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Abstract. Ground-based lidar data have proven extremely
useful for profiling the convective boundary layer (CBL).
Many groups have derived higher-order moments (e.g., vari-
ance, skewness, fluxes) from high-temporal-resolution lidar
data using an autocovariance approach. However, these anal-
yses are highly uncertain near the CBL top when the depth
of the CBL (z;) is changing during the analysis period. This
is because the autocovariance approach is usually applied
to constant height levels and the character of the eddies is
changing on either side of the changing CBL top. Here, a new
approach is presented wherein the autocovariance analysis is
performed on a normalized height grid, with a temporally
smoothed z;. Output from a large eddy simulation model
demonstrates that deriving higher-order moments from time
series on a normalized height grid has better agreement with
the slab-averaged quantities than the moments derived from
the original height grid.

1 Introduction

The atmospheric boundary layer (ABL) is the lowest portion
of the atmosphere, typically ranging in depth from 10 m in
extremely stable conditions to over 3 km, that interacts di-
rectly with the surface and is responsible for the majority
of our weather (Stull, 1988). In particular, the ABL often has
significant variability over the diurnal cycle due to the chang-
ing net radiation at the surface caused by the solar cycle.
During the day when the surface is being heated by the sun,

turbulent eddies rising from the surface create a well-mixed
convective boundary layer (CBL) with turbulent eddies that
range from approximately the size of the depth of the CBL
(which will be denoted here as z;) to sub-meter in size. Un-
derstanding and characterizing the properties of this turbu-
lent CBL is critical to improving the modeling of transport
and mixing within the CBL in weather and climate models
(Deardorff, 1974; Wilde et al., 1985).

Observations of turbulent mixing have been made for
many dozens of years. Today’s technologies include rapid
response sonic anemometers and gas analyzers for in situ
observations, scintillometers for open-path observations over
larger volumes, and lidar observations from which profiles of
turbulent moments can be derived. Higher-order moments,
such as the variance and skewness of a scalar, as well as
covariances between two geophysical variables (e.g., water
vapor and vertical motion), are used to describe the turbu-
lence in the CBL statistically. There are multiple areas where
better understanding of these higher-order moments is use-
ful. For example, moisture variance in the CBL is impor-
tant for understanding the boundary layer moisture budget
(Deardorff, 1974; Lenschow and Wyngaard, 2014; Huang et
al., 2011), the development of boundary layer clouds (Wilde
et al., 1985; Golaz et al., 2002; Berg et al., 2005), and the
development of deep convection (e.g., Berg et al., 2013).
Indeed, Wulfmeyer et al. (2016) outlined a powerful ap-
proach that could be used to evaluate a wide range of sim-
ilarity relationships that relate vertical gradients and mean
profiles to turbulent moments using advanced ground-based
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lidar observations; similarity relationships often form the ba-
sis of turbulent parameterizations used within mesoscale and
climate models.

Here, we focus on lidar observations of turbulent mo-
ments within the CBL. Lidar observations of water vapor
(e.g., Muppa et al., 2016; Turner et al., 2014), tempera-
ture (Behrendt et al., 2015), vertical motions (Berg et al.,
2017; Lenschow et al., 2012), aerosols (McNicholas and
Turner, 2014), and fluxes (Behrendt et al., 2020; Kiemle
et al., 2007; Senff et al., 1994) have been used to derive
higher-order moments in various locations. Lidar data, how-
ever, are frequently noisy due to both changing solar con-
tributions and instrument noise, and thus separating out the
atmospheric component to the higher-order moments from
the noise is challenging. Most lidar groups analyzing higher-
order moments use the autocovariance technique pioneered
by Lenschow et al. (2000) (hereafter, L-2000) to separate the
two contributions, wherein the moments at lags above zero,
which do not have any contribution from the instrument error,
which is assumed to be uncorrelated with time, are interpo-
lated back to lag 0.

The L-2000 approach assumes that the turbulent nature of
the CBL does not change with time since statistics are de-
rived from high-temporal-resolution time series, given that
the lidars are most often measuring very small volumes in
the vertical column above and below the lidar. Furthermore,
as the larger eddies carry the most energy yet also occur less
frequently, the time window analyzed must be sufficiently
long to reduce the sampling uncertainty (Lenschow et al.,
1994; hereafter, L-1994). The two constraints provided by
L-1994 and L-2000 restricts the analysis of lidar data to 1—
2 h periods when the CBL is quasi-stationary (i.e., where z;
is not changing with time); these conditions are most com-
monly found in the mid to late afternoon (e.g., from 15:00 to
17:00 CDT (central daylight time) in Fig. 1).

However, there is a strong desire to be able to derive
higher-order moments from lidar observations when the CBL
is rapidly evolving, such as the time period after the morn-
ing transition to when the CBL stops growing (e.g., from
10:00 to 15:00CDT in Fig. 1). Some studies have derived
higher-order moments from lidar data during periods when
z; 1s rapidly changing; this is often done by restricting the
analysis to shorter time periods to derive the statistics (e.g.,
the 30 min window used in Berg et al., 2017), which results
in larger sampling uncertainties (per L-1994). Furthermore,
all of these analyses are done on a fixed height grid; i.e., the
higher-order moments are derived by looking at the time se-
ries at each range gate (height) observed by the lidar. This
approach of using a fixed height grid from which to define
the moments is insufficient at the top of the CBL when z;
passes through the height layer being analyzed (zana1) dur-
ing the analysis period (i.e., z; < Zanal €arly in the period and
Zi > Zanal at the end of the period).

This work presents a new approach (outlined in Sect. 2) to
analyze lidar profile observations over time when the height
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Figure 1. CBL depth over time, derived from the slab values (black,

< z; (t) >), the instantaneous 10 s values of a single column (blue,
Z¢,i (1)), and the 60 min temporal average of the instantaneous val-
ues of the single column (orange, z¢ ; (7).

of the CBL is changing over that time. The approach is sim-
ple: change the vertical coordinate from height to normalized
height before computing the statistics over temporal win-
dows. This paper demonstrates this approach using output
from a large-eddy simulation model (Sect. 3), wherein we
can use a single column to approximate the lidar observations
and spatial statistics to serve as truth.

2 Approach

Our proposed approach is simple: instead of deriving higher-
order moments on a fixed height grid (z), the data are trans-
formed to a normalized height grid (Z = z/Z;) where the
overbar indicates a temporal average. The advantage of this
scheme is as follows: if Z < 1 (> 1) for the entire analysis pe-
riod, then it is known that the time series is entirely within
(above) the CBL. This greatly simplifies the understanding
of the statistics. The challenge thus becomes understanding
the time period over which to derive z; and demonstrating
that computing the moments on the Z grid is more accurate
than using the regular z grid.

To investigate this, we utilized large-eddy simulations of
the CBL. The simulation used the Department of Energy’s
Atmospheric Radiation Measurement (ARM) constrained
variational analysis (VARANAL) for initial and boundary
conditions (Xie, 2017). VARANAL yields values for sur-
face fluxes, large-scale advective and radiative tendencies
that are spatially averaged over the entire ARM Southern
Great Plains (SGP) domain. These simulations were per-
formed with the MicroHH model (van Heerwaarden et al.,
2017), using 25 m horizontal spacing over a 10km x 10km
domain and 15 m vertical resolution. Statistics output every
5 min and derived over the entire domain were used as truth,
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and the lidar data were simulated by extracting out a high
temporal resolution (10 s) time series at a single location in
the middle of the domain. For this work, we will show re-
sults from 8 August 2017 over the ARM program (Turner
and Ellingson, 2016) SGP site (Sisterson et al., 2016). How-
ever, very similar results were found on other days, and these
are not shown.

The evolution of the depth of the CBL (i.e., z;) from the
LES (large-eddy simulations), derived through three differ-
ent methods, is shown in Fig. 1. All three methods compute
z; as the level of neutral buoyancy of a surface-based parcel,
which we found as the first height index at each time where
the potential temperature (6) is a value § greater than the first
height level at that time, where § is 0.5¢,,. However, method 1
was derived from the slab-averaged output from the LES,
yielding z; at each time ¢ (i.e., over the entire model domain);
method 2 was the instantaneous z; value for the selected col-
umn c (i.e., mimicking an instantaneous lidar observation) at
time ¢; and method 3 used a third-order Savitzky—Golay filter
with a 1 h window to temporally average z; at that selected
column ¢ around time ¢. These will be denoted by < z; (¢) >,
Zc,i(t), and z ; (), respectively. All three of these were de-
rived as the level of neutral buoyancy, where the 6 used for
< z;(t) > was from the slab-averaged LES output, for z ; (¢)
it was the instantaneous 6 from an individual column, and for
Zc,i (t) it was the temporally averaged z¢ ; (¢).

For this work, we computed time—height cross sections of
variance, skewness, and kurtosis of water vapor mixing ra-
tio (¢) from the LES output using three approaches: (a) us-
ing spatial statistics at each height level, which served as the
truth dataset; (b) the baseline approach for a single column,
wherein the statistics were computed on a fixed z grid; and
(c) the new approach for a single column where the statistics
were computed on a normalized z grid using z;(¢), after
which the moments were interpolated back to the regular z
grid for comparison. We computed the variance and skew-
ness at each level in the z or Z grid by first extracting out the
time series at that level for the time period being analyzed
and detrending it. The variance is then computed as

_ 1 —2
Var(q) = =2 =), (M
the skewness as
Yo —7)3
Skew(q) = G- @)
(N —1)(Var(q))>
and the kurtosis as
Yo —a)*
Kurt(g) = ——4 9 3)

(N = 1)(Var(g))*”

where N is the number of points in the analysis window.
Note that we did not use the L-2000 technique here, as we

did not attempt to simulate a true lidar observation by su-

perimposing any random error. The primary purpose of this
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study is to demonstrate that using the normalized Z grid pro-
vides more accurate measures of the variance, skewness, and
kurtosis than using the regular z grid, even though the former
includes a contribution from the interpolation error that was
introduced by putting the data on the z grid. Since the Z grid
is a much finer resolution than the regular height grid, this
interpolation error is extremely small.

3 Results

In each of the following contour figures, data above 1.2 z;
have been masked so that we can focus on the top of the
boundary layer and below. Additionally, sunrise, noon, and
sunset times are shown with dashed lines in the figures.
A comparison of the g variance from the three calculation
methods is shown in Fig. 2. The slab value results (left) are
the truth to which the other two methods are compared. The
slab values show that the variance is the highest at the top of
the boundary layer from 10:00-17:30 CDT, after which it ta-
pers off. Below the boundary layer top, the variance is much
smaller. Both methods capture the higher variance along the
top of the boundary layer, but the normalized Z grid has less
of a gap just before 15:00 CDT, whereas the regular grid has
a more significant gap at that point. Both methods are close
to the slab values, except at 12:30 CDT and 15:00 UTC along
the top of the boundary layer.

The g skewness is compared in Fig. 3. These figures
clearly show that the normalized Z grid values are closer to
the slab values in both magnitude and shape. Again, turning
our attention to the values at the top of the boundary layer
from 10:00-17:30 CDT, there is high skewness in a very thin
layer. The regular grid underestimates the magnitude of the
skewness here and overestimates the size of the layer with
the highest skewness values. At the surface, both methods
show higher levels of skewness than the slab at 15:00 CDT
and beyond.

In the case of latent heat flux, the different grid methods
must be applied to both ¢ and w. The results for the flux
(q’w’) are shown in Fig. 4. There are some clear differences
between both grid methods and the slab values. The maxi-
mum flux is significantly higher than the slab values, and the
two methods do not capture the flux well before 12:30 CDT,
especially in the middle of the boundary layer.

To better quantify the differences between these two meth-
ods and the slab values, Figs. 57 show line plots of the vari-
ance (Fig. 5), skewness (Fig. 6), and latent heat flux (Fig. 7)
at 90 % of the boundary layer (Figs. 5-7a) and the top of the
boundary layer (Figs. 5-7b) and their respective root-mean-
square errors (RMSEs) calculated over the time window of
08:00-18:00 CDT. The RMSE is calculated based on the dif-
ference between each grid method and the slab values. We
see that for the variance (Fig. 5) and at both depths that the
normalized z grid RMSE value is lower than the regular grid
RMSE value, which shows that the normalized Z grid method
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Figure 2. Time-height cross sections of ¢ variance (units of (g kg_l)z) computed from slab values at each height (a) on a regular z grid (b)

and on the normalized Z grid (c). Both panels (b) and (c) are averaged over a 1 h period centered on each 30 min.
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the normalized Z grid (c). Both panels (b) and (c) are averaged over a 1 h period centered on each 30 min.
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Figure 5. Line plot comparison of ¢ variance (units of gkg_l(m s~1)) at 90 % of the boundary layer (a) and at the top of the boundary
layer (b) for the three computation methods, i.e., slab (black), regular grid (blue), and normalized Z grid (orange), along with their respective
root-mean-square error (calculated over the time period of 08:00-18:00 CDT) with respect to the slab value results.

better captures the variance towards the top of the boundary
layer than the regular grid method. For the skewness (Fig. 6)
at 90 % of the boundary layer (Fig. 6a) and the top of the
boundary layer (Fig. 6b), the normalized grid method is sig-
nificantly better than the regular grid method. Finally, look-
ing at the flux (Fig. 7), the Z grid method yields slightly
smaller RMSE values at 90 % of the boundary layer (Fig. 7a)
and at the top of the boundary layer (Fig. 7b).

We extended these methods to the case of the fourth mo-
ment (kurtosis) and calculated the variance, skewness, and
kurtosis of vertical velocity (w). Table la—c compare the
RMSE values of the regular and normalized z grid methods
for calculating the variance, skewness, and kurtosis of ¢ and
w and the sensible (0’w’) and latent heat fluxes (¢’w’) at
various heights throughout the boundary layer (0.75z;, 0.9z;,
and z;). In this table, the grid method with the lower stan-
dard error for a given variable is bolded. We found that at
0.5z; neither grid method stood out as better because the
RMSE values were either effectively the same or better for
an equal number of calculations, and thus we turn our atten-
tion to heights closer to the boundary layer depth. At 0.75z;
(Table 1a), the normalized Z grid method is better for every
calculation except ¢ variance and g kurtosis, where the reg-
ular grid method is better. For 0.9z; (Table 1b), the normal-
ized z grid method is better in all cases except w variance,
where the methods yield the same RMSE. Finally, at the
top of the boundary layer (Table 1c), the normalized Z grid
method is better in all cases. At every height, the normalized
Z grid method was better for g skewness, w kurtosis, and both
fluxes. At depths closer to the boundary layer depth, the im-
portance of the normalized Z grid method for more accurate
calculations becomes increasingly clear.

https://doi.org/10.5194/amt-17-6595-2024

4 Discussion

The normalized Z grid more accurately captures the ¢ and
w variance, skewness, kurtosis, and temperature and mois-
ture fluxes, especially at heights approaching the top of the
boundary layer. By accounting for changes in the bound-
ary layer over time, this approach allows for a more accu-
rate analysis of turbulence characteristics, particularly while
the CBL is actively growing. This was particularly true for
skewness, suggesting that higher-order moments would ben-
efit more from this new approach. These results are consis-
tent across multiple analysis days (not shown).

Previous work that only considers a regular grid could be
reanalyzed to be more accurate with this method. In the fu-
ture, this method can be used for more accurate lidar analysis
of the CBL turbulent statistics during the late morning tran-
sition. A larger time window could be used since the changes
in the boundary layer are already considered in the analysis,
which will reduce the sampling uncertainty relative to previ-
ous studies done on a regular grid.

Further refinement is still necessary to determine optimal
analysis periods guided by L-1994. Additionally, this method
also would need to be adjusted for extremely rapid changes
in z;, such as during the evening transition. In cases where
neither grid accurately captures the slab values, we must re-
member that a single column will never be able to properly
capture the spatial variability because of sampling uncertain-
ties. It is clear, especially in the g variance and latent heat
flux time-height cross sections around 12:30 CDT, that the
single column is experiencing an updraft that is not repre-
sentative of the entire domain. Further work must be done to
reduce the impact of spatial variability.

Atmos. Meas. Tech., 17, 6595-6602, 2024
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Figure 7. Line plot comparison of latent heat flux (¢’w’) (units of gkg_l(m s_l)) at 90 % of the boundary layer (a) and at the top of the
boundary layer (b) for the three computation methods, i.e., slab (black), regular grid (blue), and normalized Z grid (orange), along with their
respective root-mean-square error with respect to the slab value results.

5 Conclusions

This work shows that using a normalized Z grid to calculate
g and w variance, skewness, kurtosis, and temperature and
moisture fluxes allows for a better representation of higher-
order moments, especially at the top of the boundary layer,
when compared to the higher-order moments and fluxes de-
rived from the values over the entire domain. By transform-
ing data to a normalized grid, we overcome limitations of the
regular grid, particularly during the rapid growth of the CBL.
This results in more accurate moments and is more impact-

Atmos. Meas. Tech., 17, 6595-6602, 2024

ful for higher-order (e.g., third-order) moments. This opens
up the ability to describe these moments more accurately in a
growing CBL, which will lead to improvements in modeling
mixing in future climate and weather models.

In forthcoming work, we will discuss methods for han-
dling spatial variability by determining optimum spacing and
number of columns to represent a larger domain more accu-
rately. Additionally, work needs to be done to determine op-
timum analysis periods and to refine the method for cases
where the boundary layer depth is rapidly changing (e.g.,
during the evening transition).

https://doi.org/10.5194/amt-17-6595-2024
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Table 1. Comparison of the root-mean-squared errors for the regular z grid and normalized Z grid methods calculated over the time window
of 08:00-18:00 CDT at 0.75z;, 0.9z;, and z;. Bolded values indicate RMSE values smaller than the other height grid by the standard error of

the two.
(a) 0.75 z;
Moment RMSE regular z grid  RMSE normalized z grid
Variance (¢) (gkg™!)? 0.097 0.103
Skewness (¢’) (unitless) 0.560 0.451
Kurtosis (g’) (unitless) 1.189 1.832
Variance (w’) (ms™1)2 0.261 0.254
Skewness (w’) (unitless) 0.517 0.508
Kurtosis (w’) (unitless) 2.014 1.923
Latent heat flux (¢’w’) (g kg_l)(m s~y 0078 0.076
Sensible heat flux (6’w’) (K)(ms™1) 0.021 0.018
(b) 0.9
Moment RMSE regular z grid  RMSE normalized Z grid
Variance (¢') (gkg™1)? 0.301 0.259
Skewness (¢’) (unitless) 0.547 0.379
Kurtosis (g’) (unitless) 1.222 0.752
Variance (w’) (ms™ 1 )2 0.179 0.179
Skewness (w’) (unitless) 0.639 0.598
Kurtosis (w’) (unitless) 2.537 2.436
Latent heat flux (¢’w’) (gkg~H(ms™1)  0.119 0.112
Sensible heat flux (8’w’) [(K)ms~!)]  0.046 0.044
(©) z
Moment RMSE regular z grid  RMSE normalized Z grid
Variance (q") (gkg™1)? 0.403 0.391
Skewness (¢’) (unitless) 1.124 0.623
Kurtosis (¢’) (unitless) 4.124 3.094
Variance (w’) (ms™1)2 0.205 0.202
Skewness (w’) (unitless) 0.525 0.473
Kurtosis (w’) (unitless) 2.644 2.466
Latent heat flux (¢’w’) (g kg_l)(m s~ 0.095 0.087
Sensible heat flux (¢’w’) (K)(ms™1) 0.047 0.046

Code and data availability. The code used in this paper can
be downloaded from https://doi.org/10.5281/zenodo.13367483
(Rosenberger and Heus, 2024) and https://doi.org/10.5194/gmd-10-
3145-2017 (van Heerwaarden et al., 2017). The data are avail-
able at https://doi.org/10.5281/zenodo.13367650 (Rosenberger et
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