
Atmos. Meas. Tech., 17, 6697–6706, 2024
https://doi.org/10.5194/amt-17-6697-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Retrieval of cloud fraction using machine learning algorithms
based on FY-4A AGRI observations
Jinyi Xia and Li Guan
China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory,
Nanjing University of Information Science and Technology, Nanjing 210044, China

Correspondence: Li Guan (liguan@nuist.edu.cn)

Received: 1 April 2024 – Discussion started: 10 June 2024
Revised: 10 October 2024 – Accepted: 11 October 2024 – Published: 25 November 2024

Abstract. Cloud fraction as a vital component of meteoro-
logical satellite products plays an essential role in environ-
mental monitoring, disaster detection, climate analysis and
other research areas. Random forest (RF) and multilayer per-
ceptron (MLP) algorithms were used in this paper to retrieve
the cloud fraction of AGRI (Advanced Geosynchronous Ra-
diation Imager) on board the Fengyun-4A (FY-4A) satellite
based on its full-disk level-1 radiance observation. Correc-
tions have been made subsequently to the retrieved cloud
fraction in areas where solar glint occurs using a correc-
tion curve fitted with sunglint angle as weight. The algo-
rithm includes two steps: the cloud detection is conducted
firstly for each AGRI field of view to identify whether it is
clear sky, partly cloudy or overcast within the observation
field. Then, the cloud fraction is retrieved for the scene iden-
tified as partly cloudy. The 2B-CLDCLASS-lidar cloud frac-
tion product from the CloudSat and CALIPSO active remote
sensing satellite is employed as the truth to assess the ac-
curacy of the retrieval algorithm. Comparison with the op-
erational AGRI level-2 cloud fraction product is also con-
ducted at the same time. The results indicate that both the
RF and MLP cloud detection models achieved high accu-
racy, surpassing that of operational products. However, both
algorithms demonstrated weaker discrimination capabilities
for partly cloudy conditions compared to clear-sky and over-
cast situations. Specifically, they tended to misclassify fields
of view with low cloud fractions (e.g., cloud fraction = 0.16)
as clear sky and those with higher cloud fractions (e.g., cloud
fraction = 0.83) as overcast. Between the two models, RF
exhibited higher overall accuracy. Both RF and MLP mod-
els performed well in cloud fraction retrieval, showing lower
mean error (ME), mean absolute error (MAE) and root mean

square error (RMSE) compared to operational products. The
ME for both RF and MLP cloud fraction retrieval models was
close to zero, while RF had slightly lower MAE and RMSE
than MLP. During daytime, the high reflectance in sunglint
areas led to larger retrieval errors for both RF and MLP al-
gorithms. However, after correction, the retrieval accuracy in
these regions improved significantly. At night, the absence of
visible light observations from the AGRI instrument resulted
in lower classification accuracy compared to daytime, lead-
ing to higher cloud fraction retrieval errors during nighttime.

1 Introduction

Clouds occupy a significant proportion within satellite re-
mote sensing data acquired for Earth observation. According
to the statistics from the International Satellite Cloud Cli-
matology Project (ISCCP), the annual average global cloud
coverage within satellite remote sensing data is around 66 %,
with even higher cloud coverage in specific regions (such as
the tropics) (Zhang et al., 2004). The impact of clouds on the
radiation balance of the Earth’s atmospheric system is influ-
enced by the optical properties of clouds. Cloud detection, as
a vital component of remote sensing image data processing,
is considered a critical step for the subsequent identification,
analysis and interpretation of remote sensing images. There-
fore, accurately determining cloud coverage is essential in
various research domains, such as environmental monitoring,
disaster surveillance and climate analysis.

Fengyun-4A (FY-4A) is a comprehensive atmospheric ob-
servation satellite launched by China in 2016. The uploaded
AGRI (Advanced Geosynchronous Radiation Imager) has 14
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channels and captures full-disk observation every 15 min. In
addition to observing clouds, water vapor, vegetation and the
Earth’s surface, it also possesses the capability to capture
aerosols and snow. Moreover, it can clearly distinguish dif-
ferent phases and particle size of clouds and obtain high- to
mid-level water vapor content. It is particularly suitable for
cloud detection due to its simultaneous use of visible, near-
infrared and longwave infrared channels for observation with
4 km spatial resolution.

Numerous cloud detection algorithms have been provided
based on observations from satellite-borne imagers. The
threshold method has been widely employed by researchers,
including the early ISCCP (International Satellite Cloud Cli-
matology Project) method (Rossow and Leonid, 1993) and
the proposed threshold methods based on different spectral
features or underlying surfaces (Kegelmeyer, 1994; Solvs-
teen, 1995; Baum and Trepte, 1996). However, there is a sig-
nificant subjectivity in selection of thresholds as to whether
it is the single and fixed threshold in the early days, multiple
thresholds, dynamic thresholds, or adaptive thresholds. The
selection of thresholds is influenced by season and climate.
Surface reflectance varies significantly between different sea-
sons, such as increased reflectance from snow in winter and
vegetation flourishing in summer affecting reflectance. As a
result, changes in surface features during different seasons
lead to variations in the distribution of grayscale values in
images, requiring adjustments to thresholds based on sea-
sonal characteristics. Climate conditions like cloud cover and
atmospheric humidity impact the distinguishability of clouds
and other features. For instance, in humid or cloudy climates,
the reflectance of the surface and clouds may be similar, ne-
cessitating stricter thresholds for differentiation. Therefore,
climate conditions also influence threshold selection.

The other category of cloud detection algorithms is based
on statistical probability theory. For example the principal
component discriminant analysis and quadratic discriminant
analysis methods were used for SEVIRI (Spinning Enhanced
Visible and Infrared Imager) cloud detection (Amato et al.,
2008). The cloud detection algorithm for the Thermal In-
frared (TIR) sensor was based on the Bayesian theory of total
probability (Merchant et al., 2010) and the naive Bayes algo-
rithm for AGRI (Yan et al., 2022). The unsupervised clus-
tering cloud detection algorithms for MERIS (Medium Res-
olution Imaging Spectrometer) (Gomez-Chova et al., 2006)
and the combining k-means clustering and Otsu’s method for
MODIS (Xiang, 2018) all have achieved high accuracy in
cloud detection.

More and more machine learning algorithms are being uti-
lized by researchers in cloud detection studies with the devel-
opment of machine learning. For instance, probabilistic neu-
ral networks, especially radial basis function networks, were
used for AVHRR cloud detection (Zhang et al., 2001). The
utilization of convolutional neural network methods (Chai et
al., 2024) offers important perspectives for cloud detection
research.

Currently, there is limited research literature on cloud de-
tection and cloud fraction retrieval algorithms for FY-4A/4B
AGRI. The operational cloud fraction product of FY-4A
AGRI utilized a threshold method with 4 km spatial resolu-
tion. Differences in climatic and environmental factors lead
to varying albedo and brightness temperature observations
for the instrument at different times and locations. There-
fore, the choice of thresholds is easily influenced by factors
such as season, latitude and land surface type (Gao and Jing,
2019). Using multiple sets of thresholds for discrimination
would significantly slow down the cloud detection process.
Moreover, most algorithms focus solely on cloud detection,
which classified the observed scenes as cloud or clear sky
without providing the specific cloud fraction information for
the scenes. The use of active remote sensing instruments car-
ried by Cloudsat and CALYPSO is not influenced by thresh-
olds when retrieving cloud fraction, enabling a more accu-
rate cloud fraction retrieval. However, due to Cloudsat and
CALYPSO being polar-orbiting satellites, the cloud fraction
over the full disk cannot be obtained. Utilizing the Cloud-
sat and CALYPSO level-2 product 2B-CLDCLASS-lidar as
the reference truth, a random forest model trained based on
FY-4A AGRI full disk radiation data can address the short-
comings of threshold methods and achieve a high accuracy
of cloud fraction over the full disk.

In summary, this paper established cloud detection and
cloud fraction retrieval models using multilayer perceptron
(MLP) and random forest (RF) algorithms, based on FY-4A
AGRI full-disk level-1 observed radiance data. The cloud
fraction from the CloudSat and CALIPSO level-2 product
2B-CLDCLASS-lidar was used as the label. The results were
compared with the 2B-CLDCLASS-lidar product and the of-
ficial AGRI operational products for validation.

2 Research data and preprocessing

2.1 FY-4A data

FY-4A was successfully launched on 11 December 2016.
Starting from 25 May 2017, FY-4A drifted to a position
near the main business location of the Fengyun geostation-
ary satellite at 104.7° east longitude on the Equator. Its suc-
cessful launch marked the beginning of a new era for China’s
next-generation geostationary meteorological satellites as an
advanced comprehensive atmospheric observation satellite.
The Advanced Geosynchronous Radiation Imager (AGRI),
one of the main payloads of the Fengyun-4 series geostation-
ary meteorological satellites, can perform large-disk scans
and rapid regional scans at a minute level. It has 14 ob-
servation channels in total with the main task of acquir-
ing cloud images. The channel parameters and main uses
of AGRI are detailed in Table 1 (https://www.nsmc.org.cn/
nsmc/cn/instrument/AGRI.html, last access: 20 November
2024). The first six visible light channels have no values at
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Table 1. FY-4A AGRI channel parameters.

Channel Band Central Spatial Main
number range (µm) wavelength (µm) resolution (km) applications

1 0.45–0.49 0.47 1 clouds, dust, aerosols
2 0.55–0.75 0.65 0.5 clouds, sand dust, snow
3 0.75–0.90 0.825 1 vegetation
4 1.36–1.39 1.375 2 cirrus
5 1.58–1.64 1.61 2 clouds, snow
6 2.10–2.35 2.225 2 cirrus, aerosols
7 3.50–4.00 3.75 H 2 fire point, the intense solar reflection signal
8 3.50–4.00 3.75 L 4 low clouds, fog
9 5.80–6.70 6.25 4 upper-level water vapor
10 6.90–7.30 7.1 4 mid-level water vapor
11 8.00–9.00 8.5 4 subsurface water vapor
12 10.30–11.30 10.8 4 surface and cloud-top temperatures
e 11.5 0–12.50 12.0 4 surface and cloud-top temperatures
14 13.2–13.8 13.5 4 cloud-top height

night, meaning that channels with a central wavelength less
than or equal to 2.225 µm are unavailable during nighttime.
FY-4A AGRI data were downloaded from the official web-
site of the China National Satellite Meteorological Center
(http://satellite.nsmc.org.cn, last access: 20 November 2024),
including level-1 full disk radiation observation data prepro-
cessed through quality control, geolocation and radiation cal-
ibration as well as the level-2 cloud fraction (CFR) product.
The spatial resolution of all these data is 4 km at nadir, and
the temporal resolution is 15 min.

2.2 CloudSat and CALIPSO cloud product

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations) is a satellite jointly launched by
NASA and CNES (the French National Center for Space
Studies) in 2006. It is a member of the A-Train satellite
observation system. CALIPSO is equipped with three pay-
loads, among which CALIOP (the Cloud and Aerosol Li-
dar with Orthogonal Polarization) is a primary observa-
tional instrument. Observing with dual wavelengths (532 and
1064 nm) CALIOP can provide high-resolution vertical pro-
files of clouds and aerosols with 30 m vertical resolution. As
the first satellite designed to observe global cloud charac-
teristics in a sun-synchronous orbit, CloudSat is also among
NASA’s A-Train series satellites. The CPR (Cloud Profiling
Radar) installed on it operates at 94 GHz millimeter wave-
length and is capable of detecting the vertical structure of
clouds and providing vertical profiles of cloud parameters.
The scanning wavelengths of CPR and CALIOP are differ-
ent. CALIOP is capable of observing the top of mid-level to
high-level clouds, whereas CPR can penetrate optically thick
clouds. Combining the strengths of these two instruments en-
ables the acquisition of precise and detailed information on
cloud layers and cloud fraction.

The joint level-2 product 2B-CLDCLASS-lidar is mainly
utilized in this study. It provides the cloud fraction at differ-
ent heights with horizontal resolution 2.5 km (along-track)
×1.4 km (cross-track) through combining the observations
from CPR and CALIOP. Since the two instruments have a
different spatial domain such as vertical resolution, spatial
resolution and spatial frequency, the spatial domain of the
output products is defined in terms of the spatial grid of the
CPR. In the algorithm, the cloud fraction is calculated using
a weighted scheme based on the spatial probability of overlap
between the radar and lidar observations. The calculation of
the lidar cloud fraction within a radar footprint is represented
by Eq. (1) (Mace, 2014):

Cl =

no. of lidar obs∑
i=1

wiδi

no. of lidar obs∑
i=1

wi

, (1)

where Cl represents the lidar cloud fraction within a radar
footprint; wi is the spatial probability of overlap for a par-
ticular lidar observation; δi indicates the lidar hydrometeor
occurrence, where a value of 1 signifies the presence of hy-
drometeor and 0 indicates the absence; and i counts the lidar
profile in a specific radar observational domain.

This calculation considers the contributions of multiple li-
dar observations within a radar resolution volume to deter-
mine the cloud fraction within that volume. The CloudSat
product manual (Wang, 2019) can be referred to for more
detailed information on 2B-CLDCLASS-lidar. The data
used are available to download from the ICARE Data and
Services Center (https://www.icare.univ-lille.fr/data-access/
data-archive-access/, last access: 20 November 2024).
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Figure 1. Method workflow. The input consists of 14 channel observation values for each pixel from FY-4A AGRI, and the ground truth
labels or outputs are sourced from the CloudSat and CALIPSO cloud fraction products. The cloud detection classification model and the
cloud fraction retrieval model are established separately.

2.3 Establishment of training data

The crucial aspect of establishing a training data in machine
learning algorithms is how to obtain the cloud fraction val-
ues (ground truth) as labels. The error in cloud fraction re-
trieved solely from passive remote sensing instruments is sig-
nificant. Using active remote sensing data can provide more
accurate cloud fraction information in the vertical direction.
Therefore, the spatiotemporally matched 2B-CLDCLASS-
lidar cloud fractions are utilized as output labels in this paper.

The FY-4A AGRI and 2B-CLDCLASS-lidar data with a
spatial difference between fields of view within 1.5 km and
a time difference within 15 minutes are spatiotemporally
matched. To make the 2B-CLDCLASS-lidar cloud fraction
data collocated within AGRI pixels more effective, at least
two 2B-CLDCLASS-lidar pixels are required within each
AGRI field of view. The cloud fraction average of these pix-
els is used as the cloud fraction for that AGRI pixel. How-
ever, the errors in the matched dataset are unavoidable. The
AGRI scanning method operates from left to right and top to
bottom. Each complete scan of the full disk takes 15 min and
generates a dataset. It is impossible to determine the exact
moment of a specific point within the full disk. This limits
the time range for matching datasets to within 15 minutes.
However, in areas with higher wind speeds, clouds can move
a significant distance within that 15 min window. Therefore,
errors arising from timing issues cannot be avoided.

Cloud detection and cloud fraction label generation for
2B-CLDCLASS-lidar are as follows. There may be multiple
layers of clouds in each field of view. If there is at least one
layer cloud with cloud fraction of 1 in the 2B-CLDCLASS-
lidar profile, then the scene is labeled as overcast with a cloud
fraction of 1. If all layers in the profile are cloud-free, the
scene is labeled as clear sky. The scene between the above
two situations is labeled as partly cloudy, and the cloud frac-
tion is the average of cloud fractions at different layers.

The algorithm includes two steps: the cloud detection is
conducted firstly for each AGRI field of view to identify
whether it is clear sky, partly cloudy or overcast within the

observation field. Then, the cloud fraction is retrieved for
the scene identified as partly cloudy. So the training data
include dataset A used for cloud detection and dataset B
for cloud fraction retrieval. The input variables in dataset A
are the FY-4A AGRI level-1 radiative observations from 14
channels, and the output variable is the temporally and spa-
tially matched 2B-CLDCLASS-lidar cloud detection label.
The output is categorized into three types: overcast, partly
cloudy and clear sky, with values 1, 2 and 3 respectively.
The cloud fraction product from 2B-CLDCLASS-lidar con-
sists of discrete values: 0, 0.16, 0.33, 0.50, 0.66, 0.83 and 1.
According to the result statistics, the cloud fractions of 2B-
CLDCLASS-lidar pixels within the AGRI field of view are
mostly the same. After averaging, the proportions of cloud
fractions of [0.16, 0.33, 0.5, 0.67, 0.83] are extremely high.
Therefore, other cloud fraction situations with extremely
small proportions can be ignored. Doing so can also better
balance the training samples. Here, 0 indicates clear sky, val-
ues from 0 to 1 represent varying cloud fractions for partly
cloudy conditions and 1 signifies overcast. To ensure the bal-
ance and representativeness of the samples, the proportions
of different cloud fraction samples in dataset A are set at
5 : 1 : 1 : 1 : 1 : 1 : 5. Regarding the samples for partly cloudy
type in dataset A, the collocated 2B-CLDCLASS-lidar cloud
fraction products serve as output labels for cloud fraction re-
trieval model B. The input of training dataset B remains the
FY-4A AGRI level-1 radiative observations.

Due to the instrument’s limited lifespan, only 2B-
CLDCLASS-lidar data up to August 2019 can be obtained.
The sample time range used in this paper is from Au-
gust 2018 to July 2019. A period of 5 d was randomly se-
lected each month as daytime samples and 5 d as nighttime
samples. A total of 120 d of time- and space-matched FY-
4A AGRI full-disk observations and 2B-CLDCLASS-lidar
data were used as training and testing samples. Among them,
80 % of the data were used for training, and 20 % were used
for testing. The total number of daytime samples in dataset A
is 91 073, while dataset B contains 30 358 samples. The to-
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Table 2. Recall rate (POD) and false alarm rate (FAR) of operational cloud detection products and multiple models.

Sky Daytime Nighttime Daytime Nighttime Daytime Nighttime
classification product product RF RF MLP MLP

POD Clear sky 0. 6359 0.5781 0.964 0.919 0.959 0.905
Partly cloudy 0.7174 0.7449 0.914 0.845 0.895 0.808
Overcast 0.7736 0.7384 0.959 0.919 0.957 0.920

FAR Clear sky 0.1778 0.0934 0.047 0.102 0.064 0.131
Partly cloudy 0.1819 0.2117 0.078 0.153 0.085 0.172
Overcast 0.2499 0.2683 0.038 0.061 0.039 0.063

Table 3. Errors of cloud fraction.

Daytime Nighttime Daytime Daytime Nighttime Nighttime
product product RF MLP RF MLP

ME 0.1987 0.2121 0.0006 −0.0009 −0.0028 −0.0032
MAE 0.2279 0.2441 0.1011 0.1053 0.1221 0.1322
RMSE 0.2776 0.2938 0.1285 0.1332 0.1510 0.1623

tal number of nighttime samples in dataset A is 95 493, and
dataset B includes 31 831 samples.

Although the model was trained and tested using data from
2018 to 2019, to test the universality of the algorithm, it
was applied to real-time observations from FY-4A and FY-
4B AGRI in 2023.

3 Algorithms

Our preliminary experiments involved multiple algorithms,
including LIBSVM, MLP, BP neural network and random
forest. These experiments highlighted that, among the base-
lines, random forest and MLP achieved the highest overall
accuracy. For this reason, we selected them to perform ad-
ditional experiments. Using RF and MLP algorithms to train
the model with the established sample set, the overall process
is shown in Fig. 1.

3.1 Random forest (RF)

This algorithm integrates multiple trees based on the bag-
ging idea of ensemble learning, with the basic element be-
ing the decision tree (Breiman, 1999). When building a deci-
sion tree, N sets of independent and dependent variables are
randomly sampled with replacement from the original train-
ing samples to create a new training sample set; m variables
are randomly sampled without replacement from all indepen-
dent variables, the dependent variable data are split into two
parts using the selected variables, and the purity of the sub-
sets is calculated for each split method. The variable utilized
by the split method with the highest purity is used to partition
the data, completing the decision at that node. This process
of binary splitting continues to grow the decision tree un-

til stopping criteria are met, completing the construction of
a single decision tree. These steps are repeated Ntree times
to build a random forest model consisting of Ntree decision
trees (Breiman, 2001). Random forest adopts ensemble al-
gorithms, with the advantage of high accuracy. It can handle
both discrete and continuous data, without the need for nor-
malization, making it more efficient compared to other algo-
rithms.

3.2 Multilayer perceptron (MLP)

This algorithm consists of a fully connected artificial neural
network (Duda, et al., 2007). The classifier/regressor takes
feature vectors or tensors as input. The input is mapped
through multiple fully connected hidden layers containing
hidden weights, which produce classifications/regressions at
the output layer. A nonlinear activation function (such as
sigmoid or rectified linear unit (ReLU)) is applied in each
hidden layer to facilitate a nonlinear model. For classifiers,
the output of the final hidden layer is combined and passed
through a softmax function to generate class predictions. For
the loss function, the cloud detection model is cross-entropy,
and the cloud fraction model is the mean square error (MSE).
The model’s weights are trained in a supervised manner us-
ing backpropagation.

3.3 Hyperparameters

In this paper, a total of eight models were established, includ-
ing daytime/nighttime random forest classification/regres-
sion models and daytime/nighttime MLP classification/re-
gression models. For the random forest, we first conducted
experiments using the following hyperparameter ranges:
trees – [200, 300, 400, 500, 600, 700], minleaf – [1, 2, 5,
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Figure 2. (a) Albedo image of the 0.67 µm channel (the circles are
the contours of the sunglint angle). (b) Scatter plot of cloud fraction
in the sunglint region (The blue line represents the curve (namely
Eq. 2) fitted by the least-squares method between the retrievals and
the truths.). (c) Distribution of SunGlintAngle and satellite flight
track of CloudSat and CALYPSO at 04:00 on 5 June 2019. (d) Dis-
tribution of cloud fraction retrieval error with sunglint angle.

10] and criterion – [Gini, entropy]. Ultimately, the best se-
lections were as follows: daytime RF classification model –
trees= 500, nighttime RF classification model – trees= 600,
daytime RF regression model – trees= 400 and nighttime RF
regression model – trees= 500. All four models have min-
leaf= 1 and criterion=Gini.

For the MLP, experiments were conducted using the fol-
lowing hyperparameter ranges: number of hidden layers –
[2, 3, 4, 5, 6, 7, 8, 9], hidden layer size – [8, 16, 32, 64,
128], epochs – [30, 50, 100], solver hyperparameter – [lbfgs,
sgd, adam]. The optimal parameters found are as follows:
(1) MLP classification model for daytime – number of hid-
den layers = 5, (2) MLP classification model for nighttime
– number of hidden layers = 5, (3) MLP regression model
for daytime – number of hidden layers = 4 and (4) MLP
regression model for nighttime – number of hidden layers
= 6. All four models have hidden layer size = 64, epochs
= 50, solver = adam, BatchSize = 1500, initial learning rate
= 0.01, learning rate schedule = piecewise, factor for drop-
ping the learning rate = 0.1 and number of epochs for drop-
ping the learning rate = 10.

4 Results and analysis

To assess the accuracy and stability of the retrieval model,
two types of validation methods are utilized. One way in-
volves a direct comparison from images, qualitatively com-
paring the model’s retrieval results and official cloud fraction

Figure 3. FY-4A AGRI at 04:00 on 1 June 2023. (a) Albedo image
of the 0.67 µm channel (The circles are the contours of the sunglint
angle.). (b) Random forest cloud fraction retrieval without sunglint
correction. (c) Operational cloud fraction product. (d) Random for-
est cloud fraction retrieval with sunglint correction.

products with AGRI-observed cloud images. Another ap-
proach uses 2B-CLDCLASS-lidar as the ground truth and in-
troduces five parameters for quantitative comparison: recall,
false alarm rate (FAR), mean error (ME), mean absolute error
(MAE) and root mean square error (RMSE). To evaluate the
ability of operational products, RF and MLP cloud detection
models to distinguish overcast, partly cloudy and clear sky,
the recall (probability of detection, POD) is calculated us-
ing the formula POD=TP / (TP+FN), and the false alarm
rate is calculated using the formula FAR=FP / (TP+FP).
Taking the overcast scene as an example, TP represents the
number of correctly identified overcast conditions, FN rep-
resents the number of overcast conditions misidentified as
partly cloudy or clear sky, and FP represents the number of
clear sky or partly cloudy conditions misidentified as over-
cast. When assessing the accuracy of operational products
and cloud fraction models for the cloud fraction retrieval re-
sults of partly cloudy scenes, mean error (ME), mean abso-
lute error (MAE) and root mean square error (RMSE) are
used.

4.1 Objective analysis of cloud fraction retrievals

First, using the 2B-CLDCLASS-lidar cloud fraction product
as the ground truth, we calculated the accuracy of the op-
erational cloud detection products. The results are shown in
columns 3–4 of Table 2. The samples used for this statistic
are the same as those for testing the model below (20 % of
dataset A).
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Table 4. POD and FAR of cloud detection in the sunglint area.

Sky Operational RF after
classification product RF correction

POD Clear sky 0.4120 0.0987 0.9023
Partly cloudy 0.7371 0.9663 0.9587
Overcast 0.8856 0.9845 0.9845

FAR Clear sky 0.1229 0.1633 0.0938
Partly cloudy 0.3332 0.7943 0.0276
Overcast 0.2983 0.1321 0.1321

Based on the cloud detection model trained above, cloud
detection experiments were conducted using the test sam-
ples from dataset A. The time- and space-matched 2B
CLDCLASS-lidar cloud fraction product served as the
ground truth to assess the accuracy of cloud detection. The
results are shown in columns 5–8 of Table 2. During the
day, the random forest model achieved an overall accuracy
of 94.2 %, while the MLP model had an overall accuracy of
93.7 %. The random forest model exhibited slightly higher
recall rates for clear skies, partly cloudy and overcast condi-
tions compared to the MLP model, and its FAR was lower
as well. Both models performed poorly in recognizing partly
cloudy conditions, as the models tended to classify true cloud
fractions of 0.16 as clear skies and those of 0.83 as over-
cast. At night, the random forest model achieved an overall
accuracy of 89.4 %, while the MLP model had an accuracy
of 88.7 %. The random forest model had higher recall rates
for clear skies and partly cloudy conditions compared to the
MLP, while the recall rates for overcast conditions were sim-
ilar for both models. The FAR for the random forest model
was lower than that of the MLP. Overall, both the random for-
est and MLP models showed higher classification accuracy
for clear skies, partly cloudy and overcast conditions com-
pared to operational products, with the random forest model
performing better.

Based on the previous model’s assessment of the field
of view as partly cloudy, the cloud fraction in this AGRI
field of view is retrieved using the cloud fraction model
established earlier. For model evaluation, both the opera-
tional product and the 2B-CLDCLASS-lidar cloud fraction
product are classified as partly cloudy, with the matched
2B-CLDCLASS-lidar cloud fraction product considered the
ground truth. The average error, mean absolute error and root
mean square error for both daytime and nighttime operational
products and cloud fraction model retrieval (Table 3) are cal-
culated. It can be observed that the average errors of both
models are close to 0 during both daytime and nighttime. The
errors are smaller during the day than at night, with the RF
model exhibiting lower errors than the MLP model. In sum-
mary, the errors of both models are smaller than those of the
operational products, and the RF model performs better in
the cloud fraction retrieval task.

Table 5. Cloud fraction errors in the sunglint area.

Operational RF RF after
product retrievals correction

ME 0.2354 0.1741 0.0670
MAE 0.2511 0.1820 0.0849
RMSE 0.2771 0.2166 0.1041

Based on the experiments mentioned above, the perfor-
mance of RF in cloud detection and cloud fraction retrieval
slightly outperforms that of MLP. Therefore, subsequent ex-
periments will utilize the RF algorithm.

4.2 Cloud fraction correction in sunglint regions

Sunglint refers to the bright areas created by the reflection
of sunlight to the sensors of observation systems (satellites
or aircraft). This phenomenon usually occurs on extensive
water surfaces, such as oceans, lakes or rivers. This specular
reflection of sunlight will cause an increase in the reflected
solar radiation received by onboard sensors, manifested as an
enhancement of white brightness in visible images. The in-
crease in visible channel observation albedo will affect var-
ious subsequent applications of data, including cloud detec-
tion and cloud cover retrieval.

The position of sunglint area can be determined using the
SunGlintAngle value in the FY-4A GEO file. SunGlintAn-
gle is defined as the angle between the satellite observation
direction or reflected radiation direction and the mirror re-
flection direction on a calm surface (horizontal plane). It is
generally accepted that the range of SunGlintAngle < 15° is
easily affected by sunglint (Kay et al., 2009). The positions
of the SunGlintAngle contour lines at 5 and 15° are marked
in Fig. 1a. It can be observed that the edge of sunglint in
Fig. 1a essentially overlaps with the position of SunGlintAn-
gle = 15°. Thus, the region where SunGlintAngle < 15° is
defined as the sunglint range in this paper, and only the cloud
fraction within this range will be adjusted in the subsequent
correction.

To correct the cloud fraction in the sunglint areas, we
first identified the fields of view (FOVs) where sunglint oc-
curred during FY-4A AGRI observations from August 2018
to July 2019, totaling 1476 FOVs. When matching the sam-
ple set of the sunglint area, two issues need to be explained.
(1) Cloud fraction is the average of cloud fractions of differ-
ent layers: among the matched pixels, only one-layer cloud
and two-layer cloud appear. When there are two layers of
cloud, there is always one layer with a cloud fraction of
1. According to the previous description, when there is one
layer with a cloud fraction of 1, this pixel should be regarded
as fully cloudy. (2) The average cloud fraction of at least two
CloudSat and CALIPSO pixels is taken as the cloud frac-
tion of the AGRI pixel: due to the very small area of the
sunglint area, the matching is very difficult. If at least two
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Figure 4. FY-4B AGRI at 17:00 on 18 April 2023. (a) Brightness temperature of the 10.8 µm channel, (b) operational cloud fraction product
and (c) random forest cloud fraction retrieval.

CloudSat and CALIPSO pixels within an AGRI pixel are re-
quired, this will make the available sample size very small.
Therefore, when making the sample set of the sunglint area,
only one CloudSat and CALIPSO pixel within an AGRI pixel
is required. For the above two reasons, the true cloud frac-
tion in the sample is a discrete value. Subsequently, a direct
least-squares fitting method was conducted between the re-
trieved cloud fraction and the collocated 2B-CLDCLASS-
lidar cloud fraction (ground truth). The scatter plot is illus-
trated in Fig. 2b, where the x axis is the 2B-CLDCLASS-
lidar cloud fraction and the y axis is the model-retrieved
cloud fraction. The blue line represents the curve (namely
Eq. 2) fitted by the least-squares method between the re-
trievals and the truths. The dashed thin line is the x = y
line. It is evident that the retrieved cloud fraction is gener-
ally slightly overestimated.

Taking observations at 04:00 UTC (all times in the paper
correspond to UTC) on 5 June 2019 as an example, Fig. 2c
presents the distribution of SunGlintAngle and the flight tra-
jectory of the Cloudsat and CALYPSO satellite. White cir-
cles denote the sunglint region with SunGlintAngle < 15°,
and the white line represents the satellite flight track. As de-
picted in the figure, the majority of Cloudsat and CALYPSO
flight trajectories do not pass through the central position
of sunglint area but instead traverse locations with larger
SunGlintAngle values. The intensity of sunglint effect de-
creases with the increase in SunGlintAngle. This suggests
that the true values for spatial and temporal matching mostly
do not fall within the strongest sunglint region. From Fig. 2d,
it can be seen that the impact of sunglint becomes stronger
as SunGlintAngle decreases, which results in a higher obser-
vation albedo. This further leads to the overestimated cloud
fraction values in the retrieval. It is evident that the cloud
fraction error is related to the value of SunGlintAngle, and
this influence is not considered in Eq. (2). Directly applying
Eq. (2) to correct the cloud fraction retrievals would result in
too small a correction intensity for the FOVs near the center
of sunglint and an excessively large correction intensity for
the FOVs in the sunglint edge region (even erroneous clear
sky may appear). Considering this, a correction formula (3)–
(4) using SunGlintAngle as the weight is introduced, where

Wi represents the angle weight for a certain pixel i in the
sunglint region, n is the number of pixels within the SunGlin-
tAngle < 15° range, yi is the initial model retrieval of cloud
cover for the field of view i and xi is the final corrected cloud
fraction.

x = (y− 0.2441)/0.8092 (2)

Wi =
glint anglei

1
n

∑n
i=0glint anglei

(3)

xi =Wi

(
yi − 0.2441

0.8092

)
(4)

Figure 2d shows the distribution of errors with respect to
SunGlintAngle, where the blue dots represent the error distri-
bution corrected using formula (2), and the orange dots rep-
resent the error distribution corrected using formula (4). It
can be seen from Fig. 2d that after correction by formula (4),
the errors in the smaller range of SunGlintAngle are signifi-
cantly reduced.

4.3 Algorithm universal applicability testing

Although the retrieval model in this article was built based
on data from May 2019 due to the limited lifespan of the in-
strument, how effective is it in real-time FY-4A AGRI obser-
vations and even subsequent FY-4B AGRI applications? The
algorithm’s universal applicability was tested using real-time
observations from FY-4A and FY-4B AGRI in 2023.

Taking the full-disk observation of FY-4A AGRI at 04:00
on 1 June 2023 as an example, the radiance observations
from 14 channels are initially fed into the random forest
cloud detection model to determine the sky classification
(overcast, partly cloudy or clear sky) in each AGRI field. The
random forest cloud fraction retrieval model is utilized to re-
trieve the cloud fraction in scenes identified as partly cloudy.
Figure 3a is the observed albedo at 0.67 µm, where the cir-
cles represent the contours of the sunglint angle; (b) is the
cloud fraction retrievals from random forest algorithm; (c) is
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the official operational cloud fraction product; and (d) is ran-
dom forest cloud fraction retrievals with sunglint correction.
It can be seen from Fig. 3 that many clear-sky scenes are
erroneously identified as cloudy by the operational product,
and the cloud fraction is generally overestimated, with many
scenes having a cloud fraction of 1. The random forest algo-
rithm identifies more regions as clear skies or partly cloudy
than the operational products, matching better with the obser-
vations in the 0.67 µm albedo image. Brighter regions in the
visible image correspond to cloud cover areas, and darker ar-
eas represent clear-sky conditions. The sunglint region in the
central South China Sea (the circled area in Fig. 3a) is de-
picted in Fig. 3b, where the clear-sky scenes over the ocean
are misidentified as partly cloudy by the random forest algo-
rithm due to the increase in observed albedo. Although the
operational product in this area also suffers from the impact
of unremoved sunglint, it identifies more clear-sky scenes,
and the cloud fraction is relatively low. Thus, it is evident
that the random forest algorithm exhibits significant cloud
detection and cloud fraction errors in these sunglint regions.
Correction is necessary for the cloud fraction retrievals in the
sunglint region.

Figure 3d shows the cloud fraction distribution after cor-
rection using Eq. (9) in the sunglint region. The correction
eliminates the influence of sunglint comparing to the cloud
fraction in sunglint area before correction in Fig. 3b. The
scenes misjudged as partly cloudy are corrected to clear sky
and match well with the actual albedo observations in Fig. 3a,
which accurately restores the true cloud coverage over the
South China Sea.

Statistical analysis was conducted on the correction effect
using samples with sunglint in the training data. The POD
and FAR in the sunglint area are listed in Table 5, and the
error is in Table 6. It can be seen that after correcting for the
cloud fraction, the POD for clear skies increased from 0.0987
to 0.9023. The FAR for partly cloudy decreased from 0.7943
to 0.0276. ME, MAE and RMSE show significant reductions,
and the results after correction outperform operational prod-
ucts.

FY-4B launched in 2021 has a total of 15 channels with
an additional low-level water vapor channel at 7.42 µm com-
pared to FY-4A. Taking the full-disk observation of FY-4B
AGRI at 17:00 on 18 April 2023, as an example, the radi-
ance observation data of the remaining eight channels (near-
infrared and infrared channels) except for the 7.42 µm chan-
nel and the visible light channels were input into the random
forest cloud detection model. Figure 4a shows the brightness
temperature distribution observed in the 10.8 µm channel of
FY-4B AGRI, (b) represents the operational cloud fraction
product for FY-4B AGRI and (c) shows the cloud fraction
retrieved by this algorithm. Figure 4 illustrates that the ran-
dom forest algorithm identifies more regions as clear skies or
partly cloudy than the operational products, aligning better
with the brightness temperature observations in the 10.8 µm
channel. Especially in high-latitude regions of the Southern

Hemisphere and areas with strong convection near the Equa-
tor, the cloud cover provided by operational products is too
high and even misjudged. It can be seen that the random for-
est algorithm is also suitable for cloud fraction retrieval of
FY-4B AGRI.

5 Conclusions

This paper used random forest and multilayer perceptron
(MLP) algorithms to retrieve cloud fraction from FY-4A
AGRI full-disk level-1 radiance observation data and veri-
fied the accuracy of the algorithms using the Cloudsat and
CALYPSO active remote sensing satellite’s 2B CLDCLASS-
lidar cloud fraction product. The following conclusions were
drawn:

1. The random forest and MLP algorithms performed well
in cloud detection and cloud fraction retrieval tasks, and
their accuracy was higher than that of operational prod-
ucts. The accuracy of cloud detection can reach over
93 %, and the error of cloud fraction retrieval is close
to zero. Compared with the MLP algorithm, the RF al-
gorithm has a slightly higher accuracy in cloud detec-
tion and a slightly lower error in cloud fraction retrieval,
showing better performance.

2. At night, the classification accuracy is lower than dur-
ing the day due to the lack of observations in the visible
channel of AGRI, resulting in higher cloud fraction er-
rors at night.

3. The accuracy of identifying partly cloudy scenes is
lower than that of identifying clear sky and overcast
scenes for both RF and MLP algorithms. Scenes with a
very low cloud fraction (0.16) are often misclassified as
clear sky, while scenes with a high cloud fraction (0.83)
are often misclassified as overcast.

4. The sunglint area cloud fraction correction curve, fitted
with SunGlintAngle as the weight, greatly improves the
accuracy of cloud fraction retrieval and reduces the mis-
classification rate of clear-sky scenes as partly cloudy
or partly cloudy scenes as overcast due to increased re-
flectance.

Data availability. FY-4A AGRI data are available at http://satellite.
nsmc.org.cn (National Satellite Meteorological Center, 2024) and
the 2B-CLDCLASS-lidar data at https://www.icare.univ-lille.fr/
data-access/data-archive-access/ (Université de Lille, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-17-6697-2024-supplement.

https://doi.org/10.5194/amt-17-6697-2024 Atmos. Meas. Tech., 17, 6697–6706, 2024

http://satellite.nsmc.org.cn
http://satellite.nsmc.org.cn
https://www.icare.univ-lille.fr/data-access/data-archive-access/
https://www.icare.univ-lille.fr/data-access/data-archive-access/
https://doi.org/10.5194/amt-17-6697-2024-supplement


6706 J. Xia and L. Guan: FY-4A AGRI observations

Author contributions. JX: formal analysis, methodology, software,
visualization and writing (original draft preparation). LG: conceptu-
alization, data curation, funding acquisition, supervision, validation
and writing (review and editing).

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge the High Performance Com-
puting Center of the Nanjing University of Information Science and
Technology for their support of this work.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant no. 41975028).

Review statement. This paper was edited by Jian Xu and reviewed
by three anonymous referees.

References

Amato, U., Antoniadis, A., Cuomo, V., Cutillo, L., Franzese, M.,
Murino, L. and Serio, C.: Statistical cloud detection from SE-
VIRI multispectral images, Remote Sens. Environ., 112, 750–
766, https://doi.org/10.1016/j.rse.2007.06.004, 2008.

Baum, B. and Trepte Q.: A Grouped Threshold Approach
for Scene Identification in AVHRR Imagery, J. Atmos.
Ocean. Technol., 16, 793–800, https://doi.org/10.1175/1520-
0426(1999)016<0793:AGTAFS>2.0.CO;2, 1999.

Breiman L.: Random Forests-Random Features [J], Machine
Learn., 45, 5–32, 1999.

Breiman, L.: Random Forests, Machine Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Chai, D., Huang, J., Wu, M., Yang, X., and Wang, R.: Remote
sensing image cloud detection using a shallow convolutional
neural network[J], ISPRS J. Photogramm., 2024, 20966–20984,
https://doi.org/10.1016/j.isprsjprs.2024.01.026, 2024.

Duda, R. O., Hart, P. E., and Stork, D. G.: Pattern Clas-
sification, New York: John Wiley & Sons, 2001, xx +
654 pp., ISBN: 0-471-05669-3, J. Classi., 24, 305–307,
https://doi.org/10.1007/s00357-007-0015-9, 2007.

Gao, J. and Jing, Y.: Satellite Remote Sensing Cloud Detection
Method Based on Fully Convolutional Neural Network, Infrared
Technology, 41, 607–615, 2019.

Gomez-Chova, L., Camps-Valls, G., Amoros-Lopez, J., Guanter, L.,
Alonso, L., Calpe, J., and Moreno, J.: New Cloud Detection Al-

gorithm for Multispectral and Hyperspectral Images: Application
to ENVISAT/MERIS and PROBA/CHRIS Sensors, IEEE Inter-
national Symposium on Geoscience and Remote Sensing, 2757–
2760, https://doi.org/10.1109/igarss.2006.709, 2006.

Kay, S., Hedley, J., and Lavender, S.: Sun Glint Correction of High
and Low Spatial Resolution Images of Aquatic Scenes: a Review
of Methods for Visible and Near-Infrared Wavelengths, Remote
Sens., 1, 697–730, https://doi.org/10.3390/rs1040697, 2009.

Kegelmeyer, W. P. J.: Extraction of cloud statistics from whole
sky imaging cameras, March 1994, Livermore, California,
University of North Texas Libraries, UNT Digital Library,
https://doi.org/10.2172/10141846, 1994.

Mace, G. G. and Zhang, Q.: The CloudSat radar-lidar ge-
ometrical profile product (RL-GeoProf): Updates, improve-
ments, and selected results, J. Geophys. Res., 119, 9441–9462,
https://doi.org/10.1002/2013JD021374, 2014.

Merchant, C. J., Harris, A. R., Maturi, E., and Maccallum,
S.: Probabilistic physically based cloud screening of satel-
lite infrared imagery for operational sea surface tempera-
ture retrieval, Q. J. Roy. Meteorol. Soc., 131, 2735–2755,
https://doi.org/10.1256/qj.05.15, 2005.

National Satellite Meteorological Center: Fengyun Satellite Remote
Sensing Data Service Network, http://satellite.nsmc.org.cn (last
access: 20 November 2024), 2024.

Rossow, W. B. and Leonid, C. G.: Cloud detection using satel-
lite measurements of infrared and visible radiances for IS-
CCP, J. Climate, 12, 2341–2369, https://doi.org/10.1175/1520-
0442(1993)006<2341:CDUSMO>2.0.CO;2, 1993.

Solvsteen, C.: Correlation based cloud-detection and an ex-
amination of the split-window method, Proc. SPIE –
The International Society for Optical Engineering, 86–97,
https://doi.org/10.1117/12.228636, 1995.

Sassen, K., Wang, Z., and Liu, D.: Global distribu-
tion of cirrus clouds from CloudSat/Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) measurements, J. Geophys. Res., 113, D00A12,
https://doi.org/10.1029/2008JD009972, 2008.

Université de Lille: Cité Scientifique, AERIS/ICARE Data and
Services Center – UAR 2877, https://www.icare.univ-lille.
fr/data-access/data-archive-access/ (last access: 20 Novem-
ber 2024), 2024.

Xiang, S. P.: A Cloud Detection Algorithm for MODIS Images
Combining Kmeans Clustering and Otsu Method, IOP Confer-
ence Series: Materials Science and Engineering, 392, 062199,
https://doi.org/10.1088/1757-899X/392/6/062199, 2018.

Yan, J., Guo, X., Qu, J., and Han. M.: An FY-4A/AGRI
cloud detection model based on the naive Bayes
algorithm, Remote Sens.-Nat. Resour., 34, 33–42,
https://doi.org/10.6046/zrzyyg.2021259, 2022.

Zhang, W., He, M., and Mak, M. W.: Cloud detec-
tion using probabilistic neural networks, Geoscience
and Remote Sensing Symposium, IEEE 2373-2375,
https://doi.org/10.1109/IGARSS.2001.978006, 2001.

Zhang, Y., William, B. R., Andrew, A. L., Valdar, O. and
Michael, I. M.: Calculation of radiative fluxes from the sur-
face to the top of atmo- sphere based on ISCCP and other
global data sets: Refine- ments of the radiative transfer model
and the input data, J. Geophys. Res.-Atmos., 109, 1–27,
https://doi.org/10.1029/2003JD004457, 2004.

Atmos. Meas. Tech., 17, 6697–6706, 2024 https://doi.org/10.5194/amt-17-6697-2024

https://doi.org/10.1016/j.rse.2007.06.004
https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2
https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.isprsjprs.2024.01.026
https://doi.org/10.1007/s00357-007-0015-9
https://doi.org/10.1109/igarss.2006.709
https://doi.org/10.3390/rs1040697
https://doi.org/10.2172/10141846
https://doi.org/10.1002/2013JD021374
https://doi.org/10.1256/qj.05.15
http://satellite.nsmc.org.cn
https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2
https://doi.org/10.1117/12.228636
https://doi.org/10.1029/2008JD009972
https://www.icare.univ-lille.fr/data-access/data-archive-access/
https://www.icare.univ-lille.fr/data-access/data-archive-access/
https://doi.org/10.1088/1757-899X/392/6/062199
https://doi.org/10.6046/zrzyyg.2021259
https://doi.org/10.1109/IGARSS.2001.978006
https://doi.org/10.1029/2003JD004457

	Abstract
	Introduction
	Research data and preprocessing
	FY-4A data
	CloudSat and CALIPSO cloud product
	Establishment of training data

	Algorithms
	Random forest (RF)
	Multilayer perceptron (MLP)
	Hyperparameters

	Results and analysis
	Objective analysis of cloud fraction retrievals
	Cloud fraction correction in sunglint regions
	Algorithm universal applicability testing

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

