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Abstract. The Advanced Geostationary Radiation Imager
(AGRI) on board the Fengyun (FY)-4A geostationary satel-
lite has provided high-spatiotemporal-resolution visible re-
flectance data since 12 March 2018. Data assimilation ex-
periments under the framework of observing system simu-
lation experiments have shown the great potential of these
data to improve the forecasting skills of numerical weather
prediction (NWP) models. To assimilate the AGRI visible
reflectance in real-world cases, it is important to evaluate the
quality and to quantify the observation errors in these data.
In this study, the FY-4A AGRI channel 2 (0.55–0.75 µm) re-
flectance data (O) were compared with the equivalents (B)
derived from the short-term forecasts of the China Meteoro-
logical Administration Mesoscale (CMA-MESO) model us-
ing the Radiative Transfer for the Television Infrared Ob-
servation Satellite Operational Vertical Sounder (RTTOV,
v12.3). It is shown that the O–B biases could be used to
reveal the abrupt change related to the measurement cali-
bration processes. In general, the O–B departure was pos-

itively biased in most cases. Potential causes include the de-
ficiencies of the NWP model, the forward-operator errors,
and the unresolved aerosol processes. The relative biases
of O–B computed from cloud-free and cloudy pixels were
used to correct the systematic biases for the corresponding
scenarios over land and sea surfaces separately. In general,
the method effectively reduced the O–B biases. Moreover,
the bias-correction method based on an ensemble forecast
is more robust than a deterministic forecast due to the ad-
vantages of the former in dealing with uncertainties in cloud
simulations. The findings demonstrate that analyzing the O–
B biases has a potential to monitor the performance of the
FY-4A AGRI visible instrument and to correct the systematic
biases in the observations, which will facilitate the assimila-
tion of these data in conventional data assimilation applica-
tions.
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1 Introduction

The Advanced Geostationary Radiation Imager (AGRI) is
one of the main payloads on board the Fengyun (FY)-4A
satellite, the first of the new-generation Chinese geostation-
ary meteorological satellites launched on 11 December 2016
(Yang et al., 2017). FY-4A AGRI contains seven shortwave
channels and seven infrared channels. The radiance obser-
vations ranging from visible to infrared channels have been
widely used to retrieve cloud optical thickness (Chen et
al., 2020), total precipitable water (Liu et al., 2022), and
aerosol optical depth (AOD) (Ding et al., 2022). In addition,
the FY-4A infrared radiance data were assimilated into nu-
merical weather prediction (NWP) models, and positive im-
pacts on the forecasts of typhoon cases (Zhang et al., 2022)
and heavy rainfall events (Xu et al., 2023) were reported.
The FY-4A AGRI visible radiance data were also assimi-
lated under an Observation System Simulation Experiment
(OSSE) framework, and the results revealed positive impacts
on cloud variables and some slightly positive impacts on non-
cloud variables in the vicinity of cloudy regions (Zhou et al.,
2022, 2023).

The AGRI, with minor improvements by including an ex-
tra infrared channel, was also equipped on the FY-4B, which
is the second of the Chinese new-generation geostationary
meteorological satellites launched on 3 June 2021. FY-4A
and FY-4B were initially located at 104.7 and 133.0° E,
respectively. The two satellites cover a large part of East
Asia and the western Pacific, providing rich visible and in-
frared radiance data that are highly valuable for data as-
similation applications. From 1 February to 5 March 2024,
FY-4B drifted from 133.0 to 104.7° E to replace the FY-4A
and started its operational observations from 00:00 UTC on
5 March 2024. Since the visible instruments on board the two
satellites share similar characteristics, the general findings of
one satellite could be extended to another one.

Data assimilation of the FY-4A AGRI radiance data in
real cases demands the accurate description of the probabil-
ity density function (PDF) of the observation errors. Con-
ventional data assimilation methods assume that the obser-
vations are unbiased and the PDF of the observation errors
conforms to a Gaussian function (Geer and Bauer, 2011;
Bonavita et al., 2016; Li et al., 2022). The observation errors
influence the data assimilation results by tuning the weights
given to each observation. Several techniques were deployed
to characterize the systematic biases of satellite observations,
and an intercomparison method between the satellite obser-
vations (O) and the equivalents (B) derived from the fore-
casts of NWP models using forward operators received gen-
eral popularity, especially for the satellite infrared and mi-
crowave channels (Auligné et al., 2007; Zou et al., 2016; Lu
et al., 2020; Noh et al., 2023). Unlike variational and ensem-
ble Kalman filter (EnKF) (and its variants) methods, it is un-
necessary for the particle filter method to make a Gaussian
distribution assumption for the PDF of observation errors.

Nevertheless, one topic of this study is to explore the bias
correction of the visible reflectance under the framework of
variational and EnKF data assimilation methods since they
are the mainstream data assimilation methods in the NWP
centers worldwide.

The intercomparison method was also applied to satellite
visible channels (Geiss et al., 2021; Lopez and Matricardi,
2022; Lopez et al., 2022) to better understand the observa-
tion errors and representativeness errors and to provide guid-
ance for the improvements of NWP models and forward op-
erators. Most of the studies performed the radiative transfer
simulations based on a software package termed the Radia-
tive Transfer for the Television Infrared Observation Satel-
lite Operational Vertical Sounder (RTTOV) (Saunders et al.,
2018). To save computational cost, a method for fast satel-
lite image synthesis (MFASIS) was developed based on a
lookup table (LUT) computed with a one-dimensional (1D)
solver in rotated Cartesian coordinates to account for some
three-dimensional (3D) radiative effects (Scheck et al., 2016,
2018). To better simulate the tangent linear and adjoint mod-
els, a neural-network-based forward operator was also de-
veloped based on 1D radiative transfer simulations (Scheck,
2021). The intercomparison of satellite visible reflectance
and the equivalents derived from NWP models and MFASIS
indicated generally good agreement, and the bidirectional re-
flectance distribution function (BRDF) of land surface de-
rived from a monthly mean atlas generated reasonable re-
sults in cloud-free conditions (Lopez and Matricardi, 2022).
However, neglecting aerosol contributions in the radiative
transfer simulations would lead to systematic biases under
both cloudy and cloud-free conditions (Geiss et al., 2021).
Data assimilation of satellite visible reflectance data based on
the MFASIS suggested positive impacts in real-world cases
(Scheck et al., 2020). Since March 2023, satellite visible
reflectance data have been operationally assimilated by the
German Weather Service using the MFASIS forward oper-
ator. Existing studies imply the promising expectation that
RTTOV could generate reliable visible images if the NWP
models were well tuned and the model configurations were
optimized.

One assumption of the intercomparison method is that the
spatiotemporal characteristics of different error contributions
differ, so the O–B analysis can be used to identify differ-
ent error sources. NWP models face challenges in gener-
ating representative atmosphere state variables due to their
inherent limitations such as the deficiencies of microphysi-
cal schemes, the uncertainties of the initial conditions (ICs)
and lateral boundary conditions (LBCs), and the unresolved
subgrid processes (Janjić et al., 2017). The errors in NWP
models could be alleviated by assimilating synergic obser-
vations with improved data assimilation methods or by en-
semble forecasts which involve several microphysics combi-
nations or different ICs and LBCs (Li et al., 2015), amongst
others. In addition, forward operators inevitably suffer from
errors due to the uncertainties of cloud optical properties
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(Zhou et al., 2018), aerosol–cloud interactions (Geiss et al.,
2021), and the BRDF of sun-glint areas over the sea surface.
To save computational cost, 3D radiative processes were usu-
ally simplified into 1D processes, which is another source of
forward-operator errors. The main factors which contribute
to the simulation errors in the reflectance equivalents should
be properly assessed to increase the robustness of the inter-
comparison results.

In this study, the FY-4A AGRI channel 2 (0.55–0.75 µm)
reflectance data were compared with the equivalents derived
from the forecasts of the China Meteorological Administra-
tion Mesoscale (CMA-MESO) model using RTTOV (v12.3).
The main purpose of this study is to address the following
two questions. First, is analyzing the O–B departure an ef-
fective way to monitor the performance of the FY-4A AGRI
visible instrument? Second, what are the characteristics of
the O–B departure and how are the systematic biases in O
corrected in order to assimilate satellite reflectance data in
real-world cases? In view of the two questions, the remain-
ing part of this paper is organized as follows. The data and
methods are introduced in Sect. 2. Results are presented in
Sect. 3. Uncertainties due to forward operators and unre-
solved aerosol processes are discussed in Sect. 4. Implica-
tions for correcting the systematic biases inO for data assim-
ilation are explored in Sect. 5. Conclusions are summarized
in Sect. 6.

2 Data and method

2.1 Simulated CMA-MESO visible reflectance

Simulated visible reflectance was generated from the fore-
casts of the CMA-MESO model, which is the operational
mesoscale model of the CMA. The domain coverage of
the CMA-MESO model is shown in Fig. 1, which includes
2501×1671 horizontal grids with a grid spacing of 0.03° and
50 vertical layers with a model top of 10 hPa. The main phys-
ical configurations of the CMA-MESO model include the
single-moment six-class microphysical scheme (Hong and
Lim, 2006), the MESO-SAS (simplified Arakawa–Schubert)
shallow cumulus convective parameterization option (Zhang
et al., 2017), the Yonsei University (YSU) planetary bound-
ary layer scheme (Hong and Lim, 2006; Hu et al., 2013),
the unified Noah land surface scheme (Tewari et al., 2004),
and the Rapid Radiative Transfer Model for Global models
(RRTMG) longwave and shortwave radiation schemes (Ia-
cono et al., 2008). The model configurations generate non-
cloud variables (water vapor mixing ratio, temperature, etc.)
and cloud variables including the mixing ratio of five cloud
hydrometeors (cloud droplet, rain, ice, snow, and graupel)
and cloud cover.

Previous studies suggested that the parameterization for
unresolved subgrid clouds was critical to the simulated re-
flectance (Scheck et al., 2018; Geiss et al., 2021). In this

Figure 1. The domain coverage of the CMA-MESO model, which
includes 2501× 167 horizontal grids with a horizontal grid spacing
of 0.03°.

study, the subgrid clouds were approximated by the MESO-
SAS shallow cumulus convective parameterization. The ten-
dency equations of the grid-box mean moist static energy,
water vapor mixing ratio, and vertical velocity were related
to the transfer equations of related variables at subgrid scale.
The mixing ratio of cloud hydrometeors at subgrid scale was
generated by convective condensation with interactions to
grid-scale processes considered. The spatial coverage of the
subgrid clouds within a grid box was depicted by cloud cover,
which was diagnosed from the grid-scale humidity follow-
ing Xu and Randall (1996). The cloud cover derived from
the CMA-MESO forecast was included in the RTTOV in-
put to account for the subgrid contributions, and the radiative
transfer was solved by using the maximum random overlap
method.

The 6 h forecasts of CMA-MESO at 06:00 UTC in
September were used to generate synthetic visible images
for comparison with corresponding observations. To gener-
alize the results, the intercomparison was also performed in
March, June, and December, and the results are provided in
the Supplement. The following discussions refer to the re-
sults in September unless otherwise specified. In order to ex-
tend the bias-correction method to EnKF-like methods, an
ensemble forecast at 06:00 UTC was constructed by includ-
ing seven deterministic forecasts with different forecasting
lead times of 3, 6, 9, 12, 15, 18, and 21 h, respectively. The
6 and 18 h forecasts, which were initialized at 00:00 and
12:00 UTC on the previous day, respectively, got their ICs
and LBCs from the large-scale background field provided by
the CMA Global Forecasting System (GFS). Other ensem-
ble members got the ICs and LBCs from the analysis fields
which were generated by assimilating the cloud motion wind
retrieved from the observations of FY-2G (one of the Chi-
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nese first-generation geostationary satellites) and Himawari-
8 (the first Japanese next-generation geostationary satellite),
the Global Navigation Satellite System (GNSS) radio occul-
tation (RO) data, and the FY-4A AGRI clear-sky infrared ra-
diances (Shen et al., 2020). The synergic observations were
assimilated by a 3D variational (3D-Var) data assimilation
system.

It is noted that the ensemble forecast here could not rep-
resent a real ensemble forecast in any operational ensemble
data assimilation (DA) system. On one hand, the number of
ensemble members is too small to fully represent the un-
certainties of atmosphere states. On the other hand, a more
commonly used way to generate an ensemble forecast is to
add perturbations to the ICs and LBCs or to combine sev-
eral forecasts with different combinations of microphysical
schemes (Li et al., 2015). The simplified ensemble forecast
in this study was used mainly because none of a well-tuned
ensemble forecast is currently available for the selected area.
In a real ensemble DA system, real ensemble members would
be adopted for the bias correction. Synthetic visible images
derived from the ensemble forecast should be accompanied
with increased cloud cover since clouds do not exactly over-
lap for different ensemble members, i.e., the displacement
errors. As a result, the number of matched pixels which are
cloudy for both the observations and simulations would be
increased, which benefited the bias correction in cloudy re-
gions (see Sect. 5 for more details).

The forecasts of CMA-MESO were processed into the
format of the RTTOV input files to facilitate the radiative
transfer simulations. The sun-viewing geometries (i.e., solar
zenith angles, satellite zenith angles, and relative azimuth an-
gles between the sun and satellite sensor) were derived from
the FY-4A synchronous observation geometry (GEO) data
gridded at 4 km× 4 km resolution, which were interpolated
to the CMA-MESO grids by a bilinear interpolation. The
layer-to-space transmittance was computed by the v9 predic-
tors on 54 levels (Matricardi, 2008). The BRDF was drawn
from monthly mean land surface atlases (Vidot and Borbás,
2014; Vidot et al., 2018) or calculated by the Joint North
Sea Wave Project (JONSWAP) model for the sea surface
(Hasselmann et al., 1973). The radiative transfer processes
were solved by the discrete ordinate method (DOM) with 16
streams. The liquid and ice cloud optical properties in RT-
TOV were parameterized by the “Deff” scheme (Mayer and
Kylling, 2005) and the Baran et al. (2014) scheme, respec-
tively. Since the state variables of the CMA-MESO model do
not include the effective radius of liquid water clouds (Reliq)
and ice clouds (Reice), Reliq was explicitly calculated follow-
ing Thompson et al. (2004) and Yao et al. (2018). Reice was
not calculated explicitly since the ice scheme developed by
Baran et al. (2014) does not have a dependence on Reice.

2.2 FY-4A AGRI visible reflectance and cloud mask

To generate spatially collocated observations and simula-
tions, the FY-4A AGRI full-disk channel 2 reflectance data
gridded at 1 km× 1 km resolution were horizontally aver-
aged to the CMA-MESO locations. The horizontal averag-
ing was performed by the following two procedures: first
is centering at a given CMA-MESO grid point and finding
all the pixels (matched pixels hereafter) in the FY-4A AGRI
visible image within ±0.015° both in the zonal and merid-
ional directions and second is averaging the reflectances of
all these matched pixels to generate a reflectance that is spa-
tially matched to the CMA-MESO grid. Repeating the two
steps for all CMA-MESO grid points generated an observed
image gridded at 0.03°× 0.03°. The full-disk scanning cy-
cle of AGRI is 15 min, and the scanning usually starts at
00:00 UTC. In addition, the CMA-MESO forecasts were pro-
duced at hourly intervals. Therefore, the maximum allow-
able time differences between the FY-4A observations and
CMA-MESO forecasts are within 15 min to ensure the tem-
poral match. In addition, the 4 km× 4 km FY-4A cloud mask
(CLM) product was used to provide a first-step estimate of
cloud or clear sky. Since the CLM product contains dis-
crete values, the 4 km× 4 km CLM data were matched to the
CMA-MESO location by least-distance matching. After ap-
plying the above-mentioned processes to the FY-4A level 1
observations, the FY-4A visible reflectance data and CLM
data were spatiotemporally matched to the CMA-MESO
simulations. Figure 2 shows an example of the FY-4A AGRI
observations matched to the CMA-MESO grids, including
the visible reflectance of channel 2, cloud mask, solar zenith
angle, solar azimuth angle, satellite zenith angle, and satellite
azimuth angle.

2.3 The multi-source observed precipitation products
gridded at 1 km resolution

Since the representativeness of B was collaboratively de-
termined by the CMA-MESO forecasts and RTTOV DOM
simulations, it is important to evaluate the performance of
CMA-MESO to better understand the O–B statistics. The
forecasts of CMA-MESO were evaluated by the multi-source
observed precipitation products, which provide 1 h accumu-
lated precipitation over the whole Chinese mainland with a
horizontal resolution of 0.01° (≈ 1 km) (Pan et al., 2018).
The products were produced by the National Meteorolog-
ical Information Center (NMIC) using the hourly precipi-
tation data of nearly 40 000 automatic weather stations in
China, the quantity precipitation estimate (QPE) retrieved
from radar (Liu et al., 2010), and the precipitation prod-
uct retrieved by the National Oceanic and Atmospheric Ad-
ministration (NOAA) Climate Prediction Center Morphing
Technique (CMORPH) (Joyce et al., 2004). To develop the
merged precipitation product, the hourly precipitation obser-
vations from the automatic weather stations were interpo-
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Figure 2. FY-4A AGRI observations at 06:00 UTC on 15 Septem-
ber 2020, which were matched to the CMA-MESO grids. (a) Re-
flectance at 0.65 µm. (b) Cloud mask derived from the FY-4A CLM
product. (c) Solar zenith angle. (d) Solar azimuth angle. (e) Satellite
zenith angle. (f) Satellite azimuth angle.

lated to 0.01°× 0.01° grid points by the optimal interpolation
method. The 0.01°× 0.01° data were then merged with the
precipitation products from the QPE and CMORPH based on
the Bayesian model averaging method. To ensure the spatial
collocation between the observations and simulations located
in the CMA-MESO grids, the merged precipitation product
was horizontally averaged to the CMA-MESO locations by
the same methods introduced in Sect. 2.2.

3 Results

3.1 Evaluation of CMA-MESO forecasts

A comparison of the 1-month mean 1 h accumulated pre-
cipitation at 06:00 UTC for the observations and simula-
tions is shown in Fig. 3. In general, good consistency be-
tween the simulations and observations was revealed, ex-
cept that the precipitation areas were overestimated by the
CMA-MESO forecasts on the Chinese mainland. Since the
6 h forecast was cold-started, the overestimation of precipi-
tation was probably caused by the biases in the LBCs and
ICs downscaled from the CMA Global Forecasting System
(GFS) fields at 00:00 UTC or by the deficiencies of the CMA-
MESO model itself. To illustrate this problem, the PDFs of
1-month brightness temperature (BT) for the FY-4A AGRI
channel 13 (10.30–11.30 µm) observations and simulations

were analyzed following the guidance of Geiss et al. (2021).
The BT simulations were done with the RTTOV DOM with
the same configurations introduced in Sect. 2.1. The results
are shown in Fig. 4. For BT simulations, the PDF was un-
derestimated at the high-BT end. In contrast, it was over-
estimated at the low-BT end. Since channel 13 is an in-
frared window channel, BT in cloudy areas is directly re-
lated to cloud-top height. Therefore, the PDF analysis im-
plies that high-level clouds were underestimated by CMA-
MESO, whereas low-level clouds were overestimated. A po-
tential explanation is that the shallow cumulus parameteriza-
tion in the CMA-MESO model could lead to an underesti-
mation of the convective weather system compared with real
cases (Wan et al., 2015).

The deficiencies of CMA-MESO in forecasting high-level
clouds do not necessarily mean that the synthetic reflectance
is under- or overestimated. The top-of-atmosphere (TOA) re-
flectance is mainly determined by cloud water path (CWP)
and the effective radius of cloud particles. In contrast, pre-
cipitation depends not only on the two parameters, but also
on the cloud vertical structures, cloud phases, etc. In addi-
tion, the variation in the reflectance would become saturated
when CWP reaches a threshold value (e.g., Fig. 4c in Zhou
et al., 2023), whereas precipitation is likely to be positively
related to CWP (Wang et al., 2024). Nevertheless, the time
series of the domain-averaged precipitation for CMA-MESO
forecasts agreed well with the observations, except that the
CMA-MESO forecasts were overestimated (Fig. S1 in the
Supplement). For the deterministic forecasts with a forecast-
ing lead time of 3, 9, 12, 15, and 21 h, the CMA-MESO
model was warm-started, with cloud initial fields created
by a cloud analysis technique. The cloud analysis technique
tended to introduce false-alarm cloud hydrometeors into the
initial fields. As a result, the short-term forecasts of CMA-
MESO tended to produce false-alarm precipitation, and the
precipitation tended to be overestimated (Zhu et al., 2017).

3.2 Spatial distribution of O–B biases

The spatial distribution of the 1-month O–B biases in
September 2020 is shown in Fig. 5. The results for March,
June, and December are shown in Fig. S2 in the Supple-
ment. The results indicated that positive biases were espe-
cially apparent over the southern foothills of the Himalayas,
the Sichuan Basin, and the Yunnan–Guizhou Plateau. On one
hand, some areas of the Qinghai–Tibet Plateau were covered
with snow. Reflectance simulated in these areas should be
less accurate compared with other places since the BRDF at-
las is questionable in snow-covered areas (Ji et al., 2022). On
the other hand, the performance of the CMA-MESO model
was reduced over complex-terrain areas. To illustrate this, the
observed and synthetic images and their corresponding PDFs
for two typical cases are shown in Fig. 6. Based on the sub-
jective evaluation of grayscale image tones, the model missed
some clouds over the southern part of the Qinghai–Tibet
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Figure 3. The 1-month mean 1 h accumulated precipitation (unit: mm) at 06:00 UTC in September for the (a) simulations from the 6 h
forecasts of the CMA-MESO model and (b) observations from the multi-source observed precipitation products, as well as (c) the 1-month
mean observations minus simulations.

Figure 4. The probability density function of the 1-month bright-
ness temperature at 06:00 UTC in September for the FY-4A AGRI
observations at channel 13 and the corresponding simulations.

Plateau and Sichuan Basin (Fig. 6a1–a2). In addition, some
of the orographic clouds over the southern slope of the Hi-
malayas were missed (Fig. 6b1–b2). In the central areas of a
cyclone system, the simulations generated some gaps which
were actually filled with clouds in the observations (Fig. 6a1–
a2). The comma-shaped clouds along southern China were
also underestimated by the simulations (Fig. 6b1–b2).

The PDF analysis of the two cases revealed that the num-
ber of pixels for the reflectance smaller than around 0.1 was
larger for the simulations than the observations (Fig. 6a3
and b3). The pixels with reflectance smaller than 0.1 mainly
represent cloud-free pixels. The low-reflectance end of the
PDF was shifted toward the left, mainly because cloud cover
was underestimated by the simulations, as was confirmed
by the observed and synthetic images. For cloud-free pix-
els, the presence of aerosols tends to increase the TOA re-
flectance due to the extra photons backscattered to the satel-
lite by aerosols (Geiss et al., 2021), which should be another
explanation for the left-tilted PDF for the simulations when
reflectance is less than 0.1. In contrast, the number of pix-
els was underestimated by the CMA-MESO forecasts for a

Figure 5. Spatial distribution of the O–B biases in September for
FY-4A channel 2.

medium reflectance ranging from 0.1–0.4 and 0.1–0.6 for
the two cases, respectively. There are many potential causes
for such an underestimation. For example, the CMA-MESO
model could underestimate the convective clouds compared
with real cases (Wan et al., 2015). Since typical cyclone sys-
tems were presented for the two cases, the CMA-MESO’s de-
ficiency in simulating strong convection should be an impor-
tant cause of the underestimation of PDF in the medium re-
flectance range. For optically thick cloud (reflectance> 0.6),
the PDF of the simulations agrees well that of the observa-
tions. The variation in reflectance with CWP becomes satu-
rated when the CWP reaches a threshold value. As a result,
the impacts of the NWP model errors would be mitigated for
thick clouds.

3.3 Temporal variation in O–B biases

In order to better understand different error contributions to
the O–B biases, it is necessary to exclude some pixels in
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Figure 6. Synthetic (the first column) and observed (the second column) visible images and the corresponding probability density functions
(the third column) for two selected cases. The first panel (a1–a3) is the results for the case at 06:00 UTC on 1 September 2020. The second
panel (b1–b3) is the results for the case at 06:00 UTC on 15 September 2020.

the selected domain where the representativeness errors are
especially large.

First, a threshold test of terrain height was applied to ex-
clude the Qinghai–Tibetan Plateau areas (Eq. 1):

ter≤ 4.0, (1)

where “ter” denotes the terrain height (unit: km) in the CMA-
MESO domain. The threshold value 4.0 is the mean terrain
height of the Qinghai–Tibet Plateau.

Second, the snow-covered areas were screened out by ap-
plying a threshold test of the surface albedo. The surface
albedo of snow in the visible spectral band varies with the
physical properties of snow. With the increase in the av-
erage radius of ice grains, the surface albedo is decreased
(Gardner and Sharp, 2010). In addition, the surface albedo
of dirty snow, which includes absorbing particles, and old
snow, which includes some melting water, is smaller than
that of pure snow (Xu and Tian, 2000; Gardner and Sharp,
2010). In general, the lower limit of the surface albedo for
snow-covered surfaces in China is suggested to be 0.2 (e.g.,
Fig. 3 of Xu and Tian, 2000). Therefore, the threshold test
was performed with Eq. (2):

ω ≤ 0.2/3.14, (2)

where 0.2/3.14 denotes the BRDF for a Lambertian radiator.
Third, the highly reflective areas over the sea surface,

i.e., the sun-glint areas, were excluded to reduce the repre-
sentativeness errors in these areas. Although sophisticated al-
gorithms for locating the sun-glint areas have been developed
(e.g., Li et al., 2009), a simple threshold test could identify

most of the sun-glint areas in this study:

Bsea
clr > 0.1, (3)

where Bsea
clr denotes the clear-sky reflectance simulated by

the RTTOV DOM. In this case, the inputs to RTTOV were
derived from CMA-MESO forecasts, except that the mixing
ratio of cloud hydrometeors was set to zero.

Since both the observation errors in O and the representa-
tiveness errors in B were cloud-dependent, the O–B analy-
sis was performed for the cloudy and cloud-free pixels sep-
arately. Unlike Geiss et al. (2021) where a threshold value
of 0.2 was applied to determine whether a pixel is cloudy or
cloud-free, the cloud mask in this study was determined by
comparing the simulated and observed reflectance with the
reflectance simulated by ignoring cloud impacts. For syn-
thetic visible images, a pixel was designated as cloudy if
Eq. (4) was satisfied. Otherwise, the pixel would be desig-
nated as cloud-free.

Bsfc
clm > B

sfc
clr , (4)

where Bsfc
clm denotes the simulated reflectance. The subscript

“clm” denotes cloud mask, which is either cloud-free (clr) or
cloudy (cld). The superscript “sfc” denotes the surface type,
which is either land or sea.

The aerosol contributions were neglected by the simula-
tions since the CMA-MESO forecasts do not provide aerosol
information explicitly, whereas the observed reflectance in-
evitably includes aerosol contributions. For the observed im-
age, a pixel was designated as cloudy if the observed re-
flectance Osfc

clm satisfied Eq. (5):

Osfc
clm > B

sfc
clr + r

75
aer, (5)
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where r75
aer denotes the aerosol contributions to the reflectance

of cloud-free pixels, which was set to the upper quartile of
Osfc

clr −B
sfc
clr for the preliminarily estimated cloud-free pixels.

In addition,Osfc
clr denotes the observed reflectance for the pre-

liminarily estimated cloud-free pixels. The second-step esti-
mate of cloud-free pixels was determined with Eq. (6):

Osfc
clm < B

sfc
clr + r

25
aer, (6)

where r25
aer denotes the aerosol contributions to the cloud-free

reflectance. Similarly, r25
aer was set to the lower quartile of

Osfc
clr −B

sfc
clr for the preliminarily estimated cloud-free pixels.

The two-step estimate of cloud mask in observed images was
performed to maintain an equivalent criterion of the cloud
mask for synthetic images. It is noted that the first-step esti-
mate of cloud mask should be different from that diagnosed
from Eq. (4). For example, the CLM product was generated
by including extra infrared observations (Wang et al., 2019)
that are much more sensitive to optically thin cloud, which
may appear to be transparent in the visible band. Neverthe-
less, the quartile estimation should mitigate the impacts. On
one hand, thin clouds which are transparent in the visible
channel but opaque in the infrared channels should contribute
an insignificant part to Osfc

clm. On the other hand, the quartile
estimation in Eqs. (4) and (5) discarded 25 % of the samples
in estimating the lower and upper quartiles of Osfc

clr −B
sfc
clr .

After excluding the cases with noticeable representative-
ness errors, the 1-month temporal variation in the O–B bi-
ases in September is shown in Fig. 7. The results for March,
June, and December are shown in Figs. S3–S5 in the Sup-
plement. The results indicate that the O–B biases in cloudy
regions are especially large compared to those in cloud-free
regions. Therefore, the O–B biases originated mainly from
observation errors or representativeness errors in cloudy re-
gions. The representativeness errors were determined by the
NWP model errors and radiative transfer model errors, which
are particularly evident in cloudy conditions due to the de-
ficiencies of NWP models in modeling clouds (Lopez and
Matricardi, 2022) or the uncertainties in cloud optical prop-
erties (Geiss et al., 2021). In addition, there are substantial
differences in theO–B biases between land and sea surfaces.
The differences betweenO and B were closely related to the
performance of the CMA-MESO model over land and sea
surfaces due to the parameterization schemes, the data ef-
fectively used by the 3D-Var system, or the cloud analysis
technique. Nevertheless, the O–B biases were mainly deter-
mined by the results over land due to the predominant pixels
therein.

Although the comprehensive contributing factors make the
O–B statistics rather complicated, some of the error sources
could be revealed from the O–B analysis. For example, an
abrupt change in the bias from 8–9 September is shown
in Fig. 7. The abrupt change was caused by the measure-
ment calibration processes. In fact, the calibration correc-
tion coefficient of FY-4A AGRI channel 2 was updated by
the National Satellite Meteorological Center (NSMC) of the

Figure 7. The time series of the O–B biases for all (cloudy plus
cloud-free), cloudy, and cloud-free pixels in September 2020. The
results are shown for (a) all underlying surfaces (including land and
sea), (b) land surface, and (c) sea surface. The dashed lines denote
the number of pixels for different cloud masks and underlying sur-
faces.

CMA at 02:00 UTC on 9 September 2020 (http://www.nsmc.
org.cn/nsmc/cn/news/103609.html, last access: 18 Novem-
ber 2024) (remember that both the observations and sim-
ulations were deployed at 06:00 UTC). Since the O–B bi-
ases were positively related to the observed reflectance (not
shown for simplicity) which is proportional to the calibration
coefficient, the abrupt change was amplified for cloudy pix-
els compared with the cloud-free pixels. The finding answers
the first question, which is that analyzing the O–B departure
is an effective method to monitor the performance of the FY-
4A visible instruments. After the update of the calibration
correction coefficient, the absolute values of the biases were
reduced for cloud-free pixels (Fig. 7b). Since the radiative
transfer simulations are more reliable for cloud-free pixels
than for cloudy pixels (Lopez and Matricardi, 2022), the re-
sults confirmed the effectiveness of the calibration processes.
In contrast, the absolute values of the biases were increased
for cloudy pixels mainly due to uncertainties associated with
cloud state variables and the cloud optical properties, which
will be partly discussed in Sect. 4.1.

It is noted that another abrupt change was also revealed
on 21 June (Fig. S4b). The abrupt change was caused by the
annular solar eclipse at 06:00 UTC on 21 June 2020, when
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the incoming solar radiance was shielded by the moon over
the western parts of the CMA-MESO domain. The annular
solar eclipse caused an abrupt decrease in the photons re-
ceived by the AGRI visible channel. As a result, the visi-
ble image was darkened. The darkened visible image was
also revealed by the National Aeronautics and Space Ad-
ministration (NASA) Worldview project (https://worldview.
earthdata.nasa.gov/, last access: 18 November 2024). How-
ever, the annular solar eclipse was not considered when per-
forming the radiative transfer simulations by the RTTOV
DOM. Instead, the incoming solar irradiance was set to a
constant, which caused an abrupt decrease in the O–B bi-
ases.

In addition to the error sources mentioned above, the O–
B biases were collaboratively determined by many other fac-
tors. For example, O contains the impacts of aerosols which
could not be reflected by B since the CMA-MESO cannot
resolve aerosols processes. The spatiotemporal variations in
aerosols are evident (Liu et al., 2019) and should have non-
negligible impacts on the O–B biases. Moreover, the O–B
biases were influenced by the performance of the forward op-
erator, which is subject to many factors such as the accurate
description of cloud optical properties for the liquid water
clouds and ice clouds. Detailed discussions on the influences
of all the main contributing factors will be given in Sect. 4.

4 Uncertainties due to forward-operator errors and
unresolved aerosols

4.1 Forward-operator errors

Another main contributing factor to the errors in B is the for-
ward operator, i.e., the RTTOV DOM in this study. For ex-
ample, the pre-assumed cloud particle size distribution (PSD)
inherent in the cloud schemes in RTTOV is inconsistent with
that of NWP models, not to mention the representativeness
of the pre-assumed PSD in real cases. These problems will
inevitably introduce errors into the synthetic visible images
(Yuan et al., 2022).

Currently, there are many alternative parameterization
schemes of optical properties for liquid water clouds and
ice clouds in RTTOV. For example, the RTTOV DOM in-
cludes the ice cloud optical property schemes developed by
Baum et al. (2011) and Baran et al. (2014) (the Baum and
Baran schemes hereinafter for simplicity). The Baum scheme
calculated cloud optical properties, including the scattering
phase function, single scattering albedo, and extinction coef-
ficient, based on the mixing ratio of ice hydrometeors and
Reice. In comparison, the Baran scheme did not explicitly
rely on Reice. Instead, the optical properties were parame-
terized by the mixing ratio of ice hydrometeors and the tem-
perature. The Baum and Baran schemes were declared to be
applicable to the ice water content ranging from 4.98×10−5

to 0.1831 g m−3 and 6.0× 10−6 to 1.969466 g m−3, respec-

tively (Hocking et al., 2016). The forecasts of CMA-MESO
showed that the ice water content exceeds the valid range
of the Baum scheme in some cases. Therefore, the RTTOV
DOM was configured with the Baran scheme in this study,
but this does not necessarily mean that the Baran scheme
outperforms the Baum scheme. A sophisticated evaluation
will be needed to address the performance of each scheme in
real cases.

The impacts of ice cloud schemes on the simulated re-
flectance were illustrated by a sensitivity study performed
by the RTTOV DOM configured with the Baum and Baran
schemes based on the 6 h forecasts of CMA-MESO at
06:00 UTC on 1 and 15 September 2020. To facilitate the
radiative transfer simulations for the Baum scheme, Reice
was estimated from the CMA-MESO forecasts with Eq. (7)
(Hong et al., 2004; Yao et al., 2018):

Reice =min
(

11.9× 0.75× 0.163×M1/2
i ,500× 10−6

)
,

(7)

whereMi denotes the ice crystal mass, which was calculated
with Eq. (8):

Mi =
ρaqi

Ni
, (8)

where ρa denotes the density of air and qi the mixing ratio
of ice crystals. Ni denotes the concentration of ice crystals,
which was approximated with Eq. (9):

Ni =min
(
max

(
5.38× 107 (ρa

×max(qi,10−15)
)0.75

,103
)
,106

)
. (9)

The results indicated that the reflectance simulated by the
Baum scheme was underestimated compared with that sim-
ulated by the Baran scheme (the reference run hereafter)
(Fig. 8a). The differences between the FY-4A visible re-
flectance PDFs obtained from the simulations based on the
Baum scheme and the reference run indicated that the im-
pacts were especially apparent for optically thin clouds (re-
flectance < 0.2) (Fig. 8b) and extended to optically thick
clouds. In the high-reflectance end, the PDF was underes-
timated by the reference run compared with the simulations
based on the Baum scheme. The results are different from
Geiss et al. (2021), which suggested that changing the ice
scheme from the general habit mixture (GHM) developed
by Baum et al. (2014) to a solid-column scheme based on
ice optical properties of Yang et al. (2005) only affected the
high-reflectance end of the PDF. We did not conduct an in-
tercomparison study of ice cloud schemes between the solid
columns and GHM. But Baum et al. (2014) compared the
ice cloud optical thicknesses retrieved based on the GHM
and solid columns and indicated good consistency between
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Figure 8. (a) The biases of reflectance simulated by the RTTOV DOM configured with the ice scheme of Baum et al. (2011) (rice) and the
reference run (rref) which is configured with the ice scheme of Baran et al. (2015). (b) Differences between the reflectance PDFs obtained
from the simulations of the ice scheme of Baum et al. (2011) and the reference run (the former minus the latter).

the two ice models due to their similar asymmetry param-
eters. The ice cloud optical properties were determined by
ice habits, PSDs, the mixing ratio of each habit, etc. Sub-
stantial differences exist when building the bulk scattering
properties of the Baum and Baran schemes. For example, the
Baum scheme was developed based on nine basic ice habits,
whereas the Baran scheme involves only six ice habits. In ad-
dition, the PDFs and the mixing ratio of each habit are differ-
ent between the two ice schemes, which could lead to non-
negligible differences between the two ice models. There-
fore, the distinct differences between the Baran and Baum
schemes should be the main cause of the larger differences
compared to Geiss et al. (2021) between the reference run
and experiment run. The results imply the uncertainties in
the cloud optical properties of the RTTOV DOM.

As is mentioned above, 3D radiative effects also contribute
to the forward-operator errors, and they could be alleviated
by increasing the model grid spacing (Várnai and Marshak,
2001; Zinner and Mayer, 2006) or simply by horizontally
averaging the pixels (Kostka et al., 2014). However, small-
scale properties could not be properly resolved with large
grid spacing or could be canceled out for the observations
averaged over n× n pixels (n denotes the number of pix-
els involved). In view of this, the horizontal averaging was
not performed for the 0.03°× 0.03° forecasts or the observa-
tions.

4.2 Unresolved aerosol processes

The aerosol processes cannot be properly resolved by the
CMA-MESO model. However, aerosols have significant im-
pacts on the observed reflectance, which is the theoretical
basis for the remote sensing of AOD by satellite observa-
tions. To evaluate the impacts of aerosols on the TOA re-
flectance, a sensitivity study was performed by the RTTOV
DOM with varying aerosol optical properties based on the
6 h forecast of CMA-MESO at 06:00 UTC on 15 September
2020. The aerosols were assumed to decrease with height ex-

Figure 9. The impacts of dust aerosols on the TOA reflectance.
rnon denotes the reflectance simulated by the RTTOV DOM based
on cloud profiles derived from the 6 h forecast at 06:00 UTC on
15 September 2020. raer denotes the reflectance based on cloud pro-
files and dust aerosols.

ponentially with a scale height of 2.0 km. The optical proper-
ties of aerosols were configured with those of the dust aerosol
of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation (CALIPSO) (Omar et al., 2009). The optical prop-
erties of the dust aerosol at the central wavelength of FY-
4A AGRI channel 2 (0.65 µm) were calculated by a loga-
rithmic interpolation of the optical properties at 0.532 and
1.064 µm provided by Zhou et al. (2017). The logarithmic
interpolation was also used to supply the AOD out of the ref-
erence wavelengths in the SBDART radiative transfer model
(Ricchiazzi et al., 1998). Since the radiative transfer simula-
tions were rather time-consuming when aerosol contributions
were considered, only 10 000 atmospheric columns within
the CMA-MESO domain were randomly chosen for the sen-
sitivity study.
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The impacts of dust aerosols on the TOA reflectance are
shown in Fig. 9. The results indicate that the impacts are
highly dependent on AOD and CWP (as a general approx-
imation, CWP is positively related to the TOA reflectance).
Under cloud-free conditions, the presence of dust aerosols
tends to increase the TOA reflectance due to the fact that
dust aerosols scatter some photons to the satellite sensors.
With the increase in CWP, the impact of dust aerosols tends
to generate negative bias on the TOA reflectance. A potential
explanation is that dust aerosols absorb some photons from
the incoming path to clouds and from the outgoing path to
the satellite. The two-fold impacts of aerosols were also re-
ported by Geiss et al. (2021). The aerosol contributions were
also related to aerosol types and aerosol vertical distribution
structures. Since the satellite visible reflectance is especially
sensitive to cloud properties, data assimilation of visible re-
flectance data has been designed to adjust cloud variables
(e.g., the mixing ratio of cloud hydrometers, cloud cover,
and effective radius of cloud particles) rather than the aerosol
properties (Scheck et al., 2020; Zhou et al., 2022, 2023). In
this case, aerosol contributions could be deemed to be noise
in the observations. The results in Fig. 9 indicate that aerosols
introduced systematic biases into the TOA reflectance, and
the influences are distinctly different for cloudy and cloud-
free pixels. Therefore, it is possible that the aerosol-induced
noise in reflectance observations could be corrected and that
the bias correction should be tackled for the cloudy and
cloud-free pixels separately.

5 Implications for bias correction for data assimilation

For the data assimilation of satellite infrared and microwave
data, the equivalents derived from the first-guess forecasts of
NWP models have been used as a reference to correct the
systematic biases in observations. Some well-designed pre-
dictors such as the average cloud impact (Harnisch et al.,
2016) or the NWP model state variables (Noh et al., 2023)
were regressed to the O–B biases, and the systematic biases
were corrected based on the regression.

Compared with the infrared and microwave radiance ob-
servations, the visible reflectance is much more sensitive to
cloud variables, regardless of the type of cloud hydromete-
ors or the vertical location of clouds. In contrast, the infrared
radiance data are only sensitive to cloud-top properties due
to strong absorption effects (Li et al., 2022). The microwave
radiance is insensitive to small cloud hydrometeors, and the
data were usually used to constrain large particles such as
rain drops (Wang et al., 2021). In addition, the visible re-
flectance is less sensitive to temperature or humidity com-
pared with the infrared and microwave radiances. Since the
NWP model errors are particularly evident in cloudy condi-
tions (Mathiesen and Kliessl, 2011) and the predictor-based
bias correction is largely determined by the equivalents de-
rived from NWP forecasts, the robustness of the predictor-

based bias correction method should be reduced when ap-
plied to the visible spectral bands. In view of the analyses
above, the systematic biases in O–B were simply corrected
by the first-order approximation method promoted by Har-
nisch et al. (2016), i.e., the mean difference in O–B, de-
noted by O–B where the bar denotes the domain averaging.
To avoid generating reflectance beyond the 0–1 range during
the bias correction, the first-order approximation of theO–B
bias was depicted by O–B/O rather than O–B. Therefore,
the bias-corrected reflectance O ′ is calculated with Eq. (10):

O ′ =O(1+ γ sfc
clm), (10)

where γ sfc
clm denotes the bias-correction coefficient. In ad-

dition to the denotation of “clm” in Eq. (4), the “clm” in
Eq. (10) also represents uncertain (“uct”) scenarios which
were designated by the FY-4A CLM product. Therefore, γ sfc

clm
represents one of the six bias-correction coefficients includ-
ing γ land

clr , γ land
cld , γ land

uct , γ sea
clr , γ sea

cld , and γ sea
uct . For a determinis-

tic forecast, the bias-correction coefficients were calculated
with Eqs. (11)–(16):

γ land
clr ←

∑N land
clr

k=1
[
O land

clr (k)−B
land
clr (k)

]
∑N land

clr
k=1 O

land
clr (k)

, (11)

γ land
cld ←

∑N land
cld

k=1
[
O land

cld (k)−B
land
cld (k)

]
∑N land

cld
k=1 O

land
cld (k)

, (12)

γ land
uct =

(
γ land

clr + γ
land
cld

)
/2, (13)

γ sea
clr ←

∑N sea
clr

k=1
[
Osea

clr (k)−B
sea
clr (k)

]
∑N sea

clr
k=1O

sea
clr (k)

, (14)

γ sea
cld ←

∑N sea
cld

k=1 [O
sea
cld (k)−B

sea
cld (k)]∑N sea

cld
k=1O

sea
cld (k)

, (15)

γ sea
uct =

(
γ sea

clr + γ
sea
cld
)
/2, (16)

where N sfc
clm denotes the number of matched pixels between

O and B for a specific surface type and cloud mask. k is the
index for an arbitrary pixel.

For the EnKF-like methods, the observation increments
were calculated using the ensemble mean in the observa-
tion space (e.g., Eq. 6 of Anderson, 2010). To maintain con-
sistency with the ensemble-based DA methods, the bias-
correction method should be performed based on the en-
semble mean of the first-guess reflectance, denoted by Bsfc

clm,
which was generated with Eq. (17):

Bsfc
clm =

1
Nens

∑Nens

l=1
Bsfc

clm(l), (17)
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where Nens denotes the number of ensemble members. l is
the index for an arbitrary ensemble member.

To correct the biases in O according to Eq. (10), γ sfc
clm was

calculated for the cloud-free or cloudy pixels for land and sea
surfaces separately. The implication of Eq. (10) is that the
systematic biases estimated from the matched pixels which
are cloud-free (or cloudy) for both O and B were extended
to the cloud-free (or cloudy) pixels only for O. Apparently,
the cloud-free (or cloudy) pixels for both O and B are only
a subset of those only for O. Therefore, the performance of
the bias correction is determined by the representative of the
subset of the matched cloud-free (or cloudy) pixels to the cor-
responding cloud-free (or cloudy) pixels only in the observed
images.

The bias correction based on deterministic and ensem-
ble forecasts was tested with two selected cases on 15 and
17 September 2020. For the ensemble forecast, cloud mask
was determined with Eq. (4) except that Bsfc

clm and Bsfc
clr were

replaced by the ensemble mean values. For the bias correc-
tion based on a deterministic forecast, the biases of O–B
were reduced in most cases, but increased biases were also
revealed on 17 September for cloudy regions over the sea
(Table 2). In contrast, the bias reduction was especially effec-
tive when B was derived from ensemble forecasts (Tables 1
and 2). For the bias correction based on an ensemble forecast,
the ensemble averaging could decrease the reflectance for a
pixel classified as cloudy for a deterministic forecast due to
the displacement errors (i.e., some of the ensemble members
were cloud-free, while others were cloudy). Therefore, the
bias-correction coefficient estimated by the ensemble fore-
casts is larger than that estimated by a deterministic fore-
cast. Nevertheless, there should be some advantages for the
ensemble forecast. For example, if clouds occur for all the
ensemble members, the uncertainty of the ensemble mean
should be smaller than that of a single ensemble member.
Since the number of the matched cloudy pixels was larger for
the ensemble forecast than the deterministic forecast, γ sfc

cld de-
rived from ensemble forecasts should represent cloudy bias
characteristics better than a deterministic forecast, which ex-
plains why the biases were increased in some cases based on
deterministic forecasts.

For cloud-free pixels, the ensemble averaging will increase
the reflectance compared to the reflectance for a deterministic
forecast. As a result, r25

aer estimated from an ensemble forecast
was increased compared to that estimated from a determin-
istic forecast. Consequently, the ensemble averaging tends to
increase the reflectance for a pixel classified as cloud-free
for a deterministic forecast, leading to the increased bias-
correction coefficients for the ensemble forecast. In addition,
the number of the matched cloud-free pixels was smaller for
the ensemble forecast than the deterministic forecast. As a
result, γ sfc

clr derived from a deterministic forecast should rep-
resent cloud-free bias characteristics better than an ensemble
forecast, which explains why the bias correction for cloud-
free pixels was more effective for a deterministic forecast.

Algorithm 1 The pseudocode for the bias-correction
method.

for m= 1 :Nobs do
### Nobs denotes the number of pixels in O
if sfc(m)→ land then

### for land surface
if clm (m)→ cloud-free then

### for cloud-free pixels in O
om
′
= om(1− γ land

clr )

else if clm (m)→ cloudy then
### for cloudy pixels in O
om
′
= om(1− γ land

cld )

else: ### for uncertain pixels in O
om
′
= om(1− γ land

uct )
end if

else if sfc (m)→ sea then
### for land surface
if clm (m)→ cloud-free then ### for cloud-free pixels
in O
om
′
= om(1− γ sea

clr )
else if clm (m)→ cloudy then ### for cloudy pixels in
O

om
′
= om(1− γ sea

cld )
else: ### for uncertain cloud mask in O
om
′
= om(1− γ sea

uct )
end if

end if
end for

The PDFs of the O–B biases with and without bias cor-
rection are shown in Fig. 10. After bias correction, the right-
side tail of the PDF for the O–B departure shrank, while the
opposite impact was introduced to the left side of the PDF.
The results agree well with the fact that the O–B was pos-
itively biased for the selected cases. In addition, the PDFs
for the O–B departure conformed to the Gaussian functions
better for an ensemble forecast than a deterministic forecast.
A potential explanation is that ensemble forecast is more ef-
fective at mitigating the random errors related to cloud sim-
ulations, which is a possible cause of the irregular structure
of the PDF for a deterministic forecast. Therefore, the bias
correction based on an ensemble forecast should increase the
robustness of the bias-correction method.

The pseudocode for the bias-correction method based on
the equivalents derived from ensemble forecasts is illustrated
in Algorithm 1.

6 Conclusions

In this study, the FY-4A AGRI channel 2 visible reflectance
data were compared with the equivalents derived from the
forecasts of the CMA-MESO model using the RTTOV DOM
forward operator. The spatiotemporal variations in the O–B
biases were explored, and the main contributing factors to the
O–B biases were discussed. In addition, a bias-correction
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Table 1. The biases of O–B for the selected case at 06:00 UTC on 1 September 2020. The comparison takes into account the sea and land
surface types and cloudy and cloud-free scenarios. Here Nmatch denotes matched pixels in O and B for the selected cloud mask and surface
type. Nobs denotes the number of pixels in O for the selected cloud mask and surface type. γ denotes the bias-correction coefficient.

Surface type Land Sea Land plus sea

Cloud-free
Cloud mask Cloud-free Cloudy Cloud-free Cloudy plus cloudy

The Nmatch 148046 1144077 43897 780237 2116257
deterministic Nobs 198215 1836203 57091 132159 2223668
forecast γ 0.0103 0.1753 0.1619 0.0524 –

uncorrected 0.0014 0.1018 0.0065 0.0431 0.0634
corrected −0.0002 0.0470 0.0000 0.0367 0.0330

The Nmatch 68635 1675562 18488 1056007 2818692
ensemble Nobs 205047 1846118 80850 1127039 3259054
forecast γ 0.0144 0.3032 0.2694 0.1721 –

uncorrected 0.0017 0.0989 0.0072 0.0705 0.0703
corrected −0.0004 0.0044 0.0001 0.0032 0.0010

Table 2. Same as in Table 1, but the results are for the selected case at 06:00 UTC on 15 September 2020.

Surface type Land Sea Land plus sea

Cloud-free
Cloud mask Cloud-free Cloudy Cloud-free Cloudy plus cloudy

The Nmatch 149281 1167745 27435 791246 2135707
deterministic Nobs 164244 1910726 49734 1112529 3237233
forecast γ −0.0180 0.1368 −0.0128 0.1809 –

uncorrected −0.0016 0.0955 0.0073 0.0353 0.0582
corrected 0.0000 0.0517 −0.0001 0.0389 0.0360

The Nmatch 76933 1711970 7067 1051263 2847233
ensemble Nobs 162862 1933710 56417 1107440 3260429
forecast γ −0.0096 0.2862 0.1830 0.2216 –

uncorrected −0.0017 0.0973 0.0075 0.0688 0.0501
corrected −0.0003 0.0064 0.0001 0.0034 −0.0050

method was suggested to correct the systematic biases of
O–B, which will facilitate the data assimilation application
of the FY-4A AGRI reflectance data. The main findings are
summarized below.

Compared with B, O was positively biased in most cases.
The temporal variation characteristics of the O–B biases re-
vealed an abrupt change from 8 to 9 September 2020, when
the calibration correction coefficients of FY-4A AGRI chan-
nel 2 were updated by the NSMC. TheO–B biases were pos-
itively related to the domain-averaged observed reflectance,
which confirmed that the abrupt change in the time series of
O–B biases for FY-4A was caused by the measurement cal-
ibration processes. The findings indicate that the reflectance
derived from the CMA-MESO forecasts was capable of mon-
itoring the performance of the FY-4A visible instrument,
which was the normal routine for monitoring the infrared and
microwave instruments by the NSMC of the CMA and other
satellite instrument monitoring systems (Lu et al., 2020).

Apart from the measurement errors, the influences of
forward-operator errors and NWP model errors were as-
sessed through a series of sensitivity studies and synergic
observations. Validation of the CMA-MESO forecasts by
ground-based precipitation observations suggested general
consistency between the CMA-MESO forecasts and observa-
tions, but the deficiencies of the model in simulating strongly
convective weather systems and reduced performance over
complex-terrain areas, as was suggested by previous stud-
ies, were confirmed. In addition, the forward-operator errors
were especially evident for cloudy pixels since the RTTOV
DOM suffers uncertainties in cloud optical properties. The
impact of aerosols on O was not considered in B because
CMA-MESO is currently unable to resolve aerosol pro-
cesses. Sensitivity studies indicate that neglecting aerosols
tends to decrease the TOA reflectance in cloud-free condi-
tions. The impact of aerosols was complicated by aerosol
type and aerosol vertical distribution.

https://doi.org/10.5194/amt-17-6659-2024 Atmos. Meas. Tech., 17, 6659–6675, 2024
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Figure 10. The probability density function of the O–B departure
for FY-4A visible reflectance at 06:00 UTC on 15 September 2020
(a1–a2) and 17 September 2020 (b1–b2). From left to right, the
two columns correspond to the results for deterministic forecasts
(a1-b1) and ensemble forecasts (a2–b2), respectively.

Despite the O–B departure being collaboratively deter-
mined by many factors, systematic biases in O–B were re-
vealed, which facilitated the bias correction in data assim-
ilation applications. Unlike the bias correction of infrared
and microwave radiance data based on some well-designed
predictors, the biases in visible reflectance data were sim-
ply corrected by the domain-averaged relative differences in
O–B. The main reason is that the predictor-based bias cor-
rection could introduce extra errors in the background to the
observations since the visible equivalents are largely influ-
enced by uncertainties in the background which are particu-
larly evident in cloudy regions. The bias-correction method
was tested through two cases, and an overall reduction in the
biases was revealed. Since an ensemble forecast had advan-
tages over a deterministic forecast in reducing the random
errors in cloud simulations, the unbiased Gaussian distribu-
tion ofO–B departure was better respected for the ensemble-
based bias correction.

It is noted that bias-corrected reflectance is largely de-
termined by B. Despite the representativeness errors in B
that are able to be mitigated by more accurate forward op-
erators (e.g., forward operators which account for 3D radia-
tive effects) and more skillful NWP models (e.g., short-term
forecasts based on advanced data assimilation methods and
ensemble forecasts which involve well-designed ensemble
members), B derived from a deterministic forecast or an en-
semble forecast will be inevitably associated with errors due
to the deficiencies of both the NWP models and forward op-
erators. Correcting the biases in O based on B is a measure
of last resort due to a lack of sufficient reference observations
for a comparison with the satellite observations. Whether the

bias correction brings benefits to the numerical weather pre-
diction should be tested by data assimilation in real-world
weather systems. Extending the bias correction to data assim-
ilation in real-world cases and the sophisticated evaluation of
data assimilation experiments are ongoing.
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Janjić, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S.
E., Dance, S. L., Losa, S. N., Nichols, N. K., Potthast, R.,
Waller, J. A., and Weston, P.: On the representation error in
data assimilation, Q. J. Roy. Meteorol. Soc., 144, 1257–1278,
https://doi.org/10.1002/qj.3130, 2017.

Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.:
CMORPH: A Method that Produces Global Precipita-
tion Estimates from Passive Microwave and Infrared
Data at High Spatial and Temporal Resolution, J. Hy-
drometeorol., 5, 487–503, https://doi.org/10.1175/1525-
7541(2004)005<0487:CAMTPG>2.0.CO;2, 2004.

Kostka, P. M., Weissmann, M., Buras, R., Mayer, B., and Stiller,
O.: Observation operator for visible and near-infrared satel-

https://doi.org/10.5194/amt-17-6659-2024 Atmos. Meas. Tech., 17, 6659–6675, 2024

https://doi.org/10.1175/2010MWR3253.1
https://doi.org/10.1002/qj.56
https://doi.org/10.1002/qj.2193
https://doi.org/10.1175/2010JAMC2608.1
https://doi.org/10.1002/qj.2652
https://doi.org/10.5194/acp-20-1131-2020
https://doi.org/10.3390/rs14215591
https://doi.org/10.1029/2009JF001444
https://doi.org/10.1002/qj.830
https://doi.org/10.5194/acp-21-12273-2021
https://doi.org/10.1002/qj.2776
http://resolver.tudelft.nl/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc
http://resolver.tudelft.nl/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc
https://nwp-saf.eumetsat.int/site/download/documentation/rtm/docs_rttov12/users_guide_rttov12_v1.3.pdf
https://nwp-saf.eumetsat.int/site/download/documentation/rtm/docs_rttov12/users_guide_rttov12_v1.3.pdf
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
https://doi.org/10.1002/jgrd.50823
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1029/2021JD035742
https://doi.org/10.1002/qj.3130
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2


6674 Y. Zhou et al.: Characteristics of FY-4A AGRI visible reflectance

lite reflectances, J Atmos. Oceanic. Technol., 31, 1216–1233,
https://doi.org/10.1175/JTECH-D-13-00116.1, 2014.

Li, J., Du, J., and Liu, Y.: A comparison of initial condition-,
multi-physics- and stochastic physics-based ensembles in pre-
dicting Beijing “7.21” excessive storm rain event, Acta Meteorol.
Sinica, 73, 50–71, https://doi.org/10.11676/qxxb2015.008, 2015
(in Chinese).

Li, J., Geer, J. A., Okamoto, K., Otkin. A. J., Liu, Z., Han, W., and
Wang, P.: Satellite All-sky Infrared Radiance Assimilation: Re-
cent Progress and Future Perspectives, Adv. Atmos. Sci., 39, 9–
21, https://doi.org/10.1007/s00376-021-1088-9, 2022.

Li, W., Mao, S.-Y., and Li, Y.-B.: An Algorithm for Locating of
Sunglint s in Satellite Remote Sensing Images, Acta Electronica
Sinica, 37, 1210–1215, 2009 (in Chinese).

Liu, X., Yang, H., Li, J., Li, B., Zhao, K., and Zheng, Y.: CINRAD
Radar Quantitative Precipitation Estimation Group System, Me-
teorol. Monthly, 36, 90–95, 2010 (in Chinese).

Liu, H.-Z., Guo, H.-Y., Ma, Z.-F., Xu, H., Bao, H.-J., and Xu, C.-
P.: Temporal-Spatial Characteristics and Variability in Aerosol
Optical Depth over China During 2001-2017, Environ. Sci., 40,
3886–3897, 2019 (in Chinese).

Liu, X., Wang, Y., Huang, J., Yu, T., Jiang, N., Yang, H. and Zhan,
W.: Assessment and calibration of FY-4A AGRI total precip-
itable water products based on CMONOC, Atmos. Res., 271,
106096, https://doi.org/10.1016/j.atmosres.2022.106096, 2022.

Lopez, P., Matricardi, M., and Fielding, M.: Validation of
IFS+RTTOV/MFASIS solar reflectances against GOES-16
ABI observations, ECMWF Rechnical memorandum, 893,
https://doi.org/10.21957/mprjictvg, 2022.

Lopez, P. and Matricardi, M.: Validation of IFS+RTTOV/MFASIS
0.64-µm reflectances against observations from GOES-16,
GOES-17, MSG-4 and Himawari-8, ECMWF Technical mem-
orandum 903, https://doi.org/10.21957/l4u0f56lm, 2022.

Lu, Q., Hu, J., Wu, C., Qi, C., Wu, S., Xu, N., Sun, L., Li, X., Liu,
H., Guo, Y., An, D., and Sun, F.: Monitoring the performance of
the Fengyun satellite instruments using radiative transfer mod-
els and NWP fields, J. Quant. Spectrosc. Ra., 255, 107239,
https://doi.org/10.1016/j.jqsrt.2020.107239, 2020.

Mathiesen, P. and Kleissl, J.: Evaluation of numerical
weather prediction for intra-day solar forecasting in the
continental United States, Sol. Energy, 85, 967–977,
https://doi.org/10.1016/j.solener.2011.02.013, 2011.

Matricardi, M.: The generation of RTTOV regression coefficients
for IASI and AIRS using a new profile training set and a new
line-by-line database, ECMWF, Technical Memorandum, 47 pp.,
https://doi.org/10.21957/59u3oc9es, 2008.

Mayer, B. and Kylling, A.: Technical note: The libRadtran soft-
ware package for radiative transfer calculations – description
and examples of use, Atmos. Chem. Phys., 5, 1855–1877,
https://doi.org/10.5194/acp-5-1855-2005, 2005.

Noh, Y.-C., Choi, Y., Song, H.-J., Raeder, K., Kim, J.-H., and Kwon,
Y.: Assimilation of the AMSU-A radiances using the CESM
(v2.1.0) and the DART (v9.11.13) – RTTOV (v12.3), Geosci.
Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-
5365-2023, 2023.

Omar, A. H., Winker, D. M., Vaughan, M. A, Hu, Y., Trepte,
C. R., Ferrare, R. A., Lee, K.-P., Hostetler, C. A., Kit-
taka, C., Rogers, R. R., Kuehn, R. E., and Liu, Z.: The
CALIPSO automated aerosol classification and lidar ratio se-

lection algorithm, J. Atmos. Ocean. Technol., 26, 1994–2014,
https://doi.org/10.1175/2009JTECHA1231.1, 2009.

Pan, Y., Gu, J., Yu, J., Shen, Y., Shi, C., and Zhou, Z.:Test of merg-
ing methods for multi-source observed precipitation products at
high resolution over China, Acta Meteorologica Sinica, 76, 755–
766, https://doi.org/10.11676/qxxb2018.034, 2018 (in Chinese).

Ricchiazzi, P., Yang, S. R., Gautier, C., and Sowle, D.: SB-
DART: a research and teaching software tool for plane-
parallel radiative transfer in the Earth’s atmosphere, B. Am.
Meteorol. Soc., 79, 2101–2114, https://doi.org/10.1175/1520-
0477(1998)079<2101:SARATS>2.0.CO;2, 1998.

Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel,
P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N.,
and Lupu, C.: An update on the RTTOV fast radiative transfer
model (currently at version 12), Geosci. Model Dev., 11, 2717–
2737, https://doi.org/10.5194/gmd-11-2717-2018, 2018.

Scheck, L.: A neural network based forward operator for visible
satellite images and its adjoint, J. Quant. Spectrosc. Ra., 274,
107841, https://doi.org/10.1016/j.jqsrt.2021.107841, 2021.

Scheck, L., Frèrebeau, P., Buras-Schnell, R., and Mayer, B.:
A fast radiative transfer method for the simulation of visi-
ble satellite imagery, J. Quant. Spectrosc. Ra., 175, 54–67,
https://doi.org/10.1016/j.jqsrt.2016.02.008, 2016.

Scheck, L., Weissmann, M., and Bernhard, M.: Efficient Methods
to Account for Cloud-Top Inclination and Cloud Overlap in Syn-
thetic Visible Satellite Images, J. Atmos. Ocean. Tech., 35, 665–
685, https://doi.org/10.1175/JTECH-D-17-0057.1, 2018.

Scheck, L., Weissmann, M., and Bach, L.: Assimilating visible
satellite images for convective-scale numerical weather predic-
tion: A case-study. Q. J. Roy. Meteorol. Soc., 146, 3165–3186,
https://doi.org/10.1002/qj.3840, 2020.

Shen, X., Wang, J., Li, Z., Chen, D., and Gong, J.: China’s
independent and innovative development of numerical
weather prediction, Acta Meteorol. Sinica, 78, 451–476,
https://doi.org/10.11676/qxxb2020.030, 2020 (in Chinese).

Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A.,
Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R:
Implementation and verification of the unified NOAH land sur-
face model in the WRF model, in: Proceedings of the 20th
Conference on Weather Analysis and Forecasting/16th Con-
ference on Numerical Weather Prediction, Seattle, WA, USA,
11–15 pp., http://ams.confex.com/ams/84Annual/techprogram/
paper_69061.htm (last access: 18 November 2024), 2004.

Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit fore-
casts of winter precipitation using an improved bulk micro-
physics scheme. Part I: Description and sensitivity analysis,
Mon. Weather Rev., 132, 519–542, https://doi.org/10.1175/1520-
0493(2004)132<0519:EFOWPU>2.0.CO;2, 2004.

Vidot, J. and Borbás, É.: Land surface VIS/NIR BRDF atlas for
RTTOV-11: model and validation against SEVIRI land SAF
albedo product, Q. J. Roy. Meteorol. Soc., 140, 2186–2196,
https://doi.org/10.1002/qj.2288, 2014.

Vidot, J., Brunel, P., Dumont, M., Carmagnola, C., and Hocking, J.:
The VIS/NIR Land and Snow BRDF Atlas for RTTOV: Compar-
ison between MODIS MCD43C1 C5 and C6, Remote Sens., 10,
21, https://doi.org/10.3390/rs10010021, 2018.

Várnai, T. and Marshak, A.: Statistical Analysis of
the Uncertainties in Cloud Optical Depth Retrievals
Caused by Three-Dimensional Radiative Effects, J. At-

Atmos. Meas. Tech., 17, 6659–6675, 2024 https://doi.org/10.5194/amt-17-6659-2024

https://doi.org/10.1175/JTECH-D-13-00116.1
https://doi.org/10.11676/qxxb2015.008
https://doi.org/10.1007/s00376-021-1088-9
https://doi.org/10.1016/j.atmosres.2022.106096
https://doi.org/10.21957/mprjictvg
https://doi.org/10.21957/l4u0f56lm
https://doi.org/10.1016/j.jqsrt.2020.107239
https://doi.org/10.1016/j.solener.2011.02.013
https://doi.org/10.21957/59u3oc9es
https://doi.org/10.5194/acp-5-1855-2005
https://doi.org/10.5194/gmd-16-5365-2023
https://doi.org/10.5194/gmd-16-5365-2023
https://doi.org/10.1175/2009JTECHA1231.1
https://doi.org/10.11676/qxxb2018.034
https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
https://doi.org/10.5194/gmd-11-2717-2018
https://doi.org/10.1016/j.jqsrt.2021.107841
https://doi.org/10.1016/j.jqsrt.2016.02.008
https://doi.org/10.1175/JTECH-D-17-0057.1
https://doi.org/10.1002/qj.3840
https://doi.org/10.11676/qxxb2020.030
http://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm
http://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm
https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2
https://doi.org/10.1002/qj.2288
https://doi.org/10.3390/rs10010021


Y. Zhou et al.: Characteristics of FY-4A AGRI visible reflectance 6675

mos. Sci., 58, 1540–1548, https://doi.org/10.1175/1520-
0469(2001)058<1540:SAOTUI>2.0.CO;2, 2001.

Wan, Z., Wang, J., Huang, L., and Kang, J.: An improve-
ment of the shallow convective parameterization scheme in
the GRAPES-Meso, Acta Meterol. Sinica, 73, 1066–1079,
https://doi.org/10.11676/qxxb2015.071, 2015 (in Chinese).

Wang, X., Min, M., Wang, F., Guo, J., Li, B. and Tang, S.: In-
tercomparisons of Cloud Mask Products Among Fengyun-4A,
Himawari-8, and MODIS, IEEE T. Geosci. Remote Sens., 57,
8827–8839, https://doi.org/10.1109/TGRS.2019.2923247, 2019.

Wang, C., Tang, G., and Gentine, P.: PrecipGAN: Merging mi-
crowave and infrared data for satellite precipitation estimation
using generative adversarial network, Geophys. Res. Lett., 48,
e2020GL092032, https://doi.org/10.1029/2020GL092032, 2021.

Wang, Y., Zhao, P., Zhao, C., Xiao, H., Mo, S., Yuang, L., Wei, C.,
and Zhou, Y.: Relationship between precipitation and cloud prop-
erties in different regions of Southwest China, Int. J. Climatol.,
44, 1–21, https://doi.org/10.1002/joc.8455, 2024.

Xu, D., Zhang, X., Liu, Z., and Shen, F.: All-sky infrared
radiance data assimilation of FY-4A AGRI with differ-
ent physical parameterizations for the prediction of an ex-
tremely heavy rainfall event, Atmos. Res., 293, 106898,
https://doi.org/10.1016/j.atmosres.2023.106898, 2023.

Xu, K.-M. and Randall, D. A.: A semiempirical cloudi-
ness parameterization for use in climate model, J. At-
mos. Sci., 53, 3084–3102, https://doi.org/10.1175/1520-
0469(1996)053<3084:ASCPFU>2.0.CO;2, 1996.

Xu, X. and Tian, L.: Dynamic distribution and albedo
change of snow in China, J. Remote Sens., 3, 178–182,
https://doi.org/10.11834/jrs.20000303, 2000 (in Chinese).

Yang, P., Wei, H., Huang, H.-L., Baum, B. A., Hu, Y. X., Kattawar,
G. W., Mishchenko, M. I., and Fu, Q.: Scattering and absorp-
tion property database for nonspherical ice particles in the near-
through far-infrared spectral region, Appl. Opt., 44, 5512–5523,
https://doi.org/10.1364/AO.44.005512, 2005.

Yang, J., Zhang, Z., Wei, C., Lu, F., and Guo, Q.: Introduc-
ing the New Generation of Chinese Geostationary Weather
Satellites, Fengyun-4, B. Am. Meteorol. Soc., 98, 1737–1658,
https://doi.org/10.1175/BAMS-D-16-0065.1, 2017.

Yao, B., Liu, C., Yin, Y., Zhang, P., Min, M., and Han,
W.: Radiance-based evaluation of WRF cloud proper-
ties over East Asia: Direct comparison with FY-2E ob-
servations, J. Geophys. Res.-Atmos., 123, 4613–4629,
https://doi.org/10.1029/2017JD027600, 2018.

Yuan, J., Zhou, Y., Liu, Y., Duan, J., and Wang, X.: Effect
of Cloud Droplet Spectrum Distribution on Retrievals of Wa-
ter Cloud Optical Thickness and Effective Particle Radius by
AGRI Onboard FY-4A Satellite, Acta Opt. Sinica, 42, 0628004,
https://doi.org/10.3788/AOS202242.0628004, 2022 (in Chi-
nese).

Zhang, J., Ma, S., Chen, D., and Huang, L.: The improvements of
GRAPES_TYM and its performance in northwest Pacific ocean
and South China sea in 2013, J. Trop. Meteorol., 33, 64–73,
https://doi.org/10.16032/j.issn.1004-4965.2017.01.007, 2017.

Zhang, X., Xu, D., Liu, R., and Shen, F.: Impacts of FY-
4A AGRI Radiance Data Assimilation on the Forecast of
the Super Typhoon “In-Fa” (2021), Remote Sens., 14, 4718,
https://doi.org/10.3390/rs14194718, 2022.

Zhou, Y., Liu, Y., Huo, Z., and Li, Y.: A preliminary evaluation
of FY-4A visible radiance data assimilation by the WRF (ARW
v4.1.1)/DART (Manhattan release v9.8.0)-RTTOV (v12.3) sys-
tem for a tropical storm case, Geosci. Model Dev., 15, 7397–
7420, https://doi.org/10.5194/gmd-15-7397-2022, 2022.

Zhou, Y., Liu, Y., and Han, W.: Demonstrating the potential im-
pacts of assimilating FY-4A visible radiances on forecasts of
cloud and precipitation with a localized particle filter. Mon.
Weather Rev., 151, 1167–1188, https://doi.org/10.1175/MWR-
D-22-0133.1, 2023.

Zhou, Y., Sun, X., Mielonen, T., Li, H., Zhang, R., Li,
Y., and Zhang, C.: Cirrus cloud optical thickness and
effective diameter retrieved by MODIS: Impacts of sin-
gle habit assumption, 3-D radiative effects, and cloud in-
homogeneity, J. Geophys. Res.-Atmos., 123, 1195–1210,
https://doi.org/10.1002/2017JD027232, 2018.

Zhou, Y., Sun, X., Zhang, C., Zhang, R., Li, Y., and
Li, H.: 3D aerosol climatology over East Asia derived
from CALIOP observations, Atmos. Environ., 152, 503–518,
https://doi.org/10.1016/j.atmosenv.2017.01.013, 2017.

Zhu, L., Gong, J., Huang, L., Chen, D., Jiang, Y., and Deng,
L.: Three-dimensional cloud initial field created and ap-
plied to GRAPES numerical weather prediction nowcasting, J.
Appl. Meteor. Sci., 28, 38–51, https://doi.org/10.11898/1001-
7313.20170104, 2017.

Zinner, T. and Mayer, B.: Remote sensing of stratocumulus clouds:
Uncertainties and biases due to inhomogeneity, J. Geophys. Res.,
111, D14209, https://doi.org/10.1029/2005JD006955, 2006.

Zou, X., Zhuge, X., and Weng, F.: Characterization of
Bias of Advanced Himawari Imager Infrared Observa-
tions from NWP Background Simulations Using CRTM
and RTTOV, J. Atmos. Ocean. Technol., 33, 2553–2567,
https://doi.org/10.1175/JTECH-D-16-0105.1, 2016.

https://doi.org/10.5194/amt-17-6659-2024 Atmos. Meas. Tech., 17, 6659–6675, 2024

https://doi.org/10.1175/1520-0469(2001)058<1540:SAOTUI>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<1540:SAOTUI>2.0.CO;2
https://doi.org/10.11676/qxxb2015.071
https://doi.org/10.1109/TGRS.2019.2923247
https://doi.org/10.1029/2020GL092032
https://doi.org/10.1002/joc.8455
https://doi.org/10.1016/j.atmosres.2023.106898
https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2
https://doi.org/10.11834/jrs.20000303
https://doi.org/10.1364/AO.44.005512
https://doi.org/10.1175/BAMS-D-16-0065.1
https://doi.org/10.1029/2017JD027600
https://doi.org/10.3788/AOS202242.0628004
https://doi.org/10.16032/j.issn.1004-4965.2017.01.007
https://doi.org/10.3390/rs14194718
https://doi.org/10.5194/gmd-15-7397-2022
https://doi.org/10.1175/MWR-D-22-0133.1
https://doi.org/10.1175/MWR-D-22-0133.1
https://doi.org/10.1002/2017JD027232
https://doi.org/10.1016/j.atmosenv.2017.01.013
https://doi.org/10.11898/1001-7313.20170104
https://doi.org/10.11898/1001-7313.20170104
https://doi.org/10.1029/2005JD006955
https://doi.org/10.1175/JTECH-D-16-0105.1

	Abstract
	Introduction
	Data and method
	Simulated CMA-MESO visible reflectance
	FY-4A AGRI visible reflectance and cloud mask
	The multi-source observed precipitation products gridded at 1km resolution

	Results
	Evaluation of CMA-MESO forecasts
	Spatial distribution of O–B biases
	Temporal variation in O–B biases

	Uncertainties due to forward-operator errors and unresolved aerosols
	Forward-operator errors
	Unresolved aerosol processes

	Implications for bias correction for data assimilation
	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

