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Abstract. Thermodynamic profiles in the atmospheric
boundary layer can be retrieved from ground-based passive
remote sensing instruments like infrared spectrometers and
microwave radiometers with optimal-estimation physical re-
trievals. With a high temporal resolution on the order of
minutes, these thermodynamic profiles are a powerful tool
to study the evolution of the boundary layer and to evalu-
ate numerical models. In this study, we describe three re-
cent modifications to the Tropospheric Remotely Observed
Profiling via Optimal Estimation (TROPoe) retrieval frame-
work, which improve the availability of valid solutions for
different atmospheric conditions and increase the tempo-
ral consistency of the retrieved profiles. We present meth-
ods to enhance the availability of valid solutions retrieved
from infrared spectrometers by preventing overfitting and by
adding information from an additional spectral band in high-
moisture environments. We show that the characterization of
the uncertainty of the input and the choice of spectral infrared
bands are crucial for retrieval performance. Since each pro-
file is retrieved independently from the previous one, the time
series of the thermodynamic variables contain random uncor-
related noise, which may hinder the study of diurnal cycles
and temporal tendencies. By including a previous retrieved
profile as input to the retrieval, we increase the temporal
consistency between subsequent profiles without suppress-
ing real mesoscale atmospheric variability. We demonstrate
that these modifications work well at midlatitudes, polar and
tropical sites, and for retrievals based on infrared spectrome-
ter and microwave radiometer measurements.

1 Introduction

Observations of the continuous temporal evolution and di-
urnal cycle of thermodynamic profiles are essential for the
analysis of physical processes in the atmospheric boundary
layer (ABL), the evaluation of numerical weather prediction
models, and data assimilation (National Research Council,
2009; Wulfmeyer et al., 2015). Airborne platforms such as
radiosondes, tethersondes, crewed aircraft, or uncrewed air-
craft systems usually do not measure continuously and only
provide snapshots of the atmospheric conditions. Ground-
based active remote sensing instruments such as Raman li-
dar (e.g., Turner et al., 2016; Di Girolamo et al., 2017) and
differential absorption lidar (DIAL) (e.g., Newsom et al.,
2020; Spuler et al., 2021) or passive remote sensing instru-
ments such as infrared spectrometer (IRS) (Turner and Löh-
nert, 2014) and microwave radiometer (MWR) (Crewell and
Löhnert, 2007; Löhnert et al., 2009) can resolve rapid tem-
poral changes of the thermodynamic ABL state. The benefit
of networks of ground-based profiling instruments for oper-
ational and research purposes has been outlined in several
previous works (Löhnert and Maier, 2012; De Angelis et
al., 2017; Illingworth et al., 2019; Wagner et al., 2019; Ci-
mini et al., 2020; Degelia et al., 2020; Shrestha et al., 2021;
Böck et al., 2024). While active sensors emit and receive
electromagnetic waves, passive sensors detect the emitted
radiance of the atmosphere in certain spectral regions from
which atmospheric variables have to be retrieved. One op-
tion to retrieve thermodynamic profiles from these passively
sensed radiances is based on the optimal-estimation ap-
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proach (Maahn et al., 2020), which combines measurements,
prior information, and corresponding uncertainties. Based on
the AERIoe optimal-estimation physical retrieval algorithm
(Turner and Löhnert, 2014), which was developed for the At-
mospheric Emitted Radiance Interferometers (AERIs) instru-
ments and only allowed infrared radiances as input, the Tro-
pospheric Remotely Observed Profiling via Optimal Estima-
tion (TROPoe, Turner and Blumberg, 2019; Turner and Löh-
nert, 2021) retrieval was developed. TROPoe allows combin-
ing radiances observed by MWR or IRS along with thermo-
dynamic profiles from various sources such as Raman lidar
(Turner and Blumberg, 2019), DIAL (Turner and Löhnert,
2021), Radio Acoustic Sounding System (RASS) (Djalalova
et al., 2022), radiosondes, or numerical weather prediction
models (Bianco et al., 2024). After more than 10 years of
development, the TROPoe retrieval code was recently con-
verted to Python and put into a Docker container to facili-
tate its usage for both operations and research. It is currently
used operationally by the Department of Energy (DOE) At-
mospheric Radiation Measurement (ARM) program (Turner
and Ellingson, 2016) and by the Swiss weather service Me-
teoSwiss as part of EUMETNET (Rüfenacht et al., 2021).
TROPoe can be used to process data from a network of inho-
mogeneous thermodynamic profiling instruments consisting
of different passive and active remote sensors. Its uniform
data output, which includes a full error characterization, in-
formation content, and vertical resolution, facilitates subse-
quent analysis and data assimilation of ground-based profil-
ing observing networks.

TROPoe determines the optimal state vector, which may
consist of thermodynamic profiles as well as cloud and trace
gas properties, which satisfy both the observations and the
climatological information (the prior). The prior is needed
to constrain the ill-posed retrieval to realistic solutions and
specifies how temperature and humidity covary with height.
Starting with the prior as a first guess, a forward model is
used to compute pseudo-observations, which are then com-
pared to the actual observations. If the computed and ob-
served values do not agree within the uncertainty of the mea-
surements, the state vector is modified in an iterative process.

The development of TROPoe started in 2011 and is still
ongoing. Various modifications, improvements, and evalua-
tions have been described in previous papers (e.g., Blumberg
et al., 2015; Turner and Blumberg, 2019; Turner and Löhn-
ert, 2021; Djalalova et al., 2022; Bianco et al., 2024). In the
present paper, we address three specific issues related to (i)
adequately characterizing uncertainties of the input, (ii) im-
proving availability of valid solutions in high-moisture en-
vironments, and (iii) improving the temporal consistency of
retrieved thermodynamic profiles. The first two issues are
IRS-specific, while the third issue applies to MWR- and IRS-
based retrievals.

1. Ideally, uncertainties in the observations, prior, and
forward model are propagated and characterized by

the posterior covariance matrix, which is part of the
TROPoe output. Because including the uncertainty of
the forward model would increase the computational
costs of the retrieval substantially1, the uncertainty of
the forward model is assumed to be zero in the current
framework of TROPoe. Instead, the missing uncertainty
of the forward model is assumed to be included in the
uncertainty of the infrared radiances in the error covari-
ance matrix of the observations. The uncertainty of the
infrared radiances is instrument-specific and is deter-
mined during the IRS calibration process (see Rever-
comb et al., 1988, and Knuteson et al., 2004b, for de-
tails). A common approach is to greatly reduce the ran-
dom noise of the infrared radiances using a principal-
component-based noise filter before the radiances are
used within TROPoe (Turner et al., 2006). Along with
the noise-filtered radiances, the original radiance uncer-
tainty is included in the error covariance matrix of the
observations of the retrieval. The intention is that the
larger original radiance uncertainty captures the sum of
the lower uncertainty of the noise-filtered radiances and
the forward model uncertainty. For details on this ap-
proach see Turner and Blumberg (2019). However, de-
pending on the radiance noise level of a specific IRS,
the original radiance uncertainty might not be sufficient
to compensate for the missing uncertainty of the for-
ward model for some instruments, which may still lead
to overfitting of the data and unrealistic profiles (Adler
et al., 2023). We propose a minimum noise level for in-
frared radiances which should be used for the IRS ra-
diance uncertainty in TROPoe as an intermediate so-
lution before a computationally efficient implementa-
tion of the IRS forward model error can be included in
the TROPoe framework. Because the signal-to-noise ra-
tio in the MWR brightness temperature observations is
lower than for the IRS radiances, overfitting is less of an
issue for MWR-based retrievals.

2. TROPoe traditionally uses spectral information be-
tween 538–588 cm−1 to retrieve water vapor and 612–
722 cm−1 to retrieve temperature from IRS measure-
ments. The information content in the water vapor pro-
file retrieval decreases as the precipitable water in-
creases (Turner and Löhnert, 2014, their Fig. 7). This
can be explained by the saturation of these spectral

1There are approximately 1000 water vapor lines and nearly
20 000 CO2 lines in the spectral region used for TROPoe retrievals
from IRS, and we would have to estimate the uncertainty in the
strength, width, and temperature dependence of each (and how their
uncertainties are correlated) to compute the uncertainty in the for-
ward model. Even if only the strongest lines were included, the
number of lines would still exceed 2000 in total. For MWR, the
uncertainty of the forward model has been specified by Cimini et
al. (2018); however, there are only a few dozen lines to consider in
the microwave.
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bands in moist environments as illustrated in Fig. 1 for
a relatively high (red curve) and low (gray curve) mois-
ture environment. The spectral bands most sensitive to
water vapor (green shading) are saturated and have lit-
tle information content in the moist environment. In ad-
dition to having less information content, the retrieval
often struggles to converge and to provide a valid so-
lution. We investigate how adding an additional spec-
tral band at 793–804 cm−1 (hatched green band labeled
WVBAND in Fig. 1) in situations where the traditional
water vapor bands are saturated can increase the infor-
mation content and help the retrieval to find a valid so-
lution.

3. In the current TROPoe framework, every time stamp
is processed separately without using any information
from the previous state of the atmosphere. This leads
to noisy time series (within the uncertainty limits of the
retrieval), which frequently manifests as vertical stripes
in time–height cross sections (e.g., Turner and Löh-
nert, 2014, their Fig. 9; Turner and Blumberg, 2019,
their Fig. 13). An additional limitation for IRS-based
retrievals is that the spectrum starts to become opaque
for clouds with liquid water vapor values above around
60 gm−2 (Turner, 2007). In the presence of such clouds,
the information above cloud base hence comes mostly
from the climatological prior or other sources such as
model and radiosonde data. Profiles in the presence of
short-lived cumulus clouds thus suffer from low tem-
poral consistency limiting their benefit for the analy-
sis of diurnal cycles (e.g., Turner and Blumberg, 2019,
their Fig. 13). We investigate how including informa-
tion from previous retrieved thermodynamic profiles as
input to the retrieval can increase temporal consistency
of the profiles, potentially enhancing their value for the
analysis of physical processes and diurnal cycles.

To address these three issues in TROPoe, we ran differ-
ent experiments for IRS and MWR measurements and eval-
uated the results against collocated radiosonde thermody-
namic profiles and Raman lidar water vapor mixing ratio
profiles. In an attempt to generalize the findings, we tested
the experiments for measurements in different climatologi-
cal regimes and utilized data from midlatitude, tropical, and
polar sites.

The paper is structured as follows: Sect. 2 describes the
used sites and instrumentations as well as the TROPoe re-
trieval framework. In Sect. 3, the TROPoe experiments are
introduced, and in Sect. 4 the impact of the different experi-
ments on the thermodynamic profiles is analyzed.

Figure 1. Downwelling spectral radiances as observed by IRS at the
Southern Great Plains site (SGP) on a relatively dry day (21 April
2019) and on a moist day (7 August 2019). Precipitable water vapor
(PWV) for each day is given in parentheses. Shading indicates spec-
tral bands used in TROPoe, with green being primarily sensitive to
water vapor, red to temperature, and blue to clouds. The hatched
band indicated with WVBAND is the additional band proposed in
this work for better retrieval performance in moist environments.

2 Sites, instrumentation, and retrieval

2.1 Sites and instrumentation

The evaluation of the different TROPoe experiments requires
sites with MWR and/or IRS measurements as well as reg-
ular radiosonde launches. Table 1 provides information on
the sites and available sensors. We utilize IRS data from the
Summit Station site (SMT, Shupe et al., 2013) in Greenland
supported by the National Science Foundation (NSF) as an
example for a polar site, the ARM Manacapuru site (MAO,
Martin et al., 2017) in Brazil for a tropical site, and the ARM
Southern Great Plains site (SGP, Sisterson et al., 2016) in
Oklahoma in the United States for a midlatitude site. At these
three sites, a multi-channel MWR for thermodynamic profil-
ing is deployed only at SMT. To evaluate the MWR-based
retrievals for a midlatitude site, we hence use data from the
Lindenberg site (LIN) in Germany, where a MWR was op-
erated for the FESSTVaL field campaign in 2021 (Hoheneg-
ger et al., 2023). As an example for a tropical site, we use
MWR data from the Save site (SAV) in Benin in southwest-
ern Africa, where a MWR was deployed for the DACCIWA
field campaign in 2016 (Kalthoff et al., 2018; Kohler et al.,
2022).

The thermodynamic conditions at the sites in different cli-
matological regimes are substantially different and span a
wide range of temperature and water vapor mixing ratio val-
ues illustrated by the near-surface measurements (Fig. 2).
The polar site SMT is characterized by below-freezing tem-
peratures and water vapor mixing ratios of less than 2 gkg−1.
The conditions at the midlatitudes sites, LIN and SGP in
April, are very similar, with temperature values between 0
and 30 °C and water vapor mixing ratio values mostly be-
low 12 gkg−1, while SGP in August resembles the two trop-
ical sites MAO and SAV, with temperatures above 20 °C and
water vapor mixing ratio values often higher than 15 gkg−1.
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Table 1. Overview of sites, instruments, and periods used to test the different TROPoe experiments. Station height is given in meters above
mean sea level (mm.s.l.). Note that the number of radiosonde profiles used for the evaluation of TROPoe retrievals (in brackets) is lower
than the total number of launched radiosondes.

Site Site name Geographic Instrument Period Number of Characteristic Comment
ID location radiosondes:

and height total (clear sky
and time-matched)

SGP Southern Great Oklahoma, USA; IRS April 2019 146 (75) midlatitude Raman
Plains 36.61° N, August 2019 109 (26) lidar

97.48° W; available
237 mm.s.l.

MAO Manacapuru Brazil; IRS September 2015 118 (68) tropical
3.21° S,
60.60° W;
50 mm.s.l.

SMT Summit Station Greenland; IRS June 2015 61 (39) polar
72.60° N, MWR
38.43° W;
3255 mm.s.l.

LIN Lindenberg Germany; MWR June 2021 122 (102) midlatitude
52.21° N,
14.12° E;
98 mm.s.l.

SAV Save Benin; MWR July 2016 62 (51) tropical
8.00° N,
2.10° E;
166 mm.s.l.

While the mean values are very similar for sites in the same
climatological regime, i.e., MAO and SAV and SGP in April
and LIN, the standard deviations vary, which may have im-
plications for our experiment to improve the temporal con-
sistency. However, the differences in standard deviation are
mostly related to variations on timescales of several hours
and more. Since we evaluate the improvements to temporal
consistency on a shorter timescale, we are confident that the
results for IRS- and MWR-based retrievals in the same cli-
matological regime are comparable.

The IRS instruments used in this study are AERIs (Knute-
son et al., 2004a, b). The AERI retrieves downwelling in-
frared radiation between the wavelengths of 3.3 and 19 µm
(between the wavenumbers of 520 to 3000 cm−1) at a spec-
tral resolution of about 0.5 wavenumber. The spectral bands
used in TROPoe are indicated in Fig. 1. The IRS radiances
were noise-filtered using the principal component analysis
(Turner et al., 2006), and a spectral calibration was applied
following the method described in Knuteson et al. (2004b).
The IRS has a hatch that closes during precipitation events to
protect the foreoptics, which inhibits measurements during
rain or snow.

The MWR instruments used are Humidity and Temper-
ature Profilers (HATPRO, Rose et al., 2005) and measure

Figure 2. Near-surface temperature versus near-surface water vapor
mixing ratio during the investigated periods at the different sites.
The white markers and colored crosses indicate the mean and stan-
dard deviation at each site.
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microwave radiation in 14 channels, with 7 channels being
distributed around the 22.2 GHz water vapor absorption line
and the other 7 along the low-frequency wing of the oxygen
absorption complex at 60 GHz. Several times per hour the
MWRs performed low-elevation angle scans to increase the
information content of temperature profiles in the boundary
layer (Crewell and Löhnert, 2007).

More than 100 radiosonde profiles are available during
the month-long periods at SGP, MAO, and LIN, where ra-
diosondes were launched 4 times per day (Table 1). About
60 radiosondes are available at SMT and SAV. Radioson-
des were launched twice per day at SMT and at least once
daily, and more frequently during intensive observation pe-
riods, at SAV. Note that the number of radiosonde profiles
used for the evaluation of the TROPoe retrievals is lower than
the maximum available number, because we only consider
profiles under clear-sky conditions when all TROPoe experi-
ments provided valid solutions for the evaluation.

For the IRS-based retrievals at SGP, MAO, and SMT,
cloud base height estimates from collocated ceilometer
backscatter profiles are used.

At SGP, a Raman lidar is operated continuously and pro-
vides 10 min averages of water vapor mixing ratio profiles
with 60 m vertical resolution. Details on the technical spec-
ifications are described in Turner and Goldsmith (1999) and
Newsom and Sivaraman (2018).

2.2 Retrieval

The TROPoe retrieval determines the optimal state vector X
which satisfies both the observations and the prior. In our
study, the state vector consists of temperature and water va-
por mixing ratio profiles as well as liquid water path (LWP).
Starting with the mean prior Xa as a first guess of the
state vector, a forward model F is used to compute pseudo-
observations, which are then compared to the actual observa-
tions. The retrieval iterates until the differences between the
pseudo-observations and the observations are small within
the uncertainty of the measurements. The state vector at the
n+ 1 iteration is computed as

Xn+1 =Xa+ (γS−1
a +KT

nS−1
ε Kn)

−1KT
nS−1

ε

× (Y −F(Xn)+Kn(Xn−Xa)) , (1)

where K is the Jacobian of F , Sa is the covariance matrix of
the prior, Y is the observation vector, and Sε denotes the er-
ror covariance matrix of the input. Ideally, Sε includes the er-
ror covariance matrix of the observations and forward model.
Since the forward model uncertainty is assumed to be zero in
the current TROPoe framework, Sε equals the error covari-
ance matrix of the observations SY . The scalar γ is used to
stabilize the retrieval when n is small. It is a function of it-
eration number and cycles through a fixed sequence of inte-
ger values ranging from 1000 to 1. It decreases to unity for
larger n and is used to change the relative weight between

the prior information and the observation, where γ > 1 cor-
responds to less information from the observations relative
to the prior (more details are provided in Turner and Löhn-
ert, 2014). As the forward model, we use the Line-By-Line
Radiative Transfer Model (LBLRTM; Clough et al., 2005)
for the IRS-based retrievals and the Monochromatic Radia-
tive Transfer Model (MonoRTM; Clough et al., 2005) for the
MWR-based retrievals.

The climatological prior is computed specifically for each
site and each month using a large number (> 1000) of ra-
diosonde profiles. At all sites but SAV, the radiosondes for
the prior computation were launched directly at the sites. To
compute the prior for SAV, operational radiosondes launched
at Abidjan in Côte d’Ivoire (approximately 750 km away)
were used. The conditions on individual days may still sig-
nificantly differ from the monthly mean profile. Hence, we
additionally recenter the monthly mean prior profile of wa-
ter vapor using the daily average of the near-surface wa-
ter vapor mixing ratio. The temperature profile is recentered
by conserving the relative humidity profile. Recentering the
monthly prior can help to reduce the retrieval error for IRS-
and MWR-based retrievals.

In our TROPoe experiments, thermodynamic profiles are
generally retrieved on 55 vertical levels reaching from the
surface up to 17 km, with the distance between levels starting
at 10 m and increasing geometrically with height. Due to the
very dry conditions at SMT, the number of molecules in a
geometrically thin layer is not sufficient to get enough signal
in the microwave range, and we have to increase the distance
between levels and reduce the number of vertical levels to 33
for the MWR-based retrievals.

TROPoe provides a number of output variables which al-
low one to characterize the information content of the so-
lution and to distinguish between solutions with good and
dubious quality. The retrieval outputs two matrices: the av-
eraging kernel, Akernel, and the posterior covariance ma-
trix, Sop (Turner and Löhnert, 2014). The square root of
the diagonal components of Sop specifies the 1σ uncertainty
of the temperature and water vapor mixing ratio profiles
[σT,σWVMR]

T. The diagonal components of the Akernel
provide the degree of freedom for signal (DFS), which is
a measure of number of independent pieces of information
from the observations used in the solution for each height.
The cumulative DFS (cDFS) is computed as the trace (i.e.,
the sum of the diagonal components) of the Akernel. The
rows of the Akernel give a measure of the smoothing func-
tions of the retrieval as a function of height (Rodgers, 2000)
and can be applied to thermodynamic profiles from radioson-
des or Raman lidar with higher vertical resolution to min-
imize the vertical representativeness error when comparing
TROPoe profiles to such profiles. The Akernel is different
for every experiment of TROPoe, because different obser-
vational inputs are used in these experiments, which results
in different Akernel-smoothed profiles of radiosondes for
each configuration. This is why we do not use the Akernel-
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smoothed radiosonde profiles when evaluating the TROPoe
errors to assure the same reference profile is used for each
experiment. The radiosonde profiles are instead interpolated
to the vertical grid of the retrieved profiles.

To distinguish between profiles with good vs. dubious
quality, we used two variables to filter the profiles: γ from
Eq. (1) and the root mean square error of radiance (RMSR)
between IRS radiances and MWR brightness temperatures in
the observations and the forward calculation:

RMSR=

√√√√ 1
M

M∑
i=1

(
Yi −F(Xn)i

σYi

)2

, (2)

with σYi being the 1σ uncertainty of the radiance (or bright-
ness temperature) observations and M being the length of
the observation vector. Large RMSR values indicate a large
discrepancy between the solution and the observations even
though the retrieval found a solution. To filter out suspicious
profiles we require γ = 1 and RMSR< 5.

IRS-based retrievals have little to no information content
above cloud base depending on the optical depth of the cloud.
This is why we excluded any profiles with LWP > 8 gm−2

in our statistical analysis for the IRS-based TROPoe ex-
periments (Sects. 4.1 and 4.3). In our height-resolved anal-
ysis related to temporal consistency (Sect. 4.2.1), we ex-
cluded data above cloud base only, instead of excluding
the cloudy profiles completely. This limitation does not ap-
ply to MWR-based retrievals, due to the transparency of
clouds in the microwave range. We still exclude profiles
when LWP > 200 g m−2 for both the statistical analysis and
the height-resolved analysis to screen out cases when clouds
are raining for which our assumption of being in the Rayleigh
scattering regime is not correct.

3 TROPoe experiments

We ran TROPoe with four different configurations for IRS
data and with two different configurations for MWR data.
The experiments for IRS data build on one another, with the
last one including all the changes made in the previous exper-
iments. The experiments are overviewed in Table 2 and will
be described in detail in the following subsections. Figure 3
illustrates the impact that the different experiments have on
the retrieved thermodynamic profiles using time–height cross
sections of water vapor mixing ratio for the IRS-based re-
trieval at SGP on a relatively moist day in August as an exam-
ple. Figure 4 shows time series of some diagnostics provided
by the retrieval to better understand the impacts.

3.1 CTRL

The settings in CTRL are used in routine applications of
TROPoe at the current time of writing. Thermodynamic pro-
files and LWP were retrieved every 10 min from the instanta-
neous radiance (or brightness temperature) measurements. In

addition to the measurements of IRS and MWR, respectively
(Y IRS/MWR), collocated surface measurements of tempera-
ture and humidity (YMET) as well as temperature and humid-
ity profiles above 4 km from radiosondes (YRaso) are used as
temporally resolved input data in the observation vector in
Eq. (1):

Y =

Y IRS/MWR
YMET
YRaso

 . (3)

Using IRS radiances, CTRL fails to provide a valid profile
for more than 60 % of the example day in Fig. 3a, leading to
large data gaps and making the analysis of diurnal cycles im-
possible. The reason for the large number of invalid profiles
is high γ and high RMSR values exceeding their respective
thresholds (Fig. 4b, c).

3.2 NOISE

The second experiment only applies to IRS-based retrievals
and uses a specified minimum noise level for the radiances
(NOISE). As explained in Sect. 1, the radiance noise has
to be large enough to compensate for the missing forward
model error in the current TROPoe framework. Figure 5 il-
lustrates instrument noise levels at the different sites, with the
lowest noise levels at MAO and SGP in August and the high-
est noise level at SMT. The purple line indicates the default
minimum noise level, which we propose to use in TROPoe.
This default minimum noise level is a tradeoff between avail-
ability of valid profiles, information content, and temperature
and humidity errors when comparing the TROPoe retrievals
to radiosondes launched at SGP during the whole year of
2019 (Appendix A). We will show in Sect. 4 that this ex-
periment has the largest impact on the solution at MAO and
SGP, since the minimum noise level is usually higher than
the IRS noise at these sites. It has little impact at SMT where
the IRS noise is already higher than the minimum noise in
most parts of the spectrum.

On the example day in Fig. 3, the number of valid profiles
is increased for NOISE compared to CTRL, because γ and
RMSR (Fig. 4b and c) are lower. However, NOISE still failed
to provide valid retrieved profiles on about 45 % of the day.

3.3 WVBAND

The third experiment also only applies to IRS-based re-
trievals and includes an additional water vapor band between
793 and 804 cm−1 (Fig. 1) in addition to the default mini-
mum noise level. This additional water vapor band is only
used when the environment is moist. We find that in dry en-
vironments with low water vapor values, some CO2 absorp-
tion bands in this range become dominant and degrade the
retrieval performance. We address this in TROPoe by arti-
ficially inflating the noise in this band as a function of the
near-surface water vapor mixing ratio (which is coming from
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Table 2. Overview of TROPoe experiments for IRS- and MWR-based retrievals.

Configuration Instrument Minimum IRS Additional IRS Previous thermodynamic
noise level water vapor band profile as input

CTRL IRS
NOISE IRS x
WVBAND IRS x x
TROPOEIN IRS x x x

CTRL MWR
TROPOEIN MWR x

Figure 3. Time–height cross section of water vapor mixing ratio retrieved with the IRS-based TROPoe experiments (a) CTRL, (b) NOISE,
(c) WVBAND, and (d) TROPOEIN and observed by the Raman lidar (e) when smoothed with the Akernel of TROPOEIN and (f) with
original vertical resolution at SGP on 7 August 2019. The white markers indicate cloud base height from the TROPoe output (a–d) and as
detected by the Raman lidar (e, f).
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Figure 4. Time series of the (a) liquid water path (LWP); (b) parameter γ (Eq. 1); (c) root mean square error of radiance (RMSR; Eq. 2);
(d) cumulative degree of freedom for signal (cDFS) of water vapor mixing ratio at 3 km; (e) cDFS of temperature at 3 km; (f) temperature at
2 km; and (g) water vapor mixing ratio at 2 km in different IRS-based TROPoe experiments at SGP on 7 August 2019.

YMET) with no inflation for values larger than 12 gkg−1 and
an inflation factor of 20 for water vapor mixing ratio values
of less than 7 gkg−1, which basically shuts off the use of any
information in this band when water vapor mixing ratio is
low. In between, the inflation factor changes linearly.

Adding the additional water vapor band helps tremen-
dously in the example shown in Fig. 3. The retrieval now
provides valid solutions 100 % of the time (the two gaps at
01:00 and 14:00 UTC are due to a closed hatch), with γ = 1
and RMSR< 5 throughout the day (Fig. 4b and c). Since the
near-surface water vapor mixing ratio was above the thresh-
old of 12 gkg−1 throughout the day, the additional band is

used in all profiles, leading to slightly different values be-
tween NOISE and WVBAND.

3.4 TROPOEIN

The fourth experiment, TROPOEIN, is applied to the IRS-
and MWR-based retrievals (Table 2). In general, the TROPoe
retrievals are well capable of resolving mesoscale changes
that occur on timescales of multiple hours. In the exam-
ple in Fig. 3e and f, the Raman lidar detects an increase in
water vapor mixing ratio in the lowest 1000 m after around
19:00 UTC. The timing and magnitude of this increase is well
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Figure 5. Typical spectral radiance uncertainty of the IRS at SGP,
MAO, and SMT. The purple line indicates the default minimum
noise level used in NOISE, WVBAND, and TROPOEIN.

captured in WVBAND (Fig. 3c). Because the vertical reso-
lution of the Raman lidar is higher than the TROPoe profiles,
we use the rows of the Akernel of TROPOEIN to compute
smoothed Raman lidar profiles (Fig. 3e) for comparison to
the retrieval.

On the shorter timescales, the TROPoe WVBAND re-
trieval looks noisier than the Akernel-smoothed Raman li-
dar profiles (Fig. 3c and e). To better visualize this, we ap-
ply a high-pass and low-pass filter to the time series with a
cutoff time of around 3 h. We tested cutoff times between 3
and 9 h and found little sensitivity on the following results
to the chosen value. The high-pass-filtered data are shown in
color, and the low-pass-filtered data are shown as contours in
Fig. 6. As expected, the low-pass-filtered data are similar for
all TROPoe experiments and the Raman lidar. The high-pass-
filtered water vapor mixing ratio values of CTRL, NOISE,
and WVBAND, however, have higher magnitudes and more
variability from one time stamp to the other compared to the
Raman lidar. The purpose of the TROPOEIN configuration
is to improve the agreement between the high-pass-filtered
TROPoe and Raman lidar data.

The idea for TROPOEIN is based on the assumption that
the atmosphere is autocorrelated for some period of time. We
inspected the time series of water vapor mixing ratio profiles
measured by the Raman lidar at SGP with 10 min tempo-
ral resolution at different heights for the whole year of 2019
and computed monthly autocorrelations. While the magni-
tude of the decrease in autocorrelation varies from month to
month, the autocorrelation is always more than 0.8 for a lag
of 2 h, indicating a high degree of correlation over this time
period. To account for this temporal autocorrelation, we add
a previous valid TROPoe profile of temperature and humidity
(Y TROPoe) as input to the observation vector:

Y =


Y IRS/MWR
YMET
YRaso
Y TROPoe

 , (4)

with the observational error covariance matrix,

SY =


SIRS/MWR 0 0 0

0 SMET 0 0
0 0 SRaso 0
0 0 0 STROPoe

 . (5)

The retrieved profiles are thus not independent anymore,
and we have to ensure that we do not suppress any real tem-
poral variations. This is done by inflating the 1σ uncertainty
of the previous retrieved profile [σT,σWVMR]

T before it is
used as STROPoe.

Because MWRs and IRSs have the highest information
content in the lowest layers and because changes in the
boundary layer typically can happen more rapidly than in
the free troposphere, we do not want to constrain the solu-
tion in lower layers too much by the previous profile. Thus,
we increase the uncertainties [σT,σWVMR]

T by a height-
dependent additive factor for temperatureNT and noise mul-
tiplier for water vapor mixing ratio NWVMR (gray lines in
Fig. 7). We setNT to decrease from 3 °C at the surface to 1 °C
either at the top of the boundary layer or at 1 km, whatever is
higher, and to stay constant above.NWVMR is set to decrease
from 5 to 2 at the maximum of 1 km or the boundary layer
top and also stays constant above. The boundary layer height
is retrieved from potential temperature profiles retrieved with
TROPoe using the parcel method (e.g., Duncan et al., 2022).
The values of N were determined empirically, and the rather
high values in the boundary layer allow water vapor mix-
ing ratio to change by more than 2.5 gkg−1 (with σWVMR
typically larger than 0.5 gkg−1) and temperature by more
than 3 °C close to the surface within a 10 min period, with-
out suppressing the change by the previous profile. To ac-
count for the decrease in autocorrelation with time, NT and
NWVMR are increased by a time-dependent factor,

fac1t =

√
1+

1t − tres

tres
, (6)

with 1t being the elapsed time in seconds between Y TROPoe
and the current time being processed, and tres being the tem-
poral resolution of the retrieval in seconds. This means that
instead of setting a fixed limit on how far back in time profiles
are used, the uncertainty is increased with time so that the im-
pact from the previous profiles gradually fades when 1t in-
creases. Figure 8 visualizes how fac1t increases with 1t .

STROPoe is hence computed as

STROPoe =

[
STROPoe,T

STROPoe,WVMR

]
=

[
(fac1t ×NT)+ σT

(fac1t ×NWVMR)× σWVMR

]
. (7)

Figure 7 illustrates the uncertainty inflation for an IRS-
based retrieval at SGP. The black lines show the retrieved wa-
ter vapor mixing ratio and temperature profile at 06:20 UTC.
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Figure 6. Time–height cross section of the high-pass (color) and low-pass (contours) water vapor mixing ratio with a cutoff time of approx-
imately 3 h retrieved with the IRS-based TROPoe experiments (a) CTRL, (b) NOISE, (c) WVBAND, and (d) TROPOEIN and (e) observed
by the Raman lidar when smoothed with the Akernel of TROPOEIN at SGP on 7 August 2019. The white markers indicate cloud base height
from the TROPoe output (a–d) and as detected by the Raman lidar (e).

The black shading indicates the respective 1σ uncertainty.
This profile is then used as Y TROPoe for the retrieval at
06:30 UTC with the inflated uncertainty STROPoe (green
shading). The impact of the uncertainty inflation is highest
close to the ground, because of the height-dependent addi-
tive factor and multiplier (gray lines).

A good way to understand the impact of the uncertainty
inflation with time on the solution is by looking at cDFS at
3 km using the IRS-based retrieval as an example (Fig. 4d
and e). Since typically we start the processing of each day
independently, Y TROPoe is unavailable at 00:00 UTC, and
cDFS for TROPOEIN is the same as for WVBAND. cDFS
increases for the next couple of time stamps and levels af-
ter around 01:00 UTC. Note that this independent processing
of individual days may lead to an artifact of increased vari-
ability shortly after 00:00 UTC. The independent process-
ing is done because TROPoe is computationally expensive

(especially for the IRS-based retrievals), and the retrieval
is usually run for several days in parallel when historical
data are being processed. In real-time processing this arti-
fact could be avoided by reading in the output from the pre-
vious day. Because of the missing profiles at around 01:00
and 14:00 UTC, cDFS after the data gap is lower because
STROPoe is increased according to Eq. (7). After 17:00 UTC,
clouds with cloud bases around 2500 ma.g.l. (dots in Fig. 3)
and LWP of up to 50 gm−2 (Fig. 4a) are present. Profiles
with a LWP > 8 gm−2 are not used as input due to the lim-
itation of the IRS in the presence of clouds, which is why
cDFS gradually decreases with time during the cloudy period
when 1t increases. When 1t nears around 2 h, hardly any
impact of the last good profile is visible anymore and cDFS
in TROPOEIN has approached the values in WVBAND. The
factor to increase the uncertainty with time (Eq. 6) is chosen
so that the impact of the previous profiles diminishes after
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Figure 7. Demonstration of noise inflation for the previous retrieved
profile when it gets used as additional input in TROPOEIN, (a) for
temperature and (b) for water vapor mixing ratio. The black lines
are the retrieved profiles at 06:20 UTC at SGP on 21 April 2019,
with the gray shading indicating σT and σWVMR, respectively. The
green lines are the input profiles used in the observation vector
YTROPoe for the retrieval at 06:30 UTC, with the green shading in-
dicating the corresponding uncertainty STROPoe (Eq. 7). The gray
lines indicate the (a) additive factorNT in degrees Celsius (°C) and
(b) multiplier NWVMR used for inflating the σT and σWVMR pro-
files.

Figure 8. Increase in the time-dependent factor fac1t (Eq. 6) with
the time elapsed between the last valid retrieved profile and the time
currently being processed with TROPoe1t for the TROPOEIN ex-
periment.

around 2 h, taking into account the decrease in autocorrela-
tion in time which we find for the Raman lidar data. After
the clouds clear, cDFS increases again because valid profiles
closer in time are again used as input.

The smoothing impact TROPOEIN has on the water vapor
mixing ratio time series is directly visible in Figs. 3d, 4f and
g, and 6d. The temporal variability in the time series is much
reduced compared to WVBAND (Figs. 3c and 6c), and the
magnitude of the high-pass-filtered values is now very simi-
lar to the one of the Raman lidar (Fig. 6e).

To quantify the agreement between the high-pass-filtered
TROPoe and Raman lidar data, we use two measures: the
uncorrelated random noise in TROPoe and Raman lidar time
series and the correlation between the TROPoe and the Ra-
man lidar time series. Information on the uncorrelated ran-
dom noise of a time series can be obtained from its autocor-
relation. The uncorrelated random noise1M of a time series
x with length N can be estimated from the autocovariance
function at lag τ ,

M(τ)=
1
N

N−τ∑
i=1

(xi)(xi+τ ),

as the difference between the first two lags (Lenschow et al.,
2000),

1M =M(0)−M(1).

The autocorrelation function is computed as R(τ)=

M(τ)/M(0) and is 1 at lag 0. The uncorrelated random noise
thus relates to the autocorrelation function at lag 1 as follows:

R(1)= 1−
1M

M(0)
.

Before computing the autocovariance function, we remove
all missing data in the high-pass-filtered time series and sim-
ply stitch the data together only using time stamps when all
TROPoe experiments and the Raman lidar (at SGP only)
provide valid data. Another method to estimate the autoco-
variance of time series with gaps is based on the Lomb–
Scargle periodogram (VanderPlas, 2018). We tested both
methods and found the same relationship for uncorrelated
noise, which is why we choose the simpler method of using
the autocovariance for our analysis in Sect. 4.2.

The Pearson correlation coefficient r between time series
of TROPoe data xTROPoe and of Raman lidar data xRaman is
computed as

r = ∑N
i=1

(
xTROPoe,i − xTROPoe

)(
xRaman,i − xRaman

)√∑N
i=1

(
xTROPoe,i − xTROPoe

)
×

√∑N
i=1

(
xRaman,i − xRaman

) , (8)

with the overbar indicating temporal average. The results of
the correlation analysis are presented in Sect. 4.2.1.
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Figure 9. (a) Percentage of valid TROPoe solutions for the month-long periods at SGP, MAO, and SMT; (b) solution availability as a function
of the near-surface water vapor mixing ratio; (c) difference in cumulative degree of freedom for signal (cDFS) of temperature at 3 km as a
function of the near-surface water vapor mixing ratio; and (d) difference in cDFS of water vapor mixing ratio at 3 km as a function of the
near-surface water vapor mixing ratio. In panels (b)–(d), all sites and months are included.

4 Sensitivity of thermodynamic profiles to TROPoe
experiments

4.1 Solution availability and information content

The example in Fig. 3 illustrates how the availability of valid
solutions increases in NOISE and WVBAND compared to
CTRL on a day in August at SGP, because of a reduction
in γ and RMSR values (Fig. 4b and c). Figure 9 now shows
how the solution availability changes for cloud-free retrievals
at the individual sites for the month-long periods. The frac-
tion of valid retrievals in CTRL ranges from just above 50 %
at SGP in August to nearly 100 % at SMT (Fig. 9a). Using
the default minimum noise level in NOISE, the number of
valid solutions at SGP and MAO increases and is now higher
than 65 % at all sites. As expected, no change is visible at
SMT due to the already high radiance noise level at this site
(Fig. 5).

Adding the additional water vapor band (WVBAND) fur-
ther increases the profile availability at SGP in August and
MAO to more than 92 %. The different impact of WVBAND
is linked to the environmental moisture at the individual lo-
cations. The near-surface water vapor mixing ratio at SMT
and SGP in April is mostly below the threshold of 12 gkg−1

(Fig. 2) and thus in a range where little to no information
from the additional band is used in the retrieval (Sect. 3.3).
On the other hand, the near-surface water vapor mixing ra-
tio at SGP in August and MAO is usually higher than the
threshold, and the additional water vapor bands are used
in the retrieval. Combining data from all sites and months,
WVBAND only has a positive impact on solution availabil-
ity when the near-surface water vapor mixing ratio is higher
than the threshold (Fig. 9b). Importantly, it also does not re-

duce solution availability in dry environments, which means
that the inflation of noise in the additional water vapor band
as a function of the near-surface water vapor mixing ratio
works. By including the additional water vapor band in the
retrieval, we expect to increase the number of independent
pieces of information. The difference in cDFS of water vapor
mixing ratio at 3 km between WVBAND and NOISE over
the near-surface water vapor mixing ratio confirms an in-
crease by around 0.4 for moist environments when adding the
additional water vapor band (Fig. 9d). The positive impact
on cDFS of temperature is less pronounced but still present
when the near-surface water vapor mixing ratio exceeds the
threshold of 12 gkg−1 (Fig. 9c).

4.2 Temporal consistency

4.2.1 TROPOEIN for IRS-based retrievals

The example in Figs. 3 and 6 indicates that TROPOEIN
smooths the time series of retrieved profiles and thus de-
creases random uncorrelated noise. To provide a more quan-
titative and general analysis, we now present profiles of au-
tocorrelation at lag 1, as an indicator for uncorrelated ran-
dom noise, for high-pass-filtered temperature and water va-
por mixing ratio profiles for IRS-based retrievals using the
month-long periods at the three sites (Fig. 10). We compare
WVBAND and TROPOEIN, which have identical configu-
rations except for using the previous thermodynamic profile
as input in TROPOEIN (Table 2). The profiles at the individ-
ual sites are time-matched; this means that only time stamps
for which both TROPoe runs have valid data are used. The
number of data points decreases with height since data above
cloud base are excluded from the analysis (Fig. 10c and f).
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Figure 10. Profiles of autocorrelation at lag 1 for high-pass-filtered time series of (a) temperature and (d) water vapor mixing ratio, mean cu-
mulative degree of freedom for signal (cDFS) of (b) temperature and (e) water vapor mixing ratio, and available data points for (c) temperature
and (f) water vapor mixing ratio profiles for IRS-based retrievals at SGP, MAO, and SMT. In panel (d), autocorrelation for high-pass-filtered
Akernel-smoothed water vapor mixing ratio profiles measured by Raman lidar is added.

For water vapor mixing ratio, the Raman lidar availability is
additionally considered, which results in a different number
of available data points for temperature and water vapor mix-
ing ratio profiles at SGP.

Autocorrelation in WVBAND is largely less than 0.25 at
all sites (solid lines in Fig. 10a and d), indicating a relatively
low signal-to-noise ratio for true atmospheric variability. For
both temperature and water vapor mixing ratio, autocorrela-
tion decreases with height, which is consistent with an in-
crease in noise as the DFS decreases (i.e., cDFS becomes
nearly constant with height, Fig. 10b and e). TROPOEIN in-
creases the autocorrelation at all sites, and the resulting pro-
files are roughly constant with height, with values between
around 0.3 and 0.45 for both temperature and water vapor
mixing ratio (dashed lines in Fig. 10a and d). This indicates
that independent of the very different atmospheric conditions
at the sites (polar vs. midlatitude vs. tropical) and indepen-

dent of the instrument specifics (different radiance noise),
the method enhances the temporal consistency in a similar
way. Importantly, the constructed height-dependent increase
in uncertainty for the previous profiles (Fig. 7) does not show
as artifacts, such as jumps, in the autocorrelation profiles in
TROPOEIN.

To evaluate how well the TROPOEIN uncorrelated noise
agrees with the Raman lidar noise, we also computed the
autocorrelation of high-pass-filtered profiles of water vapor
mixing ratio measured by the Raman lidar at SGP (Fig. 10d).
With values of more than 0.6, autocorrelation is still slightly
higher than in TROPOEIN. In the lowest few hundred me-
ters, autocorrelation in the Raman lidar data slightly de-
creases towards the ground, possibly indicative of higher
noise at low altitudes due to the use of the Raman lidars’
wide field of view near the surface (Turner and Goldsmith,
1999).
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Figure 11. Distribution of the differences in cumulative degree of freedom for signal (cDFS) for temperature and water vapor mixing ratio
(a, b) between TROPOEIN and WVBAND (IRS-based) and (c, d) between TROPOEIN and CTRL (MWR-based). Note the different y-axis
ranges.

TROPOEIN adds information to the profiles, visible in
the larger cDFS values on average compared to WVBAND
(Fig. 10b and e). The increase in cDFS is more pronounced
for water vapor mixing ratio profiles, which have less signal
compared to temperature profiles. Histograms of the cDFS
difference between TROPOEIN and WVBAND for individ-
ual profiles confirm that cDFS at 3 km is consistently higher
in TROPOEIN (Fig. 11a and b). cDFS of water vapor mixing
ratio in TROPOEIN exceeds cDFS in WVBAND by 3 to 5
in (Fig. 11b), while the increase for temperature is mostly
between 1 and 2.5 (Fig. 11a).

After we have shown that TROPOEIN decreases uncorre-
lated random noise in the high-pass-filtered retrieved profiles
and increases the number of independent pieces of informa-
tion in the solution, we now investigate how well the retrieval
captures temporal atmospheric changes on short timescales.
To this purpose, we compute profiles of the Pearson correla-
tion coefficient between the TROPoe and Raman lidar high-
pass-filtered time series at SGP (Eq. 8), assuming that the Ra-
man lidar represents the truth (Fig. 12). For both months, the
correlation is increased for TROPOEIN at all heights, reach-
ing values between 0.5 and 0.6 between approximately 500
and 2000 m, indicating a moderate correlation between the
TROPOEIN and Raman lidar water vapor mixing ratio pro-
files. The lower correlation below and above this layer could
also be related to higher Raman lidar noise or fewer valid
data points in these levels (Fig. 10d and f).

As previously stated, STROPoe has to be large enough to
not suppress real temporal mesoscale variability. That this is
the case is well visible in the example in Fig. 13, when an
elevated layer of moist air was advected over the site after
around 09:00 UTC as detected by the Raman lidar. Such ele-
vated moist layers are especially challenging for the retrieval
since vertical resolution decreases with height. The retrieval
does a remarkable job in resolving this moist layer and cap-
tures not only the timing but also the altitude and magni-

Figure 12. Profiles of the Pearson correlation coefficient (Eq. 8)
computed between high-pass-filtered water vapor mixing ratio
time series for the IRS-based TROPoe retrievals WVBAND and
TROPOEIN and the Raman lidar at SGP.

Figure 13. Time–height cross section of water vapor mixing ra-
tio from (a) Raman lidar (Akernel smoothed), (b) WVBAND, and
(c) TROPOEIN on 28 April 2019 at SGP. The white markers indi-
cate cloud base height as detected by the Raman lidar (a) and from
the TROPoe output (b, c).
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Figure 14. Profiles of autocorrelation at lag 1 for high-pass-filtered time series of (a) temperature and (d) water vapor mixing ratio, mean
cumulative degree of freedom for signal (cDFS) of (b) temperature and (e) water vapor mixing ratio, and available data points for (c) tem-
perature and (f) water vapor mixing ratio profiles for MWR-based retrievals at LIN, SAV, and SMT. Note that the number of data points at
SAV and SMT are nearly identical.

tude of the moisture values. While small-scale variability is
reduced in TROPOEIN (Fig. 13c) compared to WVBAND
(Fig. 13b), the mesoscale changes in moisture are represented
just as well as in WVBAND. This is critical if these obser-
vations are being used to initialize numerical weather pre-
diction models (e.g., Coniglio et al., 2019; Hu et al., 2019;
Degelia et al., 2020).

4.2.2 TROPOEIN for MWR-based retrievals

We also ran the CTRL and TROPOEIN experiments based
on MWR brightness temperatures (Table 2). Profiles of au-
tocorrelation at lag 1 for high-pass-filtered temperature and
humidity time series for MWR-based retrievals are shown in
Fig. 14. Unlike for the IRS-based retrievals, the number of
data is constant with height, because data above cloud base
were not excluded as clouds are much more transparent at
microwave frequencies. The autocorrelation at lag 1 in CTRL

was mostly less than 0.3 at all sites and all heights for both
temperature and water vapor mixing ratio, indicating high
uncorrelated random noise (solid lines in Fig. 14a, d). Includ-
ing the previous profile as input in TROPOEIN increased the
autocorrelation to values between 0.3 and 0.5 (dashed lines).
The impact of TROPOEIN was often less relevant close to
the ground, which is consistent with the inflation of noise
in the input profiles towards the surface and the higher in-
formation content at low levels, especially for temperature
(Fig. 14b, e). In the same way as for the IRS-based retrievals,
increases in cDFS are higher for water vapor mixing ratio
than for temperature. As reported in Fig. 11, bottom row,
the number of independent pieces of information at 3 km in-
creased by two to four for water vapor mixing ratio (Fig. 11d)
and by one to two for temperature in TROPOEIN compared
to CTRL (Fig. 11c). Overall, the TROPOEIN configuration
impacts IRS- and MWR-based retrievals in a similar way and
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leads to a reduction in uncorrelated random noise and an in-
crease in information content.

4.3 Comparison to radiosonde profiles

In the previous sections, we showed how the modified con-
figurations improve solution availability and temporal con-
sistency. In this section, we now assess the impact of the
different experiments on temperature and humidity errors by
comparing the retrieved profiles to radiosonde profiles. We
computed the mean absolute error (MAE) for temperature
and water vapor mixing ratio as well as the mean relative er-
ror (MRE) for water vapor mixing ratio averaged up to 3 km
for the IRS- and MWR-based retrievals (Fig. 15). The pro-
files were interpolated to an equidistant grid before comput-
ing MAE. MRE is calculated as MAE divided by the mean
water vapor mixing ratio in the lowest 3 km of the radiosonde
profile.

Average MAE for temperature mostly ranges between 0.5
and 1 °C for IRS-based and MWR-based retrievals (Fig. 15a
and b), and MAE for water vapor mixing ratio ranges be-
tween 0.5 and 1.5 g kg−1 (Fig. 15c and d), with the exception
of SMT, where water vapor mixing ratio values are very low
(Fig. 2). The relative errors are, however, largest in this very
dry polar environment, with mean values ranging between
20 % and 30 % (Fig. 15e and f). For the four experiments of
the IRS-based retrievals, MAE progressively decreases from
CTRL to NOISE to WVBAND to TROPOEIN for both tem-
perature and water vapor mixing ratio at most sites. Only at
SGP in August does the average MAE for temperature in-
crease slightly from CTRL to NOISE. When averaged over
all sites, MAE for water vapor mixing ratio improves by
6.3 % for NOISE, 11.2 % for WVBAND, and 11.0 % for
TROPOEIN relative to CTRL. MAE for temperature im-
proves by 3.2 %, 3.6 %, and 7.4 %, respectively. Changes in
MAE between TROPOEIN and CTRL for MWR-based re-
trievals are very small. This means that TROPOEIN hardly
impacts the error compared to radiosondes. This, in com-
bination with the very positive impact on temporal consis-
tency, is very promising, and we are working on including
the TROPOEIN option in the TROPoe Docker container to
make it available to all users.

5 Summary and conclusions

The optimal-estimation physical retrieval TROPoe combines
radiance observations made by passive ground-based re-
mote sensors like MWR and IRS with thermodynamic pro-
files from active remote sensors, radiosondes, and numerical
weather prediction model output to retrieve thermodynamic
profiles in the atmospheric boundary layer with high tem-
poral resolution. In this study, we address specific issues in
TROPoe related to improving the availability of valid solu-
tions for different atmospheric conditions and to increasing

the temporal consistency of the retrieved profiles. To test our
modifications to the code, we ran the retrieval with 10 min
temporal resolution for 1-month-long periods using IRS and
MWR measurements at tropical, midlatitude, and polar sites.
The main results are the following.

1. Adequate characterization of the covariance matrix of
the different input components, which are the observa-
tions, prior, and forward model, is very important for
the retrieval performance. Because it would increase
the computational costs of the retrieval substantially,
the uncertainty of the forward model is currently as-
sumed to be zero and compensated for by an inflated ob-
served radiance uncertainty. We find that for IRS-based
retrievals, this inflation may not be sufficient in some
conditions and for some instruments, leading to an over-
fitting of the data and thus unrealistic solutions. By im-
plementing a default minimum noise level for infrared
radiances, the availability of valid solutions increases
from around 50 % to more than 65 % at all sites.

2. In high-moisture environments, the traditional infrared
spectral bands used for the retrieval of water vapor mix-
ing ratio profiles from ground-based IRS systems (e.g.,
Turner and Löhnert, 2014; Smith et al., 1999) may be
saturated and have little information content prevent-
ing valid retrieval solutions. We show that by using the
additional spectral band 793–804 cm−1 in moist condi-
tions (i.e., when the near-surface water vapor mixing
ratio > 12 gkg−1), the availability of valid solutions in-
creases to more than 92 % at all sites along with an in-
crease in information content. The implementation of
the default minimum noise level for infrared radiances
and the additional water vapor band reduces MAE in the
lowest 3 km by 11.2 % for water vapor mixing ratio and
by 3.6 % for temperature on average.

3. Time series of the retrieved profiles suffer from uncor-
related random noise and low temporal consistency be-
tween subsequent profiles, because every 10 min a pro-
file is processed independently without using any infor-
mation from the previous state of the atmosphere. By
including information from a previous retrieved thermo-
dynamic profile as input to the retrieval, we take into ac-
count the temporal autocorrelation of temperature and
humidity in the atmosphere. This method reduces un-
correlated random noise in the retrieved profiles and
brings it closer to the noise computed from water vapor
mixing ratio profiles measured by Raman lidar. It also
increases the number of independent pieces of infor-
mation. Furthermore, the temporal correlation between
high-pass-filtered retrieved profiles and the Raman li-
dar profiles increases, meaning that the retrieval better
captures real variations in the atmospheric state on short
timescales when including the previous profile.
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Figure 15. Boxplot of mean absolute error (MAE) averaged below 3 km of (a) temperature and (b) water vapor mixing ratio for IRS-based
retrievals and of (c) temperature and (d) water vapor mixing ratio for MWR-based retrievals. Boxplot of mean relative error (MRE) averaged
below 3 km of water vapor mixing ratio for (e) IRS-based retrievals and (f) MWR-based retrievals. MAE and MRE are computed between the
radiosonde profiles and the TROPoe profile closest in time within a 30 min window. Only clear-sky profiles when all TROPoe experiments
provided valid solutions are considered. The white circles indicate the mean values, boxes show the interquartile range with the median
indicated by the horizontal line, and the whiskers extend to the points that lie within 1.5 times the interquartile range of the lower and upper
quartiles.

The first two improvements (default minimum noise level
for infrared radiances and additional infrared band for the
retrieval of water vapor mixing ratio profiles) are already im-
plemented as default in the current version of TROPoe, while
the implementation of the third improvement (using previous
TROPoe profile as input) as an option is planned for a future
update of TROPoe.

These improvements enhance the value of TROPoe for the
study of thermodynamic profiles in the boundary layer at
sites in different regions and climates. The higher availability
of valid solutions and the increased temporal consistency bet-
ter allow the analysis of diurnal cycles and temporal tenden-
cies in the boundary layer. This is not only beneficial for case
studies to enhance the understanding of physical processes,

but it also provides better data sets for model evaluation and
data assimilation.

Appendix A: IRS minimum noise level

The uncertainty of the forward model is not included in the
current framework of TROPoe. This missing uncertainty has
to be compensated for by the uncertainty of the observed in-
frared radiances for IRS-based retrievals. If the instrument-
specific radiance uncertainty is too low, it is insufficient to
compensate for the missing forward model uncertainty re-
sulting in overfitting of the data. In these cases, the retrievals
may struggle to find a valid solution.
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Figure A1. (a) Median radiance uncertainty used in the IRS-based retrieval CTRL and NOISE with different default minimum noise levels.
(b) Number of valid TROPoe solutions for the experiments with different minimum noise levels (a) at the times of the 959 clear-sky
radiosonde launches at SGP during the whole year of 2019. NOISE uses the default minimum noise level which we implemented in TROPoe.
The numbers 0.5, 2, 3, 4, 5, and 10 indicate the factors by which the noise level was multiplied using NOISE as reference.

Figure A2. Cumulative degree of freedom for signal (cDFS) of (a) temperature and (b) water vapor mixing ratio at 3 kma.g.l. and mean
absolute error (MAE) of (c) temperature and (d) water vapor mixing ratio averaged below 3 kma.g.l. when comparing the different TROPoe
experiments (Fig. A1) to radiosonde profiles. Only profiles for which all experiments provided valid solutions (around 700) were considered.
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As an intermediate solution before a computational effi-
cient implementation of the forward model uncertainty can
be included in TROPoe, we propose a minimum noise level
to be used in IRS-based retrievals. To demonstrate the impact
of different minimum noise levels on the retrieval solution,
we ran TROPoe at the four-times-daily radiosonde launch
times at SGP for the full year of 2019. The radiance uncer-
tainties for the different experiments are shown in Fig. A1a.
The proposed minimum noise level is labeled NOISE. We
test the sensitivity of the solution to experiments with 0.5, 2,
3, 4, 5, and 10 times the noise level in NOISE and also in-
cluded CTRL for comparison. Importantly, we are assuming
this noise is spectrally uncorrelated. Figure A1b shows the
percentage of valid solutions for clear-sky retrievals. CTRL
provides valid solutions at around 80 % of all profiles, with
NOISE 0.5 being only slightly higher. The number of valid
solutions increases to nearly 90 % for NOISE and to more
than 95 % for NOISE 2 and up. Increasing the radiance noise
decreases the information content of the solution, illustrated
by cDFS of temperature and water vapor mixing ratio at 3 km
(Fig. A2a and b). When comparing to radiosonde profiles,
MAE for temperature is similarly low for CTRL, NOISE 0.5,
and NOISE on average, and it increases for NOISE 2 and up
(Fig. A2c). The average MAE for water vapor mixing ratio is
smallest for NOISE (Fig. A2d). The higher number of valid
solutions in experiments with high uncertainties of the IRS
radiances comes at the cost of lower information content and
larger errors compared to radiosonde profiles. This is why
we propose NOISE as the default minimum noise level as a
tradeoff; however, this value can be changed by the TROPoe
user.

Code and data availability. The data sets used from the Atmo-
spheric Radiation Measurement (ARM) facilities at Southern
Great Plains (SGP) and Manacapuru (MAO) are the following:
AERI summary data (https://doi.org/10.5439/1989300, Gero et
al., 2023b); AERI noise-filtered Ch1 data (https://doi.org/10.5439/
1027272, Zhang, 2023), which are based on Ch1 data (https://
doi.org/10.5439/1989299, Gero et al., 2023a); surface meteorologi-
cal data (https://doi.org/10.5439/1786358, Kyrouac and Shi, 2023);
ceilometer data (https://doi.org/10.5439/1181954, Morris et al.,
2023); radiosonde data (https://doi.org/10.5439/1595321, Keeler
and Burk, 2023); and Raman lidar data (https://doi.org/10.5439/
1994245, Zhang and Newsom, 2023) (SGP only). Data from Sum-
mit Station were collected as part of the NSF-funded ICECAPS pro-
gram (https://doi.org/10.1175/BAMS-D-11-00249.1, Shupe et al.,
2013). At Summit Station (SMT), we used infrared spectrometer
data from Walden (2015, https://doi.org/10.18739/A25Q4RM71),
microwave radiometer data from Turner and Bennartz (2015,
https://doi.org/10.18739/A23J39198), and radiosonde data from
Walden and Shupe (2015, https://doi.org/10.18739/A2G44HR2F).
Note that these data streams are also in the ARM data
archive, which is where we downloaded them. At Lindenberg
(LIN), the MWR measurements (https://doi.org/10.25592/uhhfdm.
10198, Löhnert et al., 2022) and radiosonde launches (https://
doi.org/10.25592/uhhfdm.10279, Kirsch et al., 2022) were per-

formed in the framework of the FESSTVaL campaign (https://
doi.org/10.1175/BAMS-D-21-0330.1, Hohenegger et al., 2023).
The MWR measurements (https://doi.org/10.6096/DACCIWA.
1659, Kalthoff, 2016) and radiosonde launches (https://doi.org/10.
6096/DACCIWA.1618, Lohou, 2016) at Save (SAV) were con-
ducted for the DACCIWA field campaign (https://doi.org/10.5194/
acp-18-2913-2018, Kalthoff et al., 2018). To run the retrieval, we
used TROPoe version 0.11, which is available from Docker Hub at
https://hub.docker.com/r/davidturner53/tropoe/tags (Turner, 2023).
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K., Dione, C., Ajao, A., Amekudzi, L. K., Aryee, J. N. A., Ay-
oola, M., Bessardon, G., Danuor, S. K., Handwerker, J., Kohler,
M., Lothon, M., Pedruzo-Bagazgoitia, X., Smith, V., Sunmonu,
L., Wieser, A., Fink, A. H., and Knippertz, P.: An overview
of the diurnal cycle of the atmospheric boundary layer dur-
ing the West African monsoon season: results from the 2016
observational campaign, Atmos. Chem. Phys., 18, 2913–2928,
https://doi.org/10.5194/acp-18-2913-2018, 2018.

Keeler, E. and Burk, K.: Balloon-Borne Sounding System (SON-
DEWNPN), Atmospheric Radiation Measurement (ARM) User
Facility [data set], https://doi.org/10.5439/1595321, 2023.

Kirsch, B., Stiehle, B., Löhnert, U., and Ament, F.: Radiosonde pro-
file measurements during FESSTVaL 2021, Project: FESSTVaL
(Field Experiment on submesoscale spatio-temporal variability
in Lindenberg), a measurement campaign initiated by the Hans-
Ertel-Center for Weather Research, Universität Hamburg [data
set], https://doi.org/10.25592/uhhfdm.10279, 2022.

Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker,
R., Dirkx, T., Ellington, S., Feltz, W., Garcia, R., Howell, H.,
Smith, W. L., Short, J. F., and Tobin, D. C.: Atmospheric emit-
ted radiance interferometer. Part I: Instrument design, J. Atmos.
Ocean. Tech., 21, 1763–1776, https://doi.org/10.1175/JTECH-
1662.1, 2004a.

Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker,
R., Dirkx, T., Ellington, S., Feltz, W., Garcia, R., How-
ell, H., Smith, W. L., Short, J. F., and Tobin, D. C.: At-
mospheric emitted radiance interferometer. Part II: Instru-
ment performance, J. Atmos. Ocean. Tech., 21, 1777–1789,
https://doi.org/10.1175/JTECH-1663.1, 2004b.

Kohler, M., Bessardon, G., Brooks, B., Kalthoff, N., Lohou, F.,
Adler, B., Olawale Jegede, O., Altstädter, B., Amekudzi, L. K.,
Aryee, J. N. A., Atiah, W. A., Ayoola, M., Babić, K., Bärfuss,
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