
2/3/3

(Pope, 2000). Therefore, the estimated dissipation rate using
the second-order SF method (cf. Eq. 7) is affected by mis-
alignment as

εI2(θ)=

(
D11(r

′(r̃))

C2

)3/2 1
r̃

=
1

cosθ

(
4− cos2θ

3

)3/2

εI2(0) . (C9)

The misalignment error for the gradient method can be
estimated analytically starting from the longitudinal com-
ponent of the velocity gradient covariance tensor R′1111,
Eq. (A4). Following similar arguments as above and starting
from Eq. (A4), we obtain

R′1111(0)=− lim
r ′→0

∂2
r ′1
R′11(r

′)=− lim
r̃→0

∂2
r̃ R
′

11(r
′(r̃))

=−
〈u′

2
〉

cos2θ
lim
r→0

∂2
r

[
g(r)+ [f (r)− g(r)]

r2cos2θ

r2

]
, (C10)

where we expressed the estimated distance through the true
one r̃ = r cosθ in the second line. Using ∂2

r g(r)= 2∂2
r f (r)+

r
2∂

3
r f (r) (Pope, 2000), the velocity gradient covariance ten-

sor reduces to

R′1111(0)=−
〈u′

2
〉

cos2θ
lim
r→0

[
(2− cos2θ)∂2

r f (r)

+(1− cos2θ)
r

2
∂3
r f (r)

]
=

〈(
∂u

∂x1

)2
〉

2− cos2θ

cos2θ
, (C11)

where −〈u′2〉limr→0∂
2
r f (r)= 〈(∂u/∂x1)

2
〉 (Pope, 2000) is

used for the last step. The energy dissipation rate based on
the gradient method, Eq. (6), is overestimated by the very
same factor due to misalignment:

εG(θ)=
2− cos2θ

cos2θ
εG(0) . (C12)
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