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Abstract. This paper introduces the Ocean Derived Column
Optical Depth (ODCOD) algorithm. ODCOD is now being
used to retrieve full-column optical depths from the 532 nm
measurements acquired by the Cloud-Aerosol Lidar with Or-
thogonal Polarization (CALIOP) aboard the Cloud-Aerosol
Lidar Infrared Pathfinder Satellite Observations (CALIPSO)
spacecraft. ODCOD uses the lidar integrated attenuated
backscatter from the ocean surface, together with collocated
wind speed estimates from Modern-Era Retrospective anal-
ysis for Research and Applications, Version 2 (MERRA-
2), to estimate the full-column optical depths of particulates
(i.e., clouds and aerosols) in the Earth’s atmosphere. Unlike
CALIOP’s standard retrievals, which estimate optical depths
only when particulate layers are detected, ODCOD retrievals
deliver a comprehensive estimate that accounts for attenua-
tion by all particulates present within the lidar profiles. This
paper describes the ODCOD algorithm, develops random un-
certainty estimates, and characterizes the systematic differ-
ences between ODCOD optical depths and those reported
by previously validated data sets. This paper presents perfor-
mance assessments of ODCOD cloud-free profiles to com-
pare the ODCOD aerosol optical depth (AOD) retrievals to
collocated measurements made by the airborne High Spectral
Resolution Lidar (HSRL) instruments flown by NASA Lan-
gley Research Center (LaRC), to daytime estimates derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS), and to daytime and nighttime retrievals using the
Synergized Optical Depth of Aerosols (SODA) algorithm.
ODCOD AODs are biased high relative to LaRC HSRL

AODs by 0.009± 0.043 (median±median absolute devia-
tion), with a correlation coefficient of 0.724, and biased low
relative to MODIS by 0.009± 0.041, with a correlation co-
efficient of 0.834. Relative to SODA, which derives AOD
from a combination of CALIOP and CloudSat ocean sur-
face measurements, ODCOD is biased high in the daytime
by 0.004± 0.035 and higher at night by 0.027± 0.034, with
correlation coefficients of 0.887 and 0.891, respectively. Be-
cause ODCOD estimates are independent from the standard
CALIOP optical depth retrievals, they offer potential for fu-
ture advances in the CALIPSO data record, both in validating
CALIOP’s standard estimates and as a potential total column
constraint to improve extinction coefficient retrievals.

1 Introduction

The Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) (Hunt et al., 2009) aboard the Cloud-Aerosol Li-
dar Infrared Pathfinder Satellite Observations (CALIPSO)
spacecraft (Winker et al., 2010) acquired over 17 years of
near-continuous observations beginning in June of 2006 and
concluding in June 2023. CALIPSO’s 98.2° orbit inclination
yielded near-global coverage, allowing for measurements of
the location, extent, and optical properties of clouds and
aerosols from 82° S to 82° N. CALIOP transmits linearly po-
larized laser light at 1064 and 532 nm, with detectors for the
total backscattered signal at 1064 nm and the parallel and per-
pendicular polarizations of the backscatter at 532 nm (Hunt
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et al., 2009). The calibrated perpendicular and parallel sig-
nals are summed to retrieve the total attenuated backscat-
ter at 532 nm. Also, volume depolarization ratios are ob-
tained by dividing the perpendicular signals by the parallel
signals (Powell et al., 2009). The science data products re-
trieved from the CALIOP measurements are reported at three
standard processing levels (Vaughan et al., 2024). Level 1
products report calibrated profiles of attenuated backscat-
ter coefficients for all three measurement channels, along
with instrument state parameters (e.g., viewing angle, laser
energies, and calibration coefficients) and relevant ancillary
data such as profiles of atmospheric temperature and pres-
sure. Level 2 products report geophysical parameters de-
rived from the level 1 calibrated measurements (Winker et
al., 2009). These parameters include layer top and base alti-
tudes for all atmospheric and surface features detected in the
backscatter profiles (Vaughan et al., 2009), the identification
of atmospheric layers according to type and subtype (Liu et
al., 2019; Kim et al., 2018; Avery et al., 2020), and layer op-
tical properties such as optical depths and vertically resolved
profiles of particulate (i.e., cloud and/or aerosol) extinction
and backscatter coefficients (Young et al., 2018). Addition-
ally, when the lidar signal is not fully attenuated, a dedicated
retrieval algorithm detects the Earth’s surface over both land
and ocean (Vaughan et al., 2017). Level 3 products report
monthly averages of level 2 retrievals composited on uniform
spatial grids (Tackett et al., 2018; Kar et al., 2018; Winker et
al., 2024).

Among the primary science data reported in the CALIOP
data products are vertically resolved estimates of particulate
extinction coefficients, their associated layer optical depths,
surface detection and altitude, and estimates of wind speeds
obtained from MERRA-2. To retrieve extinction coefficients,
CALIOP first uses a feature detection algorithm to iden-
tify regions of the vertical profile with elevated attenuated
backscatter (Vaughan et al., 2009) and then prescribes an
extinction-to-backscatter ratio (i.e., lidar ratio) for various
aerosol types based on the CALIOP aerosol classification
and cloud/aerosol discrimination algorithms (Liu et al., 2019;
Avery et al., 2020; Kim et al., 2018; Young et al., 2018).
These prescribed lidar ratios are among the largest sources
of uncertainty and error in the particulate extinction retrieval,
and they become increasingly significant lower in the atmo-
sphere due to attenuation and rescaling errors inherited from
overlying layers (Young et al., 2013). CALIOP also only re-
trieves extinction coefficients for regions of the vertical pro-
file where the particulate attenuated backscatter signal rises
above the layer detection thresholds (Young and Vaughan,
2009). Regions of faint scattering from diffuse particulates
can fall below these limits and hence go undetected. This
inherently means that a small fraction of the overall par-
ticulate extinction will not be included in CALIOP’s col-
umn optical depth estimates. Kim et al. (2017) estimate
CALIOP’s undetected optical depth to be on the order of
0.030± 0.046. Based on comparisons to Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) AODs, Toth et
al. (2018) report similar low-bias estimates of 0.03 to 0.05 for
daytime retrievals. Consequently, estimates of global mean
aerosol direct radiative effect derived from CALIOP’s stan-
dard aerosol optical depth (AOD) retrievals are biased low by
∼ 54 % (Thorsen et al., 2017).

The low bias of CALIOP’s standard optical depth prod-
uct highlights a need for improved lidar retrievals to estimate
the optical depths of the full atmospheric column. Previous
studies have estimated the ocean surface integrated backscat-
ter coefficient using only surface wind speed and viewing
angle (Barrick et al., 1968; Bufton et al., 1983; Menzies
et al., 1998; Lancaster et al., 2005; Hu et al., 2008). Their
works make it possible to estimate the optical depth of the
atmospheric column when the lidar signal is detected from
the ocean surface. These techniques can be applied without
assuming lidar ratios and incurring the uncertainties asso-
ciated with them. Reagan and Zielinskie (1991) recognized
that column optical depths could be estimated using “the
strong return signals from ground/sea reflections to improve
upon information that can be retrieved from spaceborne lidar
observations”. Leveraging the close formation flying of the
A-Train satellite constellation, Josset et al. (2008) devised
an innovative technique to retrieve column optical depths by
synthesizing measurements from CALIOP, the Cloud Profil-
ing Radar (CPR) aboard CloudSat, and the Advanced Mi-
crowave Scanning Radiometer (AMSR) aboard Aqua. Using
only CALIOP and AMSR measurements, Venkata and Rea-
gan (2016) (hereafter VR2016) developed a column AOD re-
trieval based on prelaunch laboratory characterizations of the
CALIOP 532 nm detector system response. Using the same
satellite measurements, He et al. (2016) formulated another
approach for estimating clear-sky optical depths. Each of
these ocean surface retrieval techniques require an accurate
estimate of the ocean surface integrated attenuated backscat-
ter (IAB). Josset et al. (2008), He et al. (2016), and oth-
ers integrate height-resolved CALIOP measurements around
the ocean surface. However, techniques which approximate
an integral from discrete sampling can introduce truncation
uncertainty if the original signal is undersampled. VR2016
chose to employ a novel technique of fitting a piecewise
function to approximate the measured lidar pulse shape of
the CALIOP post-detector electronics and integrating the fit
function to estimate the ocean surface integrated attenuated
backscatter. Applying this approach avoids the systematic
uncertainties associated with discrete integration techniques
and provides an accurate estimation of the surface IAB.

While these retrieval advances offer new ways to estimate
column optical depths, one drawback is that each technique
requires measurements from multiple instruments, which in-
troduces collocation uncertainties along with random and
systematic retrieval uncertainties from multiple sensors. A
further impediment is that the requisite CPR and AMSR
measurements are only available for parts of the CALIOP
mission. By combining ideas from previously developed
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methods and replacing the AMSR wind measurements with
wind data obtained from the Modern-Era Retrospective anal-
ysis for Research and Applications, Version 2 (MERRA-2)
reanalysis (Gelaro et al., 2017), a new hybrid algorithm is
constructed to estimate full-column particulate (i.e., cloud
and/or aerosol) optical depths from the lidar ocean surface re-
turn over the entire CALIPSO mission. This new algorithm,
called Ocean Derived Column Optical Depth or ODCOD, is
implemented in the CALIOP version 4.51 (V4.51) release
of the lidar level 2 (LL2) CALIPSO data products. ODCOD
is developed primarily from the work of VR2016 but also
incorporates techniques from Josset et al. (2008) and Hu
et al. (2008). In contrast to previously developed methods,
ODCOD estimates are based solely on CALIOP measure-
ments and MERRA-2 wind data. MERRA-2 also provides
the profiles of number density, temperature, and pressure pro-
files that are used to calculate molecular and ozone two-way
transmittances between the top of the atmosphere and the
ocean surface. ODCOD retrievals of 532 nm optical depths
are reported wherever a qualified ocean surface return signal
is available.

The remainder of the paper provides a comprehensive
overview of the ODCOD retrieval. Section 2 reviews the
theory underpinning the algorithm, describes the necessary
inputs and associated profile selection process, and devel-
ops random uncertainty estimates. Section 3 characterizes
ODCOD’s performance and systematic errors relative to es-
tablished existing data sets by comparing ODCOD retrievals
in cloud-free conditions to collocated airborne High Spectral
Resolution Lidar (HSRL) measurements and to the AODs
reported by MODIS and the Synergized Optical Depth of
Aerosols (SODA) data sets. In closing, Sect. 4 summarizes
the performance of the ODCOD algorithm and provides
some concluding remarks.

2 Ocean Derived Column Optical Depth technique

This section reviews the theoretical basis of the ODCOD
technique, enumerates the required inputs, characterizes
the associated random uncertainties, and describes the new
ODCOD data sets reported in the CALIOP V4.51 LL2 data
products.

2.1 Algorithm overview

The ODCOD algorithm uses the integrated attenuated
backscatter (IAB) measurements of the 532 nm laser light
backscattered from the ocean surface to estimate the particu-
late optical depth of the Earth’s atmosphere. The particulate
optical depth (τP(zs)) of both aerosols and hydrometeors is
related to the particulate two-way transmittance (T 2

P (zs)) at
the range from the receiver, zs, by the relationship τP(zs)=

−1/2 · ln
(
T 2

P (zs)
)
. The total (i.e., molecular and particulate)

two-way transmittance (T 2(zs)) at the ocean surface is the

fraction of the lidar light that is returned to the spacecraft re-
ceiver after being reflected 180° (i.e., backscattered) from the
ocean and is the product of the molecular and ozone two-way
transmittances (T 2

M(zs)) and the particulate two-way trans-
mittance. The relationship of total two-way transmittance to
the surface IAB and backscatter reflectance is represented by
Eq. (1).

T 2(zs)=
IABsurf

Rλ (ω,θ)
(1)

The attenuated backscatter integrated over the range of the
detected surface return is IABsurf, and Rλ (ω,θ) is the ocean
surface backscatter reflectance and is an estimate of the inte-
grated backscatter coefficient with units of sr−1 (VR2016)
over the range of the ocean surface pulse. The surface
backscatter reflectance is modeled as a function of wind
speed and viewing angle represented as ω and θ , respectively.
Using the relationship T 2(zs)= T

2
M(zs) · T

2
P (zs), the particu-

late two-way transmittance can be found using Eq. (2).

T 2
P (zs)=

IABsurf

Rλ (ω,θ)T
2

M(zs)
(2)

Surface IAB estimates are reported by CALIOP’s sur-
face detection algorithm, which uses the trapezoid rule
to numerically integrate the ocean surface return between
the CALIOP-detected top and base altitudes (Vaughan et
al., 2017). This approximation of surface IAB can suffer
from underestimates of 3 % to overestimates of 2.5 % that
arise from discrete integration of a “hard target” return like
the ocean surface when recorded by CALIOP’s receiver sys-
tem (see Appendix A). In contrast, ODCOD uses a tech-
nique which is largely identical to the method described in
VR2016. ODCOD constructs a model that approximates the
CALIOP post-detector electronics response to a laser pulse,
fits the attenuated backscatter measurements of the surface
return to the modeled response shape, analytically integrates
the model to solve for the area under the surface return pulse,
and calculates the surface IAB.

CALIOP’s onboard post-detector electronics employ
third-order low-pass Bessel filters located downstream of the
detectors in the 532 and 1064 nm channels (VR2016). An im-
portant feature of the Bessel low-pass filter is that it preserves
the total energy of an incoming pulse. When a narrow lidar
pulse enters the filter, its peak amplitude is reduced, but the
pulse is transformed in the time-of-flight domain such that
the area under the original pulse is preserved. Prior to launch,
CALIOP instrument engineers characterized the shape of the
Bessel filter response to a laser light pulse passed through the
detector system. In laboratory experiments, laser pulses were
measured at a sampling rate of 0.1 µs using the CALIOP en-
gineering model receiver electronics and flight-qualified pho-
tomultipliers. A CALIOP response model (CRM) was built
for ODCOD by fitting these laboratory measurements using
a piecewise function consisting of a hyperbolic tangent func-
tion for the rising part of the system response and a Gaussian
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Figure 1. The CALIOP CRM derived from laboratory measure-
ments. The purple diamonds show laboratory measurements taken
at intervals of 0.1 µs, while the solid red and solid blue lines show
the analytic curve fit to the rising signal prior to the peak and the
decaying signal following the peak, respectively.

Table 1. Piecewise variables and values used to generate the
ODCOD CALIOP response model.

Symbol Interpretation Value

α Model scale factor Unknown; calculated
during the curve fitting
process

ah TANH vertical scale factor 1.14

ag Gaussian vertical scale factor 0.9695

ωh TANH horizontal scale factor 8.39

ωg Gaussian horizontal scale factor 8.186

g Gaussian horizontal shift 0.15 µs

bp Piecewise function breakpoint 0.15 µs

function after the peak to model the non-ideal transient re-
sponse of the detectors (Hunt et al., 2009), as shown in Fig. 1.

Figure 1 shows the digitizer readings of the laboratory ex-
periments (purple diamonds) plotted as a function of elapsed
time from the pulse onset. The CRM is shown as a function
of the pulse onset time at t = 0 µs. All values prior to the
pulse onset time are set to zero. The hyperbolic tangent part
is shown in red and the Gaussian part in blue. The CRM is
defined by Eq. (3), where t quantifies the elapsed time be-
tween the CRM model pulse onset and the data acquisition
time of the measurements of the surface return.

CRM(t)= α×


0 for : t ≤ 0.0µs

ah tanh(ωht) for : 0.0µs< t ≤ bp

age
−(ωg[t−g])2

for : t > bp

(3)

The values listed in Table 1 define the parameters of the
CRM.

It is possible to estimate the magnitude of the ocean sur-
face return using ODCOD’s CRM because a hard target

largely preserves the shape of the laser pulse upon reflec-
tion. The reflected pulse is then recorded by the spacecraft
receiver, having only been two-way-attenuated by the at-
mosphere. The Bessel filters modify the shape but preserve
the total backscattered energy of the reflected pulse. After
passing through the system electronics, digitized samples of
the filter response are recorded. CALIOP’s onboard sam-
pling rate is 10 MHz, or every 0.1 µs, corresponding to a
vertical sampling resolution of 15 m, which is identical to
the sampling rate of the laboratory measurements used to
build the CRM. However, because CALIOP employs on-
board averaging to reduce data storage and downlink size
(Hunt et al., 2009), the 532 nm samples acquired between
8.2 km above mean sea level and 0.5 km below are averaged
over two onboard vertical bins, yielding a downlink resolu-
tion of 30 m. Once averaged, the original onboard samples
are discarded, leaving only the averaged measurements for
analysis.

Ideally, ODCOD would fit the 15 m ocean surface attenu-
ated backscatter measurements to the 15 m resolution CRM
and then integrate the piecewise model to retrieve the area
under the CRM. Accomplishing this fit would align the sur-
face return measurements with the model and then scale
the model to best fit the measurements, thus solving for the
scale factor (α). Unfortunately, implementing this CRM fit-
ting procedure is considerably complicated by CALIOP’s on-
board averaging scheme. As illustrated in Fig. 2, the aver-
age of any two temporally consecutive 0.1 µs points from the
CRM (circles lying along the aqua curve) yields a 0.2 µs reso-
lution value (purple diamonds) that does not lie on the CRM.
Consequently, applying the fitting procedure described re-
quires a mapping from the CRM into a downlinked CALIOP
response model (DCRM) that is defined at the same 30 m res-
olution as the downlinked data. This derivation of the DCRM
from the CRM is given in Eq. (4).

DCRM(t)=
(CRM(t − 0.1µs/2)+CRM(t + 0.1µs/2))

2
(4)

The DCRM is created by averaging the CRM in the exact
same way that the 0.1 µs (15 m) digitized samples are aver-
aged aboard the spacecraft to create the downlinked measure-
ments. As illustrated by the orange line in Fig. 2, an espe-
cially useful property of the DCRM is that the ratio of any
two temporally consecutive samples taken at the CALIOP
downlinked sample spacing is unique. While the CRM and
DCRM are continuous functions, any single measurement or
sample is one of a discrete set at times tsi , where each tsi is a
function of some reference sample or measurement time ts0 .
The relationship of the times is tsi = ts0 + iRs, where Rs is
the sampling rate and the measurement index i is the number
of measurements from the reference measurement at time ts0 .
The measurement index may be positive or negative depend-
ing on if it falls before or after the reference measurement.
Since the DCRM is mapped to the CRM, a sample time of
one model also defines the samples on the other. Since the
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ratio of two consecutive DCRM samples is unique, the time
of a selected downlinked reference measurement can be de-
termined from the DCRM without first knowing the DCRM
scale factor by ratioing the reference measurement with the
following measurement. By locating the time of the ratio
along the orange DCRM ratio curve in Fig. 2, ts0 is found,
and the measurement times of all downlinked measurements
can be sampled on the DCRM at their respective tsi times.

Figure 2 shows how two CRM samples, a reference
DCRM sample and the ratio of the reference DCRM sample
and the next, are all connected by ts0 . The aqua curve shows
the CRM with a surface pulse onset time at 0 µs. Along the
CRM curve, aqua circles mark a discrete set of samples taken
at the same 0.1 µs sampling rate as the CALIOP onboard
samples. The dashed black lines connect the pairs of the dis-
crete CRM samples that are averaged to create the discrete
DCRM samples, which are shown as purple diamonds on the
purple curve. The DCRM sample at sample time ts0 , anno-
tated by the vertical dashed gray line, shows how the refer-
ence DCRM sample time is related to the CRM sample times
that make it up as well as the other discrete DCRM samples.
As described earlier, the orange curve, plotted on the same
time axis but on its own right-side y axis in log scale, shows
the ratio of the DCRM reference time ts0 (numerator) and
the next DCRM sample taken at ts0 + 0.2 µs (denominator),
where 0.2 µs is the sampling rate of CALIOP’s downlinked
measurements. The orange diamonds mark the discrete ratios
of the discrete samples shown on the DCRM.

The key takeaway from Fig. 2 is that the ratio of two con-
secutive DCRM samples is unique irrespective of their mag-
nitude. Furthermore, ts0 is a function of that ratio, as are all
the tsi ’s in the surface return. Using the ratio and time rela-
tionship as illustrated by the orange curve in Fig. 2, the time
of the reference downlinked measurement and thus time of
all downlinked measurements in the profile are found. Once
the time of the measurements on the DCRM is known, the
DCRM can be scaled by α to match the measurement’s mag-
nitudes. The CALIOP surface detection algorithm provides
the downlinked measurements of attenuated backscatter of
the ocean surface. The two largest consecutive measurements
of the detected surface return are selected, and the first of
the two is chosen as the reference measurement. The ratio of
these measurements is compared to ratios of samples of the
DCRM until a matching ratio is found to find the reference
measurement time. The scale factor is found by minimizing
the sum of squared errors (SSE) between the measurements
and the aligned DCRM sampled at the measurement times.
The relationship of the DCRM to the CRM allows the CRM
to be properly scaled. Knowing the CRM scale factor allows
the original onboard surface return pulse to be reconstructed
and the CRM integrated to retrieve an accurate estimate of
the area (ACRM) of the CRM and the surface IAB to be esti-
mated.

With the scale factor determined, ACRM is the integral of
the two parts of the CRM scaled by the scale factor, as shown

in Eq. (5):

ACRM = α

(
ah

bp∫
0.0 µs

tanh(ωht)dt + ag

∞∫
bp

e−(ωg[t−g])2
dt
)
. (5)

A factor of c/2, where c is the speed of light, is required
to convert from the time-of-flight domain area of the CRM
to the range from receiver domain of IABsurf. Substituting
IABsurf = c/2 ·ACRM into Eq. (2) provides Eq. (6).

T 2
P (zs)=

cACRM

2Rλ (ω,θ)T 2
M(zs)

(6)

The ocean surface backscatter reflectance Rλ (ω,θ) is es-
timated using the technique of VR2016 relating Rλ (ω,θ)
to wind speed with a revised version of the ocean sur-
face backscatter reflectance model developed by Lancaster
et al. (2005) shown in Eq. (7):

Rλ (ω,θ)= (1−W(ω))Fλ (ω,θ)+ 0.2W(ω). (7)

W(ω) is the fraction of the surface covered with whitecaps,
Fλ (ω,θ) is the Fresnel retro reflectance of ocean water, and
the factor of 0.2 is the estimated Fresnel retro reflectance
of ocean whitecaps (VR2016). The whitecap fraction model
used by ODCOD is the empirical fit found in Lancaster et
al. (2005) but with updated coefficients provided by VR2016
and is estimated by Eq. (8):

W(ω)= 2.95× 10−6(ω)3.37. (8)

ODCOD adopts the estimate of Fλ (ω,θ) as a function of
wind speed and off-nadir angle from Josset et al. (2010b).
Using a formulation of Fλ (ω,θ) that varies as a function
of off-nadir angle is relevant for CALIOP calculations. At
launch, the CALIPSO off-nadir angle was fixed at 0.3°. How-
ever, in November 2007 the off-nadir angle was increased to
3.0° (Winker et al., 2009), where it remained as the nomi-
nal off-nadir angle until the end of the mission. Equation (9)
shows the estimate of Fλ (ω,θ) as a function of wind speed
and off-nadir angle:

Fλ (ω,θ)=
ξλe
−

(
tan2θ
〈s(ω)〉2

)
4π〈s(ω)〉2cos5θ

. (9)

Here, ξλ is the Fresnel coefficient at wavelength λ, which
is estimated as 0.0213 at 532 nm (Vaughan et al., 2019),
and 〈s(ω)〉2 is the wave slope variance, which is a func-
tion of wind speed. While VR2016 used the wave slope
variance approximation proposed in Lancaster et al. (2005),
ODCOD uses the piecewise approximation developed by Hu
et al. (2008). This approximation was chosen because it was
developed using CALIOP measurements and AMSR wind
speeds and directly relates the two primary quantities used in
the ODCOD retrieval and is shown in Eq. (10):

ω < 7ms−1 〈s(ω)〉2 = 1.46× 10−2√ω

7ms−1
≤ ω < 13.3ms−1 〈s(ω)〉2 = 0.003+ 5.12× 10−3ω

13.3ms−1
≤ ω 〈s(ω)〉2 = 0.138log10(ω)− 0.084.

(10)
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Figure 2. The CALIOP CRM (aqua line) with one possible set of discrete samples (circles) and the resulting DCRM (purple) with the
downlinked samples (purple diamonds) that result from the discrete samples of the CRM linked (dashed black line). Overplotted on the right
axis is the ratio of the DCRM (orange) at time ts0 over the DCRM at time ts0+0.2µs with the discrete ratios (orange diamonds). Highlighted
by the annotations are the CRM, DCRM, and DCRM ratio for the reference time ts0 annotated and marked by the vertical line to show how
all three tie together. The notable bend in the purple DCRM curve located at 0.05 µs is due to the sample averaging of the CRM. Since the
CRM is zero before the surface onset time, before the DCRM time of 0.05 µs, only the second of the two averaged values is past the pulse
onset time. At time 0.05 µs, the second of the two values begins to rise above zero, and the DCRM slope changes accordingly.

The final requisite inputs to the algorithm are the off-nadir
angle, which is known from the spacecraft attitude data, and
the horizontal wind speed magnitude at 10 m above the ocean
surface, which is obtained from the MERRA-2 model. How-
ever, the MERRA-2 10 m winds over the ocean are biased
low (Carvalho, 2019) and require a correction to obtain un-
biased optical depth estimates. An in-depth discussion of the
wind speed bias correction is given in Sect. 2.2.1.

While no attempt is made to report an estimated system-
atic bias in the ODCOD retrieval, it is pertinent to discuss
two potential sources of systematic error related to the CRM
and fitting the surface return measurements. The non-ideal
transient recovery is an unwanted feature of the CALIOP
onboard 532 nm photomultipliers which occurs after very
strong backscatter signals (Hunt et al., 2009). This effect is a
characteristic of the CALIOP onboard electronics and can
be described as a ring in the 532 nm detectors. McGill et
al. (2007) explain that, “following a strong impulse signal,
such as from the Earth’s surface or a dense cloud, the signal
initially falls off as expected but at some point, begins decay-
ing at a slower rate that is approximately exponential with re-
spect to time”. However, since only the two largest measure-
ments of the CALIOP-detected surface return are used in the
CRM fitting process, the CRM overcomes possible effects
from the non-ideal transient recovery as any enhancement in

the tail of the return does not affect the scaling of the CRM
and thus the estimated magnitude of the surface return.

Another source of systematic error that affects ODCOD
retrievals is ocean subsurface scattering. VR2016 show that
the 532 nm light is largely extinguished to less than 0.1 %
within 45 m below the surface but will make a small contribu-
tion to the overall return. Due to the CALIOP onboard elec-
tronics system, subsurface scattering will effectively widen
the surface pulse but does not introduce a uniform enhance-
ment of the measurements. Some subsurface enhancement
will occur in the individual measurements as a function of
their respective pulse onset time delays, but fitting only the
largest two points of the CRM means the magnitude of any
enhancement will vary as a function of time delay. Attempts
to correct for subsurface contribution using conventional the-
oretical corrections as proposed in VR2016 and Josset et
al. (2010b) consistently underestimates the IAB, so ODCOD
applies no such correction. The failure of the CRM to avoid
the subsurface component of the ocean surface return intro-
duces a small systematic error that needs additional study
to fully understand and quantify before a correction is at-
tempted.

2.2 Algorithm inputs and random uncertainty

This section examines the necessary inputs to the ODCOD
algorithm, their random uncertainty, and how those uncer-
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tainties affect the uncertainty estimate of the retrieval. Ancil-
lary inputs are also discussed along with their uses in data
filtering.

Applying standard propagation of error (Bevington and
Robinson, 1992), the estimated random variance in the
ODCOD particulate two-way transmittance is shown in
Eq. (11).
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The standard deviation of the off-nadir angle is estimated
from internal CALIPSO engineering documents as 0.16°,
making its contribution to the overall uncertainty approxi-
mately 0.01 % of the uncertainty overall. Uncertainty in the
MERRA-2 model temperature data used to estimate partic-
ulate and ozone two-way transmittance for ODCOD is es-
timated to be less than 1.5 K (Michele Rienecker, personal
communication, 2013). Even assuming a uniform 4 K error in
the MERRA-2 temperature profile, the fractional error in the
molecular two-way transmittances is less than 0.004. Using
this as an estimate of the random uncertainty, the contribu-
tion to the overall uncertainty should be less than 0.02 %. As
these uncertainties are small compared to that of wind speed
and area fit, they are not included in the ODCOD uncertainty
estimates. Without the contributions of viewing angle and the
molecular and ozone two-way transmittances, Eq. (11) sim-
plifies to Eq. (12).
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The two-way transmittance variance due to wind speed is
comprised of multiple wind speed terms. Equation (12) is
expanded as shown in Eq. (13) through Eq. (16):
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The change in wave slope variance as a function of wind
speed is derived from Eq. (10), as shown in the three parts of
Eq. (17).
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The partial derivative of two-way transmittance with re-
spect to area under the CRM is provided by Eq. (18).
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Finally, the uncertainty in optical depth can be calculated
as
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To estimate the variance in the ODCOD particulate two-way
transmittance, estimates of the variance in wind speed and
area of fitted CRM are required. These are discussed in detail
in the next two sections.

From the wave slope variance in Eq. (10) there are two
distinct discontinuities in the piecewise function at 7 and
13.3 m s−1. Due to these discontinuities, there are also dis-
continuities in the analytical estimation of the uncertainty in
the optical depths retrieved by ODCOD. These discontinu-
ities can be seen in the 5 km ODCOD estimation of standard
deviation calculated by Eq. (19) when binned by wind speed
(Fig. 3a).

Because the median of the distribution of optical depths
shown in Fig. 3b is near the discontinuity at 7 m s−1 in
Fig. 3a, the distribution of reported uncertainties will be dis-
tinctly bimodal. This reduces the utility of the uncertainties
reported because retrievals with wind speed values near the
discontinuities will make the uncertainty estimate less cer-
tain. Nonetheless, extensive comparisons of ODCOD AODs
to other data sets demonstrate that, in general, ODCOD un-
certainty estimates provide a reliable estimate of the over-
all random uncertainty in the ODCOD retrieval (Thorsen et
al., 2024). Wind speed is the primary quantity to consider in
understanding ODCOD’s uncertainty estimates. The uncer-
tainty due to ACRM only plays a minor role and is mostly re-
sponsible for the smaller fluctuations in the values in Fig. 3a
but is valuable in separating CRM fitting errors from neigh-
boring quality retrievals.

Figure 4 shows the same retrievals as Fig. 3 but binned by
optical depth. The results of the bimodal distribution are seen
in Fig. 4a and cause separation of the means and medians.
Figure 4b shows that, generally, the median wind speeds fall
between 5 and 8 m s−1, with only AOD values below zero
and above about 1.1 being much outside this wind speed
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Figure 3. Panel (a) shows ODCOD 5 km AOD uncertainty estimate
means (blue diamonds) calculated by Eq. (19) with the standard de-
viation envelope (pale blue) and medians (orange squares) with the
median absolute deviation (MAD) envelope (pale orange) binned
by wind speed. Gray reference lines at 7 and 13.3 m s−1 coincide
with the breakpoints in the wave slope variance model in Eq. (10).
Panel (b) shows the number of samples for daytime (yellow) and
nighttime (purple). Both panels represent the data for March 2008–
February 2011.

range. Figure 4c shows that the majority of ODCOD AOD
retrievals fall below 0.5 optical depths.

The increase in the median wind speeds for AOD near and
below zero and the crossing of the means and medians of the
uncertainties are mostly due to the sampling bias caused by
detector saturation by the surface return. More specifically,
since ODCOD retrievals are not performed for saturated sur-
face returns and surface saturation occurs more frequently at
lower wind speeds and lower optical depths, the returns that
do qualify for quality ODCOD retrieval will have systemat-
ically higher wind speeds when optical depths are low. This
surface-saturation sampling bias is discussed in more detail
in Sect. 3.1.1.

In the CALIOP data products, ODCOD random uncer-
tainty estimates are reported according to Eq. (19). In
general, when filtered for wind speeds between 3 and
15 m s−1, ODCOD AODs have an uncertainty on the order of
0.11± 0.01 (75± 37 % relative) day and night. For the dis-
tribution of wind speeds found in nature, there will be a bi-
modal distribution of uncertainty estimates due to the math-
ematical propagation of errors of a piecewise model. Optical
depths retrieved in profiles with wind speeds below 7 m s−1

will have a tight distribution around 0.065, and those with
wind speeds above 7 m s−1 will have a wider distribution
around 0.12.

Figure 4. Panel (a) shows ODCOD 5 km AOD uncertainty estimate
means (blue diamonds) calculated by Eq. (19) with the standard
deviation envelope (pale blue) and medians (orange squares) with
the median absolute deviation (MAD) envelope (pale orange) and
binned by ODCOD 5 km AOD. Panel (b) shows the median wind
speed with the MAD envelope for the same data in panel (a) with a
gray reference line at 7 m s−1. Panel (c) shows the number of sam-
ples in daytime (yellow) and nighttime (purple). All panels repre-
sent the data for March 2008–February 2011.

2.2.1 Wind speed

Wind speed is the largest source of random uncertainty and
a probable source of systematic error in the ODCOD algo-
rithm; however, MERRA-2 does not provide uncertainty es-
timates for wind speed. Consequently, a global wind speed
random uncertainty estimate is derived for ODCOD based
on the available literature applicable to the ODCOD wind
speed inputs. According to Archer and Jacobson (2005), “the
global average 10 m wind speed over the ocean from mea-
surements is 6.64 m s−1”. Similarly, Wentz et al. (2005) re-
port a maximum standard deviation of Advanced Microwave
Scanning Radiometer for Earth Observing System (AM-
SRE) wind speeds relative to ocean buoy measurements of
less than 1.00 m s−1. An estimate of relative wind speed
standard deviation is derived from these measurements as
εωM = 1.00 m s−1/6.64 m s−1

≈ 0.151.
In addition to random uncertainties, possible systematic

biases in the MERRA-2 winds at 10 m above the ocean
surface must be considered. A low wind speed bias of
−0.5 m s−1 will cause a high bias of approximately 0.02
in an ODCOD optical depth. Compared to buoy and other
in situ measurements, Carvalho (2019) found a low bias in
MERRA-2 winds from −0.16 to −0.83 m s−1 over ocean.
Similarly, the authors’ internal investigation found a similar
bias of −0.52± 0.53 m s−1 (global average).
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To assess potential biases in MERRA-2 wind speeds,
medium frequency 10 m surface wind speeds reported by
AMSRE aboard the NASA Aqua satellite and the Advanced
Microwave Scanning Radiometer 2 (AMSR2) aboard the
Global Change Observation Mission – Water (GCOM-W1)
were analyzed. The AMSR data sets were chosen due to the
respective spacecraft’s approximately 90 s separation from
the CALIPSO spacecraft. Their proximity allows for near-
instantaneous coincident measurements between CALIOP
and the AMSR instruments. AMSRE data from June 2006
to 4 October 2011 and AMSR2 data from May 2012 through
December 2020 were used. The AMSRE and AMSR2 instru-
ments are very similar in design, and no bias between their
wind speed estimates was noted by a search of the available
literature at the time of ODCOD development. The data sets
were aggregated and collocated to the 333 m CALIOP foot-
print and compared to the GMAO MERRA-2 10 m surface
wind speeds retrieved from the inst2d_met data parameters
(GMAO, 2015c) reported in the CALIOP LL2 V4.51 data
products. The median wind speed differences between the
AMSR instruments and the MERRA-2 reported wind speeds
were calculated for each month. Lookup tables were gener-
ated consisting of wind speed ranges from 1 to 41 m s−1 in
3 m s−1 increments. Each table is a three-dimensional lookup
table comprised of 1° latitudes from 82° S to 82° N, 2° lon-
gitudes and month of the year for the respective wind speed
range. Each grid box in the lookup table is required to have a
minimum of five observations. If enough data were not avail-
able for any given grid box, the data were re-binned onto
larger-sized grids until the minimum data requirement was
met. This additive bias correction is applied to the MERRA-
2 wind speed data and produces a more AMSR-like wind
estimate.

Figure 5 shows the median corrections applied to the
MERRA-2 wind speeds between 3 and 15 m s−1 used in
ODCOD 5 km AOD retrievals and illustrates that in nearly
all regions an addition is required to correct the low bias in
MERRA-2 winds.

To estimate the random uncertainty in the derived correc-
tion, analysis of the means and standard deviations in the
AMSRE and AMSR2 data finds the mean relative standard
deviation for the correction factors as εωA = 0.2537. Since
the correction factor is additive, the overall relative uncer-
tainty in the wind speeds used for ODCOD is estimated by
Eq. (20):

εω =

√
ε2
ωM
+ ε2

ωA
=

√
(0.151)2+ (0.2537)2 = 0.2950. (20)

The variance is σ 2
ω = ε

2
ω · (ωM+CA)

2, where CA is the
AMSR-derived wind speed bias correction.

Within the ODCOD algorithm, wind speed is also used
as a filtering criterion. Profiles where the wind speed falls
outside of the inclusive range (0.025–43) m s−1 are not at-
tempted.

2.2.2 Surface return area

Another source of random uncertainty in the ODCOD al-
gorithm comes from fitting the measured values of the sur-
face return signal to the DCRM. This uncertainty arises from
random noise in the measurements. The variance in the area
is estimated from the differences between the surface return
measurements and the fit DCRM samples. Since the area is
the integral of the CRM multiplied by the scale factor deter-
mined by the retrieval, the variance of the area is given by
Eq. (21).

σ 2
AIRM
=
(
Ch+Cg

)2
σ 2
α (21)

The constants Ch and Cg are the integrals of the hyperbolic
tangent and Gaussian portions of the CRM, respectively. The
variance of the scale factor σ 2

α is the mean squared error of
the fit of the measured points of the ocean surface to the
DCRM.

2.2.3 Additional screening inputs

Other inputs to the algorithm include the depolarization ra-
tio of the surface return, the negative signal anomaly flag,
and the surface-saturation flags found in the CALIOP data
products. ODCOD requires the surface depolarization ratio
to be below 0.15 for a retrieval to be attempted. This thresh-
old is meant to ensure that any retrievals from the ocean with
significant sea ice or surface debris are not attempted (Lu et
al., 2017). This threshold may also filter out some shallow
water cases where ocean bottom return could contaminate
the retrieval. Surface depolarization ratios are reported for all
surfaces detected in the CALIOP V4.51 LL2 data products.

Other considerations are the negative signal anomaly
(NSA) and surface saturation. The NSA occurs when an
unusually large negative signal is measured in a range bin
immediately preceding a very large positive backscatter re-
turn from a strongly scattering target such as Earth’s sur-
face (Tackett et al., 2018). Since it cannot be determined
whether the NSA belong to the surface return or to the at-
mospheric return immediately above, ODCOD retrievals are
not attempted when these events occur. Similarly, no retrieval
is attempted where surface saturation is indicated by the
surface-saturation flags. Surface saturation occurs when the
magnitude of the signal received by the lidar detectors ex-
ceeds the maximum value the detectors can accurately mea-
sure. Surface saturation would lead to an improper fit of the
CRM and a bias in the estimate of the surface IAB. Saturated
surfaces are identified when the surface-saturation flags re-
ported in the LL1 product indicate surface saturation or pos-
sibly saturated. However, onboard averaging makes complete
detection of saturation difficult, so additional quality filtering
is recommended.
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Figure 5. MERRA-2 wind speed corrections applied to wind speeds between 3 and 15 m s−1 used in ODCOD 5 km AOD retrievals for each
of the four seasons, March 2008 through February 2011.

2.3 ODCOD output products

CALIPSO V4.51 LL2 data products report 532 nm ODCOD
full-column optical depth estimates and uncertainties at
333 m, 1 km, and 5 km resolution as well as the MERRA-2
10 m wind speed components, the wind speed correction val-
ues, and an ODCOD quality control (QC) flag. To calculate
the wind speed used by ODCOD from these data products, a
user must calculate the wind speed magnitude from the com-
ponents and add the reported correction value.

The ODCOD QC flag is a 32-bit unsigned integer where
each bit used has a specific meaning, as described in Ap-
pendix B. The flag is designed such that when interpreted as
an integer value, any QC flag value below 64 is an attempted
retrieval and the data could conceivably be used, although
further quality filtering as described in Sect. 3.1.1 should be
considered.

3 Performance assessment

In this section ODCOD retrievals are assessed by restrict-
ing profiles to cloud-free, aerosol-only optical depths (AOD)
compared to collocated AOD measurements acquired by
airborne High Spectral Resolution Lidar (HSRL) measure-
ments and to seasonally averaged AOD from two indepen-
dent satellite-based retrieval techniques. To facilitate com-
parisons that are meaningful for scientific interpretation, data
quality filtering is applied to each of the data sets to exclude
suspected poor quality and anomalous data. The data selec-
tion procedure is described first for all data sets in Sect. 3.1,
followed by the comparison analysis in Sect. 3.2.

3.1 Data selection

Unless otherwise stated, all ODCOD data in the comparisons
in Sect. 3.2 are from March 2008 through February 2011 and
are the latest version 4.51 lidar level 1 (LL1) and V4.51 LL2
data products.

3.1.1 ODCOD data selection

To assess ODCOD AOD retrievals, profiles in which
CALIOP has not detected clouds at any resolution are se-
lected. This is important because ODCOD always provides
a full-column optical depth estimate with no way to isolate
contributions from different feature types within the verti-
cal profile. To select the highest-quality ODCOD retrievals,
the limitations of the ODCOD models and the CALIOP
instrument are considered to guide filtering criteria. Un-
less otherwise stated, the following data quality filters are
applied to all data in the comparisons in this paper. Se-
lecting retrievals within the AMSR-corrected wind speed
range 3–15 m s−1 avoids less confident ocean backscatter
reflectance estimates; to minimize potential contamination
by saturated samples, require daytime 532 nm surface in-
tegrated attenuated backscatter (SIAB)< 0.0413 sr−1 and
nighttime SIAB< 0.0353 sr−1; and to better reject sea ice
and contamination by seafloor backscatter in shallow wa-
ters, require 532 nm surface integrated depolarization ratio
(SIDR)< 0.05.

Requiring wind speeds to fall inside 3–15 m s−1 will re-
tain approximately 91 % of retrievals and provide ocean re-
flectivity estimates where the reflectivity model is mostly in
the less complex ocean water regime. Only a small fraction
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Figure 6. The ODCOD ocean surface retro reflectance model at
532 nm and off-nadir angle of 3° as a function of wind speed with
markers at 3, 8, and 15 m s−1 as reference for possible filter thresh-
olds.

of the total reflectivity will be attributed to white caps with a
maximum of ∼ 20 % at 15 m s−1.

The ODCOD ocean surface reflectance model, described
by Eq. (7) and shown in Fig. 6, increases rapidly when the
wind speed drops below 3 m s−1. The large change with
small variations in wind speed makes the estimate of surface
reflectivity below 3 m s−1 less certain. Filtering profiles with
wind speeds less than 3 m s−1 removes on the order of 7 % to
8 % of profiles and avoids highly variable surface reflectiv-
ity estimates. As wind speeds increase much above 8 m s−1,
the contribution of whitecaps to ocean reflectance increases.
Because instantaneous white cap reflectivity is known to be
a complex amalgam of multiple factors in addition to wind
speed (Dierssen, 2019), ODCOD’s ocean surface reflectiv-
ity estimate becomes increasingly less certain at higher wind
speeds due to a larger contribution from the whitecap re-
flectance. Filtering profiles with wind speeds greater than
15 m s−1 removes on the order of 1 % to 2 % of retrievals
and avoids surface reflectivity estimates with large contribu-
tion from whitecaps.

ODCOD does not attempt a retrieval when the CALIOP
surface-saturation flags show saturated or possibly saturated
surface data. However, because of CALIOP’s onboard aver-
aging, single 15 m range bins that are saturated can still go
undetected. In this study, profiles with SIAB> 0.0413 sr−1

in the daytime and> 0.0353 sr−1 in the nighttime are filtered
out, which removes approximately 20 % of ODCOD pro-
files day or night but captures capture approximately 98 %
of profiles in which surface saturation has been flagged by
level 1 processing (Fig. 7). The upper panels of Fig. 7 show
distributions of SIAB versus wind speed for aerosol-only
profiles having valid ODCOD retrievals. The lower panels
show SIAB versus wind speed for surface-saturated cloud-
free profiles for which no ODCOD retrieval was attempted.
The horizontal red lines seen in all four panels represent the

SIAB threshold above which ODCOD retrievals are consid-
ered less confident due to possible undetected surface satura-
tion.

The magnitude of the surface return signal that will sat-
urate the detectors is different in the day and night due to
the difference in CALIOP variable gain amplifier settings
(Hostetler et al., 2005). High, and highly variable, solar back-
ground signals during daytime operations dictate the use of
lower amplifier gains to minimize digitizer overflows in the
daytime measurements. Daytime gains are lower by a factor
of approximately 6.5, which accounts for the difference in
the day and night SIAB thresholds and explains why differ-
ent distributions can be seen day (Fig. 7a and c) and night
(Fig. 7b and d). On the order of 27 % of daytime aerosol-
only profiles over ocean are rejected for ODCOD retrieval
due to flagged surface saturation, and that number increases
to 43 % at night. Using the median and MAD of the SIAB
distribution of saturated profiles shown in Fig. 7c and d, the
thresholds for the SIAB filter are calculated from the median
of the SIAB (0.0543 daytime and 0.0457 nighttime) minus
2 times the MAD.

ODCOD retrievals are not attempted when the SIDR is
greater than 0.15 to avoid retrievals over ocean covered by
ice. However, small amounts of sea ice, surface debris, and
ocean bottom returns in shallow water are all places where
the SIDR might be elevated and the ODCOD retrieval would
be attempted but may be lower in confidence. In this study,
profiles with SIDR greater than 0.05 are also filtered out.
This threshold removes 1 % to 2 % of the ODCOD pro-
files. Figure 8 shows the distribution of SIDR for CALIOP-
determined aerosol-only profiles for valid ODCOD retrievals
as a function of wind speed.

Figure 8 shows a tight distribution of SIDR values around
the median of approximately 0.01 for valid aerosol-only
ODCOD retrievals. The 0.05 SIDR threshold is used to re-
move the larger outliers from the distribution.

3.1.2 Airborne HSRL data selection

To assess how well ODCOD performs relative to airborne
HSRL measurements, ODCOD 5 km AOD retrievals are
compared to collocated AODs measured by Langley Re-
search Center’s High Spectral Resolution Lidar (HSRL-1)
(Hair et al., 2008) and High Spectral Resolution Lidar ver-
sion 2 (HSRL-2) (Burton et al., 2018; Ferrare et al., 2023).
The HSRL instruments provide high-quality atmospheric
measurements from high-altitude aircraft. HSRL-1 and its
successor HSRL-2 have been operating in various field cam-
paigns since 2006. The dates and HSRL field campaigns
during which these CALIPSO underflights occurred can be
found in Appendix C.

The comparison data are selected from 152 CALIPSO un-
derflights conducted by the Langley Research Center HSRL
team. The selection process is performed by considering
the time and distance of each measurement to the coinci-
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Figure 7. Panels (a) and (b) show SIAB at 532 nm as a function of wind speed for CALIOP-determined aerosol-only 5 km ODCOD valid
retrievals for daytime (a, c) and nighttime (b, d) measurements; distributions on panels (c) and (d) show SIAB as a function of wind speed
for surface-saturated aerosol-only 5 km profiles for which ODCOD retrievals are not attempted. The dashed red line shows the proposed
thresholds for day and night.

Figure 8. SIDR as a function of wind speed for CALIOP-determined aerosol-only 5 km ODCOD valid retrievals in daytime (a) and night-
time (b) with the SIDR filtering threshold of 0.05 marked with a dashed red line.

dent CALIPSO overpass 5 km footprint. The selection crite-
ria require the HSRL measurement and associated ODCOD
5 km retrieval midpoint to have a time difference of less
than 60 min and a spatial offset of less than 5 km. ODCOD
5 km profiles are chosen because the ocean surface attenuated
backscatter measurements are averaged horizontally before
the ODCOD retrieval is performed, providing a more consis-
tent retrieval over the scene. The ODCOD filters described
in Sect. 3.1.1 for aerosol-only profiles are applied. Once col-

located and filtered, a minimum of four matching ODCOD
5 km retrievals are required in the flight. To ensure that both
instruments are measuring the same aerosol loading, it is fur-
ther required that no aerosol layers be reported in CALIOP’s
LL2 vertical feature mask above the HSRL data top altitude
(approximately 8.5 km) of the matching points. Due to the lo-
cations of available underflights that satisfy these conditions,
the scenes used occur exclusively in the North American and
Venezuelan basins of the Atlantic Ocean, as shown in Fig. 9.
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Figure 9. Locations of the HSRL underflights used in the compar-
isons to ODCOD 5 km. Marker legend labels denote the approxi-
mate CALIPSO overpass time, and the D or N at the end denotes a
daytime or nighttime overpass.

The HSRL processing calculates AOD for a given profile
directly from the measured molecular channel and estimated
molecular backscatter coefficients of the atmosphere com-
puted from reanalysis model temperature and pressure data
(Hair et al., 2008). Rogers et al. (2009) compared HSRL
profiles of aerosol extinction and AOD results to estab-
lished measurements and found agreement within 0.01 km−1

for extinction and 6 % for AOD (532 nm). Sawamura et
al. (2017) also found that HSRL-2 532 nm AODs agree well
with ground-based AERONET measurements, having cor-
relation coefficients of approximately 0.98. The HSRL air-
craft generally fly at approximately 9 km, so when compar-
ing AODs it is important to consider attenuation above the
altitude at which the HSRL measurements begin. Even if no
layers are detected by CALIOP above the aircraft, there are
still undetected background particulates (e.g., stratospheric
aerosols), and thus the HSRL AOD measurements are ex-
pected to be slightly lower than the estimates from ODCOD.

To correct for the AOD from undetected particulates above
the aircraft, the CALIOP profile measurements in the strato-
sphere and upper troposphere are used to estimate a back-
ground particulate optical depth for each scene. This pro-
cess is initiated by averaging the CALIOP level 1 532 nm at-
tenuated backscatter profiles over a 240 km along-track seg-
ment (720 single-shot profiles) centered above the aircraft.
For each level 1 profile, any range bins identified as contain-
ing clouds or aerosols in the CALIOP level 2 analyses are
excluded from the average, as are all range bins at lower alti-
tudes. A Fernald retrieval (Fernald et al., 1972), coupled with
an a priori stratospheric aerosol lidar ratio of 50 sr (Kar et
al., 2018), is then used to derive a profile of aerosol extinction
coefficients. Integrating this extinction profile from 30.1 km
(i.e., the uppermost altitude in the CALIOP level 2 profiles)
down to the aircraft altitude yields estimates of the overly-

ing AOD due to background aerosols in the stratosphere and
upper troposphere. Using a lidar ratio of 50 sr provides a me-
dian AOD correction of 0.018± 0.005 with a median HSRL
data top altitude of 8.54± 0.18 km. In contrast, using a lidar
ratio of 28.75 sr (Kim et al., 2017) would provide a median
correction of 0.009± 0.003, which sets the lower bound on
the uncertainty in this correction estimate.

The HSRL AOD measurements are adjusted in these
HSRL and ODCOD comparisons by adding the estimated
background AOD above the aircraft. Each HSRL measure-
ment is matched to the closest in distance ODCOD 5 km re-
trieval and averaged to provide one HSRL comparison value
and a standard deviation for each ODCOD 5 km estimate.
The results of the comparisons are presented in Sect. 3.2.3.

3.1.3 MODIS data selection

To assess how well ODCOD performs on a global scale,
ODCOD 5 km AOD retrievals are compared to collo-
cated and interpolated MODIS AODs reported in MODIS
MYD04 (Levy and Hsu, 2015). The collocations are de-
termined by the Collopak software suite provided by the
University of Wisconsin (Nagle and Holz, 2009) and uti-
lize CALIPSO’s version 4.51 LL1 and LL2 products,
the Collection 6.1 MODIS MYD03 1 km product, and
the Collection 6.1 MODIS MYD04 10 km product. The
data found in the MODIS science data set (SDS) Effec-
tive_Optical_Depth_Average_Ocean at wavelengths 470 and
550 nm are interpolated in latitude and longitude to the mid-
point of each ODCOD 5 km sample and in wavelength to
532 nm. MODIS only uses cloud-free pixels for the optical
depth estimates, so no further cloud screening is applied for
the MODIS data. The MODIS quality assurance ocean SDS
is used for MODIS data quality screening. This SDS is a
5-byte composite informational flag that includes a retrieval
quality assurance confidence (QAC) flag and a quality assur-
ance usefulness (QAU) flag (Levy et al., 2009). The possible
QAC flag values are 0 to 3 and indicate confidence levels that
are poor, marginal, good, and very good, respectively. The
QAU flag values can be either 0 or 1 and indicate not useful
and useful data. MODIS data are chosen such that the QAC
flag is marginal or better and the QAU flag indicates a useful
retrieval (Levy et al., 2009). The ODCOD filters described in
Sect. 3.1.1 for aerosol-only profiles are also applied. All data
are compared one to one such that both data sets require a
valid retrieval to be used. The results of the comparisons are
presented in Sect. 3.2.4.

3.1.4 SODA data selection

To assess ODCOD’s performance relative to another estab-
lished method of estimating optical depth from the ocean
surface return, ODCOD single-shot (333 m) AOD retrievals
are compared to corresponding Synergized Optical Depth
of Aerosols (SODA) retrievals. While similar, there are
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some distinct differences between the algorithms. SODA
CPR (Cloud Profiling Radar) uses the surface return from
CALIOP, the surface return from CloudSat’s CPR, and the
wind speeds from AMSRE to make a multi-instrument es-
timate of the total column effective optical depth (Josset et
al., 2008, 2012). SODA also implements an additional proce-
dure to correct lidar and radar calibration biases. Using only
nighttime lidar profiles having total atmospheric integrated
attenuated backscatter of 0.1 sr−1 or less (i.e., exceptionally
clear skies), SODA constructs fourth-order polynomials link-
ing the radar normalized surface scattering cross section to
the lidar ocean integrated attenuated surface backscatter (Jos-
set et al., 2010a, 2015). These polynomials are constructed
on a monthly basis and then used to identify lidar and radar
calibration biases by flagging those clear air data segments
for which the lidar and/or radar measurements do not lie suf-
ficiently close to the polynomial fit. SODA computes the sur-
face signal magnitude by integrating the attenuated backscat-
ter signal over a fixed range about the ocean surface, from
a variable upper limit of two bins above the ocean surface
peak signal to a fixed lower limit at CALIOP range bin num-
ber 572. Typically, these limits span altitudes from 0.053 to
−0.277 km when CALIOP is pointed 3° off nadir and 0.058
to −0.272 km when CALIOP is pointed 0.3° off nadir. Be-
cause the integration extends below the ocean surface, the
SODA technique also applies a subsurface correction to esti-
mate and remove scattering contributions from phytoplank-
ton and other in-water suspended particulate matter. These
algorithm differences introduce different uncertainties and
systematic biases into the SODA results from those found
in the ODCOD retrievals. SODA 333 m version 2.30 and
2.31 was compared with ODCOD 333 m retrievals using the
ODCOD filters described in Sect. 3.1.1 for aerosol-only pro-
files. Since SODA and ODCOD use the same CALIOP pro-
files, no collocation is necessary. The SODA scene flag and
QA flag SDSs are informational and quality assurance flags
reported in the SODA data products. They are used to re-
tain only (a) valid scenes (b) located over ocean that (c) are
wholly free of sea ice and for which the surface signals (d)
are not close to the total attenuation threshold and (e) are not
saturated in either 532 nm channel, (f) CloudSat data are not
missing, (g) AMSR data are not missing, and (h) AMSR sea
surface temperature and liquid water path are valid. All data
are compared one to one such that both data sets require a
valid retrieval to be used in the analysis. The results of the
comparisons are presented in Sect. 3.2.5.

3.2 Results

This section reports comparisons of daytime and nighttime
ODCOD 5 km retrievals to one another, comparisons of
ODCOD retrievals at different averaging resolutions, com-
parisons to the measurements acquired by the NASA LaRC
airborne HSRL instrument, and comparisons to MODIS and

SODA retrievals. The section concludes with a summary of
all comparisons done in this section.

3.2.1 ODCOD

The near-global coverage of ODCOD for both day and night
provides an opportunity for studying the regional distribu-
tion of aerosol optical depths. Figures 10 and 11 show sea-
sonal 5 km ODCOD AODs in profiles filtered as described
in Sect. 3.1.1. Qualitatively, elevated values exist in regions
where high aerosol loading is expected: in the tropical At-
lantic Ocean during June–August, consistent with Saharan
dust outflow (e.g., Ridley et al., 2012); over the northern Pa-
cific Ocean during March–May, consistent with Asian dust
outflow (e.g., Liu et al., 2013); and off the southwest Africa
coast during September–November, consistent with outflow
of smoke from biomass burning (e.g., Sinha et al., 2004; Yu
et al., 2012).

Globally, the average optical depth reported by ODCOD is
higher at night compared to the day (Fig. 12). This is in part
due to the sampling bias caused by the greater occurrence
of surface saturation at night, which in turn is due to dif-
ferences in CALIOP’s daytime and nighttime detector gains
(Hunt et al., 2009). Surface saturation occurs preferentially
in low-optical-depth scenes because the laser light is not as
attenuated and thus a stronger reflection from the ocean is
returned. The average nighttime optical depth is higher be-
cause the lower-optical-depth columns are not represented.
The median gridded optical depth difference is on the order
of 0.03± 0.07 higher at nighttime with a relative difference
of around 22 % globally and a 95 % confidence interval for
night minus day of approximately 0.026. Regionally some
differences are much greater.

While some of the day–night AOD difference could be due
to true natural variation in daytime versus nighttime aerosol
loading or an unaccounted-for bias in the wind speed data
from day to night, a large portion is due to this saturated sur-
face sampling bias, which is especially acute when averaging
cloud-free columns. The absence of solar background noise
during nighttime observations allows optically thin clouds to
be detected much more often at night. This will also cause a
sampling bias when attempting to study aerosol-only profiles
because fewer profiles in general will be considered aerosol-
only at night and more clouds will go undetected in the day-
time (Liu et al., 2019).

Figure 12 shows regional 5 km ODCOD nighttime median
minus daytime median AOD differences. The data for Fig. 12
have been filtered as described in Sect. 3.1.1 with separate
SIAB thresholds used for day and night.

To demonstrate the impact of the surface-saturation
sampling bias, the surface-saturation filter described in
Sect. 3.1.1 is experimentally modified in Fig. 13 to use the
nighttime SIAB threshold of 0.0353 sr−1 for both day obser-
vations and night observations. It is important to understand
that by applying the same SIAB threshold filter, good-quality
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Figure 10. Daytime seasonal median ODCOD aerosol optical depth, March 2008 through February 2011.

Figure 11. Nighttime seasonal median ODCOD aerosol optical depth, March 2008 through February 2011.

low-optical-depth daytime data will be removed. However, if
the retrieval were from a nighttime scene, the surface return
would likely be saturated. Since these removed profiles will
no longer be represented in the average, a more nighttime-
like distribution of daytime retrievals is sampled.

The median night minus day differences for the experi-
mentally filtered data (Fig. 13) show that the difference drops
to 0.010± 0.006, or about 7 % relatively. A slight difference
is still found between night and day, but the 95 % confidence
interval drops to approximately 0.004 to 0.005. This experi-
ment confirms that the sampling bias from surface-saturation

differences for day and night is a major contributor to the day
to night differences in ODCOD retrievals.

It is worth noting that solar background noise could in-
troduce another source of day–night bias. In columns with
high particulate optical depths, detection of the surface re-
turns used by ODCOD requires distinguishing a strongly at-
tenuated surface peak from the ambient background noise. In
cloud-free skies over oceans, CALIOP’s daytime signal-to-
noise ratio (SNR) is, conservatively, a factor of 6 lower than
at night, resulting in a much broader daytime background
noise envelope in the region of tenuous surface returns. This
large noise enhancement impedes the detection of attenuated
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Figure 12. Nighttime median minus daytime median seasonal ODCOD aerosol optical depth differences, March 2008 through February
2011.

Figure 13. Nighttime median minus daytime median seasonal ODCOD aerosol optical depth differences with daytime SIAB filter applied to
both day and night, March 2008 through February 2011.

surface peaks and thus truncates the high end of the daytime
ODCOD distribution at a substantially lower value than at
night. However, the fraction of ODCOD aerosol-only pro-
files that have an optical depth greater than 1.0 at both day
and night is less than 0.1 %, and they thus have little effect
on AOD statistics.

3.2.2 ODCOD at different spatial averaging resolutions

ODCOD is reported in the CALIOP LL2 data products at the
standard CALIOP horizontal averaging resolutions of single-
shot (333 m), 1 km, and 5 km resolutions. For the coarser-

resolution products (1 and 5 km), the retrieval is applied
to the surface return detected in the horizontally averaged
level 1 profiles. Because the position of the ocean surface
is relatively constant from shot to shot, this average-then-
retrieve approach is expected to increase the SNR of the sur-
face return data and hence yield more confident fits of the
DCRM to the surface data points. A retrieve-then-average
schemes can offer an alternative to the average-then-retrieve
approach. However, care must be taken not to bias the esti-
mate by assuming missing retrievals are like surrounding re-
trievals or worse an optical depth of zero. A common reason
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Figure 14. ODCOD retrievals of AOD profiles as determined by
CALIOP at single-shot (333 m) (yellow squares), 1 km (blue dia-
monds), and 5 km (red circles) resolutions for a daytime and night-
time scene in panels (a) and (b), respectively, with the sliding win-
dow fit in dashed black. The daytime scene is over the interna-
tional atomic times 15:33:30 to 15:35:24 on 5 May 2008, and the
nighttime scene is over the international atomic times 03:08:19 to
03:10:18 on 28 May 2008.

for a missing ODCOD retrieval is no surface return detected
due to high optical depths. Assuming a value for these miss-
ing retrievals will bias the average.

Figure 14 shows a daytime and nighttime scene selected
for having many consecutive AOD ODCOD retrievals with
filtering according to Sect. 3.1.1.

In general, the retrievals show that 5 km retrievals display
less variability and fall on top of the 1 km retrievals, which
are again less noisy and fall on top of the single-shot re-
trievals. After applying a 31-profile sliding window fit to the
single-shot data, the noise for each resolution is estimated
by calculating the mean squared error (MSE) between the
fit (dashed black line, Fig. 14) and the data for each resolu-
tion. In the daytime, the estimated MSE for single-shot, 1 km,
and 5 km is 0.0031, 0.0016, and 0.0024, respectively. In this
scene, the effects of the solar background radiation can be
seen from the larger spread of the data compared to night.
The MSE at 5 km is worse than the 1 km due to the occa-
sional outliers of the retrieved optical depth at coarser resolu-
tions from the neighboring retrievals. These deviations occur
due to poor fit of the measurements to the CRM. The poor
fit is due to averaging of neighboring profiles which do not
have the same altitude bin registration (Hostetler et al., 2005).
Differences in altitude registration yield surface returns with
peak altitudes that can be shifted up or down relative to one
another in the vertical column. Averaging these mismatched
profiles thus distorts the true shape of the mean surface sig-
nal. The estimated MSE for nighttime single-shot, 1 km, and
5 km resolutions are 0.0020, 0.00078, and 0.00015, respec-
tively, and show over an order of magnitude improvement
between the single-shot and 5 km resolutions.

3.2.3 Comparisons to airborne HSRL

In general, ODCOD 5 km retrievals show little to no bias
compared to HSRL aerosol optical depth retrievals when day
and night are considered together. The median difference is
0.009± 0.043 (6± 28 % relative difference; N = 395), with
ODCOD higher than the HSRL and a correlation coefficient
of 0.724 and a 95 % confidence interval for the mean dif-
ference of −0.005 to 0.014. Separately, ODCOD estimates
are relatively lower in the daytime and relatively higher at
night than the HSRL but with uncertainties larger than the
difference in either. The median difference in the daytime
is −0.037± 0.052 (−12± 25 %; N = 149), with ODCOD
lower than the HSRL and a correlation coefficient of 0.775.
The median difference at night is 0.021± 0.032 (14± 25 %;
N = 246), with ODCOD higher than the HSRL and a corre-
lation coefficient of 0.721.

Figure 15 shows the collocated and quality-filtered 5 km
ODCOD AOD retrievals as a function of the corresponding
adjusted HSRL AOD measurements from the 21 CALIPSO
underflights that met the selection criteria outlined in
Sect. 3.1.2. The adjusted HSRL data are mean values com-
puted over the ODCOD 5 km averaging interval, with the
standard deviations shown as the error bars. The ODCOD er-
ror bars are the ODCOD uncertainty estimates reported in the
LL2 data products. Spatial and temporal collocation differ-
ences will introduce some uncertainties into these one-to-one
comparisons. Nevertheless, Fig. 15 shows that while there
are differences, when considered over multiple flights and
during both day and night, there is relatively strong agree-
ment between ODCOD and the HSRL measurements even
over a variety of optical thickness scenes.

3.2.4 Comparisons to MODIS

In general, the global median difference between ODCOD
5 km daytime retrievals and MODIS interpolated 532 nm
AOD is −0.009± 0.041 (8± 35 %; N = 1 999 068), with
ODCOD lower than MODIS and with a correlation coeffi-
cient of 0.834. Regionally, ODCOD tends to report higher
aerosol optical depths in the southern oceans from March
through August and seems to show lower optical depths in
December through February. ODCOD also tends to report
higher aerosol optical depths north of 30° N from Septem-
ber through February, but the difference is less during March
through August.

Table 2 and Fig. 16 show how ODCOD 5 km daytime es-
timates compare to MODIS retrievals for data acquired by
both instruments from March 2008 through February 2011.

Unlike ODCOD, which permits negative optical depths,
the MODIS algorithm reports an optical depth of zero when
the observed top of the atmosphere signal is not greater than
or equivalent to the Rayleigh plus surface signal. While nega-
tive optical depths are non-physical, they arise due to random
noise in the original CALIOP measurements and thus should
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Table 2. Statistics summarizing the comparison results. Each row summarizes the seasonal sets of months designated by the first letter of the
months in question, such as December, January, and February as DJF, with the final row labeled “Yearly” as the total statistics for all data
from March 2008 through February 2011.

Mean±SD Median±MAD Mean of differences Median of differences Number of
(ODCOD −MODIS) (ODCOD −MODIS) samples

ODCOD MODIS ODCOD MODIS

DJF 0.121± 0.103 0.129± 0.092 0.103± 0.048 0.108± 0.036 −0.007± 0.066 −0.010± 0.040 593 824
MAM 0.135± 0.124 0.143± 0.122 0.109± 0.053 0.112± 0.044 −0.008± 0.069 −0.010± 0.042 503 438
JJA 0.115± 0.114 0.121± 0.113 0.094± 0.046 0.095± 0.042 −0.007± 0.069 −0.009± 0.044 385 034
SON 0.128± 0.107 0.133± 0.102 0.108± 0.048 0.108± 0.037 −0.005± 0.066 −0.008± 0.040 516 772

Yearly 0.125± 0.112 0.132± 0.107 0.104± 0.049 0.107± 0.039 −0.007± 0.067 −0.009± 0.041 1 999 068

Figure 15. HSRL AOD compared to 5 km ODCOD retrievals for
21 select daytime and nighttime HSRL underflights of CALIPSO.
The dashed gray line is the one-to-one line, and the solid blue line
is the orthogonal distance best-fit line with fit parameters shown in
blue in the upper-left corner.

be retained when computing statistics. Since excluding them
will introduce additional biases when estimating means, me-
dians, and correlations, MODIS AOD retrievals that report
zero are included in these comparisons but will bias MODIS
higher compared to ODCOD, which permits negative values.

The maps in Fig. 17 provide seasonal differences between
daytime AOD retrieved by MODIS and 5 km ODCOD. The
data are the same as those shown in Fig. 16, with the dif-
ference of the medians of each bin presented regionally. Fig-
ure 16b and c show notable differences, with ODCOD higher
than MODIS on the order of 0.03 to 0.06 in the South-
ern Ocean from March through August. These differences
largely disappear from September through February. For all
regions, it is also important to consider data filtering in the
results. While cloudy pixels are screened by the MODIS al-
gorithm and ODCOD has been screened for clouds along the
5 km track, regions where thin cirrus clouds are frequently

found have a higher chance of undetected clouds in the
ODCOD retrieval and cloud contamination in the MODIS
retrieval. Cloud contamination could be a source of bias in
this comparison as it is known that cloud contamination can
bias MODIS high (Spencer et al., 2019; Reid et al., 2022).
Also, regions where clouds are detected more frequently will
be sampled less often. Additionally, the larger 10 km MODIS
pixel compared to the ODCOD 5 km swath will introduce ar-
tifacts into the comparison due to the difference in sampling.

3.2.5 Comparisons to SODA

In general, daytime ODCOD 333 m retrievals show rel-
atively small differences globally compared with SODA
333 m aerosol optical depth retrievals. The daytime me-
dian difference is 0.004± 0.035 (1± 34 % relative differ-
ence;N = 21 270 202), with ODCOD higher than SODA and
with a correlation coefficient of 0.887. At nighttime, the me-
dian difference is 0.027± 0.034 (20± 33 % relative differ-
ence;N = 10 536 357), with ODCOD higher than SODA and
with a correlation coefficient of 0.879. Unexpectedly, SODA
reports similar values for both day and night with global me-
dian values of 0.102± 0.045 for daytime and 0.105± 0.045
for nighttime. Statistically higher optical depths are expected
at night for both SODA and ODCOD because the sampling
strategy used for both is susceptible to the bias caused by the
greater occurrence of surface saturation at night (Sect. 3.1.1).
Both data sets are filtered one to one, ODCOD requires a
valid surface detection, both are the same footprint, and both
use CALIOP data as an input. Due to the higher occurrence
of surface saturation at night, higher-AOD scenes are prefer-
entially sampled at night for both data sets, and it is expected
that both algorithms’ nighttime retrievals should be on the
order of 0.02 higher compared to daytime as demonstrated
in Sect. 3.1.1. The unexpected agreement for day and night
SODA is not explained by changes in CALIOP level 1 data.
Even though SODA uses version 4.1 CALIOP data as input
rather than version 4.51 used by ODCOD, the surface satu-
ration does not change between versions, and the sampling
bias remains.
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Figure 16. Collocated ODCOD aerosol optical depth at 5 km resolution on the y axis and MODIS effective optical depth average ocean
collocated and interpolated in latitude, longitude, and wavelength to the midpoint of the CALIOP 5 km profile and 532 nm wavelength,
March 2008 through February 2011.

Figure 17. ODCOD minus MODIS aerosol optical depth difference of the median values; ODCOD higher is shown in red and ODCOD
lower is shown in blue, March 2008 through February 2011.
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SODA has occasional anomalous data that are not filtered
by the SODA scene or quality assurance flags. This artifact
becomes apparent when plotting ODCOD as a function of
SODA, as the anomalous points form striated lines in what
appear to be somewhat quantized groupings, many of which
are relatively large negative values in Figs. 18 and 19. Pre-
liminary investigations indicate that one primary cause of
these SODA outliers is the inadvertent use by the SODA al-
gorithm of CPR data acquired during CPR calibration ma-
neuvers (Tanelli et al., 2008).

To separate the anomalous data from nominal data, the
SODA data are binned by the matching ODCOD data in
0.01 optical depth bins, and Tukey fences are calculated for
each bin. Carling (2000) defines Tukey’s rule for identifying
outliers in a data set as clow = q1− k1 (q3− q1) and chigh =

q3+ k1 (q3+ q1), where “q1 and q3 are the sample quartiles
[. . .] and k1 is a constant selected to meet a pre-specified out-
side rate under some model” and clow and chigh are, respec-
tively, the cutoff points beyond which points in the lower and
upper tails of the distribution are deemed to be outliers. In
this case the pre-specified constant is set to k1= 4.5 based
on visual inspection of the joint distribution (e.g., Figs. 18
and 19). This value retains approximately 99.8 % to 99.9 %
of data and clearly labels the anomalous distributions.

Table 3 and Figs. 18 and 19 show how ODCOD at single-
shot resolution compares to SODA CPR during the day
and night for all CALIOP data acquired from March 2008
through February 2011 that fall within the described outlier
envelope.

Due to the CloudSat battery anomaly that occurred
in April 2011, CloudSat nighttime data and subsequently
SODA CPR retrievals at night are not available after that
time. The ODCOD algorithm itself makes no distinction be-
tween day and night, and there are no algorithm differences
in the inputs to the algorithm for day versus night. CALIOP’s
version 4.1 calibration has been extensively validated dur-
ing both nighttime operations and daytime operations (Kar
et al., 2018; Getzewich et al., 2018). It is noted that SODA
incorporates its own calibration adjustments to the input data
(Josset, 2010a). The reasons for the nighttime differences be-
tween the ODCOD and SODA CPR retrieval are not well
enough understood to comment further.

3.2.6 Performance assessment summary

The results of all comparisons performed are summarized in
Table 4, which shows that even among established data sets
the agreement can vary, but ODCOD agrees well on most
accounts, especially in the daytime. At nighttime, ODCOD
tends to trend slightly higher than the data sets examined, but
the lack of well-validated nighttime data makes comparisons
to ODCOD more difficult.

Compared to 10 airborne HSRL collocated underflights,
ODCOD 5 km retrievals show a correlation of 0.775 com-
puted over 149 samples. Compared to 3 years of col-

located daytime MODIS AODs interpolated to 532 nm,
ODCOD 5 km retrievals show a correlation of 0.834 com-
puted over 1 999 068 samples. One-to-one comparisons of
daytime ODCOD and SODA 333 m retrievals show a correla-
tion coefficient of 0.887 computed over 21 270 392 samples.
For nighttime comparisons, the correlation coefficient for 11
airborne HSRL underflights compared to ODCOD 5 km re-
trievals is 0.721 computed over 246 samples. For 3 years
of 333 m SODA retrievals compare to 333 m ODCOD re-
trievals, and the correlation coefficient is 0.891 computed
over 10 550 975 samples.

Because retrievals are attempted whenever CALIOP de-
tects the ocean surface, ODCOD has the potential to be used
for studying cirrus and water clouds as well as aerosols.
However, clouds are not the focus of the performance assess-
ment in this paper. For studies of cirrus clouds, CALIOP’s
standard cirrus retrievals have already been well validated
with airborne lidar (Hlavka et al., 2012) and MODIS (Holz et
al., 2016) and thus can be used confidently. While ODCOD
also provides a column optical depth estimate when transpar-
ent water clouds are present, a large effort remains to quan-
tify potential artifacts introduced into the surface returns by
the non-ideal transient response of the photomultipliers and
to understand the multiple scattering effects of water clouds
on ODCOD and the significance of their impact on the re-
ported cloud optical depths.

4 Conclusions

CALIPSO’s version 4.51 lidar level 2 data products report
a new estimate of full-column effective optical depth re-
trieved from the ocean surface lidar backscatter return by
the Ocean Derived Column Optical Depth (ODCOD) algo-
rithm. Accurate estimates of the ocean surface integrated at-
tenuated backscatter (IAB) are obtained by fitting a model of
CALIOP’s expected ocean surface return shape to the 532 nm
surface return measurements. Particulate two-way transmit-
tances, from which optical depths are derived, are retrieved
by scaling the estimated IAB to an unattenuated modeled sur-
face reflectance that has been corrected for molecular and
ozone two-way transmittances. ODCOD total column opti-
cal depth estimates are derived for the entire CALIPSO data
record wherever qualified ocean surface detections are made.

Relative to daytime retrievals, ODCOD nighttime AOD
estimates tend to be higher; however, in-depth global com-
parisons are hindered by the lack of well-understood and val-
idated nighttime data derived from other sensors. ODCOD
retrievals in the daytime were compared to 10 collocated
airborne HSRL underflights, 3 years of MODIS AODs in-
terpolated to 532 nm and the ODCOD retrieval location,
and 3 years of collocated SODA 333 m retrievals. The me-
dian daytime differences found were −0.037± 0.052, with
ODCOD lower than HSRL; −0.010± 0.041, with ODCOD
lower than MODIS; and 0.004± 0.035, with ODCOD higher
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Figure 18. Daytime ODCOD aerosol optical depth at single-shot resolution as a function of SODA CPR effective optical depth with the
orthogonal distance fit line in solid blue and the one-to-one line in dashed gray for March 2008 through February 2011. The dashed red lines
show the extreme outer Tukey fence envelope used to filter anomalous data as described in this section. The fit parameters and lines shown
on the plots are only for the data found inside the envelopes.

Figure 19. Depicts the same information as Fig. 18 but for nighttime observations.

than SODA. Correlation coefficients were found to be 0.775,
0.834, and 0.887, respectively. Nighttime retrievals of 11
HSRL underflights and 3 years of SODA data showed me-
dian differences of 0.021± 0.032 and 0.027± 0.034, both
with ODCOD higher and correlation coefficients of 0.721

and 0.891, respectively. However, the expected sampling
bias between daytime and nighttime data, inherent in all
CALIOP-based surface return optical depth estimates and
seen in ODCOD, is not found in the SODA data sets. This
apparent bias in the SODA data may explain the larger dif-
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Table 3. Statistics summarizing the data used in the fits for Figs. 18 and 19. Each row summarizes one of the seasonal sets of months
designated by the first letter of the months in question, such as December, January, and February as DJF, and either daytime or nighttime
data.

Mean±SD Median±MAD Mean of differences Median of differences Number of
(ODCOD − SODA CPR) (ODCOD − SODA CPR) samples

ODCOD SODA CPR ODCOD SODA CPR

DJF (day) 0.117± 0.101 0.116± 0.088 0.103± 0.054 0.103± 0.043 0.001± 0.056 0.001± 0.036 5 787 035
DJF (night) 0.142± 0.105 0.121± 0.095 0.128± 0.052 0.109± 0.044 0.021± 0.055 0.020± 0.034 2 417 916
MAM (day) 0.129± 0.116 0.123± 0.099 0.109± 0.057 0.105± 0.045 0.005± 0.056 0.004± 0.036 5 008 904
MAM (night) 0.163± 0.126 0.132± 0.109 0.140± 0.058 0.110± 0.046 0.031± 0.055 0.030± 0.034 2 444 714
JJA (day) 0.127± 0.128 0.127± 0.114 0.103± 0.057 0.104± 0.048 −0.000± 0.055 −0.001± 0.034 5 408 476
JJA (night) 0.151± 0.105 0.125± 0.112 0.131± 0.055 0.104± 0.044 0.026± 0.054 0.026± 0.033 3 068 930
SON (day) 0.123± 0.105 0.111± 0.094 0.108± 0.054 0.096± 0.045 0.012± 0.053 0.012± 0.034 5 065 787
SON (night) 0.147± 0.104 0.114± 0.093 0.134± 0.053 0.100± 0.043 0.034± 0.056 0.033± 0.035 2 619 174

Table 4. Summary results of day and night for all comparisons performed in this paper showing median and median absolute deviation
(MAD).

Measurement Median±MAD Median difference±MAD Relative difference
(ODCOD−measurement) (ODCOD−measurement) /measurement

Day Night Day Night Day Night

HSRL
ODCOD 5 km 0.183± 0.066 0.149± 0.072

−0.037± 0.052 0.021± 0.032 −13± 25 % 14± 25 %
HSRL 0.228± 0.084 0.133± 0.067

MODIS
ODCOD 5 km 0.104± 0.049

−0.010± 0.041 −8± 35 %
MODIS 0.107± 0.039

SODA
ODCOD 333 m 0.106± 0.055 0.133± 0.055

0.004± 0.035 0.027± 0.034 1± 34 % 20± 33 %
SODA 333 m 0.102± 0.045 0.105± 0.045

ferences between the two techniques. Different CALIOP am-
plifier gains during the daytime and nighttime portion of
the orbit cause the lidar surface return to saturate more fre-
quently at night; however, the lack of solar background also
allows the surface to be detected more readily when the sur-
face return is very small. Since ODCOD requires unsaturated
surface detections, both effects will cause sampling biases
where aggregated average ODCOD optical depths are typi-
cally higher at night than day. However, these sampling bi-
ases do not account for differences between data sets when
compared on a profile-by-profile basis.

Aggregated over 3 full years of measurements and the
full range of measured AOD, the median uncertainty in
ODCOD’s 5 km AOD is 0.11± 0.01 (82± 42 % relative),
with considerably lower relative values at higher optical
depths. The most significant source of uncertainty in the
ODCOD retrieval is wind speed. Through an AMSR-derived
wind speed correction applied to the MERRA-2 winds, the
ODCOD algorithm attempts to reduce wind speed biases in
the retrieval.

Unlike CALIOP’s standard total column optical depth esti-
mates, ODCOD retrievals do not suffer from potential low bi-
ases due to missing optical depth from undetected layers. In-
stead, because the light backscattered from the ocean surface
is attenuated by all the particulates in the column, ODCOD

estimates are unaffected by potential failures of CALIOP’s
layer detection scheme and the biases they cause. That said,
it remains important to be cognizant of the differences in the
two data products. In particular, ODCOD retrieves effective
column optical depths that are not corrected for multiple scat-
tering effects within layers. The standard retrieval explicitly
accounts for multiple scattering as a function of layer type.
Consequently, ODCOD estimates cannot be directly com-
pared to standard retrieval quantities in columns that con-
tain clouds, for which CALIOP’s measured backscatter is
strongly affected by multiple scattering. However, because
the standard retrieval assumes multiple scattering effects are
negligible in aerosol layers, direct comparisons are possible
in columns containing only aerosols.

ODCOD is a single instrument technique that does not
depend on collocated measurements from other sensors
and hence is consistently available throughout the entire
CALIPSO mission. Beginning with CALIPSO’s version 4.51
data release, ODCOD retrievals are bundled as an integral
part of the lidar level 2 data products that are freely and pub-
licly distributed at three different horizontal averaging reso-
lutions: 1/3 km (i.e., single-shot retrievals), 1 km, and 5 km.
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Appendix A

Figure A1. (a) Impulse response for a three-pole Bessel filter with a 1.74 MHz −3 dB cutoff frequency overlaid with the ODCOD CRM.
(b) Numerical integration of the 10 MS s−1 sampled impulse response for different phases of the sampling grid relative to the impulse using
rectangular (square marker) and trapezoidal (triangle marker) numerical integration techniques. One sample period (0.1 µs) is 2π radians.

The surface integrated attenuated backscatter (IAB) is tra-
ditionally computed from a numerical integration of the sam-
ples proximal to the surface. Call x(t) the impulse response
function (IRF). Assume that the sampling of this function
satisfies the Nyquist–Shannon sampling criteria, i.e., that the
sample rate is at least twice the maximum analog bandwidth
of the signal. In this case, the IRF signal can be recovered
exactly and expressed as follows.

x(t)=

∞∑
n=−∞

x (nT )sinc
(
t − nT

T

)
, (A1)

where T is the sampling period, which is assumed to be uni-
form, and sinc (normalized) is defined here as sin πx/πx.
Equation (A2) is the Whittaker–Shannon interpolation for-
mula. Integrating both sides of Eq. (A1) across time gives∫
∞

−∞

x(t)dt =
∞∑

n=−∞

x (nT )

∫
∞

−∞

sinc
(
t − nT

T

)
dt

= T

∞∑
n=−∞

x (nT ) . (A2)

Note that Eq. (A2) indicates that a rectangular numerical
integration of the sampled IRF will provide the exact inte-
gral if the Nyquist–Shannon sampling criteria are satisfied.
However, these criteria could never be exactly satisfied with
a window of finite width or filter with finite attenuation be-
yond the Nyquist frequency, and there will therefore be alias-
ing that biases the IAB estimate, with the degree of bias de-
pending on the ratio of the sample rate to the signal band-
width. To determine the aliasing bias for CALIOP, numer-
ical integration is applied to the samples of CALIOP’s im-
pulse response function across different phases of the sam-
pling grid (Fig. A1).

The 2.44 MHz bandwidth assumed by VR2016 for the
three-pole Bessel filter, which is based on MATLAB’s band-
width definition, corresponds to a −3 dB power cutoff fre-
quency of 1.74 MHz. For CALIOP’s three-pole Bessel im-
pulse response and 10 MS s−1 sampling rate, underestimates
of 3 % or overestimates of 2.5 % in IAB can result from nu-
merical integration, depending on the phase of the sampling
grid. This is true whether rectangular or trapezoidal numer-
ical integration techniques are employed. For CALIOP, the
grid phase may vary slowly from one laser shot to the next
due to surface geolocation errors. This would result in a bias
in IAB and attenuated surface reflectivity if not properly ac-
counted for. Fitting of ODCOD’s CALIOP response model
avoids aliasing bias by effectively providing both the grid
phase and the pulse magnitude, thus ensuring that the IAB is
unbiased.
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Appendix B

Table B1. ODCOD QC flag bit representation.

Bit Short name Description
number

0 Time delay shifted Of the measurements provided to the ODCOD algorithm by the surface detection algorithm,
ODCOD adjusted the CRM such that the first data point of the surface detection data was
not the first point on the CRM

1 Surface has too many points The surface detection algorithm provided surface measurements covering a range greater than 120 m

2 Surface point added to The ODCOD algorithm added measurements above the surface data provided by the surface
beginning detection algorithm

3 Surface point added to end The ODCOD algorithm added measurements below the surface data provided by the surface
detection algorithm

4 Surface data missing first When solving for the alignment of the CRM, the first measurement that should fall on the CRM
point curve was not originally provided by the surface detection algorithm

5 CRM shifted ODCOD had to adjust the CRM such that the first measurement provided by the surface
detection algorithm was not the first point on the CRM

6–9 Unused Unused

10 No surface detected The surface detection algorithm did not find a surface

11 The surface is not ocean The International Geosphere–Biosphere Programme (IGBP) surface type is not 17 for ocean

12 Surface is sea ice The depolarization ratio of the surface is greater than 0.15

13 Wind speed is invalid The corrected MERRA-2 wind speed is outside of the inclusive range 0.025 to 43 m s−1

14 Time delay cannot be found ODCOD has failed to find the time delay of the CRM from the surface measurements provided by
the surface detection algorithm

15 Too few measurements The surface detection algorithm failed to provide enough measurements to solve for the time delay

16 Area too large When solving for the CRM area, the solution grew unrealistically large

17 Scale factor failed While attempting to solve for the scale factor, a failure occurred

18 Surface saturation Surface saturation was detected in the surface return

19 Negative signal anomaly Negative signal anomaly was detected in the surface return

20 Surface had no valid data The surface detection algorithm provided no valid data for the surface measurements

21 Bad input data Can be caused by several conditions related to input data being fill values or invalid

22 Averaged surface not found The surface detection algorithm had to resort to an alternative method of finding the surface when
by derivative method the surface return was averaged to coarser resolutions that may not be reliable for ODCOD
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Appendix C

Table C1. CALIPSO orbit date, orbit time, day or night orbit, field campaign, and NASA LaRC HSRL instrument flown.

Date UTC time of closest approach Day or night HSRL flight campaign HSRL instrument

4 September 2006 19:50:37 Day GoMACCS HSRL-1
20 September 2006 19:50:37 Day GoMACCS HSRL-1
23 May 2007 18:32:25 Day CALIPSO Validation HSRL-1
31 January 2009 07:15:03 Night CAL_VAL_2009 HSRL-1
9 February 2009 07:09:13 Night CAL_VAL_2009 HSRL-1
5 April 2009 07:16:17 Night CAL_VAL_2009 HSRL-1
19 April 2010 06:54:35 Night CALNEX HSRL-1
10 July 2010 19:21:24 Day CARES HSRL-1
11 August 2010 17:43:58 Day Caribbean 2010 HSRL-1
22 August 2010 06:29:15 Night Caribbean 2010 HSRL-1
24 August 2010 06:14:35 Night Caribbean 2010 HSRL-1
26 August 2010 06:02:25 Night Caribbean 2010 HSRL-1
27 August 2010 17:40:40 Day Caribbean 2010 HSRL-1
28 September 2010 19:20:36 Day Caribbean 2010 HSRL-1
19 March 2011 07:06:08 Night DISCOVER-AQ HSRL-1
23 March 2012 06:52:21 Night CAL_VAL_2012 HSRL-1
30 March 2012 06:59:14 Night CAL_VAL_2012 HSRL-1
10 June 2014 17:48:48 Day Bermuda HSRL-1
19 June 2014 17:43:51 Day Bermuda HSRL-1
28 August 2020 18:21:22 Day ACTIVATE HSRL-2
18 August 2022 07:49:55 Night CALIPSO NVF Bermuda HSRL-2

Data availability. The following CALIPSO data products
were used in this study: the V4.50 CALIPSO level 1 profile
product (https://doi.org/10.5067/CALIOP/CALIPSO/CAL_
LID_L1-Standard-V4-51; NASA/LARC/SD/ASDC, 2024a),
the V4.51 CALIPSO level 2 5 km merged layer product
(https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_
05kmMLay-Standard-V4-51; NASA/LARC/SD/ASDC, 2024b),
and the V4.51 CALIPSO level 2 vertical feature mask product
(https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_
VFM-Standard-V4-51; NASA/LARC/SD/ASDC, 2024c).

MERRA-2 wind speed data are reproduced in the
CALIPSO level 2 5 km merged layer product and are
used from within that data product but can be accessed at
https://doi.org/10.5067/3Z173KIE2TPD (GMAO, 2015a) and
https://doi.org/10.5067/WWQSXQ8IVFW8 (GMAO, 2015b),
managed by the NASA Goddard Earth Sciences (GES) Data and
Information Services Center (DISC).

CALIPSO Night Validation Flights High Spectral Resolution
Lidar (HSRL-2) Data (https://doi.org/10.5067/SUBORBITAL/
CALIPSO-NVF/DATA001; NASA/LARC/SD/ASDC, 2023),
NASA Langley Atmospheric Science Data Center DAAC data, and
additional HSRL data are available by request from the NASA
Langley HSRL team (John Hair at johnathan.w.hair@nasa.gov).

The SODA product used is developed at the ICARE Data and
Services Center (https://www.icare.univ-lille.fr, last access: 28 July
2023) in Lille (France) in the frame of the CALIPSO mission
and supported by CNES and is available through their website
(https://doi.org/10.1109/LGRS.2009.2030906; Josset, 2008).

MODIS data are produced by the MODIS Characterization Sup-
port Team (MCST, 2017) and available at https://doi.org/10.5067/
MODIS/MYD03.061. The MODIS Atmosphere L2 Aerosol Prod-
uct is available at https://doi.org/10.5067/MODIS/MYD04_L2.061
(Levy and Hsu, 2015).

AMSRE (https://doi.org/10.56236/RSS-bm, Wentz et al., 2014)
and AMSR2 (https://doi.org/10.56236/RSS-bq, Wentz et al., 2021)
data are available from the Microwave Climate Data Center Remote
Sensing Systems (https://www.remss.com/missions/amsr/, last ac-
cess: 28 October 2024).

Author contributions. All coauthors have contributed to the pa-
per, and the order in which they are listed is the primary author’s
best estimate as to their level of contribution. RAR prepared the
manuscript with contributions from all coauthors, developed and
implemented the algorithm from existing works, and performed
comparison analysis. MAV provided technical expertise and per-
formed comparison analysis, SDR developed the algorithm wind
speed corrections tables, JLT provided technical expertise and au-
thored sections on aerosol type analysis, JAR provided technical
expertise on ocean surface retrievals, RAF and JWH provided tech-
nical expertise and analysis on HSRL, JAS provided technical ex-
pertise and analysis on the CALIOP detector system, and BJG pro-
cessed analysis data.
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