

Supplement of

Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions

Martine E. Mathieu-Campbell et al.

Correspondence to: Jennifer Richmond-Bryant (jrbryan3@ncsu.edu)

The copyright of individual parts of the supplement might differ from the article licence.

1 **SUPPLEMENTAL MATERIAL** 2

3 List of tables and figures 4

- 5 Table S1: Percentage of hourly data removed by QA process from the initial 56 PurpleAir sensors
- 6 Table S2: MLR model development (model fit using hourly data) for the 1.0-km radius
- 7 Table S3: SSC model development for the 1.0-km radius
- 8 Table S4: MLR model development (model fit using hourly data) for the 2.0-km radius
- 9 Table S5: SSC model development for the 2.0-km radius
- 10 Table S6: LGOCV results MLR models
- 11 Table S7: LGOCV results SSC models
- 12 Table S8: LOSOCV results using Model 4 from MLR and SSC
- 13 Table S9: Methods evaluated to determine the optimal number of clusters using NbClust
- 14 Table S10: MLR and SSC model development (model fit using hourly data) for the 0.5-km radius
- 15 Table S11: Evaluation of the performance of the models by AQI category
- 16 Table S12: Summary table of the evaluation of the AQI per model for the daily dataset
- 17 Table S13: List of the PurpleAir sensors and AQS used in the study with the estimated distance between
- 18 stations
- 19 Table S14: Tests of model coefficient precision
- 20
- Figure S1: Correlation graphs between RH from each PA sensor and RH from the nearest NOAA sensor(Table S13).
- 23 Figure S2: Correlation graphs between RH from PA sensors and RH from the nearest NOAA sensor to
- each PA sensor. a) All the 21 PA sensors for the 0.5-km radius, b) All PA sensors except r), s) and t) from
 Figure S1.
- Figure S3: Distribution of RH and T from PurpleAir data for our three buffers (0.5 km, 1.0 km and 2.0 km)
- Figure S4: Distribution of RH and T from PurpleAir data for our three buffers (0.5 km, 1.0 km and 2.0 km).
- 30 Figure S5: Correlation between DP from PurpleAir and NOAA
- 31
- 32 33

37 1 Data cleaning process

38 Table S1: Percentage of hourly data removed by QA process from the initial 56 PurpleAir sensors

QA criteria	% removed*
Process 1: Removing NAs (PM, T, RH)	2.026
Process 2: Channels A & B agreement	
Low concentration ($\leq 25 \ \mu g \ m^{-3}$): 537,246 obs.	2.242
High concentration (>25 μ g m ⁻³): 80,196 obs.	2.056
Process 3: A & B concentration $< 1.5 \ \mu g \ m^{-3}$	6.753
Process 4: Average A & B concentration > 1000 μ g m ⁻³	0.005
Process 5: Removing data from sensors with RH issues	5.527
Process 6: Removing RH \neq 0-100 % and T \neq 0-130 °F	3.484

39 * percent removed from the total number of observations

40

41

42

43 The data cleaning process 5 allowed to remove faulty PA sensors (Figures S1 and S2). The 21 graphs

44 correspond to the 21 PA sensors for the 0.5-km radius. R, n and m correspond to the estimated Pearson

45 correlation, the number of data points and the slope of the linear regression.

48 Figure S1: Correlation graphs between RH from each PA sensor and RH from the nearest NOAA sensor (Table S13).

- 50 Except for Figures S1-s and S1-t that present a very low Pearson correlation R, every individual PA
- 51 displays a correlation R varying between 79 % and 96 % with 16/21 PA sensors presenting an R equal or
- 52 greater than 90 %. As reported by recent studies (Tryner et al., 2020, Magi et al., 2020, Giordano et al.,
- 53 2021; Barkjohn et al., 2022), PA sensors tend to report dryer humidity measurements than ambient
- 54 conditions with a general difference of 10 % to 20 % for our sensors (Figure S2). However, Figure S1-r
- shows that one of our PA sensors reported more humid measurements for RH values of 80 % or greater.
- 56

57 Moreover, the slope of the linear regression estimated for each PA sensor (Figure S1) shows that RH from

58 Figures S1-r, S1-s and S1-t exhibit the larger bias metrics. Figure S1-r shows that RH from the PA sensor

59 tend to underestimate ambient RH while PA sensors represented in Figures S1-s and S1-t tend to more 60 than doubled or tripled RH values from NOAA.

- 61
- 62

66 67

68

63 64 65 Figure S2: Correlation graphs between RH from PA sensors and RH from the nearest NOAA sensor to each PA sensor. a) All the 21 PA sensors for the 0.5-km radius, b) All PA sensors except r), s) and t) from Figure S1.

2 Evaluating our PurpleAir meteorological data

Figure S3: Distribution of RH and T from PurpleAir data for our three buffers (0.5 km, 1.0 km and 2.0 km)

69 70 71

- Figure S4 shows that non-linearity in the curve started around RH of 50 %. PurpleAir datapoints that fell
- 73 within a range of RH less or equal to 50 % are in green and those that fell within a range greater than 50
- 74 % are shown in blue.

Relative Humidity (%)
 Relative Humidity (%)
 Figure S4: Correlation between the ratio of raw PM_{2.5} PurpleAir and AQS concentrations and RH showing the
 nonlinearity of PM_{2.5} PurpleAir concentrations. Graph a) represents the entire dataset, and graph b) is a zoom in to better
 display the regression line and the nonlinearity of the data.

80 **3 Model fit using the 1.0-km radius dataset**

81

82 Table S2: MLR model development (model fit using hourly data) for the 1.0-km radius

	Parameters			Model fit with hourly data			
	Madala	R ²	RMSE	MAE	R		
	Middels	(%)	(µg m ⁻³)	(µg m ⁻³)	(%)		
Model 1	$4.3410721 {+} 0.3796856 \ PA_i$	58	3.85	2.47	76		
Model 2	$6.9941051{+}0.3872666\ PA_i\ -0.0489237\ RH_i$	60	3.76	2.40	77		
Model 3	1.6915454+0. 3849136 $PA_i \;$ +0. 1149728 T_i	62	3.68	2.39	78		
Model 4	4.1204142+0. 3907494 $PA_i\;$ -0. 0405732 RH_i + 0. 1050501 $T_i\;$	63	3.61	2.32	79		
Model Bj	5.72+0.524 PA_i -0.0852 RH_i	60	4.40	2.94	77		

- 85
- 86 Table S3: SSC model development for the 1.0-km radius

Parameters			Model fit with	hourly data	
Clusters		\mathbf{R}^2	RMSE	MAE	R
(Number of observations)	Models	(%)	(µg m ⁻³)	(µg m ⁻³)	(%)
RH ≤ 50 (85616)	$\begin{array}{l} 2.782329 + 0.368994 \ PA_i - \\ 0.010616 \ RH_i + 0.122888 \ T_i \end{array}$	57	3.94	2.43	75
RH >50 (152431)	$\begin{array}{l} 5.1538241 + 0.3980145 \ PA_i - \\ 0.0539108 \ RH_i + 0.0943790 \ T_i \end{array}$	67	3.40	2.26	82

⁸⁷ 88 89 90 91

4 Model fit using the 2.0-km radius dataset

91	Table S4: MLR	model development	(model fit using	hourly data)	for the 2.0-km radius
----	---------------	-------------------	------------------	--------------	-----------------------

	Parameters			Model fit with hourly data				
	Modele	R ²	RMSE	MAE	R			
	Models	(%)	$(\mu g \ m^{-3})$	(µg m ⁻³)	(%)			
Model 1	4. 7265899 +0. 3763097 PA _i	55	4.30	2.72	74			
Model 2	7. 5916138 +0. 3844184 $PA_i\;$ -0. 0545752 RH_i	58	4.19	2.63	76			
Model 3	1. 7548043 +0. 3803865 PA_i +0. 1250425 T_i	59	4.13	2.62	77			
Model 4	4. 3418026 +0. 3862249 $PA_i\;$ -0. 0425548 RH_i + 0. 1101893 $T_i\;$	60	4.06	2.55	78			
Model Bj	5.72+0.524 PA_i -0.0852 RH_i	58	4.84	3.10	76			

92 93 94

Table S5: SSC model development for the 2.0-km radius

Parameters		Model fit with hourly data			
Clusters		\mathbb{R}^2	RMSE	MAE	R
(Number of observations)	Models	(%)	(µg m ⁻³)	(µg m ⁻³)	(%)

RH ≤ 50 (154276)	$\begin{array}{l} 2.6452739 + 0.3676529 \ PA_i \ \text{-} \\ 0.0057266 \ RH_i + 0.1303605 \ T_i \end{array}$	54	4.45	2.74	74
RH >50 (239734)	$\begin{array}{l} 6.0381100 + 0.3926179 \ PA_i \text{ -} \\ 0.0646265 \ RH_i + 0.0961319 \ T_i \end{array}$	65	3.77	2.42	80

5 Cross-validation using LGOCV and LOSOCV for the 0.5-km radius

Table S6: LGOCV results – MLR models

	Parameters			Model fit with hourly data			
	Madala	R ²	RMSE	MAE	R		
	Wiodels	(%)	$(\mu g m^{-3})$	(µg m ⁻³)	(%)		
Model 1	3.6667550+0.4053418 PA _i	69	3.19	2.13	83		
Model 2	$6.3384228{+}0.4143437 \ PA_i \ \text{-}0.0506037 \ RH_i$	71	3.06	2.05	84		
Model 3	$1.7642336{+}0.4109897 \ PA_i \ {+}0.0847196 \ T_i$	71	3.05	2.06	84		
Model 4	$4.3295358{+}0.4182906~\text{PA}_{i}$ - $0.0445768~\text{RH}_{i}$ + $0.0752867~\text{T}_{i}$	73	2.95	1.98	85		

101

Table S7: LGOCV results - SSC models

	Μ	lodel fit with h	ourly data		
Clusters		R ²	RMSE	MAE	R
(Number of observations)	Models	(%)	(µg m ⁻³)	(µg m ⁻³)	(%)
RH ≤ 50 (59405)	$\begin{array}{l} 2.738732 + 0.425834 \ PA_i \ \text{-} \\ 0.008944 \ RH_i + 0.079210 \ T_i \end{array}$	71	2.93	1.86	84
RH >50 (100243)	$\begin{array}{l} 7.230374 + 0.412683 \ PA_i \ \text{-} \\ 0.085278 \ RH_i + 0.070655 \ T_i \end{array}$	74	2.92	2.02	86

106	Table S8: LOSOCV	results using Model 4 fr	rom MLR and SSC
-----	------------------	--------------------------	-----------------

	MLR n	nodel	SSC model				
Data test	Model 4		Cluste	er 1	Cluster 2		
State	RMSE (µg m ⁻³)	MAE (μg m ⁻³)	RMSE (µg m ⁻³)	MAE (μg m ⁻³)	RMSE (µg m ⁻³)	MAE (μg m ⁻³)	
FL	3.02	2.03	2.42	1.48	3.19	2.21	
NC	2.86	1.89	2.89	1.78	2.71	1.85	
TN	3.26	2.37	3.12	2.1	3.27	2.43	
SC	3.43	1.92	4.03	1.85	2.95	1.9	
VA	2.73	2.39	3.16	2.9	2.62	2.24	
ТХ	4.6	3.16	5.1	3.68	3.79	2.37	
Average	3.32	2.29	3.45	2.30	3.09	2.17	

109 **6 Estimating the optimal number of clusters**

110

111 Among all indices:

112 Eight (8) proposed 2 as the best number of clusters.

113 Two (2) proposed 3 as the best number of clusters.

114 Two (2) proposed 4 as the best number of clusters.

115 Seven (7) proposed 5 as the best number of clusters.

116 Two (2) proposed 6 as the best number of clusters.

117 One (1) proposed 13 as the best number of clusters.

118 Two (2) proposed 14 as the best number of clusters.

119

120 Table S9: Methods evaluated to determine the optimal number of clusters using NbClust

		Number of	
#	Methods	clusters	Value Index
1	KL	6	12.525
2	СН	5	2455.144
3	Hartigan	5	1479.653
4	CCC	2	86.151
5	Scott	5	2750.553
6	Marriot	5	349227082927.000
7	TrCovW	3	107827250739.000
8	TraceW	5	135580.700
9	Friedman	14	52.457
10	Rubin	5	11.169
11	Cindex	6	0.253
12	DB	2	0.882
13	Silhouette	2	0.384
14	Duda	2	0.723

15	PseudoT2	2	1043.876
16	Beale	2	0.381
17	Ratkowsky	4	0.379
18	Ball	3	195959.500
19	PtBiserial	5	0.520
20	Frey	2	2.381
21	McClain	2	0.186
22	Dunn	13	0.010
23	Hubert	0	0.000
24	SDindex	4	0.203
25	Dindex	0	0.000
26	SDbw	14	0.280

123

124 125 Conclusion: According to the majority rule, the best number of clusters is 2.

126 7 Model fit using NOAA RH and T for the 0.5-km radius dataset127

To better estimate if NOAA meteorological data can replace PurpleAir meteorological data, we compared their DP since the water content and DP should be the same for the PurpleAir and the NOAA sites. Figure S5, which used all the hourly datapoints of our study, showed a Pearson correlation of 96 %. Except TX, which represented only 0.32 % of our dataset and exhibited a low correlation (13 %), all the NOAA sites resulted in a high correlation ranging from 80 to 97 % with PurpleAir sites.

133

Figure S5: Correlation between DP from PurpleAir and NOAA

137	Table S10: MLR and SSC model development (model fit using hourly data) for the 0.5-km radius
-----	--

Parameters			Model de	velopment	t		Sensitivit	y analysis	
		R ²	RMSE	MAE	R	R ²	RMSE	MAE	R
	Models	(%)	(µg m ⁻ ³)	(µg m ⁻ ³)	(%)	(%)	(µg m ⁻ ³)	(µg m ⁻ ³)	(%)
MLR	$\begin{array}{c} 4.4968840 {+} 0.4184462 \ PA_i \ {-} \\ 0.0353587 \ RH_i \ {+} \ 0.0779764 \ T_i \end{array}$	72	2.99	2.01	85	78	2.28	1.62	88
SSC (RH ≤ 50)	$\begin{array}{l} 2.874778 {+} 0.461934 \ PA_i {-} \\ 0.009394 \ RH_i {+} 0.077146 \ T_i \end{array}$	76	2.72	1.74	87	85	1.94	1.32	92
SSC (RH > 50)	$\begin{array}{l} 5.6571930 {+} 0.4101217 \ PA_i \ {-} \\ 0.0472842 \ RH_i \ {+} \ 0.0724931 \ T_i \end{array}$	72	3.03	2.05	85	77	2.31	1.64	88

140 8 Evaluation of the performance of the models by AQI category

141

Air Quality Index (AQI) is a communication tool used by EPA to inform public health. AQI for PM_{2.5} is based on a 24-hour average with 6 categories of potential health impact: Good, Moderate, Unhealthy for sensitive groups, Unhealthy, Very Unhealthy, and Hazardous. They each correspond to a color code and a standard range of values.

145 146

Table S11 presents the distribution of all the evaluated data per AQI category. Table S12 shows the total
percentage of correct AQI reported by each model with their under and over estimation. Models 4 and
SSC reported the highest percentage of correct AQIs with a fairly even distribution of under- and

150 overestimation shown by the SSC. Model Bj displayed a much higher underestimation than

151 overestimation.

152

153 Table S11: Evaluation of the performance of the models by AQI category

Models	AQI definition	% of the	Correct	Under-	Over-estimation
		data	AQI (%)	estimation (%)	(%)
SSC			86.56	0.00	13.44
Model 4	Good	60.66	88.68	0.00	11.32
Model Bj	$(0.0 - 9.0 \ \mu g \ m^{-3})$		95.14	0.00	4.86
Raw PA			61.16	0.00	38.84
SSC			81.03	18.92	0.04
Model 4	Moderate	38.99	77.95	22.05	0.00
Model Bj	$(9.1 - 35.4 \ \mu g \ m^{-3})$		66.77	32.96	0.27
Raw PA			91.99	7.74	7.88
SSC			52.63	47.37	0.00
Model 4	Unhealthy for	0.33	52.63	47.37	0.00
Model Bj	sensitive groups		78.95	15.79	5.26
Raw PA	$(35.5 - 55.4 \ \mu g \ m^{-3})$		0.00	0.00	100.00
SSC			0.00	100.00	0.00
Model 4	Unhealthy	0.02	0.00	100.00	0.00

Model Bj	$(55.5 - 125.4 \mu g m^{-3})$	0.00	100.00	0.00
Raw PA		100.00	0.00	0.00

Table S12: Summary table of the evaluation of the AQI per model for the daily dataset

Models	Correct AQI (%)	Under-estimation (%)	Over-estimation (%)
SSC	84.01	7.49	8.17
Model 4	84.10	8.70	6.87
Model Bj	83.78	12.81	3.07
Raw PA	72.68	2.99	26.94

9 Additional table

160	Table S13: List of the PurpleAir sensors and Federal Reference Method (FRM) or Federal Equivalence Method (FEM) used in the study with the
161	estimated distance between stations

Site	PA ID	PA latitude	PA longitude	AQS ID	FRM/FEM Type	Distance	**Number	NOAA ID	Distance
#						PA-AQS	PA-AQS		PA-NOAA
						(km)	Data points		(km)
FL	25949	27.29050	-82.50697	121150013	Teledyne T640	0.028	13978	722115-12871	13.392
FL	16317	27.29050	-82.50830	121150013	Teledyne T640	0.123	21012	722115-12871	13.350
FL	101259	27.95523	-82.46953	120570113	Teledyne T640	0.011	2655	722110-12842	7.877
FL	149710	27.95523	-82.46956	120570113	Teledyne T640	0.011	3060	722110-12842	7.874
*GA	142428	33.77928	-84.39596	131210056	R & P Model 2025	0.500	-	722190-13874	17.434
					PM-2.5 Sequential				
					Air Sampler				
					w/VSCC				
*GA	148123	33.77932	-84.39611	131210056	R & P Model 2025	0.500	-	722190-13874	17.434
					PM-2.5 Sequential				
					Air Sampler				
					w/VSCC				
SC	35139	32.84358	-79.95844	450190020	Teledyne T640X	0.438	7264	722080-13880	10.972
NC	98623	35.24020	-80.78570	371190041	Met One BAM-1020	0.307	8495	723140-13881	18.780
NC	6008	36.11095	-80.22445	370670022	Teledyne T640X	0.005	19560	723193-93807	2.445
VA	178279	36.84141	-76.18123	518100008	Teledyne T640X	0.052	1109	723080-13737	7.038
TX	166421	29.82794	-95.28375	482010046	Met One BAM-1022	0.053	508	720594-00188	16.597
TN	176311	36.05266	-89.38216	470450004	Met One BAM-1022	0.033	2412	723347-03809	6.604
TN	93593	35.70589	-88.81981	471130010	Met One BAM-1022	0.066	2187	723346-03811	16.645
TN	51741	35.11688	-87.41976	470990003	Met One BAM-1022	0.004	18790	723235-13896	46.322
TN	51867	35.11688	-87.41972	470990003	Met One BAM-1022	0.001	20578	723235-13896	46.323
*TN	51737	35.11685	-87.41972	470990003	Met One BAM-1022	0.002	-	723235-13896	46.321
TN	93577	35.65182	-87.00883	471192007	Met One BAM-1022	0.086	7620	723249-00463	21.910
TN	93645	36.17619	-86.73885	470370023	Teledyne T640X	0.064	10893	723270-13897	9.235
TN	51921	36.17634	-86.73898	470370023	Teledyne T640X	0.058	6750	723270-13897	9.264
TN	51873	36.17625	-86.73911	470370023	Teledyne T640X	0.076	11779	723270-13897	9.262
TN	116559	36.17699	-86.74283	470370023	Teledyne T640X	0.474	998	723270-13897	9.589

* sensor removed after QA process ** valid data points used in our study after the QA process 162 163

Table S14: Tests of model coefficient precision

Number of significant figures	RMSE	MAE	\mathbb{R}^2
Model 3			
8	2.318026	1.674111	0.7717575
4	2.318178	1.674819	0.7717097
3	2.320251	1.664604	0.7724541
Model 4			
8	2.236673	1.595438	0.7871297
4	2.237311	1.597079	0.7870842
3	2.244286	1.610342	0.7865547

167

References

U.S. EPA, https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-

quailty.pdf, accessed on June 22, 2024