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Abstract. Cloud radar Doppler spectra are of particular inter-
est for investigating cloud microphysical processes, such as
ice formation, riming and ice multiplication. When hydrom-
eteor types within a cloud radar observation volume have
different terminal fall velocities, they can produce individ-
ual Doppler spectrum peaks. The peaks of different particle
types can overlap and be further broadened and blended by
turbulence and other dynamical effects. If these (sub-)peaks
can be separated, properties of the underlying hydrometeor
populations can potentially be estimated, such as their fall
velocity, number, size and to some extent their shape. How-
ever, this task is complex and dependent on the operation set-
tings of the specific cloud radar, as well as atmospheric dy-
namics and hydrometeor characteristics. As a consequence,
there is a need for adjustable tools that are able to detect
peaks in cloud radar Doppler spectra to extract the valuable
information contained in them. This paper presents the syn-
ergistic use of two algorithms used for analyzing the peaks
in Doppler spectra: PEAKO and peakTree. PEAKO is a su-
pervised machine learning tool that can be trained to obtain
the optimal parameters for detecting peaks in Doppler spec-
tra for specific cloud radar instrument settings. The learned
parameters can then be applied by peakTree, which is used
to detect, organize and interpret Doppler spectrum peaks.

The application of the improved PEAKO–peakTree toolkit
is demonstrated in two case studies. The interpretation is
supported by forward-simulated cloud radar Doppler spectra
by the Passive and Active Microwave TRAnsfer tool (PAM-
TRA), which are also used to explore the limitations of the al-

gorithm toolkit posed by turbulence and the number of spec-
tral averages chosen in the radar settings.

From the PAMTRA simulations, we can conclude that a
minimum number of n = 20–40 spectral averages is desir-
able for Doppler spectrum peak discrimination. Furthermore,
small liquid peaks can only be reliably separated for eddy
dissipation rate values up to approximately 0.0002 m2 s−3 in
the simulation setup which we tested here.

The first case study demonstrates that the methods work
for different radar systems and settings by comparing the re-
sults for two cloud radar systems which were operated simul-
taneously at a site in Punta Arenas, Chile. Detected peaks
which can be attributed to liquid droplets agree well be-
tween the two systems, as well as with an independent liquid-
predicting neural network. The second case study compares
PEAKO–peakTree-detected cloud radar Doppler spectrum
peaks to in situ observations collected by a balloon-based
holographic imager during a campaign in Ny-Ålesund, Sval-
bard. This case demonstrates the algorithm toolkit’s ability
to identify different hydrometeor types but also reveals its
limitations posed by strong turbulence and a low n.

Despite these challenges, the algorithm toolkit offers a
powerful means of extracting comprehensive information
from cloud radar observations. In the future, we envision
PEAKO–peakTree applications on the one hand for interpret-
ing cloud microphysics in case studies. The identification of
liquid cloud peaks emerges as a valuable asset, e.g., in stud-
ies on cloud radiative effects, in seeder–feeder processes, or
for tracing vertical air motions. Furthermore, the computa-
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tion of the moments for each subpeak enables the tracking
of hydrometeor populations and the observation of growth
processes along fallstreaks. On the other hand, PEAKO–
peakTree applications could be extended to statistical eval-
uations of longer data sets. Both algorithms are openly avail-
able on GitHub, offering accessibility for the scientific com-
munity.

1 Introduction

Mixed-phase clouds, which contain both ice particles and su-
percooled liquid water (SLW) at temperatures between 0 and
−37 °C, are important components of the global climate sys-
tem because of their large influence on the radiation budget
(Sun and Shine, 1994; Tan et al., 2016) and their significant
contribution to precipitation, especially over the continents
of the Northern Hemisphere (Mülmenstädt et al., 2015). Yet,
despite extensive research on this topic, the understanding
of mixed-phase cloud processes is still incomplete due to
the complexity of the aerosol–cloud–particle dynamical sys-
tem in this type of cloud (Boucher et al., 2013; Korolev
et al., 2017). As a result, their representation in numerical
weather prediction and climate models remains challenging
(Kay et al., 2016; Barrett et al., 2017).

The thorough comparison of high-resolution model sim-
ulations with ground-based remote sensing observations is a
helpful technique to validate numerical weather models (e.g.,
Ori et al., 2020; Karrer et al., 2021; Köcher et al., 2023). For
this approach, high-quality and high-resolution atmospheric
profiling observations need to be available, such as those
provided by the platforms of the Aerosol, Clouds and Trace
Gases Research Infrastructure (ACTRIS; https://www.actris.
eu/, last access: 29 October 2024) within Cloudnet or the
Atmospheric Radiation Measurement (ARM; https://www.
arm.gov/, last access: 29 October 2024) observatories. Ver-
tically pointing Doppler cloud radars are a key component
of each of these remote sensing facilities because of their
capability to penetrate thick cloud systems and to yield valu-
able information about the hydrometeors present at different
range levels (Kollias et al., 2007, 2016; Kalesse-Los et al.,
2022; Schimmel et al., 2022; Vogl et al., 2022a). For investi-
gating cloud microphysical processes such as riming or sec-
ondary ice production (SIP), the cloud radar Doppler spectra
are particularly valuable. Cloud radar Doppler spectra repre-
sent the backscattered power as a function of Doppler veloc-
ity, which, in vertically pointing radars, corresponds to the
vertical velocity of particles within the respective observa-
tion volume (Kollias et al., 2007). The vertical velocity is
determined by the particle fall velocity, which is a function
of particle size, shape and density and atmospheric dynamics
(Zhu et al., 2023). When several populations of hydromete-
ors with sufficiently different fall speeds (e.g., ice and liq-
uid water) are present in the same observation volume, they

each produce a separate peak in the resulting Doppler spec-
trum. These particle populations can have either different
thermodynamic phases, i.e., liquid and ice; different shapes;
or even a multimodal size distribution. If the peaks can be
separated, the moments of each subpeak can be deduced,
which potentially opens possibilities to infer properties of
the underlying hydrometeor populations. The separation of
Doppler peaks is challenging because the peaks of differ-
ent hydrometeor types can overlap and turbulence and other
dynamical effects can further smear the observed Doppler
spectrum. Moreover, for large hydrometeors, Mie oscillation
of the backscattered power can cause additional minima and
maxima in the Doppler spectra, which is especially important
at W-band (Tridon et al., 2017).

Subpeak analysis of cloud radar Doppler spectra can
be a powerful tool for interpreting processes observed in
mixed-phase clouds (e.g., Shupe et al., 2004; Kalesse et al.,
2016, 2019; Billault-Roux et al., 2023). The information con-
tent is even more enhanced if spectral dual-polarization or
multifrequency radar measurements are available, which give
further insights into the hydrometeor shape and size (e.g.,
Kneifel et al., 2016; Tridon et al., 2017; Oue et al., 2018;
Luke et al., 2021; von Terzi et al., 2022).

Due to recent advances in data storage capacities, the
cloud radar Doppler spectra are now usually saved opera-
tionally by modern observation facilities. However, despite
their valuable information content, they are seldom part of
the routine data processing but are often only analyzed in
depth for selected case studies. One reason for this is that
cloud radar Doppler spectra are complex and can be difficult
to interpret. As described earlier in the text, cloud dynam-
ical features are entangled with microphysical signatures,
and everything is superimposed with the system noise, re-
sulting in challenges for the interpretation. Furthermore, the
use of different operating and system parameters (such as
different range and Doppler resolutions) makes it very dif-
ficult to develop generally valid data analysis techniques. In
other words, there are no universally applicable parameters
for Doppler spectrum peak separation that work for all cloud
radars due to their different resolutions and noise properties.

This highlights the need for adjustable tools that are able
to detect peaks in cloud radar Doppler spectra to extract the
valuable information contained in them. The tools should
ideally integrate into data processing infrastructures such as
ACTRIS, be able to rapidly process large amounts of data
and yield intuitive products that can be used to investigate
cloud microphysical processes in depth.

Here, we present recent advances in the development of
two cloud radar Doppler spectrum peak analysis algorithms:
PEAKO (Kalesse et al., 2019) and peakTree (Radenz et al.,
2019). PEAKO is a supervised algorithm that is trained on
peaks marked in cloud radar Doppler spectra by a human
expert for finding the optimal peak-detection parameters for
specific radar settings. peakTree is an algorithm to identify,
structure and interpret peaks in cloud radar Doppler spectra,
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representing the subpeaks as nodes in a binary tree. Further
developments have been made to both tools so that they can
now be used in combination: first PEAKO is used for iden-
tifying the optimal peak-detection settings, and subsequently
peakTree is applied for processing the radar spectrum files
with the settings found by PEAKO and saving properties
of the detected (sub-)peaks. In this work, we show the po-
tential of the combined cloud radar Doppler spectrum peak-
detection toolkit, in the following referred to as the PEAKO–
peakTree toolkit, to derive valuable information about the hy-
drometeors present in mixed-phase cloud systems. Further-
more, we assess the limitations posed by the employed radar
settings and turbulence on the Doppler spectrum peak detec-
tion.

The paper is structured as follows. In Sect. 2, the data sets
used in this study are introduced, followed by a description of
the PEAKO and peakTree algorithms, including a summary
of the improvements that have been made since the methods
were first published in 2019. In Sect. 3, we present prereq-
uisites for the separability of peaks in cloud radar Doppler
spectra based on radar forward simulations. In Sect. 4, the
training phase of PEAKO is evaluated and the peak-detection
parameters found for the different radar settings are pre-
sented. Finally, two case studies demonstrating the appli-
cation of the PEAKO–peakTree toolkit are presented: in
Sect. 4.2, the toolkit is applied to observations from two
cloud radar systems, which were operated at the same site in
Punta Arenas, Chile. For the selected case study, liquid water
layers detected by PEAKO and peakTree are validated with
lidar observations and an additional independent liquid de-
tection algorithm (Schimmel et al., 2022). In Sect. 4.3, a sec-
ond case study is presented, in which PEAKO–peakTree re-
sults are put into context using in situ observations collected
by a balloon-based holographic imager in Ny-Ålesund, Sval-
bard.

2 Methods

2.1 Data sets

We are using data from the “Dynamics, Aerosol, Cloud
And Precipitation Observations in the Pristine Environment
of the Southern Ocean” (DACAPO-PESO; Radenz et al.,
2021; Vogl et al., 2022b) campaign and the Ny-Ålesund
AeroSol Cloud ExperimeNT (NASCENT; Pasquier et al.,
2022a) to apply and evaluate the PEAKO–peakTree toolkit.
The DACAPO-PESO data set presents a convenient scenario
for evaluation because it includes measurements from two
different cloud radar systems operated simultaneously at the
same location. Additionally, the NASCENT data set provides
an opportunity for PEAKO–peakTree validation, as it con-
tains ground-based cloud radar measurements alongside in
situ observations from a holographic imager deployed within
the cloud. This combination offers the possibility for direct

comparison between the peaks identified in the cloud radar
Doppler spectra and the hydrometeor types observed by the
in situ instrument. In this section, both data sets, including
the instrumentation relevant for this study, are briefly intro-
duced.

2.1.1 DACAPO-PESO data set

The DACAPO-PESO experiment aimed at observing
aerosol–cloud precipitation processes in the Southern Ocean
region and was carried out from November 2018 to Novem-
ber 2021. In the frame of this project, an extensive suite
of remote sensing and in situ instruments was deployed in
Punta Arenas, Chile (53.1◦S, 70.9◦W; Radenz et al., 2021).
An overview of the DACAPO-PESO campaign and its goals,
the instrumentation, and a summary of first results can be
found in Vogl et al. (2022b).

Here, we use data observed on 13 March 2019 by
two vertically pointing Doppler cloud radars: a pulsed,
slanted linear depolarization (SLDR)-mode MIRA-35 Ka-
band radar (35 GHz, Metek; Görsdorf et al., 2015) and a
dual-polarization frequency-modulated continuous-wave W-
band radar (RPG-FMCW-94-DP; Küchler et al., 2017), re-
ferred to in the following text as “LIMRAD94”. The two
radar systems were operated at the site in close vicinity
(≤ 5 m distance) for the time period from November 2018
to September 2019. Every hour at 30 min past the full hour,
MIRA-35 performed a scanning routine, which results in
measurement gaps in the vertically pointing observations
used in this study. Post-deployment receiver calibration of
the MIRA-35 radar revealed a 5 dB low bias, which is why
spectra were offset-corrected by +5 dB in order to match
the reflectivities observed by LIMRAD94 in the Rayleigh
regime. LIMRAD94 was operated using three chirps to ob-
serve the atmospheric column up to 12 km altitude above
the radar. With the aim to ensure good comparability be-
tween the instruments, LIMRAD94 settings were chosen to
approximately resemble the vertical and temporal resolution
of MIRA-35. More specific details on the operation settings
of the two radar systems and each of the chirps are listed in
Table 1 and can be found in Schimmel et al. (2022). For val-
idation of liquid peaks identified by the PEAKO–peakTree
toolkit, we also use data from a multiwavelength Raman
polarization lidar of the type PollyXT (Engelmann et al.,
2016), which was employed at the site and measures par-
ticle backscatter coefficients at 355, 532 and 1064 nm and
extinction coefficients at 355 and 532 nm. Liquid water path
(LWP) observations by a RPG HATPRO G2, a 14-channel
microwave radiometer (MWR; Rose et al., 2005), are also
used in this study.
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Table 1. Overview of radar settings used (upper half) and PEAKO training results (lower half).

LIMRAD94 MIRA-35 JOYRAD94

chirp 1 chirp 2 chirp 3 (pulsed) chirp 1 chirp 2 chirp 3 chirp 4

Range resolution (m) 29.81 44.72 39.75 31 3.20 7.45 9.67 23.85
Range extent (km) 0.12–1.19 1.21–6.98 7.04–11.96 0.16–15.65 0.1–0.4 0.4–1.19 1.21–3 3.01–12
Number of averaged spectra n 23 54 124 20 8 6 4 6
Integration time (s) 0.72 0.62 1.42 2.0 0.37 0.27 0.37 0.27
Number of FFT points 256 256 128 512 512 512 512 256
Nyquist velocity (ms−1) 9.0 6.3 4.7 10.5 5.1 5.1 3.2 3.2
Doppler resolution (ms−1) 0.07 0.049 0.073 0.041 0.02 0.02 0.013 0.025

Number of averaged time steps 0 3 0 3 0 3 3 0
Number of averaged range bins 0 3 0 0 0 3 3 0
Span for smoothing (ms−1) 0.25 0.2 0.1 0.2 0.15 0.2 0.2 0.15
Polynomial order for smoothing 2 2 2 2 1 3 3 2
Min peak width (ms−1) 0 0 0 0 0 0 0 0
Min peak prominence (dB) 0.5 0.5 1.5 1.0 2.0 2.0 4.0 2.0

2.1.2 NASCENT campaign and long-term observations
at AWIPEV

NASCENT took place at the French–German AWIPEV Re-
search Base in Ny-Ålesund, Svalbard (78.9° N, 11.9° E),
from September 2019 to August 2020. It was targeted to
study the microphysical and chemical properties of aerosols
and clouds in the Arctic using an extensive set of in situ
and remote sensing instrumentation. Here, we show the
application of PEAKO–peakTree for a case observed on
12 November 2019, which was previously analyzed in de-
tail by Pasquier et al. (2022a). A detailed description of the
NASCENT campaign, the field sites and the instrumentation
can also be found in Pasquier et al. (2022a).

In situ cloud microphysical measurements were obtained
with the tethered balloon system HoloBalloon (Ramelli et al.,
2020) up to an altitude of 1000 m above ground (Pasquier
et al., 2022a, b). The main instrument on the measurement
platform was the HOLographic Imager for Microscopic Ob-
jects (HOLIMO), which was mounted 12 m below the bal-
loon. HOLIMO uses digital in-line holography to image an
ensemble of cloud particles in the size range from 6 µm to
2 mm in a three-dimensional sample volume (Henneberger
et al., 2013; Ramelli et al., 2020). Based on the captured par-
ticle images, the phase-resolved size distributions and shapes
of ice crystals and cloud droplets can be obtained. The clas-
sification into cloud droplets and ice crystals is done using
a convolutional neural network based on the particle shape
(Touloupas et al., 2020). The phase partitioning between
cloud droplets and ice crystals is only done for particles
larger than 25 µm (i.e., all particles below this size thresh-
old are classified as cloud droplets) because the resolution of
HOLIMO is not sufficient to distinguish the shape of smaller
particles (Henneberger et al., 2013). In addition, all ice crys-
tals were manually classified into the following ice habits us-

ing the particle shape information: columns, plates, frozen
drops, irregular ice crystals and aged particles (i.e., rimed
and aggregated ice crystals). A sample volume of 15.5 cm3

and a frame rate of six frames per second were considered for
the analysis of the HOLIMO data, resulting in a total sample
volume rate of 5.6 Lmin−1 (Pasquier et al., 2022a).

Continuous W-band cloud radar measurements have been
performed at the AWIPEV base since 2016 (Nomokonova
et al., 2019; Chellini et al., 2023). During the time period
considered in this study, a single-polarization frequency-
modulated continuous-wave W-band radar (RPG-FMCW-
94-DP; (Küchler et al., 2017)) was employed at the site, re-
ferred to in the following as “JOYRAD94”. The measure-
ments were set up with high vertical (< 10 m in the lowest
three chirps) and temporal (< 2 s) resolution. However, as a
consequence, the Nyquist velocity was rather low, ranging
between 5.1 and 3.2 ms−1, and the number of spectral aver-
ages n was very low, between 4 and 8 for the four chirps (see
Table 1). In this work, the level 0 data provided by the in-
strument software were used, containing the raw cloud radar
reflectivity Doppler spectra. For PEAKO and peakTree, these
files were processed in an additional step, which removes
the signal below the noise threshold, which is defined as the
mean noise plus 6 standard deviations of the noise (Hilde-
brand and Sekhon, 1974). No additional aliasing correction
has been performed, as this effect did not play a role in the
selected case study. Every 1000 s, an internal calibration cy-
cle interrupts the measurements, causing a gap of about 40 s.

2.2 PEAKO and peakTree algorithm descriptions and
updates

In the following section, PEAKO and peakTree are intro-
duced and updates made to the code since 2019 are sum-
marized. Figure 1 shows an overview of the workflow, the

Atmos. Meas. Tech., 17, 6547–6568, 2024 https://doi.org/10.5194/amt-17-6547-2024



T. Vogl et al.: PEAKO and peakTree: tools for cloud radar Doppler spectrum peak analysis 6551

Figure 1. Flowchart summarizing the PEAKO and peakTree al-
gorithm workflow, along with input and output files. Cloud radar
Doppler spectra in the rpgpy netCDF format are required by
PEAKO, and this format is one option for peakTree, which also
includes functions to read Doppler spectra in other formats.

input and output data, and the interface between the two al-
gorithms. While both of them can be used standalone, this
work focuses on the added value of using PEAKO to derive
the peak-detection parameters which are then transferred to
peakTree via a configuration file and applied for peak detec-
tion.

2.2.1 PEAKO

PEAKO (Kalesse et al., 2019) is a supervised algorithm
for peak detection in cloud radar Doppler spectra. While
the original software version was written in MATLAB, the
current PEAKO implementation is in Python. Cloud radar
Doppler spectrum files are expected in a format as yielded
by the netCDF generation module of the rpgpy Python pack-
age (https://github.com/actris-cloudnet/rpgpy, last access: 29
October 2024). In the first step, the training data generation
(Fig. 1), training data containing hand-marked peaks in cloud
radar Doppler spectra are generated by a human expert la-
beler. When choosing training data, care should be taken to
ensure that the type of (meteorological) targets to be stud-
ied later with peakTree is adequately represented in the data
set. For example, if liquid water peaks are the focus of the
peakTree study, it should be ensured that liquid-containing
spectra are included in the training data set. Furthermore, it
may be practical to use classification algorithms, such as the
Cloudnet target classification (Illingworth et al., 2007; Tuki-
ainen et al., 2020), to include only data classified as “cloud”,
“rain” or “insects” in the training data set, depending on the
envisioned application.

PEAKO contains a peak-detection function with a set of
adjustable parameters, which are in the second step, i.e., in
the algorithm training phase, tuned to achieve the best match
with the training data set. In the original algorithm descrip-
tion published in Kalesse et al. (2019), the peak-detection
function took an averaged Doppler spectrum (i.e., averaged
over a fixed window in time and range domains) as input.
The number of time and range averages has now been added
to the set of adjustable parameters in PEAKO and is varied
during the training phase.

Following time and range averaging, the spectrum is
smoothed. The smoothing algorithm, a Savitzky–Golay fil-
ter, takes a span (window size) as input, which is one of the
adjustable PEAKO parameters. This span is now defined in
meters per second (ms−1) as opposed to the fraction of the
total number of data points (Doppler bins) used in the first
PEAKO version. Over this window size, a polynomial is fit
to the observational data. The degree of the polynomial (orig-
inally fixed to 2) is now an adjustable PEAKO parameter as
well, which can be varied during the training phase.

Finally, peak detection is performed on the averaged and
smoothed Doppler spectrum. Only peaks with widths larger
than the width threshold and prominences above the promi-
nence threshold are considered and saved. The width is de-
fined as the peak width at half height. The peak prominence
is the power difference between the maximum value of the
considered peak and the minimum between this peak and the
closest higher neighboring peak.

This results in six adjustable PEAKO parameters: the
number of averaged spectra in the time and range domains,
the span and the polynomial order used by the smoothing
module, and the width and prominence thresholds applied
by the peak-detection function. PEAKO is trained by loop-
ing over all possible parameter combinations in a defined
search grid and by computing a similarity measure based on
the overlapping area below human-marked peaks and those
yielded by the peak-detection function. The parameters lead-
ing to the highest similarity score are saved and can be used
as input for peakTree via a configuration file (Fig. 1).

In the original algorithm description, the learning process
was divided into two phases: a training phase and a test
phase. In the current PEAKO version, the training phase can
be set up to include k-fold cross-validation, where the train-
ing data set is split into k subsets (“folds”). Training is then
performed k times on k−1 folds, whereas each time another
one of the k folds is used for validation. The test data set,
which has not been seen by PEAKO during the training and
validation phases, is then used for the final evaluation of the
learned parameters. PEAKO can be used as a standalone tool
(Kalesse et al., 2019; Billault-Roux et al., 2023) to detect and
save the indices of peaks in cloud radar Doppler spectrum
files. However, for more in-depth analyses and fast process-
ing of larger data sets, the use of peakTree is recommended.
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2.2.2 peakTree

The peakTree technique introduced in Radenz et al. (2019)
uses a binary tree structure to recursively represent peaks and
subpeaks in a Doppler spectrum. An element inside the tree
structure is called node, where each node holds the spectral
moments of a part of the Doppler spectrum identified by the
peak-finding algorithm. The root node contains the complete
signal of the Doppler spectrum above the noise threshold.
Starting from the noise floor, the peaks are recursively split
into two so-called children if they contain subpeaks (identi-
fied by local minima in spectral reflectivity). One advantage
of using peakTree instead of the PEAKO standalone peak-
detection functionality is that, for each node, the moments of
the spectrum are calculated: the reflectivity Z, mean Doppler
velocity MDV, spectrum width, skewness and the linear de-
polarization ratio LDR for dual-polarization radars. Please
note that, throughout this paper, negative MDV values rep-
resent downward velocities in the vertical column (i.e., to-
wards the radar). Another advantage is the use of Numba
(Lam et al., 2015), which means a considerable improve-
ment in terms of computation time compared to PEAKO.
Recently, the option for reading the RPG FMCW binary for-
mat spectrum files via rpgpy was added. Furthermore, the
peak-finding algorithm was adapted to be compatible with
the training output of PEAKO. This means that the internal
peak-detection function in peakTree now resembles the one
used by PEAKO and that PEAKO training parameters (av-
eraging in time and range, the span and polynomial order
used for smoothing, and minimum peak width and promi-
nence) can be directly supplied to peakTree via a configura-
tion file (Fig. 1). It should be noted that peakTree can also be
used without PEAKO’s optimized peak-detection parameters
(Radenz et al., 2019; Ramelli et al., 2021). In this case, the
peak-detection parameters have to be chosen manually in a
rather subjective trial-and-error procedure. We thus suggest
the combined use of PEAKO–peakTree.

The peakTree algorithm offers the possibility to detect
certain hydrometeor types corresponding to subpeaks in the
cloud radar Doppler spectra. Nodes resembling characteris-
tic particle populations can be selected by straightforward,
threshold-based rules: cloud droplets usually have negligible
terminal velocity and a low reflectivity due to their small size.
Hence, a very basic “liquid node” selection rule based on two
thresholds already gives useful results.

Zliquid <−20 dBZ (1)

|MDVliquid|< 0.3ms−1 (2)

It should be noted that liquid peaks in up- or downdrafts
larger than 0.3 ms−1 are not detected by this simple selec-
tion rule and that small ice can result in peaks with similar
properties. For dual-polarization radars, an additional crite-
rion can be added to filter peaks with elevated LDR, which
are characteristic for columnar ice particles.

Furthermore, it is often of interest to cloud microphysical
studies to consider hydrometeors with large fall velocities,
which, in the temperature range for mixed-phase clouds be-
tween 0 and−40 °C, usually correspond to large frozen drops
and strongly rimed particles. Here, this “fast-falling” popula-
tion is identified by a slightly more complex node selection
rule, where the node index is 1 or 3 (i.e., the fastest falling
subpeak of the spectrum), and the following thresholds:

MDVfast <−1.8ms−1, (3)
prominencefast > 2dBZ. (4)

In this respect, peakTree can in principle also be used to
filter ground clutter, which usually emerges as Doppler spec-
trum peaks centered at 0 ms−1 (Williams et al., 2018). How-
ever, in both data sets used in this study, clutter did not play
a role; i.e., a removal of peaks due to non-meteorological tar-
gets was not required.

2.3 VOODOO

We are using an independent liquid detection method to val-
idate the liquid-containing Doppler spectrum peaks detected
by the PEAKO–peakTree toolkit. The VOODOO (reVeal-
ing supercOOled liquiD beyOnd lidar attenuatiOn) retrieval
(Schimmel et al., 2022) uses deep convolutional neural net-
works to yield a probability of the presence of cloud droplets
(CD) in a given radar observation volume. It uses cloud radar
Doppler spectra as input and was trained using the Cloud-
net target classification as supervisor. Its ability to accurately
predict the presence of liquid water was demonstrated in the
DACAPO-PESO data set by Schimmel et al. (2022). Here,
we use the VOODOO-predicted probability of cloud droplets
as validation for the liquid water peak detection by PEAKO
and peakTree.

2.4 Eddy dissipation rate retrieval

We are using the eddy dissipation rate (EDR, ε) as a measure
of atmospheric turbulence to identify regions in the cloud
where turbulence potentially affects the detectability of sub-
peaks in cloud radar Doppler spectra. The EDR is the rate
at which turbulent kinetic energy cascades in the atmosphere
from large to smaller and smaller eddies until it is converted
from mechanical into thermal energy at the molecular level
(Foken, 2008). It is a universal measure of turbulence; i.e., a
large EDR means that the atmosphere is dissipating energy
quickly and that the atmospheric turbulence level is high.
EDR can be retrieved from cloud radar measurements of
MDV as follows (Borque et al., 2016; Griesche et al., 2020):
the time series of MDV measured at one radar range gate in
a 5 min time interval is converted to a power spectrum us-
ing a fast Fourier transform (FFT). Furthermore, a transition
from time to spatial frequencies is done assuming Taylor’s
hypothesis of frozen (isotropic) turbulence (Taylor, 1938):

ν = f/vh, (5)
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where f is the frequency and ν is the wavenumber (m−1),
which can be related to a characteristic turbulent structure
size, or eddy length scale λ, via

λ= 2π/ν, (6)

and vh is the horizontal advection wind speed. To estimate vh,
wind data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Integrated Forecast System
(IFS) are used for the DACAPO-PESO data and wind data
from the icosahedral non-hydrostatic (ICON) model for the
NASCENT data set. For retrieving the EDR from the result-
ing spectrum, the following assumption is made: in the in-
ertial subrange, turbulence is assumed to be isotropic and
the decrease in energy is proportional to f−5/3. The power
spectrum S of turbulent energy dissipation can thus be repre-
sented as

S(ν)= Aε2/3ν−5/3, (7)

with A= 0.5 the Kolmogorov constant. Consequently, if the
spectrum derived from measured MDV can be expressed in
this way, the EDR ε can be inferred. Following Griesche et al.
(2020), linear least-square regressions of the spectrum in
34 different wavenumber ν intervals are performed, yielding
intercept i and slope s parameters. If s is within −5/3±1/3,
the fit is considered “good” and EDR is calculated according
to

ε =

(
10i

A

)3/2

. (8)

If the s =−5/3±1/3 criterion is met by more than 1 of the
34 intervals, ε is calculated using i from all of these intervals
and the mean ε is used.

2.5 PAMTRA

The Passive and Active Microwave TRAnsfer (PAMTRA)
model (Mech et al., 2020) is used for forward-simulating
cloud radar Doppler spectra using in situ observations of
liquid and ice particles collected by HOLIMO following
Pasquier et al. (2022a). Based on the particles detected
by HOLIMO, the following particle populations are used
in radar forward simulations: liquid, (small) columnar ice,
rimed aggregates and frozen droplets.

The liquid particle number size distribution (PNSD) is fre-
quently bimodal, and we split it into a cloud and a drizzle
population at a diameter of 60 µm. We are using HOLIMO
in situ observations with 60 s time resolution. This deci-
sion results from a trade-off between better matching the
radar’s time resolution and increasing the volume observed
by HOLIMO by averaging over longer time periods. Here,
we choose the 60 s time resolution to keep the relatively high
temporal resolution. In addition, for each hydrometeor type
in the HOLIMO in situ data, bins without counts within the

size distribution (i.e., between the smallest and largest par-
ticles detected) are filled with a value of 10 m−3 to reduce
the problem of artificial subpeaks in the forward-simulated
spectra, caused by insufficient counting statistics.

Terminal velocity–size relations for the non-spherical par-
ticles, i.e., columns and rimed aggregates, follow Heyms-
field and Westbrook (2010), while cloud, drizzle and frozen
drops follow Khvorostyanov and Curry (2002). Mass–size
and cross-section area–size power-law relationships for the
ice columns are taken from Mitchell (1996). For the rimed
aggregates, these relationship coefficients are taken from Ma-
herndl et al. (2023), who presented these parametrizations
for aggregates of different monomers, depending on the nor-
malized rime mass M . M is defined following Seifert et al.
(2019) as

M =
mrime

mg
, (9)

i.e., the ratio of the rime mass mrime and the mass of a size-
equivalent spherical graupelmg. For our simulations, we ini-
tially variedM between 0.2 and 0.8 and finally picked a value
of 0.2, matching the fall speed of the observed radar Doppler
spectra best.

In our PAMTRA simulations, the vertical air velocity is
set to 0 ms−1. Turbulence broadening can be included via
the kinematic broadening of Doppler spectra σ :

σ =

√
σ 2

B+ σ
2
T, (10)

where σB is the broadening due to finite beam width, assum-
ing a horizontal wind velocity vh and the radar beam width θ ,
and σT is the broadening due to turbulence within the radar
sampling volume, which is calculated via

σT =

√
3 ·A/2 ·

( ε
2π

)2/3
·

(
L

2/3
s −L

2/3
λ

)
. (11)

Ls and Lλ are the maximum and minimum length scale
observable by the radar. To obtain the total kinematic broad-
ening σ , vh is assumed to be 5.5 ms−1 and the radar beam
width 0.3°. For example, for the radar settings chosen in our
simulations, an EDR of 0.0001 m2 s−3 translates to a broad-
ening of σ = 0.05 ms−1. A higher EDR of 0.0065 m2 s−3

would correspond to σ = 0.19 ms−1. In our simulations, we
varied σ between 0.02 and 0.2 ms−1.

The range resolution, number of FFT points, number
of spectral averages n and Nyquist velocities were set in
PAMTRA similar to the JOYRAD94 settings (see Table 1).
For each Doppler spectrum, multiple simulations were per-
formed to account for the separate contributions of each sin-
gle particle population to the combined spectrum.

Please note that the forward simulation results are strongly
dependent on the employed mass–size relations and parti-
cle fall velocity–size relations, especially considering the ice
phase. The goal in this study is however not to reach closure
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between the forward-modeled and observed radar variables
but to instead explore the effect of radar settings (e.g., the
number of spectral averages) and EDR on the forward-
simulated radar Doppler spectra. While acknowledging the
sensitivity of our simulations on these parametrizations, we
do not expect a general influence on the separability of cloud
radar Doppler spectrum subpeaks.

3 Conditions for peak separability in cloud radar
Doppler spectra

Different particle populations cannot always be distinguished
in the observed Doppler spectrum. Even in conditions with
homogeneous radar beam-filling and when the mean vertical
wind is constant over the sampling period, turbulence and
vertical wind shear broaden the spectrum to an extent that
might blur boundaries between subpeaks caused by different
particle populations (Shupe et al., 2008). Moreover, instru-
ment settings not optimized for peak detection in Doppler
spectra might result in spectra that are too noisy to detect the
subpeaks. If the number of incoherent averages n, i.e., the
number of spectra averaged after the FFT, is set too low, this
results in strong phase noise signatures, which are a chal-
lenge for multipeak analysis (Zrnić, 1975).

To assess the question of the conditions under which
different particle populations can be separated in a radar
Doppler spectrum, we are using balloon-borne in situ
data from the NASCENT campaign as input in idealized
PAMTRA simulations. We chose a 1 min time interval
(12 November 2019 at 16:01 UTC) representative of complex
situations with multiple particle populations to forward sim-
ulate cloud radar Doppler spectra from the PNSDs measured
by HOLIMO. The spectrum broadening σ is varied from 0.02
to 0.2 ms−1, and different radar instrument settings includ-
ing 6, 10, 20, 40, 80 and 120 incoherent averages, respec-
tively, are considered. For each set, 100 spectra are simu-
lated to account for the random nature of the phase noise.
peakTree is used to detect peaks in the forward-simulated
cloud radar Doppler spectra, employing peak-finding param-
eters that were optimized by PEAKO for each set of spectra
with the respective n.

Figure 2a shows the number of spectral averages vs. the
number of detected peaks. The spectra analyzed with the
optimized peak-finding parameters (Fig. 2a dots) show two
peaks for the high-turbulence conditions and three peaks for
lower-turbulence conditions, where color indicates the turbu-
lence strength. For comparison, the number of peaks is also
shown for a set of fixed peak-finding parameters (Fig. 2a
open diamonds). For a low number of averages n, an unre-
alistically high number of peaks is detected using the fixed
parameters, which can be explained by the increased false
alarm rate due to noise. This is also visible in the example
spectrum in Fig. 2c1 with n = 10. Notably, for a low num-
ber of averages, increased turbulence increases the number of

Figure 2. PEAKO–peakTree peak-detection results in forward-
simulated cloud radar Doppler spectra using PAMTRA. (a) Num-
ber of detected peaks by PEAKO–peakTree vs. the number of spec-
tral averages n set in the forward simulation. Compared are two
sets of peak-finding parameters: fixed (indicated by open diamonds;
a prominence threshold of 1.5 dB, minimum width of 0.03 ms−1

and no smoothing along the velocity dimension) and optimized
by PEAKO individually for each n (dots). The marker color rep-
resents the turbulence broadening (in ms−1) set in the PAMTRA
forward simulation. (b) Fraction of successfully detected liquid
peaks in 100 forward-simulated spectra vs. turbulence broadening
(in ms−1) for radar settings with n= 6, 10, 40, 80 and 120. (c1–
c4) Examples of forward-simulated spectra: c1 with n= 10 and
σ = 0.05 ms−1; c2 with n= 80 and σ = 0.05 ms−1; c3 with n= 20
and σ = 0.05 ms−1; c4 with n= 20 and σ = 1.5 ms−1. The corre-
sponding σ and n of c1–4 are also marked in panels (a) and (b).

detected peaks. This can be explained as follows: for noisy
spectra (i.e., n < 20), broadening due to turbulence increases
the number of Doppler bins above the noise floor and hence
increases the probability of additional peaks. In contrast, for
smooth spectra (i.e., higher n), additional turbulence hides
small peaks.

The spectrum in Fig. 2c1 represents an example for a noisy
spectrum (n= 10) and low atmospheric turbulence levels
(σ = 0.05 ms−1). The same spectrum is forward-simulated
with n= 80 in Fig. 2c2. Three out of five peaks can be iden-
tified by peakTree here, corresponding to the hydrometeor
populations with different terminal fall velocities. The ef-
fect of turbulence broadening is illustrated in the spectra in
Fig. 2c3 and c4, where n= 20 and σ = 0.05 and 0.15 ms−1,
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respectively. In Fig. 2c4, only two broad peaks are visible in
the forward-simulated spectrum.

These combined effects of noise and turbulence become
more tangible if we consider the question of whether the liq-
uid peak can be detected or not. For this purpose, the peak-
Tree liquid peak selection rule was applied to the detected
nodes (Eqs. 1–2). A liquid peak is only considered to be de-
tected successfully if its reflectivity and MDV deviate less
than 1 dB and 0.1 m s−1 from the reference obtained for 150
coherent averages and weak turbulent broadening. Figure 2b
shows the fraction of detected liquid peaks as a function of
turbulence broadening σ . For spectra with a low number of
averages, the liquid peak was not found regardless of the tur-
bulence broadening. When increasing the number of aver-
ages to n> 10, the liquid peak is detected almost in all cases
in conditions with low spectrum broadening (i.e., low turbu-
lence). At approximately σ = 0.06 ms−1, the fraction of suc-
cessfully detected liquid peaks declines strongly for all sim-
ulations. This σ value corresponds approximately to an EDR
of 0.0002 m2 s−3, i.e., a medium level of turbulence, which
can be observed in almost all types of clouds (Shupe et al.,
2012; Borque et al., 2016; Griesche et al., 2020).

From our simulations, we can conclude that (a) a min-
imum number of 20–40 spectral averages is desirable in
radar settings optimized for peak detection and (b) liquid
peaks can only be separated for EDR values up to approx-
imately 0.0002 m2 s−3 (translating to a σ of approximately
0.06 ms−1) under such complex multipeak situations. Ap-
pendix A shows that for simpler conditions (PNSDs featur-
ing a much stronger liquid peak), a separation may however
still be possible even for low values of n and slightly higher
values of turbulence broadening.

4 Results

In this section, PEAKO training results are presented
(Sect. 4.1), followed by two case studies of mixed-phase
clouds in Sects. 4.2 and 4.3, where the application of the
PEAKO–peakTree toolkit is demonstrated. In the first case
study (Sect. 4.2) from the DACAPO-PESO data set, the
liquid-peak-finding results are validated with the indepen-
dent cloud liquid detection method VOODOO. In the sec-
ond case study from the NASCENT campaign (Sect. 4.3),
the detected Doppler spectrum peaks are set into context
with PAMTRA forward simulations of cloud radar Doppler
spectra based on PNSDs of ice and liquid observed with
HOLIMO.

4.1 PEAKO training results

To answer the question of how many cloud radar Doppler
spectra are needed for the training result to converge,
PEAKO training runs with different numbers of training
samples were performed. As the different chirps of the

FMCW radars have different radar settings, each of the
chirps requires individual PEAKO peak-finding parameters.
This results in a total of eight different sets of radar set-
tings for the two data sets considered in this study: LIM-
RAD94 was employed with three chirps, MIRA-35 is a
pulsed radar that has the same settings throughout the ob-
servational range and JOYRAD94 was operated with four
chirps during NASCENT. For each set of radar settings, five
different training runs with up to 500 hand-marked spec-
tra were performed, meaning that for each radar configu-
ration, peaks were marked in more than 2500 cloud radar
Doppler spectra by a human expert. For the training data
generation, observations that do not overlap with the case
studies shown in Sects. 4.2 and 4.3 were selected. For LIM-
RAD94, observations from 7 h, when mixed-phase cloud sys-
tems were present in Punta Arenas during DACAPO-PESO,
were used. In addition, Doppler spectra from 4 h of obser-
vations obtained at Leipzig University, measured with the
exact same radar settings as during DACAPO-PESO, were
selected. MIRA-35 training data include observations from
4-hourly Doppler spectrum files obtained during DACAPO-
PESO. For JOYRAD94, training data were generated using
6-hourly Doppler spectrum files from 11 November 2019,
12 November 2019 and 4 April 2020.

Figure 3 shows the number of training samples vs. the
PEAKO similarity score reached during the training and
validation runs in the k-fold cross-validation for the differ-
ent cloud radars and settings. The PEAKO similarity score
is based on the overlapping area of algorithm-detected and
human-marked peaks (see Sect. 2.2). For low training sam-
ple sizes (. 100), the validation score is lower than the train-
ing score, whereas the scores converge with increasing sam-
ple size (Fig. 3). The high training score for small training
data set sizes is due to overfitting, where the algorithm is
trained to fit a small number of training data very well. The
same model fails however when it is applied to the validation
data set, which was not used during training. Thus, the mini-
mum number of cloud radar Doppler spectra needed to train
PEAKO optimally is where the training and validation lines
converge. Figure 3 shows that, while this point is reached at
different numbers for the different radar settings, generally
150 to 200 spectra seem to be a sufficient number of hand-
marked cloud radar Doppler spectra to train PEAKO.

Differences in the maximum achievable similarity score
in the training and validation curves for the different radar
settings can be explained by differences in the radar settings
and hydrometeors observed. When the lines converge at a
value lower than 100 %, this means that the peak-detection
function is unable to match (only) all human-marked peaks
in the training data set. The reflectivities of undetected and
falsely detected peaks are subtracted from the PEAKO simi-
larity score. Instrument artifacts, such as “ghost echoes” and
Doppler spectrum “tails”, which are not completely filtered
from the data set before the training phase cause spurious
peaks that are easily recognized when manually marking
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Figure 3. Number of training samples vs. PEAKO similarity score for the training (red) and validation (blue) runs. The bold lines represent
the mean of five training and validation runs and the shaded area ± 1 standard deviation.

peaks but are impossible to distinguish for the automatic al-
gorithm. This explains why the maximum achievable skill
score is below 100 % for LIMRAD94 and MIRA-35.

The training and validation scores for the first three chirps
of JOYRAD94 (Fig. 3b, d and f) also converge at values dis-
tinctly below 100 %, although artifacts are less frequently
present in the NASCENT data set. However, JOYRAD94
was operated with only n= 4–8 averaged spectra per sam-
ple (see Table 1), resulting in very noisy spectra, presenting
a challenge to the human expert labelers trying to identify
peaks in these radar Doppler spectra. Moreover, the range
covered by the lowest three JOYRAD94 chirps in the ver-
tical column extends from 0 to 3 km. In this region, multi-
ple hydrometeor populations with different fall speeds oc-
cur frequently, leading to multimodal cloud radar Doppler
spectra. The training data set thus contains very noisy, multi-

modal radar Doppler spectra, where the labeler was uncer-
tain whether to mark a peak or not, making it impossible
for a peak-detection function to match all the human-marked
peaks.

In contrast, the training and validation scores in Fig. 3e
and h converge at high scores > 80 %. These are chirp 3
of LIMRAD94 and chirp 4 of JOYRAD94, i.e., the high-
est chirps in the vertical column starting at 7 and 3 km, re-
spectively. The training spectra in these chirps are almost ex-
clusively monomodal, facilitating the peak detection in the
Doppler spectra.
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4.2 Case study 1: multiple liquid cloud layers observed
during DACAPO-PESO

In this case study, peakTree is applied to Doppler spectrum
data from the W-band and Ka-band cloud radars deployed
during DACAPO-PESO using the optimized peak-detection
parameters yielded by PEAKO. The reflectivity of the liq-
uid cloud peak is derived by peakTree using the thresholds
defined in Eqs. (1) and (2). The purpose of this comparison
is twofold: firstly, it is to verify that the peaks derived for
the two individual radar systems match, which serves as a
validation of the proposed PEAKO–peakTree methodology.
Secondly, this case demonstrates the capability of PEAKO–
peakTree to identify (supercooled) liquid water layers in
mixed-phase clouds, which is of considerable value for vari-
ous research applications.

For the aforementioned comparison, we choose to ana-
lyze a case where multiple liquid-containing cloud layers
were observed on 13 March 2019 in Punta Arenas. On this
particular day, there was a notable shift from the prevail-
ing westerly winds to easterly winds, coinciding with the
presence of a multilayer cloud system with cloud tops be-
tween 4 and 7 km altitude (Fig. 4a). The melting layer was
located at approximately 1.5 km altitude. Weak precipitation
(≤ 1 mmh−1) was observed at around 11:30 UTC. The liquid
water path measured by the MWR ranged between approxi-
mately 50 and 200 g m−2 for the considered time period from
08:00 to 12:00 UTC.

The MDV observed by LIMRAD94 (Fig. 4b) reveals
several horizontal layers exhibiting zero or positive MDV,
thereby suggesting the presence of multiple embedded
liquid-water-containing layers. Some of these layers are also
discernible in the attenuated lidar backscatter observed by
PollyXT (Fig. 4d). Because the lidar signal is strongly atten-
uated by liquid water, it is often unable to penetrate thick
cloud systems or multilayered clouds containing multiple
liquid layers. However, between approximately 10:00 and
11:30 UTC, up to four liquid layers are visible.

VOODOO offers a practical option to extend the range
up to which liquid can be observed beyond the point where
the lidar signal is completely attenuated by liquid water.
In Fig. 4c, the VOODOO-predicted probability of liquid
cloud droplets pCD is shown. Yellowish layers indicate a
high probability for the presence of cloud droplets in the
respective observation volume. For better comparability of
the VOODOO-predicted pCD and the attenuated backscat-
ter coefficient observed by the lidar, pixels with pCD> 0.65
are overlaid in Fig. 4d. In this visualization, it becomes ap-
parent that these regions with elevated pCD match well with
the areas exhibiting high attenuated backscatter coefficient in
those parts of the cloud, which can be penetrated by the li-
dar. In higher cloud layers (beyond 3 km), VOODOO liquid-
containing layers are noticeably thicker than those observed
by the lidar, with the layer of elevated lidar backscatter be-
ing located at the lower boundary of the pink structure rep-

resenting high pCD regions. This suggests that the geometric
extent of liquid water layers is larger than that observed by
the lidar because its signal becomes completely attenuated at
some point in the cloud.

When using VOODOO, one limitation needs to be consid-
ered however, i.e., that it is solely based on the cloud radar
reflectivity Doppler spectra, leading to the potential misclas-
sification of small and narrow spectral peaks caused by ice
as liquid. In regions immediately beneath layers of SLW, ice
crystals newly formed through primary or secondary ice for-
mation processes can be present. Due to their small diameters
and consequently low fall velocities, these pristine ice crys-
tals produce peaks in the cloud radar Doppler spectra that
closely resemble those of liquid cloud droplets.

The number of peaks detected by PEAKO in LIMRAD94
and MIRA-35 Doppler spectra are shown in Fig. 4e and f, re-
spectively. For each (sub-)peak, the moments are calculated
and hydrometeor classification thresholds, as described in
Sect. 2.2.2, are applied. The two panels in Fig. 4g and h show
the reflectivity of the liquid peak yielded by the PEAKO–
peakTree toolkit for LIMRAD94 and MIRA-35, respectively.
Remarkably, the liquid layers detected by PEAKO and peak-
Tree for the two different cloud radar systems are very simi-
lar and also align closely with pCD estimated by VOODOO.
Compared to lidar-detected liquid layers (Fig. 4d), further
layers near the cloud tops with temperatures around −20 °C
(08:30–09:00 UTC) and −12 °C (08:30–10:00 UTC), point-
ing to the existence of SLW-containing layers, are evident in
VOODOO- and PEAKO–peakTree-based results (Fig. 4c, g
and h). One notable difference between Fig. 4g and h is the
higher liquid reflectivity values for the Ka-band radar MIRA-
35 at altitudes above approximately 3 km. This difference of
roughly 5 dB can be explained by attenuation due to liquid
water, which impacts the 94 GHz system more strongly than
the 35 GHz cloud radar, in addition to the higher sensitivity
of the (pulsed) 35 GHz cloud radar.

As noted earlier, VOODOO can misclassify Doppler spec-
tra with narrow ice peaks as containing liquid. In turn, peak-
Tree offers the possibility of analyzing the moments of sub-
peaks identified as liquid, including the LDR, which can be
helpful to rule out that small columnar ice was misclassified
as liquid water in the Doppler spectra. For the liquid peaks
identified in the MIRA-35 spectra by the PEAKO–peakTree
toolkit in Fig. 4f, the LDR consistently ranges below−25 dB
(not shown), which is a strong indication that those peaks are
indeed being caused by liquid water.

Detecting multiple liquid-containing layers as shown here
is a valuable asset for studies on cloud radiative effects
(Barrientos-Velasco et al., 2022; Schimmel et al., 2023), as
well as for seeder–feeder mechanism studies (Proske et al.,
2021). Furthermore, the identification of a liquid peak offers
opportunities for retrievals of liquid water content and ver-
tical air motion by using the liquid peak as the air motion
tracer (e.g., Kalesse et al., 2016). One big strength of the
PEAKO–peakTree toolkit for this kind of application is its
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Figure 4. Radar and lidar observations and retrieved liquid probability and liquid peak reflectivity during the 13 March 2019 case in Punta
Arenas. (a) Equivalent radar reflectivity measured by LIMRAD94. (b) Mean Doppler velocity measured by LIMRAD94. (c) Probability
of cloud droplet presence predicted by VOODOO using LIMRAD94 cloud radar Doppler spectra. (d) Attenuated backscatter at 532 nm
measured by the PollyXT lidar, overlaid (in pink) with the probability field from (c) where pCD> 0.65. (e) Number of peaks detected by
PEAKO–peakTree in LIMRAD94 spectra. The black boxes A–D mark times and ranges for which example spectra are shown in Fig. 5a–d.
(f) Number of peaks detected by PEAKO in MIRA-35 spectra. (g) Liquid peak reflectivity derived by PEAKO and peakTree from LIMRAD94
spectra – the solid horizontal black lines at 1.2 and 7 km height mark the boundaries of the second LIMRAD94 chirp. (h) Liquid peak
reflectivity derived by PEAKO and peakTree from MIRA-35 spectra.

high flexibility: both algorithms can be adjusted to the spe-
cific cloud radar Doppler spectra at hand, and spectral polari-
metric variables can be included if they are available but are
not prerequisites.

To further illustrate capabilities and limitations of
the PEAKO–peakTree toolkit, four examples of liquid-
containing spectra of both radar systems are shown in Fig. 5.
The times and ranges at which the spectra were selected are
marked with black boxes A–D in Fig. 4e. Please note that, for
comparability of the spectra measured by LIMRAD94 and
MIRA-35, the units of the reflectivity are normalized by the
Doppler bin width.

The spectrum in Fig. 5a was observed at around
08:04 UTC at around 410 m range, i.e., in the first LIM-
RAD94 chirp. Here, the best PEAKO results (i.e., highest
similarity score) are obtained when no averaging of neigh-
boring spectra in time and range is performed for LIM-
RAD94 spectra (Table 1). As a result, the raw and smoothed
LIMRAD94 spectra are almost identical. Small differences
between −1 and 0 ms−1 result from smoothing. For both
radars, two peaks are detected, and the peak near ± 0 ms−1

is classified as “liquid” by peakTree according to the crite-
ria described in Sect. 2.2.2. The spectra shown in Fig. 5b–
d are all within the second LIMRAD94 chirp, where time
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Figure 5. Four examples for “liquid-containing” cloud radar Doppler spectra observed by LIMRAD94 (blue lines) and MIRA-35 (orange
lines) during the case study presented in Fig. 4. The times and ranges at which the spectra were picked are marked with rectangular boxes in
Fig. 4e. The darker, thinner line represents the averaged and smoothed spectrum and the lighter, thicker line the raw spectrum for each radar.

and range averaging over nine spectra results in the high-
est PEAKO similarity score (see Table 1). This leads to dif-
ferences in the depicted raw and smoothed spectra, e.g., in
Fig. 5b, where the faster-falling peak is significantly smaller
and narrower in the averaged and smoothed spectrum than in
the raw spectrum. Averaging over neighboring spectra in the
temporal and/or spatial domain can in some cases even lead
to peaks not being detected by PEAKO, as, e.g., in Fig. 5d.
Here, the slowest-falling peak in the spectra of both radars
is either smoothed below the minimum prominence required
for peak detection (MIRA-35) or not visible at all anymore
in the averaged and smoothed spectrum (LIMRAD94).

Summarizing, the averaging and smoothing of Doppler
spectra are an effective method to reduce the number of un-
wanted noise peaks. However, this approach also introduces
a challenge by possibly rendering genuine signal peaks un-
detectable. This is a tradeoff between noise reduction and
potential signal loss and is intrinsic to signal-processing
methodologies.

4.3 Case study 2: frozen drizzle and SIP observed
during NASCENT

We choose a second case study, from the NASCENT data
set, to compare the cloud radar Doppler spectrum peaks de-
tected by peakTree to hydrometeor types observed in situ
by HOLIMO. This case serves to illustrate the capabilities
and limitations of the proposed PEAKO–peakTree technique
for detecting and attributing peaks to different hydrometeor
types in a complex situation. Furthermore, the effect of tur-
bulence and the number of spectral averages n, which was
outlined in theory in Sect. 3, is observed and further explored
in real radar measurements.

For this purpose, we selected a study period on 12 Novem-
ber 2019 between 15:00 and 16:15 UTC, which has been pre-
viously described in detail by Pasquier et al. (2022a). On this
day, the weather in Ny-Ålesund was influenced by a warm
front and southwesterly winds. A low-level mixed-phase
cloud was present, with cloud-top height around 2 km and
cloud-top temperature of approx. −13.5 to −11 °C (Fig. 6a).
The considered period can be roughly split into two parts: a
turbulent period up to around 15:45 UTC (Fig. 6b), presum-
ably favoring the formation of large drizzle drops in updrafts,
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Figure 6. Radar and in situ observations during the 12 November 2019 case in Ny-Ålesund. (a) Equivalent radar reflectivity measured by
JOYRAD94. (b) Mean Doppler velocity measured by JOYRAD94. (c) Eddy dissipation rate computed from JOYRAD94 observations of
mean Doppler velocity. (d) Skewness observed by JOYRAD94. (e) Number of peaks detected by peakTree in JOYRAD94 spectra. (f) Liquid
PNSD measured by HOLIMO. (g) Concentrations of main ice habits observed by HOLIMO. (h) Ice PNSD measured by HOLIMO (area-
equivalent diameter is used). In the radar time–height plots (a–e), the thick, solid black line marks the altitude of the HoloBalloon, and the
horizontal solid lines indicate the boundaries of the chirps of JOYRAD94 as listed in Table 1. The vertical dashed lines mark the three times
chosen for comparison of the measured cloud radar Doppler spectra, including the peaks detected by PEAKO and peakTree, and in situ
observations (Fig. 7).

and a subsequent period dominated by fallstreaks. The pro-
cesses responsible for the observed ice particles at the alti-
tude of the HoloBalloon, which are suggested by Pasquier
et al. (2022a), involve the formation of ice crystals near the
cloud top via primary ice production, followed by SIP, which
increased their number concentration. The ice crystals then
grew until they were overcoming the updrafts and falling
into the turbulent layer below, where they continued to grow
as columns. There, the ice particles were colliding with su-
percooled drizzle drops, forming “ice lollies” (Keppas et al.,

2017) observed by HOLIMO. A sharp increase in the num-
ber of small ice particles (< 100 µm) was observed during
the fallstreak period, which is attributed to SIP via droplet
shattering.

Figure 6 summarizes the JOYRAD94 and HOLIMO ob-
servations along the balloon track during the selected case
study period, along with the calculated EDR (Fig. 6c) and the
number of peaks detected by PEAKO and peakTree (Fig. 6e).
Upon initial review of Fig. 6c and e, a link between the num-
ber of detected peaks and the EDR becomes apparent. Specif-
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ically, a higher number of detected peaks coincides with
lower EDR values, while higher EDR values typically corre-
spond to the identification of one single peak in the Doppler
spectra. Based on the findings from Sect. 3, this observed pat-
tern could be explained by turbulence broadening the spectra
in the high-EDR region, rendering peaks undetectable. How-
ever, the number of spectral averages specified in the radar
settings could also play a role in successful radar Doppler
spectrum peak detection. The number of averaged spectra for
the JOYRAD94 chirps are eight, six and four for the first,
second and third chirp, respectively (Table 1), which are all
well below the recommended number of approx. 20 (Sect. 3).
When examining the radar chirp boundaries in Fig. 6e, how-
ever, no artificial jumps in the number of peaks detected by
PEAKO and peakTree become apparent. This means that the
different settings between the JOYRAD94 chirps probably
do not play a major role in peak detection here.

The HOLIMO in situ observations provide additional in-
sights into the observed pattern in the number of detected
Doppler spectrum peaks. Figure 6f and h show the measured
liquid and ice PNSDs, respectively. The HoloBalloon track
is drawn in the time–height plots in Fig. 6a–e. Through-
out the first part of the case study, i.e., the “turbulent pe-
riod”, HoloBalloon was employed at a relatively constant
altitude of approx. 700 m in a region where EDR was high
(> 0.001 m2 s−3; Fig. 6c). Shortly after the onset of the “fall-
streak period” at 15:45 UTC, HoloBalloon was lowered into
a less turbulent layer. During the entire remaining time of
the selected case, HoloBalloon was flying at altitudes below
400 m.

During almost the entire case study, a bimodal droplet dis-
tribution, i.e., a cloud and a drizzle mode, is visible in the
liquid PNSD (Fig. 6f). Upon transitioning into the less tur-
bulent layer at around 15:50 UTC, the HOLIMO data reveal
an increase in the ice concentration (Fig. 6h), due to an in-
crease in both small and large ice particles (Fig. 6g and h).
The presence of multiple peaks in the cloud radar Doppler
spectra in the lower cloud regions (below approx. 400–600 m
in Fig. 6e) could thus be explained both by the decrease in
EDR and by the increase in the concentration of (large) ice
particles.

To explore more deeply why multiple peaks are detected
in the spectra at lower ranges after 15:50 UTC, we once
again employ PAMTRA forward simulations for three se-
lected times marked with vertical dashed lines in Fig. 6.
For these times, we compare the Doppler spectrum peaks
detected by PEAKO and peakTree with the in situ obser-
vations and forward-simulated spectra. A similar analysis
was done in Pasquier et al. (2022a, Fig. 11) for slightly
different times of interest. Here, we extend the analysis to
the comparison with observed cloud radar Doppler spectra
and the application of PEAKO–peakTree. Figure 7 shows
the observed hydrometeor PNSDs along with observed and
forward-simulated spectra for the three comparison times. It
should be noted that the vertical air velocity is set to 0 ms−1

in the PAMTRA simulations, while the observed spectra can
be impacted by vertical air motions, moving them along the
Doppler velocity axis.

The first comparison time (marked with 1 in Fig. 6a) is set
at 15:12 UTC, during the “turbulent period”, when HoloB-
alloon was employed at the altitude of the second chirp
of JOYRAD94. This time is characterized by high EDR
(Fig. 6c) and very low ice concentrations (Fig. 6h). The liquid
PNSD (Fig. 6f) exhibits a bimodal distribution, correspond-
ing to cloud droplets and drizzle drops. In the JOYRAD94
Doppler spectrum at time 1 (Fig. 7a), only one very broad,
slightly skewed peak is detected. The measured ice and liq-
uid PNSDs for time 1 are shown in Fig. 7d, and the result-
ing forward-simulated radar Doppler spectrum is presented
in Fig. 7g. The drizzle mode (purple lines in Fig. 7d and g)
dominates the total spectral reflectivity (black line), whereas
the individual contribution of the ice PNSD to the total re-
flectivity spectrum is not discernible. In Fig. 7g, the cloud
and drizzle modes are not separable in the forward-simulated
spectrum, which, like the exemplary observed radar Doppler
spectrum in Fig. 7a, has nonzero skewness and features only
one broad peak.

Time 2 is set at 15:50 UTC. During this time, HoloBal-
loon is lowered through the fallstreaks but is still located
in the second JOYRAD94 chirp, above 403 m altitude. The
observed skewness (Fig. 6d) is positive at time 2, indicat-
ing the presence of more than one hydrometeor popula-
tion. The EDR is still high, and HOLIMO observes an in-
creased concentration of ice particles in addition to the pres-
ence of the cloud and drizzle drops (Fig. 7e). The concen-
tration of ice columns and rimed ice is increased compared
to time 1, and frozen ice droplets are present. In the re-
sulting forward-simulated spectrum shown in Fig. 7h, again,
supercooled drizzle dominates the total spectral reflectivity,
masking the contributions of small ice and cloud droplets.
The frozen droplets produce a subpeak at around −2 to
−3 ms−1. The example JOYRAD94 spectrum in Fig. 7b fea-
tures a spike-like peak at −1.9 ms−1 and a broad, slightly
bimodal peak at slower fall velocities. The small fast-falling
peak is lost due to averaging and smoothing, i.e., not vis-
ible in the smoothed spectrum anymore and thus not de-
tected by PEAKO–peakTree. Based on the forward simula-
tions, this feature is only attributable to frozen drops due to
their strongly negative Doppler velocity. It is not possible to
attribute any of the hydrometeor classes with certainty to the
other two modes in the observed spectrum in Fig. 7b, as the
fall velocities of ice, drizzle and cloud particles overlap. At
this point, we would also like to point out that this particular
case illustrates one general limitation of Doppler-spectrum-
based hydrometeor classification tools: the Doppler spec-
trum is largely dominated by supercooled drizzle, which
constitutes the main peak at approx. −1 ms−1. Without the
HOLIMO instrument, this peak would have likely been clas-
sified as snow particles rather than supercooled drizzle, while
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Figure 7. Observed and forward-simulated cloud radar Doppler spectra during the 12 November 2019 NASCENT case, along with measured
HOLIMO size distributions for five hydrometeor classes. (a–c) Example cloud radar Doppler spectra observed close to the three selected
times 1–3 and the HoloBalloon altitude. (d–f) Observed particle number concentrations from the three times 1–3. (g–i) PAMTRA forward-
simulated spectra using the size distributions from (d–f).

the faster-falling emerging mode would have been classified
as rimed snowflakes rather than frozen drops.

Finally, time 3 is set at 16:00 UTC, when the tethered bal-
loon is employed in the lowest JOYRAD94 chirp at an alti-
tude of 240 m. This time is characterized by low turbulence
and even higher ice concentrations than at time 2, related to
heavy SIP occurrence as described in Pasquier et al. (2022a).
The skewness (Fig. 6d) is also positive during this time, and
two to three peaks are detected by PEAKO and peakTree
(Fig. 6e), as illustrated by the example JOYRAD94 Doppler
spectrum in Fig. 7c. Two modes can be separated in the main
peak by PEAKO and peakTree, and the liquid cloud droplet
peak is visible but smoothed to a prominence below the de-
tection threshold. The ice peak at large fall velocities cor-
responds to a fast-falling ice mode, which, in the forward
simulations, can be explained by frozen droplets (Fig. 7i).
Notably, the ice column mode (orange line in Fig. 7f), which
results from the strong SIP, is completely hidden in the driz-
zle peak in the forward-simulated spectrum in Fig. 7i. At the
same time, the liquid peak at the slow edge of the spectrum
is detectable in the forward-modeled spectrum.

Summarizing, the presented cases demonstrate clearly
how atmospheric turbulence and the superposition of the fall
velocities of different hydrometeor modes can add complex-
ity to the separability of cloud radar Doppler spectrum peaks.
In the first case (time 1; Fig. 7a, d and g), turbulent conditions
contribute to the broadening of peaks, rendering the sepa-
ration of the liquid peak from the drizzle mode impossible.
The second case (time 2; Fig. 7b, e and h) showcases how
the dominance of the drizzle mode, exacerbated by strong
turbulence, can effectively mask other hydrometeor types in
the resulting cloud radar Doppler spectra. Conversely, in the
third case, lower atmospheric turbulence levels in combina-
tion with smaller drizzle and higher ice concentrations facil-
itate the separability of a fast-falling ice mode and a distinct
liquid peak.

Finally, the peakTree selection rules for “fast-falling”
and “liquid” populations introduced in Sect. 2.2.2 were ap-
plied to the detected peaks of the presented case study. Be-
sides the identification of peaks, peakTree also determines
their moments like Z, MDV and width, which is helpful
for microphysical process studies. To illustrate this, Fig. 8

Atmos. Meas. Tech., 17, 6547–6568, 2024 https://doi.org/10.5194/amt-17-6547-2024



T. Vogl et al.: PEAKO and peakTree: tools for cloud radar Doppler spectrum peak analysis 6563

Figure 8. Reflectivity of the nodes identified by peakTree as (a) “liquid” and (b) “fast-falling” during the 12 November 2019 case shown in
Fig. 6. The gray shading marks high-turbulence areas where EDR is above 0.0001 m2 s−3. The thick, solid black line marks the altitude of
the HoloBalloon, and the horizontal solid lines indicate the boundaries of the chirps of JOYRAD94 as listed in Table 1. The vertical dashed
lines mark the three times chosen for comparison of the measured cloud radar Doppler spectra, including the peaks detected by PEAKO and
peakTree, and in situ observations (Fig. 7).

shows the reflectivities of the selected nodes. Regions of the
cloud where EDR is> 0.0001 m2 s−3 are represented as gray
shaded areas to highlight where peak detection may be ham-
pered by turbulence. From the HOLIMO observations, we
know that liquid droplets were present at the HoloBalloon
measurement height (Fig. 6f); i.e., it is certain that liquid
peaks are missing in these cloud regions. This can be ex-
plained by the findings in Sect. 3 and Appendix A: if the
number of spectral averages is low (n< 20), the liquid peak
can only be separated by PEAKO–peakTree for low to mod-
erate turbulence conditions and if the liquid peak is very
prominent in the Doppler spectrum (Fig. A1b).

Nevertheless, some valuable information can be obtained
by PEAKO–peakTree in those cloud areas that are not as
strongly characterized by turbulence and/or where the peaks
of different hydrometeor populations are well separable:
Fig. 8a reveals a liquid cloud top, typical of Arctic mixed-
phase clouds, and another liquid-containing layer at around
250 to 300 m height. In previous analyses of this case, it was
assumed that supercooled liquid water is present near the
cloud top, which is of importance for primary and secondary
ice formation processes. With the help of the PEAKO–
peakTree toolkit, we are able to confirm the presence of

the supercooled liquid cloud top. Furthermore, PEAKO–
peakTree exposes the sporadic existence of a second liquid-
containing layer below cloud top, which is of relevance for
ice growth processes like riming or SIP taking place in the
cloud.

The fast-falling node (Fig. 8b) is mostly detected in low
ranges (below 500–600 m). Heavily rimed ice crystals and
faceted rime (belonging to the “aged” class; our Fig. 6g and
Fig. 10 in Pasquier et al., 2022a) were observed through-
out this case, which potentially contribute to the fast-falling
Doppler spectrum peaks. Furthermore, based on our for-
ward simulations, we expect that the frozen drops, which
were increasingly observed after the HoloBalloon was low-
ered (Fig. 6g), contribute strongly to the observed fast-
falling peaks. The frozen droplets, including ice lollies, are
mainly observed in the time from 15:50 to approximately
16:15 UTC, coinciding with elevated reflectivities (−10 up
to approx. 5 dBZ) in the fast-falling node around 16:00 UTC
(Fig. 8b).

When considering the cloud region at around 15:32 UTC
between approx. 200–300 m height, the PEAKO–peakTree
toolkit successfully detects three distinct peaks in Fig. 6e,
which are attributed to the liquid and the fast-falling hy-
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drometeor population (Fig. 8). This example highlights the
PEAKO–peakTree toolkit’s ability to identify different hy-
drometeor types and represents a first step towards extracting
their properties, which opens doors for detailed cloud micro-
physical studies. The PEAKO–peakTree toolkit can be ap-
plied to data sets without coinciding in situ observations and
provide valuable information about the hydrometeors present
in the cloud radar observation volume, to some extent even
within highly dynamic cloud systems.

5 Conclusions

This paper showcases the synergistic application of two al-
gorithms designed for detecting and interpreting peaks in
cloud radar Doppler spectra: PEAKO and peakTree. Using
them together can be a powerful tool to extract comprehen-
sive information from cloud radar observations. PEAKO is
used to determine the optimal parameters for peak detec-
tion in cloud radar Doppler spectra, while peakTree is a tool
for peak detection, structuring and interpretation. Overall,
this study describes recent developments and presents valu-
able insights into the capabilities and limitations of these
two algorithms. Both of them, initially introduced in 2019,
underwent substantial progress, including the translation of
the PEAKO algorithm from MATLAB into Python. Cloud
radar Doppler spectrum files from RPG FMCW radars are
now supported by both methods, which were originally de-
veloped for MIRA-35 and/or ARM cloud radar data. More-
over, the compatibility of the two algorithms is a notable de-
velopment, allowing PEAKO peak-finding parameters to be
passed to peakTree through a configuration file. Furthermore,
both algorithms are now openly available on GitHub, facili-
tating accessibility for the scientific community.

The detection of peaks in cloud radar Doppler spectra is
impacted by the radar settings and atmospheric dynamics.
To gain a better understanding of the combined effects of
turbulence and the number of averaged spectra on the sepa-
rability of Doppler peaks, simulations with the radar forward
operator PAMTRA were performed. The results point to a
minimum number of 20 averaged spectra to prevent spuri-
ous noise peaks being detected in the spectra. For turbulence
broadening exceeding σ = 0.06 ms−1, the successful detec-
tion of liquid subpeaks decreased sharply for all simulation
runs, including radar settings with up to 120 averaged spec-
tra.

PEAKO k-fold cross-validation with up to 2500 spectra as
training data, in which the peaks were marked manually by
a human expert labeler, was performed for each of the eight
types of radar data used in this study. The results suggest that
around 100 to 200 training spectra are sufficient for PEAKO
training, as the training and validation curves converge at a
constant skill score at approximately this value range.

Two case studies were presented to demonstrate the algo-
rithms’ capabilities in detecting and interpreting cloud radar

Doppler spectrum peaks. In the first case, data from two
co-located vertically pointing cloud radar systems was used.
PEAKO and peakTree identified nearly identical liquid lay-
ers in both data sets, which also agreed well with liquid layer
structures identifiable in the lidar backscatter and the prob-
ability of liquid yielded by the machine-learning-based re-
trieval VOODOO. The second case study offered the oppor-
tunity to compare cloud radar Doppler spectra to observa-
tions collected by a holographic imager deployed on a teth-
ered balloon flying in the cloud. However, due to intense
turbulence and radar settings involving a low number of av-
eraged spectra, peak detection in the observed radar spec-
tra proved challenging. Additional forward simulations us-
ing PAMTRA highlighted the strong impact of atmospheric
turbulence, broadening the peaks to the extent that subpeaks
became indistinguishable. These findings highlight a critical
insight: the performance of the algorithms is notably influ-
enced by the quality of the data, and the influence of at-
mospheric turbulence is a key factor. Nevertheless, in low-
turbulence cloud areas, the algorithms successfully identi-
fied multiple peaks, enabling the identification of fast-falling
and liquid nodes. This is especially useful for cloud micro-
physical studies, e.g., of multilayer clouds in which multi-
ple liquid-containing layers can lead to seeder–feeder effects.
Another potential PEAKO–peakTree application is to facil-
itate and broaden the application of existing Doppler spec-
trum peak-based retrievals to larger data sets. This includes,
e.g., retrievals of drop size distributions and liquid and ice
water content and using the liquid peak as an air motion
tracer (Kalesse et al., 2016).

A logical progression of this work includes the integration
of PEAKO and peakTree into Cloudnet, which is currently
being developed towards incorporating cloud radar Doppler
spectra. Given the high adaptability of both Python-based al-
gorithms, this proposed implementation is expected to be a
feasible task with manageable complexity. peakTree’s capa-
bility to extract reflectivities for each detected node presents
an avenue for detailed cloud microphysical process studies.
Beyond the identification of fast-falling and liquid nodes as
shown in the second case study, other hydrometeor types can
be freely defined by setting thresholds for Z, MDV, spec-
trum width or LDR (for dual-polarization radar systems). Im-
plementing PEAKO and peakTree across all Cloudnet sites
holds immense potential for research applications aiming
at deepening the understanding of cloud microphysical pro-
cesses.

Appendix A: Peak separability for well-separated
bimodal particle populations

The simulations from Sect. 3 were repeated considering only
two particle populations to illustrate conditions where the
two peaks are more easily distinguishable: we simulated
a cloud droplet particle population with a total number of
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55.3× 106 m−3 and a mean size of 18 µm, resulting in a peak
of −23 dBZ at −0.05 ms−1 and a slightly rimed ice particle
population of 2.9× 103 m−3 and a mean size of 294 µm, re-
sulting in a peak of −12 dBZ at −0.84 ms−1.

Compared to the simulations based on the HOLIMO ob-
servations, the liquid peak possesses a significantly higher
reflectivity, while the second peak has a lower reflectivity
(−23 dBZ instead of 0 dBZ) and spectral width (0.24 ms−1

instead of 0.44 ms−1). For peak-finding, the PEAKO-trained
parameters were used. With increasing n, the smoothing span
decreases from 0.55 to 0.15 ms−1, while the prominence
threshold is constant at 0.5 dB. In line with the simulations
based on HOLIMO PNSDs, the number of detected peaks
with the optimized peak-finding parameters is one and two
for high- and low-turbulence broadening, respectively – re-
gardless of n (Fig. A1 dots). Contrarily, for the fixed peak-
finding parameters, the number of peaks strongly increases
for low n due to (wrong) noise detections (Fig. A1 open di-
amonds). The liquid droplet peak is reliably detected up to a
kinematic broadening of 0.1 ms−1, which is slightly higher
than for the forward-simulated spectra based on HOLIMO
observations. Reliable detections of the liquid peak can even
be obtained for n= 6 and n= 10. At higher n, the liquid
peak can still be detected for kinematic broadening condi-
tions above 0.125 m s−1.

Code and data availability. JOYRAD94 moment data
from the NASCENT campaign are available on Zenodo:
https://doi.org/10.5281/zenodo.7402285 (Pasquier et al.,
2022c). The JOYRAD94 Doppler spectrum data are available
on PANGAEA: https://doi.org/10.1594/PANGAEA.959914
(Gierens et al., 2023). PEAKO is available on GitHub at
https://doi.org/10.5281/zenodo.14024460 (Vogl, 2024). peakTree
is available on GitHub at https://doi.org/10.5281/zenodo.14025745
(Radenz and Vogl, 2024).
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Figure A1. PEAKO–peakTree peak-detection results in forward-
simulated cloud radar Doppler spectra using PAMTRA. (a) Num-
ber of detected peaks by PEAKO–peakTree vs. the number of spec-
tral averages n set in the forward simulation. Compared are two
sets of peak-finding parameters: fixed (indicated by open diamonds;
a prominence threshold of 1.5 dB, minimum width of 0.03 ms−1

and no smoothing along the velocity dimension) and trained in-
dividually for each n (dots). The marker color represents the tur-
bulence broadening (in ms−1) set in the PAMTRA forward sim-
ulation. (b) Fraction of successfully detected liquid peaks in 100
forward-simulated spectra vs. turbulence broadening (in ms−1) for
radar settings with n= 6, 10, 40, 80 and 120. One example of
a forward-simulated spectrum is shown as an inset (n= 120 and
σ = 0.02 ms−1).
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