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Abstract. The primary source of measurement error from
widely used particulate matter (PM) PurpleAir sensors is am-
bient relative humidity (RH). Recently, the US EPA devel-
oped a national correction model for PM2.5 concentrations
measured by PurpleAir sensors (Barkjohn model). However,
their study included few sites in the southeastern US, the
most humid region of the country. To provide high-quality
spatial and temporal data and inform community exposure
risks in this area, our study developed and evaluated Pur-
pleAir correction models for use in the warm–humid climate
zones of the US. We used hourly PurpleAir data and hourly
reference-grade PM2.5 data from the EPA Air Quality Sys-
tem database from January 2021 to August 2023. Compared
with the Barkjohn model, we found improved performance
metrics, with error metrics decreasing by 16 %–23 % when
applying a multilinear regression model with RH and tem-
perature as predictive variables. We also tested a novel semi-
supervised clustering method and found that a nonlinear ef-
fect between PM2.5 and RH emerges around RH of 50 %,
with slightly greater accuracy. Therefore, our results sug-
gested that a clustering approach might be more accurate in
high humidity conditions to capture the nonlinearity associ-
ated with PM particle hygroscopic growth.

1 Introduction

In recent years, many communities have started using low-
cost particulate matter (PM) sensors to predict community
exposure risks (Bi et al., 2020, 2021; Chen et al., 2017;
Jiao et al., 2016; Kim et al., 2019; Kramer et al., 2023; Lu
et al., 2022; Snyder et al., 2013; Stavroulas et al., 2020),
since short-term and long-term exposure to particulate matter
with an aerodynamic diameter of 2.5 µm or smaller (PM2.5)
is associated with several adverse health effects (Brook et al.,
2010; Chen et al., 2016; Cohen et al., 2017; Health Effects
Institute, 2020; Landrigan et al., 2018; Olstrup et al., 2019;
Pope and Dockery, 2006). These low-cost sensors have been
used to inform exposure risks in different applications in-
cluding environmental justice (Kramer et al., 2023; Lu et al.,
2022), wildfire exposure (Kramer et al., 2023), traffic-related
exposure (Lu et al., 2022), and indoor exposure (Bi et al.,
2021; Lu et al., 2022). The dense monitoring network en-
abled by deploying low-cost sensors provides the potential
to understand the PM2.5 exposure risk at a higher spatial and
temporal resolution than the established regulatory air qual-
ity monitoring system. Federal Reference Method or Fed-
eral Equivalence Method (FRM/FEM) monitors tend to be
sparsely sited due to the cost and complexity of this instru-
mentation.

Several studies have evaluated the performance of low-
cost PM sensors for different sources and meteorological
conditions, with bias and low precision reported in several
cases (Ardon-Dryer et al., 2020; Barkjohn et al., 2021; Bi
et al., 2020, 2021; He et al., 2020; Holder et al., 2020; Ja-
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yaratne et al., 2018; Kelly et al., 2017; Kim et al., 2019;
Magi et al., 2020; Malings et al., 2020; Sayahi et al., 2019;
Stavroulas et al., 2020; Tryner et al., 2020; Wallace et al.,
2021). A study conducted in 2016 (AQ-SPEC, 2016a) to
evaluate low-cost PM2.5 sensors showed overall good agree-
ment between PurpleAir PM sensors and two reference mon-
itors, with R2 of 78 % and 90 % (AQ-SPEC, 2016b). How-
ever, an overestimation of 40 % was found for PurpleAir
PM2.5 concentrations compared with the reference monitors
(AQ-SPEC, 2016b; Wallace et al., 2021). Humidity has been
documented as an important parameter that could greatly re-
duce the performance of low-cost sensors (Rueda et al., 2023;
Wallace et al., 2021; Zusman et al., 2020). Most low-cost
PM sensors, including the PurpleAir sensor, utilize optical
sensors based on the light-scattering principle to estimate PM
mass concentration. Thus, they are subject to measurement
errors from various factors, including particle size, composi-
tion, optical properties, and interactions of particles with at-
mospheric water vapor (Hagan and Kroll, 2020; Rueda et al.,
2023; Zheng et al., 2018; Zusman et al., 2020). In a high-
humidity environment, accurate detection of particle size and
concentration may be affected by hygroscopic growth of par-
ticles (Carrico et al., 2010; Chen et al., 2022; Healy et al.,
2014; Jamriska et al., 2008; Wallace et al., 2021). Water va-
por may also damage the circuitry of the sensors (Jamriska
et al., 2008; Wallace et al., 2021). Relative humidity (RH) has
therefore been confirmed to be a primary source of measure-
ment error that requires concentration correction in low-cost
PM sensors (Barkjohn et al., 2021; Sayahi et al., 2019; Wal-
lace et al., 2021; Zusman et al., 2020).

The PurpleAir PM sensor is one of the most widely
used low-cost PM sensors (Bi et al., 2021; Wallace et al.,
2021). As of April 2022, there were more than 30 000 net-
worked PurpleAir sensors, providing geolocated real-time
air quality information (https://www2.purpleair.com, last ac-
cess: 29 August 2023; https://www.airnow.gov, last access:
29 August 2023). Recently, the US Environmental Protec-
tion Agency (EPA), after an evaluation of the sensors, de-
veloped a national correction model for PurpleAir sensors
(Barkjohn et al., 2021). However, this evaluation included
few sites in the southeastern US (Barkjohn et al., 2021).
The study covered 16 states using 39 sites selected accord-
ing to their collocation with an FRM/FEM monitor. In this
study, the southeastern US, the most humid region of the US,
characterized by a humid subtropical climate (Konrad et al.,
2013), was represented by only five sites and encompassed
four states. The EPA correction model used multilinear re-
gression (MLR) (Barkjohn et al., 2021). Some recent studies
have used model-based clusters (MBCs) to improve perfor-
mance metrics compared with their MLR models. McFarlane
et al. (2021) and Raheja et al. (2023) applied a Gaussian mix-
ture regression (GMR) bias correction model to PM2.5 Pur-
pleAir sensors in Accra, Ghana. The GMR-based model de-
veloped by McFarlane et al. (2021) used daily data from one
PurpleAir sensor collocated with one Met One Beta Attenua-

tion Monitor 1020 from March 2020 to March 2021. Raheja
et al. (2023) used three different brands of low-cost sensors
including PurpleAir PA-II collocated with a Teledyne T640
as the reference-grade monitor at the University of Ghana
in Accra, Ghana, from May to September 2021. However, a
GMR-based model is not transferable to new settings (Ra-
heja et al., 2023), since the regression function in a GMR is
derived from input from modeling the joint probability dis-
tribution of the data (Maugis et al., 2009; McFarlane et al.,
2021; Shi and Choi, 2011). The model is not flexible enough
to handle differences in proportions of the input variables ob-
served at different locations.

The objective of this study is to develop and evaluate Pur-
pleAir bias correction models for use in the warm–humid
climate zones (2A and 3A) of the US (Antonopoulos et al.,
2022). First, we tested an MLR approach with different com-
binations of predictive variables. To avoid the transferability
constraints observed for the GMR, our study then tested a
novel semi-supervised clustering method. We used PurpleAir
data and the FRM/FEM PM2.5 data from the EPA Air Qual-
ity System (AQS) database from January 2021 to August
2023. We tested new correction models developed for the
high-humidity southeastern region of the country and com-
pared them with the EPA nationwide PurpleAir data correc-
tion model proposed by Barkjohn et al. (2021).

2 Methods

2.1 Study area

The study area includes the “warm–humid and moist” cli-
mate zone of the United States, as defined by the Interna-
tional Energy Conservation Code (EICC) in 2021. The 2021
EICC identifies the appropriate climate zone designation for
each county in the US (Antonopoulos et al., 2022). The cli-
mate zone map comprises eight regions, with seven repre-
sented in the continental US (Antonopoulos et al., 2022;
Chapter 3, General requirements, 2021 International Energy
Conservation Code, IECC). The thermal climate zones are
based on meteorological parameters (designated as 1 to 8) in-
cluding precipitation, temperature and humidity, and a mois-
ture regime (designated as A, B, and C for humid–moist, dry,
and marine, respectively). The thermal climate is determined
using heating degree days and cooling degree days, and the
moisture regime is based on monthly average temperature
and precipitation (Antonopoulos et al., 2022; Chapter 3, Gen-
eral requirements, 2021 International Energy Conservation
Code, IECC).

The study area was composed of climate zones and mois-
ture regimes 2A and 3A. The “warm–humid” climate zone
designation corresponds to a specific area of the climate
zone map that includes Zones 2A and 3A (Fig. 1). Zone 1A
is excluded, given that its tropical characteristics are suffi-
ciently different from most of the southeast. A warm and
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Figure 1. Study area showing the warm–humid climate zone classification. The map also shows the distribution of available AQS monitors
and the distribution of the PurpleAir sensors (PA sites) located within a 0.5 km radius of an AQS monitor.

humid climate is characterized by high levels of humidity
and high temperatures throughout the year and receives more
than 20 in. (50 cm) of precipitation per year (Baechler et al.,
2015). This area presents a state average annual humidity
varying between 65.5 % and 74.0 % and an average tempera-
ture per state varying between 55.1 °F (12.83 °C) and 70.7 °F
(21.50 °C). These 12 states have the 12 highest annual aver-
age dew-point temperatures in the continental US.

The study area includes 799 counties distributed into the
12 states. Except Kentucky, all of the southeastern US states
are partially or entirely characterized by a warm–humid cli-
mate zone and included in our study area. The high humidity
conditions in this part of the US might affect particle com-
position and size distribution due to water uptake (Hagan
and Kroll, 2020; Jaffe et al., 2023; Patel et al., 2024; Rueda
et al., 2023). A study conducted in 2018 (Carlton et al., 2018)
found large contributions (50 %) to PM2.5 from biogenic sec-
ondary organic aerosol (BSOA) in the southeast US region
compared with the rest of the country. The elevated BSOA is
attributed to heavily forested areas and large urban areas in
the region (Carlton et al., 2018; U.S. EPA, 2018).

2.2 Data collection

The PurpleAir (PA-II-SD) contains two Plantower PMS5003
laser-scattering particle sensors, a pressure–temperature–
humidity sensor (BME280), and a Wi-Fi module (Magi et al.,
2020). PM2.5 data from the PurpleAir sensors were ob-
tained from the PurpleAir data repository (API PurpleAir,
https://api.purpleair.com, last access: 29 August 2023), and
PM2.5 data from the State and Local Air Monitoring Sys-
tem (SLAMS) were retrieved from the US EPA AQS (https:

//www.epa.gov/aqs, last access: 29 August 2023) for the pe-
riod from 1 January 2021 to 28 August 2023 using their re-
spective application programming interfaces (APIs). To ob-
tain data for the study area, we used a bounding box (longi-
tude: −100.01° W, −75.50° W; latitude: 25.81° N, 37.01° N)
that contains all outdoor sensors available for this geograph-
ical area. We identified 997 available sensors. We used the
PM2.5 dataset related to a standard environment, which was
reported in the PurpleAir output as cf_1 (correction factor
of 1). This represents a more appropriate raw measurement
of PM concentrations without any nonlinear transformation
(McFarlane et al., 2021) and has been used for several other
studies (Barkjohn et al., 2021; Raheja et al., 2023; Tryner
et al., 2020; Wallace et al., 2021). Hourly average PM2.5 con-
centrations were downloaded for both PurpleAir sensors and
AQS monitors.

SLAMS data are collected by local, state, and tribal gov-
ernment agencies and made available via the AirNow API
(https://www.airnow.gov, last access: 29 August 2023). To
ensure data accuracy, AQS data are collected by FRM or
FEM (U.S. EPA, 2023). These methods are primarily main-
tained to evaluate compliance with the National Ambient
Air Quality Standards (NAAQS), although the data are often
used for air pollution exposure and epidemiology research.
We identified 181 FEM or FRM monitors in our study area.

2.3 Selection of PurpleAir sensors and data quality
control criteria

We selected PurpleAir sensors within fixed radii of each
FRM or FEM monitor. The R Statistical Software (version
R 4.3.1) was employed for data selection, data quality con-
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trol, and statistical modeling. We identified outdoor Pur-
pleAir sensors within 2.0, 1.0, and 0.5 km of each FRM or
FEM monitor. When a PurpleAir sensor fell within the buffer
of two or more AQS monitors, the shorter distance to an AQS
buffer centroid was applied to ensure better spatial join accu-
racy.

We applied a series of data exclusion criteria for quality
control. First, we used a detection limit of 1.5 µgm−3 for
the PurpleAir data. This value is equivalent to the average
of the values reported by Tryner et al. (2020) and Wallace
et al. (2021) for the cf_1 data series. We also excluded all
PM2.5 data points that were greater than 1000 µgm−3. Then,
we applied data exclusion criteria to clean the PurpleAir data
based on agreement between the concentrations reported for
the two Plantower PMS5003 sensors provided in the Pur-
pleAir housing, labeled arbitrarily as Channels A and B.
We considered low and high concentrations separately. For
low PM2.5 concentrations (less than or equal to 25 µgm−3),
we removed observations where the concentration difference
between Channels A and B was greater than 5 µgm−3 and
the percent error deviation was greater than 20 %. For high
PM2.5 concentrations (greater than 25 µgm−3), we removed
data records when the percent error deviation between Chan-
nels A and B was greater than 20 %. Similar cleaning criteria
were used for quality assurance by Barkjohn et al. (2021) and
Tryner et al. (2020), where data with a difference between
Channels A and B less than 5 µgm−3 for low PM2.5 concen-
tration were considered valid. Bi et al. (2020) removed data
with the 5 % largest percent error difference between Chan-
nels A and B. Additionally, Barkjohn et al. (2021) excluded
data points where Channels A and B deviated by more than
61 %. However, we decided to employ a more stringent crite-
rion for our high-concentration data records (20 % deviation)
considering that our study only included reported PurpleAir
data available via the API and only for one region of the
United States. Following data cleaning, the final PurpleAir
concentration (CPA) dataset used in our study was obtained
by averaging Channels A and B and included only hourly
average PurpleAir data points that had a spatial (within the
calculated radius) correspondence to hourly FEM1 concen-
tration (CAQS) data. Missing CAQS data points were excluded
before applying the radius-related spatial join.

To ensure data quality, the relative humidity measured by
the BME280 sensor within the PurpleAir housing was eval-
uated. We compared hourly RH from the PurpleAir with
the corresponding hourly RH from the National Oceanic
and Atmospheric Administration (NOAA) Integrated Sur-
face Database (ISD). The NOAA data were downloaded us-
ing the R package worldmet (worldmet: Import Surface Me-
teorological Data from NOAA ISD). The nearest NOAA sta-
tion to each PurpleAir sensor was considered for the com-
parison. The average distance between a NOAA station and

1The AQS reference monitors used in our study were FEM mon-
itors.

a PurpleAir sensor was approximately 16.09 km, with a min-
imum of 2.65 km and a maximum of 41.04 km. All PurpleAir
sensors that presented a correlation of less than 0.80 with the
corresponding RH from NOAA were excluded.

2.4 Model correction

2.4.1 Model inputs

Because measurement errors are related to water uptake by
particles (Hagan and Kroll, 2020; Rueda et al., 2023; Wal-
lace et al., 2021), temperature (T ) and RH are the most
commonly found bias correction parameters in the literature
(Ardon-Dryer et al., 2020; Bi et al., 2020; Magi et al., 2020;
Malings et al., 2020; Wallace et al., 2021) for the PurpleAir
sensor. Thus, our meteorological data (hourly T , hourly RH)
were taken from the PurpleAir sensor, similar to the analysis
conducted by Barkjohn et al. (2021). Barkjohn et al. (2021)
included dew-point temperature (DP) in addition to T and
RH as input predictors in their modeling process. However,
DP was excluded as a predictor in our study. DP exhibited
collinearity with both RH and T when testing for variance
inflation factor. In fact, a high correlation of 95 % was found
between DP and T . Therefore, including it would inflate the
goodness of fit of the model. This result is not surprising con-
sidering the interdependent atmospheric thermodynamic re-
lationship of DP with RH and T . For data quality assurance,
we only included data records within a range of 0–130 °F
(−17.78–54.44 °C) for T and 0 %–100 % for RH. Similar
quality assurance criteria were employed by Wallace et al.
(2021), where data records with abnormal temperature and
relative humidity measurements were removed.

The final dataset used for our model calibration included
CPA, CAQS, RH, and T . Temperature is reported in degrees
Celsius in our models. We tested several MLR models, and
we defined a supervised clustering approach.

2.4.2 Multilinear regression

Our study tested five MLR models (Eqs. 1–5) including the
model proposed by Barkjohn et al. (2021) (Model Bj). Based
on the evaluated predictors, we developed Models 1–4. The
four proposed models and the Barkjohn model were struc-
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Figure 2. (a) Summary statistics and time series (yellow lines) of daily average RH for each PurpleAir site showing the presence of data
(green) and missing data (red). The y axis represents RH scaled from zero to the maximum daily value. The percentage of data captured per
year is also provided. (b) Time series of daily average RH for the entire dataset with an SD of 10.56 %.

tured as follows. 2

Model 1: CAQS = β0+β1CPA+ ε (1)
Model 2: CAQS = β0+β1CPA+β2RH+ ε (2)
Model 3: CAQS = β0+β1CPA+β2T + ε (3)
Model 4: CAQS = β0+β1CPA+β2RH+β3T + ε (4)
Model Bj: CAQS = 5.72+ 0.524×CPA− 0.0852×RH (5)

For each model, β0 represents the intercept; β1 to β3 are
the coefficients of the predictors CPA, RH, and T , respec-
tively; and ε is the error term.

2Footnote to Eq. (5): CAQS here represents the reference PM2.5
monitors used in Barkjohn et al. (2021).

2.4.3 Semi-supervised clustering

Alternative bias correction methods to MLR have been devel-
oped (Bi et al., 2020; McFarlane et al., 2021; Raheja et al.,
2023) to capture the complex nonlinear hygroscopic growth
of particles (Hagan and Kroll, 2020; Rueda et al., 2023).
Some of these alternative techniques include MBCs (Mc-
Farlane et al., 2021; Raheja et al., 2023). An MBC assumes
that the data are composed of more than one subpopulation
(Raftery and Dean, 2006). The influence of RH on PurpleAir
PM2.5 measurements, specifically at high ambient RH (Wal-
lace et al., 2021), may be nonlinear, suggesting the forma-
tion of subgroups in our dataset. Therefore, our study tested
a semi-supervised clustering (SSC) approach that combines
unsupervised and supervised clustering processes to develop
a nonlinear MBC (Raftery and Dean, 2006). Before imple-
menting the SSC, we carried out two pre-processing steps.

https://doi.org/10.5194/amt-17-6735-2024 Atmos. Meas. Tech., 17, 6735–6749, 2024



6740 M. E. Mathieu-Campbell et al.: Calibration of PurpleAir low-cost PM sensors

The first pre-processing step consisted of finding the opti-
mal predictors for the clusters by applying a Gaussian mix-
ture model (GMM) variable selection function (forward–
backward) for MBC (Raftery and Dean, 2006). The GMM
variable selection process uses the expectation maximization
(EM) algorithm to determine the maximum likelihood esti-
mate for GMM (Raftery and Dean, 2006). The optimal vari-
ables are then selected using the Bayesian information crite-
rion (BIC). The list of potential variables included RH and T
(the variable DP was excluded in this process because of mul-
ticollinearity with RH and T ). The second pre-processing
step was to determine the optimal number of clusters. For
this, we used a combination of 26 clustering methods via the
NbClust R package (Boehmke and Greenwell, 2019; Char-
rad et al., 2014). Knowing the optimal variable predictors
and the optimal number of clusters, we initiated the unsu-
pervised portion of our SSC using the K-means clustering
algorithm. K-means, one of the most commonly employed
clustering methods, is an unsupervised machine learning par-
titioning distance-based algorithm that computes the total
within-cluster variation as the sum of squared (SS) Euclidian
distances between the centroid of a cluster Ck and an obser-
vation xi based on the Hartigan–Wong algorithm (Hartigan
and Wong, 1979; Yuan and Yang, 2019). Last, we applied
a supervised clustering process built upon the results ob-
tained for the unsupervised clustering approach. The super-
vised process allowed for distribution of the dataset within
well-defined subsets. For each subset of the dataset associ-
ated with a cluster, an MLR was developed, defining a non-
linear MBC (Eq. 6):

y =

{
β0+β1xi1∈C1 + . . .+βpxip∈C1+ ∈

β0+β1xi1∈Ck + . . .+βpxip∈Ck+ ∈,
(6)

where Ck is the number k of clusters regrouping xi observa-
tions for each p explanatory variable.

2.4.4 Model validation

For each of the evaluated models, the coefficient of deter-
mination, R2, was calculated to understand how well the re-
gression model performs with the selected predictors. The
predictive performance of each model was evaluated by es-
timating the root mean square error (RMSE) and mean ab-
solute error (MAE). The RMSE is the standard deviation of
the prediction errors. The MAE measures the mean absolute
difference between the predicted values and the actual val-
ues in a dataset. Standard deviation (SD), R2, and RMSE are
EPA’s recommended performance metrics to evaluate a sen-
sor’s precision, linearity, and uncertainty, respectively (Du-
vall et al., 2021). We compared EPA’s target value for SD,
which refers to collocated identical sensors, with the esti-
mated mean deviation or MAE for each paired observation
of CAQS and CPA.

2.4.5 Cross-validation

Building the correction model based on the full dataset could
overfit the model (Barkjohn et al., 2021). Therefore, we used
leave-one-group-out cross-validation (LOGOCV) methods
to evaluate how the model performs for an independent test
dataset. LOGOCV involves splitting the dataset into spe-
cific or random groups, then predicting each group as test-
ing data with the other groups used for training. We used an
automatic LOGOCV, in which a random set of training data
was composed to predict PM2.5 concentrations at each iter-
ation. An 80/20 ratio was defined between the training and
test groups with 25 iterations. Then, we applied a leave-one-
state-out cross-validation (LOSOCV) that involves splitting
the dataset into specific states to evaluate the performance of
the model. In our LOSOCV, every US state was left out suc-
cessively and used in a validation test, while the remaining
states were used to train the model. We used R2, RMSE, and
MAE as performance metrics to evaluate the cross-validation
results.

2.4.6 Sensitivity analysis

Sensitivity analyses were performed to determine how pre-
dictions of PM2.5 concentrations would vary under differ-
ent temporal resolution. The sensitivity analysis applied the
models, developed from hourly data at 0.5, 1.0, and 2.0 km
buffers, to daily averaged data for the same buffers. We ap-
plied a completeness criterion of 90 %, or 21 h, following
Barkjohn et al. (2021).

3 Results and discussion

After applying all the quality assurance (QA) criteria to the
raw datasets, we obtained 159 648 observations (18 Pur-
pleAir sites), 238 047 observations (28 PurpleAir sites), and
394 010 observations (50 PurpleAir sites) for buffers of 0.5,
1.0, and 2.0 km, respectively, all at hourly temporal reso-
lution. The QA process removed about 22 % (Table S1 in
the Supplement) of the raw data, with data from three Pur-
pleAir sites completely removed for the 0.5 km radius be-
cause RH from the humidity sensors correlated poorly with
RH reported by NOAA stations (Fig. S1 in the Supplement).
We found that two of these same three PurpleAir sites exhib-
ited poor correlation for temperature as well. Moreover, the
slope of the linear regression estimated for each PurpleAir
sensor (Fig. 1) shows that RH from these three PurpleAir
sites exhibited larger bias metrics. All 18 retained PurpleAir
sites presented RH data that strongly correlated with NOAA
stations (88 %–96 %), with 16 of them presenting a Pearson
correlation R equal to or greater than 90 % (Fig. S1). As
reported by recent studies (Barkjohn et al., 2022; Giordano
et al., 2021; Magi et al., 2020; Tryner et al., 2020), PurpleAir
sensors tend to report drier humidity measurements than am-
bient conditions. The comparison of our PurpleAir sensors
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Figure 3. Descriptive and error metrics for CAQS and raw CPA for PurpleAir sensors within a 0.5, 1.0, and 2.0 km radii of each FRM or FEM
monitor.

Table 1. MLR model development (model fit using hourly data) and application of the hourly model to daily data. Temperature is in units of
degrees Celsius.

Parameters Model fit with hourly data Model fit to daily data

Models R2 RMSE MAE R R2 RMSE MAE R

(%) (µg m−3) (µgm−3) (%) (%) (µg m−3) (µgm−3) (%)

Model 1 3.6667550+ 0.4053418 PAi 69 3.16 2.13 83 76 2.39 1.67 87
Model 2 6.3384228+ 0.4143437 PAi − 0.0506037 RHi 71 3.05 2.05 84 76 2.35 1.64 87
Model 3 1.7642336+ 0.4109897 PAi + 0.0847196 Ti 71 3.04 2.06 84 77 2.32 1.67 88
Model 4 4.3295358+ 0.4182906 PAi − 0.0445768 RHi

+ 0.0752867 Ti
73 2.96 1.99 85 79 2.24 1.59 89

Model Bj 5.72+ 0.524 PAi − 0.0852 RHi 71 3.52 2.51 84 76 2.76 2.06 87

with NOAA stations showed that each of the 18 retained Pur-
pleAir sites reported lower humidity measurements than their
corresponding NOAA station. They presented a negative dif-
ference in RH varying between 10 %–20 %, with uncertainty
increasing with increased RH (Fig. S2 in the Supplement). In
addition to the three PurpleAir sites removed for the 0.5 km
radius, one and two additional PurpleAir sites were removed
for the 1.0 and 2.0 km buffers, respectively. We did not de-
tect any additional instrument error for temperature. Most of
the retained PurpleAir sites had a strong correlation of 95 %–
99 % for temperature with NOAA stations.

Summary statistics were explored to describe the main
characteristics of our datasets (Figs. 2 and 3). Meteorological
parameters for our three buffers (0.5, 1.0, and 2.0 km) exhibit
roughly the same distribution (Fig. S3 in the Supplement).

Further evaluation of our 0.5 km radius dataset revealed that
63 % of the hourly data for RH are greater than 50 %, with
temperatures varying between −17.13 and 38.83 °C. RH for
the 0.5 km radius dataset showed some monthly seasonality
(Fig. 2b). However, independent of the number of months of
data reported by a PurpleAir sensor, the distribution of RH is
relatively consistent for individual PurpleAir sites (Fig. 2a).
For this same radius, the number of complete months of
data per PurpleAir sensor varied from approximately 1 to
29 months, with 11 sensors covering at least 10 months of
hourly data (Fig. 2a).

For the PM2.5 concentration data, Fig. 3 displays the mean
and SD for the CAQS and CPA data for all three analyzed
buffers. The Pearson correlation (R), R2, RMSE, and MAE
between CAQS and CPA before fitting any model were also
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Table 2. Semi-supervised clustering model development (model fit with hourly data) and application of the hourly model to daily data.
Temperature is in units of degrees Celsius.

Parameters Model fit with hourly data Model fit to daily data

Clusters
(number of
observations)

Models R2 RMSE MAE R R2 RMSE MAE R

(%) (µgm−3) (µgm−3) (%) (%) (µgm−3) (µgm−3) (%)

RH ≤ 50
(59405)

2.738732+ 0.425834 PAi − 0.008944 RHi
+ 0.079210 Ti

71 2.96 1.86 84 88 2.04 1.46 94

RH> 50
(100243)

7.230374+ 0.412683 PAi − 0.085278 RHi
+ 0.070655 Ti

74 2.92 2.02 86 73 2.33 1.68 85

Figure 4. Positive linear correlation between daily AQS and daily predicted PM2.5 concentrations with RH distribution. (a) AQS and
predicted PM2.5 concentrations using Model 4 of the MLR process are shown in purple, and (b) AQS and predicted PM2.5 concentrations
using the Barkjohn model are shown in green.

estimated for each radius (Fig. 3). All metrics, including
R2 and RMSE, exceeded the target values3 (R2

≥ 70 % and
RMSE≤ 7 µg m−3) recommended by the EPA (Duvall et al.,
2021). Raw CPA presented greater magnitude and variability
than CAQS (Fig. 3). The performance metrics (Tables 1 and 2,
Tables S2–S5 in the Supplement) indicated less error with
successively smaller buffer size, which suggests that model
fit improves with decreased distance between the AQS mon-
itors and PurpleAir sensors. The distance factor might be at-
tributed to spatial variability between AQS monitors and Pur-
pleAir sensors and the effect of various potential PM sources
around the air monitors. Therefore, we present only the re-
sults for the 0.5 km buffer analysis. Tables S2–S5 contain the
results for the 1.0 and 2.0 km buffers, respectively. Wallace
et al. (2021) and Bi et al. (2021) also used a 0.5 km buffer
around the AQS monitors in their low-cost sensor data cali-
bration studies.

3The EPA’s target values were estimated for 24 h average data.

3.1 MLR bias correction model

The bias correction models, including the Barkjohn model
(2021), and their performance metrics are presented in
Table 1. All four MLR-fitted models exhibited an average
concentration of 8.80 µgm−3, with an SD varying between
4.71–4.84 µg m−3. The Barkjohn model had a mean of
7.67 µg m−3 and an SD of 6.08 µg m−3. RMSE and MAE,
which summarize the error in hourly PM2.5 averages,
exhibited relatively low values for the four fitted models
when we consider the average CAQS in the dataset and its
SD and the EPA’s target value (≤ 7 µg m−3) for RMSE. Our
dataset illustrates improved predictive performance for our
four MLR-fitted models compared with the Barkjohn model
(Table 1). The Barkjohn model presented a higher R2, as
a measure of the goodness of fit, than Model 1; however,
Model 1 is improved with respect to all error metrics. The
Barkjohn model resulted in a higher MAE than the four
models developed for this study. The best model fit was
observed for Model 4, incorporating CPA, T , and RH, with
substantially better prediction performance metrics com-
pared with the other models (Table 1). The model would,
however, be further improved with use of newer PurpleAir
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Figure 5. Unsupervised clustering results: (a) number of clusters k using the silhouette algorithm. (b) Clustering subsets based on RH and T
showing that RH has a greater influence in the process. The axis values correspond to covariance, and the dimensionality corresponds to how
much of each variable participated in the clustering process.

Table 3. Other previously developed nonlinear correction models.

Correction models Model fit with hourly data

R2 RMSE MAE R

(%) (µgm−3) (µgm−3) (%)

Wallace et al. (2021) ALT-CF3 68 3.88 2.86 82
Nilson et al. (2022) pm25_atm/(1+ 0.24/(100/RH – 1)) 68 4.14 2.98 82
Malings et al. (2020) 75+ 0.60 PAi − 2.50 Ti − 0.82 RHi 22 11.08 9.56 47

+ 2.9 DPi (for PA> 20 µgm−3)
21+ 0.43 PAi − 0.58 Ti − 0.22 RHi
+ 0.73 DPi (for PA≤ 20 µgm−3)

sensors because, over time, the quality of the sensors
degrades. This is particularly true in the hot and humid
climate zone (deSouza et al., 2023). Similarly, the presence
of Teledyne T640 instruments among our AQS monitors
may have affected the performance of our models since a
positive bias of approximately 20 % has been reported with
T640 instruments compared with other FEM or FRM mon-
itors (https://cleanairact.org/wp-content/uploads/2024/03/
AAPCA-Comments-Proposed-Update-of-T640-T640X-PM2.
5-Data-FINAL-3.15.24.pdf, last access: 11 September
2024). Additionally, a study conducted by Searle et al.
(2023) found that 12.9 % of the sensors deployed by Pur-
pleAir between June 2021 and May 2023 reported a negative
bias of approximatively 3 µgm−3. These PurpleAir sensors,
specifically deployed between June 2021 and January 2022
and between March and May 2023, used an alternative
Plantower PMS5003 that affected the reported particle
size distributions and concentrations (Searle et al., 2023).
Based on the technique developed by Searle et al. (2023)
to identify PMS5003 sensors, we estimated that only one
of our sensors (sensor ID: 116559), representing 0.62 %
of our data, fell into this category. This may have a slight
effect on the performance of our models. Furthermore,

unlike our fitted models, Model Bj applied to our dataset
displayed some negative values. Model 2 was similar in
structure to the selected model from Barkjohn et al. (2021),
with CPA and RH as predictors. All predictors for every
model were statistically significant. Validation testing using
LOGOCV (Table S6 in the Supplement) presented nearly
identical results to models using the entire dataset, building
confidence in the models. The LOSOCV resulted in an
RMSE and an MAE of 3.32 and 2.29 µgm−3, respectively,
for Model 4. These values were higher than those for the
LOGOCV process, which is not surprising considering the
variability between states.

Our findings align with some previous low-cost sensor
data calibration work (Barkjohn et al., 2021; Magi et al.,
2020; Zheng et al., 2018), where relatively simple calibra-
tion models provided reasonable bias correction. Zheng et al.
(2018), evaluating the performance of Plantower PMS3003,
which is similar to the PM2.5 sensor used in PurpleAir, found
an R2 value of 66 % for a 1 h averaging period after apply-
ing an MLR calibration equation to compare three Plantower
sensors against each other and a collocated reference moni-
tor over a period of 30 d. A study conducted by Magi et al.
(2020), involving a 16-month PurpleAir PM2.5 data collec-
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Figure 6. Correlation between daily AQS and daily predicted PM2.5 concentrations using the SSC model. Each cluster is presented separately
on the left (a, c), and both clusters are shown on the right (b).

Table 4. Application of MLR Model 4 and the SSC model to individual states. The result for SSC combined clusters is the result obtained
after applying each cluster to the hourly data, then added together.

States MLR SSC combined clusters

R2 RMSE MAE R R2 RMSE MAE R

(%) (µgm−3) (µgm−3) (%) (%) (µgm−3) (µgm−3) (%)

SC 56 3.41 1.92 75 57 3.40 1.87 75
NC 80 2.81 1.82 89 80 2.76 1.76 90
VA 88 2.70 2.36 94 87 2.77 2.42 93
FL 65 2.63 1.64 81 65 2.58 1.62 81
TN 75 3.11 2.21 87 75 3.10 2.19 87

tion in an urban setting in Charlotte, North Carolina, re-
sulted in R2 of 60 % for an MLR including CPA, RH, and T .
Barkjohn et al. (2021) estimated an RMSE of 3 µgm−3

(no decimal specified) when fitting a model with RH for
a mean concentration of 9 µgm−3 for FRM or FEM mon-
itors. Moreover, the negative coefficient obtained for RH
for Model 2 and Model 4 is not surprising considering that
high RH can lead to hygroscopic growth of the particles and
therefore cause uncertainties and overestimation in PurpleAir
PM2.5 concentration readings (Bi et al., 2021; Wallace et al.,
2021). The model developed by Barkjohn et al. (2021), as
well as the MLR model developed by Raheja et al. (2023)
using data in Accra, Ghana, had a negative coefficient for
RH.

Following removal of data points that did not fit the QA
criteria, the 0.5 km daily dataset included 5666 observations
for the same 18 sensors when applying the hourly model to
daily data. These produced a substantial improvement in the
performance metrics compared with those of the hourly mod-
els (Table 1). Model 4 presented better performance metrics
compared to the other models (Table 1). Figure 4 shows the

correlation between the predicted CPA and CAQS for Model 4
and Model Bj along with the distribution of RH. The model
developed by Barkjohn et al. (2021) used only daily averaged
data; thus, it was directly comparable with our application of
the model to daily data. An aggregate of data points can be
seen on the left-hand side of the correlation plots (Fig. 4) to
deviate from the model fit line. These data probably influ-
enced the performance metrics of the models. An evaluation
of Model Bj applied to our warm–humid climate zone daily
PurpleAir datasets revealed substantially higher error metrics
than the other models (Table 1).

3.2 SSC model predictions

The SSC model included the same predictors as Model 4
(CPA, RH, and T ) as the best MLR model obtained. The
GMM process, discerning complex relationships between
variables, found that RH and T are optimal predictors to use
in the clustering process. Among the 26 indices evaluated,
we found that 8 of them proposed k = 2 as the optimal num-
ber of clusters (Table S9 in the Supplement). Thus, we set
k = 2 clusters for the unsupervised aspect of our SSC pro-
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Figure 7. Correlations and regression lines between daily AQS and
daily raw or predicted PM2.5 concentrations using MLR, SSC, and
Model Bj.

cess. Figure 5a shows the k-cluster result for the silhouette
algorithm, which is based on two factors: cohesion (similar-
ity between the object and the cluster) and separation (com-
parison with other clusters) (Yuan and Yang, 2019). The un-
supervised clustering suggested a distribution of the dataset
into two well-defined clusters based on the RH predictor
(Fig. 5b). For T , the same range of values was found within
each defined cluster. RH is the most important variable that
determined the clustering subdivision (Fig. 5b); therefore, we
considered only RH for the cluster subdivision, and then we
applied the supervised phase of the SSC process to adjust the
random subdivision of the clusters and eliminate overlaps.
The two clusters were RH≤ 50 % (Cluster 1) and RH> 50 %
(Cluster 2) (Table 2). This result aligns with Wallace et al.
(2021), showing that the nonlinear effect between PM2.5 and
RH emerges around RH of 50 %, similar to our cluster divi-
sion (Fig. S4 in the Supplement).

The SSC approach provides improved model fits com-
pared with the MLR models for our hourly data. Ta-
ble 2 presents the modeling results of the RH-based semi-
supervised clustering process. The difference between the
two models resides primarily in their intercepts and their RH
coefficients (Table 2). The RH factor is 10 times greater in
Cluster 2 than Cluster 1, and the intercept of Cluster 2 is
about 5.5 µgm−3 greater than Cluster 1. All predictors were
statistically significant. Models from both clusters are within
the range of the EPA’s target values for linearity and error
performance metrics (Table 2). Except for MAE, which is
much lower for Cluster 1, the Cluster 2 model presented bet-
ter performance metrics compared with the Cluster 1 model
(Table 2). Compared with Model 4 from the MLR models,
results from Cluster 1 showed equal RMSE and a very low

MAE, while estimated metrics from Cluster 2 are greatly
improved with the exception of MAE (Table 2). The com-
bined predicted PurpleAir concentrations from the two SSC
clusters resulted in an RMSE of 2.94 µgm−3 and an MAE
of 1.96 µgm−3. Similar to the MLR validation testing, LO-
GOCV for SSC (Table S7 in the Supplement) produced
similar metrics compared with the models using the entire
dataset. LOSOCV for SSC showed improved performance
on average compared with the same process for Model 4 (Ta-
ble S8 in the Supplement), with every state exhibiting lower
error metrics than the EPA’s target value (≤ 7 µgm−3) for
RMSE. Thus, the cluster-based models may be valid for any
state in the study area.

Previous studies (McFarlane et al., 2021; Raheja et al.,
2023) using an MBC to calibrate low-cost sensors are con-
sistent with our SSC results, with lower MAEs and RMSEs
for their GMR-based model compared with their MLR, in-
dicating that an MBC is superior to an MLR approach. Mc-
Farlane et al. (2021) found for their GMR model an MAE
of 0.5 less than their MLR of 2.2 µgm−3. Similarly, Raheja
et al. (2023), for their GMR model using PurpleAir sensors,
found an MAE of 1.93 µgm−3 and an RMSE of 2.58 µgm−3,
corresponding to 0.17 and 0.30 µgm−3 less than their MLR
model, respectively. However, because of transferability (Ra-
heja et al., 2023) constraints with GMR-based models, Ra-
heja et al. (2023) recommended using their MLR model
for future applications, although they obtained an improved
model using GMR.

We compared our results with three nonlinear models that
were previously tested for PurpleAir sensors. Two of these
studies were not fit with data for our warm–humid climate
zone study area. Malings et al. (2020) developed a two-
piecewise linear model based on a threshold of 20 µgm−3

PM2.5 concentrations using 11 PurpleAir sensors at two sites
in Pittsburgh. The Malings et al. (2020) paper includes DP as
one of the predictors (Table 3), which violates the assumption
of predictor variable independence in the correction model
since a high correlation was found between DP and T . Per-
formance metrics for the Malings et al. (2020) model were
inferior to those for our models and for the models developed
by other authors (Table 3). Wallace et al. (2021, 2022) esti-
mated correction factors based on the ratio of the mean AQS
to the mean PurpleAir for all pairs of PurpleAir–AQS sites
from California (Wallace et al., 2021) and from California,
Washington, and Oregon (Wallace et al., 2022) in separate
models. Using the correction factor of 3 (ALT-CF3) recom-
mended in Wallace et al. (2021), we calculated higher MAE
and RMSE (Table 3) than for any of our models and for the
Barkjohn model. Similarly, the correction model developed
by Nilson et al. (2022) for the cf=Atm data (same type of
data used in their model) yielded similar R2 and even higher
RMSE and MAE than found with the ALT-CF3 model (Ta-
ble S9). Nilson et al. (2022) used 35 PurpleAir–FEM sites in
the US and Canada including 2 sites in our study area.
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As for the MLR, the SSC hourly model was applied to
the daily average dataset. Figure 6 shows the nonlinearity of
our dataset, with the slope varying for each cluster for the
correlation between CAQS and CPA. The same aggregate of
data points seen in Fig. 4 is also observed in the SSC mod-
els but only in Cluster 2 (Fig. 6). This may have affected the
accuracy of the model (Table 1). Applying the hourly mod-
els to daily data resulted in substantial improvement, with
lower uncertainties in each cluster of the SSC model com-
pared with the hourly dataset (Table 2). Compared with the
fit for Model 4 from the MLR (Table 1) to daily data, we
observed that Cluster 1 presented better performance metrics
than Cluster 2 (Tables 1 and 2). Compared with Model Bj
applied to our daily dataset in Table 1, the daily SSC model
displays improved results (lower RMSE and MAE) for each
cluster.

To further assess the model performance in subgroups,
Model 4 from MLR and the SSC model were applied to daily
data from five states of the warm–humid climate zones (Ta-
ble 4). For SSC, both models (RH ≤ 50 % and RH> 50 %)
presented good results for all the metrics compared with the
hourly data-fitted models and their application to daily data.
Except for VA, where Model 4 produced lower error metric
values, the SSC model outperformed MLR for all the states.

3.3 Final model selection

Model 4 from the MLR models and the SSC model align
with previous studies, producing low error and high corre-
lation (R2). After comparing NOAA and PurpleAir mete-
orological data (Fig. S5), we included in the Supplement
(Table S10) these two sets of models (Model 4 from the
MLR models and the SSC model) using NOAA meteoro-
logical data for RH and T that can be applied when mete-
orological information from PurpleAir sensors is biased or
missing. Figure 7 summarizes the results of our study by
presenting the correlation fit for MLR (Model 4 from the
MLR models), as well as the combined clusters from SSC,
Model Bj, and the raw PurpleAir data together. Tables S11
and S12 in the Supplement provide an evaluation of the per-
formance of the models by air quality index (AQI) categories.
Our results showed that applying Model Bj to our hourly
dataset improved our error metric, RMSE, of 58.73 % from
the raw data. MLR and the SSC model have lower error and
higher correlation than Model Bj. A decrease of 15.91 %
was obtained for RMSE from Model Bj to Model 4. How-
ever, Model 4 PM2.5 concentrations had a higher average
mean deviation (1. 99 µgm−3) from CAQS than PM2.5 con-
centrations from the SSC model (1.96 µgm−3). Moreover,
Model 4 PM2.5 concentrations from the MLR models tend to
be slightly higher than PM2.5 concentrations from the SSC
model at high RH and slightly lower at lower RH.

4 Conclusion

In conclusion, Model 4 from the MLR and the SSC model
improved the error performance metrics by 16 %–23 % com-
pared with the model developed by Barkjohn et al. (2021).
The SSC model presented slightly better results than the
overall MLR, suggesting that a clustering approach might
be more accurate in areas with high humidity conditions to
capture the nonlinearity associated with hygroscopic growth
of particles in such conditions. Therefore, the SSC model is
recommended for bias correction for the southeastern United
States. However, Model 4 might be an acceptable alternative
for its parsimony. Applying these models to PM2.5 PurpleAir
concentrations collected in high-humidity areas will help to
inform communities with a high-quality estimation of their
exposure. These models might also benefit communities in
high-humidity regions outside of the US. The next steps in
model development may include evaluation of the transfer-
ability of these models to other humid locations in the world.
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