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Abstract. High-resolution three-dimensional (3D) wind ve-
locity measurements are of major importance for the char-
acterization of atmospheric turbulence. The use of a multi-
beam wind lidar focusing on a measurement volume from
different directions is a promising approach for obtaining
such wind data. This paper provides a detailed study of
the propagation of measurement uncertainty of a three-beam
wind lidar designed for mounting on airborne platforms with
geometrical constraints that lead to increased measurement
uncertainties of the wind components transverse to the main
axis of the system. The uncertainty analysis is based on syn-
thetic wind data generated by an Ornstein–Uhlenbeck pro-
cess as well as on experimental wind data from airborne and
ground-based 3D ultrasonic anemometers. For typical atmo-
spheric conditions, we show that the measurement uncer-
tainty of the transverse components can be reduced by about
30 %–50 % by applying an appropriate post-processing algo-
rithm. Optimized post-processing parameters can be deter-
mined in an actual experiment by characterizing measured
data in terms of variance and correlation time of wind fluc-
tuations, allowing for the optimized design of a multi-beam
wind lidar with strong geometrical limitations.

1 Introduction

In the atmospheric sciences, our knowledge of the atmo-
spheric boundary layer (ABL) is mainly based on observa-
tions of turbulent flow (Garratt, 1994). Atmospheric turbu-
lence is a complex phenomenon, with scales involved rang-
ing from sub-meter to kilometer (Wyngaard, 2010). For large
spatial and temporal scales, the ABL plays an important role

in fields such as numerical weather prediction (Bauer et al.,
2015), climate science (Davy, 2018), and air pollution me-
teorology (Quan et al., 2014). However, the focus of interest
has recently shifted to smaller scales, which include micro-
physical aspects of clouds that are not yet sufficiently un-
derstood (Bodenschatz et al., 2010). Progress in this field is
needed to further reduce uncertainties in weather models and
climate projections (Bony et al., 2015; Stevens et al., 2021).
To shed light on this part of the ABL there is a strong demand
for highly resolved, local, and small-scale three-dimensional
(3D) wind data.

Highly resolved 3D wind data can be acquired by con-
ventional sensors such as 3D ultrasonic anemometers and
multi-hole Pitot tubes. These are not remote measurement
techniques, since the measurement volume is in the close
vicinity of the instrument, and depending on the mounting
platform the wind turbulence can be disturbed in a way that
precludes measuring highly resolved wind in the ABL. Co-
herent Doppler lidar (light detection and ranging) is the mea-
suring technique of choice for the remote measurement of
wind, widely used for wind industry applications (Pena et al.,
2013; Kumer et al., 2016; Hill, 2018; Fuertes et al., 2014;
Lundquist et al., 2015). The measuring technique can be
based on continuous-wave or pulsed lasers, mostly operating
at 1550 nm. To resolve 3D information rather than line-of-
sight information, conical scans are widely used. Such sys-
tems average over large lateral spatial and temporal scales
and usually assume a homogeneous wind flow within the
measuring volume (Bingöl et al., 2009), typically covering
a range of tens of meters (Schlipf et al., 2020; Wilhelm
et al., 2021). This precludes the measurement of complex and
small-scale turbulence (Sathe et al., 2015).
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A novel 3D wind lidar, the CloudKite Turbulence LiDAR
(CTL), is developed by the Fraunhofer Institute for Physi-
cal Measurement Techniques IPM and the Max Planck In-
stitute for Dynamics and Self-Organization (MPI-DS). Be-
cause high-resolution measurements are best achieved at
short measurement ranges, the CTL system is designed to
be mounted on an airborne platform such as the Max Planck
CloudKite (MPCK) (Bagheri et al., 2018; Schröder et al.,
2021; Stevens et al., 2021), an instrumented balloon–kite hy-
brid capable of flying up to 2 km above the ground. The CTL
is based on a multi-beam arrangement and uses an FMCW
(frequency-modulated continuous-wave) laser to measure
wind speeds in the vicinity of the carrier platform, e.g., at a
distance of 10–15 m. With this approach, non-intrusive high-
resolution measurements can be achieved. The 3D wind vec-
tor is resolved by focusing three independent, spatially sepa-
rated line-of-sight lidar measurement channels on one single
measuring point.

The CTL enables single-point 3D wind measurements at
the meter scale with a temporal resolution of typically 10 Hz
and thus opens up the possibility of investigating turbulence
on a much smaller scale than with classic scanning lidars
(Pauscher et al., 2016) and at altitudes and in situations which
were previously inaccessible. Further use cases with limited
space like wind turbines or meteorological masts are con-
ceivable. However, there are systematic constraints when us-
ing a lidar system on an airborne platform. The main mea-
surement uncertainty results from the individual measure-
ment errors and the limited space for mounting (see Ap-
pendix A for the consideration of other error sources, such
as effects of temperature and platform motion). The small
distance between the telescopes from which the laser beams
originate means that the three lidar beams have a large angle
to the transverse components. The measurement uncertainty
of the resulting reconstructed 3D wind vector can be calcu-
lated by error propagation theory from the intrinsic measure-
ment uncertainty and the system geometry. Due to the small
angles, the spatial dimensions which are transverse to the
main direction of the system suffer from high uncertainties.
This might constrain the use cases of the CTL for its applica-
tion. However, as shown in this study, considering this effect
in post-processing can enhance the data quality.

In this study, the measurement uncertainties are analyzed
and an uncertainty propagation model is introduced to iden-
tify the dependencies of uncertainty, geometry, measurement
noise model, and turbulence characteristics of the measured
wind data. This is done using synthetic wind data gener-
ated by an Ornstein–Uhlenbeck process, a well-known model
for simulating turbulent wind data (Uhlenbeck and Ornstein,
1930; Pope, 2011; Zárate-Miñano et al., 2013). Our analy-
sis shows that it is possible to reduce the uncertainties of the
transverse components of a measured 3D wind vector by ap-
plying appropriate low-pass filtering to the data, i.e., averag-
ing of the data points.

Figure 1. Schematic of the CloudKite Turbulence LiDAR (CTL). It
consists of three optical heads (telescopes): the lidar box including
data processing and control module, the battery module, and the
carbon mounting frame. The side length of the triangle is dt = 3 m.

Table 1. Specifications of the CloudKite Turbulence LiDAR (CTL).

Measurement rate 10 Hz
Spatial resolution ≤ 1 m3

Spatial dimensions 3
Wind velocity accuracy (LoS) < 0.1 m s−1

Measuring distance 7–50 m
Laser wavelength 1545 nm

Furthermore, a series of analytical expressions are devel-
oped to determine the best post-processing parameters that
minimize the measurement uncertainty of a given wind data
set and also to illustrate how they can be applied to real in-
field data. The latter is done by using experimental wind data
taken with the MPCK in the framework of the EUREC4A
campaign (Stevens et al., 2021). Our results highlight the re-
liability and potential of CTL for use in future field cam-
paigns to characterize ABLs at high resolution while provid-
ing the necessary post-processing tools for analysis of the
collected data by CTL and systems of similar design con-
cepts.

2 Setup description

2.1 The CloudKite Turbulence LiDAR

The setup of the novel, currently developed 3D wind lidar
is shown in Fig. 1. The main specifications are summarized
in Table 1. The core optical lidar module with three optical
channels was custom-built by ABACUS Laser GmbH (Göt-
tingen, Germany) based on a joint concept development.

The core lidar was integrated into a system design that spa-
tially separates the three optical heads, which are equipped
with focusing 3 in. (7.62 cm) telescopes. The laser beams are
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focused on one measurement volume, which ensures a spatial
resolution of ≤ 1 m3. This configuration allows reconstruct-
ing a 3D wind vector from the three line-of-sight (LoS) mea-
surements. The separation of the laser telescopes and the fo-
cus distance is chosen to maximize the accuracy of the wind
vector measurement within the limitations of the mounting
platform.

For the measurement of the three LoS wind velocities
an FMCW scheme is used. A single continuous-wave laser
source is split into three measurement channels and a ref-
erence channel. Each measurement channel is connected to
one telescope. An additional reference channel consists of
an internal glass fiber of fixed length. The laser source is
frequency-modulated using a triangular function with, typ-
ically, a 10 kHz base frequency. Detection of the signal is
done using a balanced photodetector for each channel, where
the backscattered signal interferes with a part of the laser
source (local oscillator, LO). The power of the LO is ad-
justed so that the detection operates in the shot-noise-limited
regime. That means that shot noise is the dominant noise
source in the detection path.

For extraction of a wind velocity, data analysis is typi-
cally done as follows (same for each channel): the raw data
from one modulation period, corresponding to one rising and
one falling slope of the laser frequency, are divided into 12
equally long sections (each 8.3 µs). Each section is multiplied
with a flat-top window and then fast-Fourier-transformed to
yield a frequency spectrum. A total of 1000 subsequent spec-
tra of identical sections are then averaged. The precise peak
position in these spectra is estimated by applying a Gaus-
sian fit. The peak frequencies of the four central sections of
the rising edge are averaged to yield F+. The same is done
for the falling edge to yield F−. The wind velocity is then
given by vwind = (F

−
−F+)/2. Under typical atmospheric

conditions, a velocity resolution can be achieved of at least
0.1 m s−1, with a temporal resolution of 10 Hz, according to
the specifications provided by the manufacturer.

The usage of the CTL on the MPCK enables short-range
remote wind measurements with high lateral spatial reso-
lution and high velocity resolution of the transverse spatial
components at altitudes of interest within the atmospheric
boundary layer.

2.2 Measurement uncertainty

To calculate the measurement uncertainty of a 3D wind vec-
tor, it is first important to characterize the inherent measure-
ment uncertainty of a wind lidar. We assume that every mea-
surement in each of the three channels experiences a sta-
tistically independent, normally distributed error. The stan-
dard deviation of this error distribution shall be called the
measurement uncertainty σ det. The manufacturer of the wind
lidar module provides an estimate of the measurement ac-
curacy in terms of a full-width half-maximum (FWHM) of
0.1 m s−1, derived from the fluctuations of the velocity value

when measuring a constant wind value. This is comparable
to other values provided in the literature (Knoop et al., 2021).
As σ det

= FWHM/(2
√

2ln2), a measurement uncertainty in
terms of standard deviation can conservatively be estimated
to be σ det

= 0.04 m s−1.
To further justify these assumptions, various experiments

and considerations were done. First, data from the reference
channel and from measurements on a hard target (lab wall)
were analyzed. These are scenarios in which the signal-to-
noise ratio (SNR) is much higher than in any wind measure-
ment. Consequently, they show the limitations of the mea-
surement system in the case of high SNR. In both cases,
the distribution of the velocity measurements approximates a
normal distribution (see Appendix B). The derived measure-
ment uncertainty is σ det

= 9× 10−5 m s−1 (reference chan-
nel) and σ det

= 1.2× 10−4 m s−1 (hard target).
As the detection is shot-noise-limited, the effects of low

SNR can be simulated. As shown in Appendix C, the mea-
surement uncertainty increases with decreasing SNR and re-
mains normally distributed, even for very low SNRs, which
are comparable to low aerosol densities. In this low-SNR
regime, the simulated measurement uncertainty is σ det

≈

0.01 m s−1. This indicates that the magnitude of σ det
=

0.04 m s−1 is a valid, conservative assumption.
For real wind measurements the fluctuations of the ve-

locity will likely be greater. Even within 100 ms the wind
speed is typically neither constant nor homogeneous within
the whole focal volume. However, this is not an uncertainty
due to the measurement but rather an intrinsic property of the
quantity under observation.

2.3 Measurement geometry

Figure 2 shows the geometry of the MPCK and the CTL with
its three telescopes mounted on the keel of the MPCK kite.
The global coordinate system x–y–z is defined as shown in
Fig. 2a, where the MPCK’s keel tail end is pointing in the
x direction and usually aligns with the direction of the mean
wind. The lidar measurement geometry constitutes a pyramid
with an equilateral triangle as the base, a telescope at each
corner, and the focus point at the top edge (see Fig. 2b). The
distance dt between two telescopes defines the side length of
the base, and the length of one long edge is defined by the
focus distance df. The height of the pyramid is denoted by h,
which corresponds to the distance of the mounting platform
to the focus point. The unit vectors in the line-of-sight di-
rection of the three measurement channels are defined in the
measurement coordinate system u–v–w as

û1 =

 cosθ
0

sinθ

 , û2 =

 − 1
2 cosθ
√

3
2 cosθ
sinθ

 ,
û3 =

 − 1
2 cosθ

−
√

3
2 cosθ
sinθ

 , (1)
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Figure 2. (a) Schematic of the MPCK in the global coordinate system x–y–z. The MPCK aligns with the mean wind direction (blue arrow,
x axis). ûdet points in the main direction of the measurement system. (b) Geometry of the detection system in the measurement coordinate
system u–v–w. The direction of the detection system ûdet (a) is perpendicular to the base of the detection system and points in the direction
of the spatial component w. This component is denoted as the longitudinal component of the measured wind data. The lateral and vertical
components u and v are denoted as transverse components. dt and df are the spatial distance of the optical telescopes and their focus
distance, respectively. The distance of the lidar ground plane to the measuring volume is denoted as h. û1, û2, and û3 are the unit vectors in
the line-of-sight direction of each lidar measurement channel (optical head).

with angle θ = arccos dt√
3df

. The direction of the entire mea-

surement system ûdet is defined in the measurement coordi-
nate system u–v–w as the direction of the w axis:

ûdet =

 0
0
1

 . (2)

The measurement coordinate system (u–v–w) is defined by a
rotation relative to the global coordinate system (x–y–z). A
vector a′ in the measurement coordinate system is described
by a vector a in the global coordinate system as

a′ = Rx (α)Ry (β)Rz (γ )a. (3)

The rotation matrices Rx(α), Ry(β), and Rz(γ ) describe the
counterclockwise rotation of a vector by a certain angle about
the given axis. For the analysis and the results presented in
this paper, we first rotated the system around the z axis by the
angle γ , which corresponds to an intrinsic rotation around the
w axis. This is followed by a rotation by the angle β around
the y axis and then by the angle α around the x axis. With
α = 90°, β = 0°, and γ = 0° the measurement system points
in the y direction, which is transverse to the mean wind di-
rection.

The unit vectors of the measurement system ûdet, û1, û2,
and û3 are defined in the measurement coordinate system
(Eqs. 1 and 2) and can be transferred to the global coordinate
system by Eq. (3). In the following all vectors and matrices
are defined in the global coordinate system. With the rota-
tions defined above (α = 90°, β = 0°, and γ = 0°) the lon-
gitudinal component of the measurement system (w) aligns

with the y component and the transverse components (u,v)
with the x and z components of the global measurement sys-
tem.

For the results of this paper, the distance between two tele-
scopes is assumed to be dt = 3 m and the focus distance is set
to df = 15 m. In this focus distance, it is assumed to measure
wind which is not affected by wind turbulence introduced by
the lidar mounting platform, i.e., the MPCK.

3 Methods

3.1 Synthetic wind data

We want to model wind data without wind gusts or large
changes in atmospheric conditions and relatively weak turbu-
lence intensity. For this kind of wind, the single-point veloc-
ity probability density function (PDF) can be assumed to be
Gaussian (Calif, 2012). For generating such synthetic wind
fluctuation data, an Ornstein–Uhlenbeck (OU) process can be
used as a simple stochastic differential equation (SDE) model
(Zárate-Miñano et al., 2013; Pope, 2011; Risken, 1989),
which allows controlling fluctuations, time correlations, and
turbulence intensity.

According to an OU process, each component of the syn-
thetic wind vector vsim

i (t) evolves over a time step dt as fol-
lows:

dvi =−
1
τ
[vi −µi]dt +

√
2Var
τ

dWi . (4)
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Here, the first term on the right-hand side corresponds to a
drift term toward the mean wind velocity µi , with the index
i referring to the spatial coordinates x, y, and z. The sec-
ond term is a stochastic term featuring the increment dWi

of a Wiener process. The parameters τ > 0 and Var> 0 are
the correlation time and the variance of the generated wind
data, respectively. To generate a synthetic wind data set, the
OU process is discretized using the Euler–Maruyama method
(Kloeden and Platen, 1992) and implemented in Python code.

For the uncertainty propagation model, a synthetic wind
data set is needed with realistic and typical turbulence char-
acteristics. As typical values we consider the variance (Var)
to be of the order of 1–4 m2 s−2 and the correlation time τ
to be 5–10 s. The characterization of the experimental data
(Sect. 3.2), which will be used later in this work, exhibits
values for the variance ranging from 0.02 up to 5.2 m2 s−2.
This broad distribution makes it difficult to choose one “typ-
ical” value of variance for the synthetic wind data set. For
the correlation time it is challenging to derive accurate val-
ues from the experimental wind data available, as discussed
later (see Sect. 6).

Based on these considerations a synthetic data set vsim was
used, with variance of the data set of Var= 1 m2 s−2 and a
correlation time of τ = 7.5 s. For simplicity, the same values
are chosen for each spatial component vsim

i . The mean veloc-
ity components are chosen as µx = 8 m s−1, µy = 0 m s−1,
and µz = 4 m s−1.

3.2 Experimental wind data

The experimental wind velocity data vexp used for the anal-
ysis were acquired by a 3D ultrasonic anemometer mounted
on the MPCK, which measured all three spatial components
with a 30 Hz measurement frequency. The data are samples
of 1–2 h duration taken during flights at different altitudes
as part of the EUREC4A campaign (https://eurec4a.eu/, last
access: 20 November 2024) on RV Meteor (Stevens et al.,
2021).

In addition to the MPCK data, ground-based measured
wind data have been used for the present investigation. The
data were taken by Augustinus Bertens from MPI-DS with a
3D ultrasonic anemometer (Ultrasonic Anemometer3D; part
no. 4.3830.20.340; Thies Clima, Göttingen) at the research
station Schneefernerhaus close to Zugspitze (Bertens, 2021).

To get measurement data with characteristics as similar as
possible to a data set of the CTL, the time resolution of the
experimental data set has to be reduced to1t = 0.1 s. This is
achieved by merging consecutive data points by an arithmetic
average.

The experimental wind data are characterized using mean
velocity, variance, and correlation time. The mean veloc-
ity is defined as v = 1

N

∑N
t=0vt and the variance as σ 2

v =

1
N−1

∑N
t=0(vt− v), with N as the number of data points.

The correlation time T of the time series can be calculated
by computing the integral of the normalized autocorrelation

function or from a fit of the functionC(t)= exp(−t/τ ) to the
autocorrelation data. Based on the same exponential assump-
tion, another approach to calculating the correlation time is
τ =−1/ ln(C(1)). The methods could be validated by ap-
plying them to synthetic data and comparing the correlation
time calculated by the Ornstein–Uhlenbeck parameter with
the result from the autocorrelation function. For the results
presented in the following sections, the latter approach was
chosen.

3.3 Uncertainty propagation model

This section presents the uncertainty propagation model. It
takes as an input a wind data set, either synthetic or ex-
perimental, and calculates the expected measurement data
by projecting the wind data on the directions of the mea-
surement channels. Then, statistically independent Gaussian-
distributed deviations are added to each measurement chan-
nel data point, which is meant to simulate the intrinsic mea-
surement uncertainty. The “erroneous” measurement data are
then reconstructed and compared to the input data set. This
uncertainty analysis reveals the dependencies of the measure-
ment uncertainty for a multi-beam wind lidar.

An initial wind speed vector is denoted as vinit(t) and is
provided either from a theoretical turbulence model, i.e., a
synthetic data set vsim(t) (see Sect. 3.1), or from field mea-
surements vexp(t) (see Sect. 3.2). The expected measurement
data vdet

d (t) for each lidar channel d are the line-of-sight
components in the direction of the measurement unit vectors
ûd(t) (see Eq. 1) with d = 1, 2, and 3 and can be calculated
by projecting the initial wind vector vinit(t) on the measure-
ment unit vectors:

vdet
d (t)= ûd · v

init(t). (5)

The values of all three measurement channels form a vector
vdet(t). In this notation Eq. (5) becomes

vdet(t)=MT vinit(t), (6)

with

vdet
=

 vdet
1
vdet

2
vdet

3


and

M=
(
û1, û2, û3

)
.

Each measurement channel has a certain intrinsic measure-
ment uncertainty. As there is no precise knowledge about
the origin of the measurement uncertainty, we model real-
istic measurement data by adding a random deviation to each
measurement channel for each time step, which can be re-
garded as simulated errors. This has been done similarly
by Schlipf et al. (2020). The deviations or errors δdet

d are
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Table 2. Parameter choices for all figures and results unless other-
wise stated (default configuration).

Telescope distance dt 3 m
Focus distance df 15 m
Direction of measurement system ûdet y

Measurement uncertainty σ det 0.04 m s−1

Measurement rate fs 10 Hz

Variance of synthetic data Var 1 m2 s−2

Correlation time of synthetic data τ 7.5 s

Mean reversion levels µx 8 m s−1

µy 0 m s−1

µz 4 m s−1

Gaussian-distributed with zero mean and a standard devia-
tion σ det

d for each measurement channel d , estimated by as-
sumptions on the measurement principle and the initial con-
figuration of the system (see Table 2). σ det is denoted as
the “intrinsic measurement uncertainty” of the measurement
system and is assumed to be the same for all measurement
channels. The wind data for the measurement channel d with
added error are denoted as verr

d and are defined by

verr
d (t)= v

det
d (t)+ δdet

d (t). (7)

In an actual experiment, there is no a priori knowledge
of vinit(t) or vdet(t). Only the “erroneous” measurement
data verr(t) are available. Using widely used reconstruction
formulas (e.g., Holtom and Brooms, 2020; Schlipf et al.,
2012, 2020) and applying the geometry of the measurement
system, it is possible to reconstruct a 3D wind vector vrecon(t)

from the erroneous measurement data as

vrecon(t)=
(

MT
)−1

verr(t)= Tverr(t), (8)

where T= (MT )−1 denotes the reconstruction matrix. The
result of this reconstruction algorithm is a 3D wind vector
with an intrinsic measurement uncertainty.

3.4 Post-processing of reconstructed wind data

The lidar measurement channels introduce errors that can
be regarded as statistically independent. The fluctuation of
the data due to wind turbulence is, however, correlated be-
tween all three channels. Because of this, applying a post-
processing averaging to the resulting reconstructed data
might be advantageous to reduce the resulting measurement
uncertainty of the reconstructed 3D wind vectors. This will
not reduce the number of time steps but will smooth out fluc-
tuations on the scale of the averaging time, which can be
interpreted as reducing the “physical” time resolution. The
aim of this post-processing is to reduce the measurement un-

certainty but not lose information about relevant turbulence
characteristics in the data.

The post-processing averaging can be implemented as a
low-pass filtering of the respective component of the recon-
structed wind velocity vector. Different approaches are dis-
cussed and compared in Appendix D. For the present investi-
gations, a Gaussian filter was chosen as an implementation of
low-pass filtering. It can be interpreted as a moving average
with Gaussian weights. The filter function is defined with the
standard deviation σ filt as

g(t)=
1

√
2πσ filt

exp
(
−t2

2(σ filt)2

)
. (9)

The filtering is done by convolving the data set with the filter
function. Here, the given Gaussian filter function is truncated
to a window function with the length of 4σ filt. To simplify the
interpretation of the results of the analysis with Gaussian fil-
tering, the standard deviation of the Gaussian filter is set to
σ filt
= n/4, where n is the length of the window. Using a sim-

ple moving average with n as the number of averaged data
points for the analysis yields similar results, i.e., the same
minima of uncertainty as n changes (see Appendix D).

3.5 Evaluation of processed data

The measurement uncertainty of the reconstructed wind data
is determined by comparing each time step of the initial wind
velocity vinit(t) with the reconstructed and post-processed
wind data vrecon(t). The deviations of both data sets at a time
t are defined for each spatial component i as

ai,t = v
init
i,t − v

recon
i,t . (10)

The measurement uncertainty σ ai is calculated for each spa-
tial component i in terms of the standard deviations of the
distribution of the pointwise deviations ai,t of both data sets:

σ ai =

√√√√ 1
N

N∑
t
(ai,t −µ

a
i )

2, (11)

with

µai =
1
N

N∑
t

ai,t .

3.6 Error propagation theory

The error propagation theory describes how uncertainties or
random errors of a function depend on the uncertainties of
variables in the function definition. The theory describes the
variables of the functions as experimental quantities that have
a certain uncertainty due to measurement limitations. For the
following analysis this theory is used to compare the results
of the uncertainty propagation model with theoretical values
and justify our approach.
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If the function is a linear combination f =
∑n
jajxj and

in the case of uncorrelated variables, the uncertainty of the
function σ f with variables xj , coefficients aj , and uncer-
tainty of the variables σj is defined as (Joint Committee for
Guides in Metrology, 2008)

(σ f )2 =

n∑
j

σ 2
j a

2
j . (12)

Each spatial component of the reconstructed 3D wind vector
vrecon
i of the 3D FMCW wind lidar in the Cartesian coordi-

nate system is a linear combination of the measurement data
verr

1 , verr
2 , and verr

3 (see Sect. 3.3):

vrecon
i = T i1verr

1 + T
i2verr

2 + T
i3verr

3 . (13)

T denotes the reconstruction matrix, defined in Sect. 3.3, and
only depends on the geometrical constraints of the measure-
ment system. From this and Eq. (12), it follows for the the-
oretical uncertainty of the spatial components of the recon-
structed wind vector σ theory

i , with σ det as the intrinsic mea-
surement uncertainty (which is assumed to be the same for
all measurement channels), that

σ
theory
i =

√(
T i1

)2
+
(
T i2

)2
+
(
T i3

)2
σ det. (14)

Evaluating this expression for our global coordinate system
(xyz) yields

σ
theory
x =

√
2
3

secθ σ det (15)

σ
theory
y =

√
1
3

cscθ σ det (16)

σ
theory
z =

√
2
3

secθ σ det. (17)

4 Theoretical analysis

4.1 Assumptions

The results of the following analysis are based on assump-
tions on the measurement geometry, turbulence characteris-
tics of the synthetic wind data set, and the measurement un-
certainty. All parameter choices are summarized in Table 2
and are used for all figures and results (denoted as the de-
fault configuration of the system) unless otherwise stated.
Due to reasons of radial symmetry, the uncertainty propa-
gation model gives the same results for the transverse com-
ponents x and z when using synthetic wind data. Therefore,
only the results of the transverse component x are presented
for the part with synthetic data.

4.2 Theoretical uncertainty propagation

A theoretical approach to calculate the uncertainty of the
reconstructed wind vector is the error propagation theory,

which is introduced in Sect. 3.6. Equation (14) defines the
theoretical uncertainty of the spatial components of the re-
constructed wind vector vrecon

i in relation to the reconstruc-
tion matrix T and the intrinsic measurement uncertainty σ det.
With the input parameters as given in Table 2, the theoreti-
cal uncertainty of the spatial components of the reconstructed
wind vector is σ theory

x ,σ
theory
z = 0.28 m s−1 for the transverse

components, and σ
theory
y = 0.02 m s−1 for the longitudinal

component in direction of the measurement system.

4.3 Uncertainty analysis without post-processing

This section and the next sections present the results of the
uncertainty propagation analysis. With the uncertainty prop-
agation model described in Sect. 3.3 the measurement un-
certainty of a three-beam wind lidar like the CTL can be
estimated based on geometric constraints, turbulence char-
acteristics, and post-processing averaging. A synthetic wind
data set with defined turbulence characteristics is used as an
input data set (see Sect. 3.1) and the expected measurement
data of each respective measurement channel are calculated
(Eq. 5). After adding random Gaussian errors (Eq. 7), which
simulate the intrinsic measurement uncertainty, a reconstruc-
tion algorithm is applied (Eq. 8), and the resulting data set
is compared with the input data (Eq. 10). The measurement
uncertainty of each component is calculated as the standard
deviation of the distribution of the pointwise deviations of
the two data sets (Eq. 11). The following results are based on
the default configuration of the system as defined in Table 2.

Figure 3 shows the resulting measurement uncertainty of
the CTL if no post-processing is applied to the reconstructed
measurement data. The plots show the comparison of the in-
put data set (synthetic wind data) and the reconstructed data
set. As expected, the values of the measurement uncertainty
are the same as calculated by error propagation theory (see
Sect. 4.2). This shows that in the simple case of reconstruct-
ing and analyzing the data for each time step individually, the
overall measurement uncertainty depends only on the input
measurement uncertainty and geometrical parameters. The
characteristics of the input data, i.e., the fluctuation of the
data and the mean values, do not influence the result in the
case of not applying post-process averaging.

4.4 Uncertainty analysis with post-processing

Figure 4 shows the results of the uncertainty propagation
analysis when applying a post-processing to the recon-
structed measurement data. The same input parameters are
used as for the results in Fig. 3. The measurement uncertainty
of the x component (transverse component) is σx,n=1 =

0.28 m s−1 without post-processing and σx,n=6 = 0.15 m s−1

when applying a Gaussian filter with a window length of
six data points (as explained in Sect. 3.4). The uncertainties
for the y component (longitudinal component) are σy,n=1 =
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Figure 3. Results of the measurement uncertainty propagation
model without applying a post-processing averaging. This figure
compares the initial data set with the “erroneous”, reconstructed
data set. The uncertainty of the transverse component (x com-
ponent) (a, b) is increased compared to the measurement uncer-
tainty of σ det

= 0.04 m s−1. The longitudinal component (y com-
ponent) (c, d) shows a reduced uncertainty. (a, c) Segment of the
input data (blue) and the corresponding reconstructed data (orange).
(b, d) Normalized histogram of the deviation between input and re-
constructed data. The dashed line shows a Gaussian fit to the distri-
bution, with the resulting measurement uncertainty σ given in the
figure.

0.023 m s−1 without averaging and σy,n=6 = 0.09 m s−1 in
the post-processed case.

Figure 5 shows the behavior of the measurement uncer-
tainty depending on the filter length, i.e., averaging time for
the relevant spatial components. The figure shows that in the
case of the transverse component (x) the uncertainty is re-
duced and reaches a minimum at around seven data points.
This reduction of the measurement uncertainty comes at the
cost of increasing the measurement uncertainty of the longi-
tudinal component. Nevertheless, the results show that there
is a clear benefit of applying a post-processing averaging
to the reconstructed wind data with lengths of up to seven
data points. In this range, the measurement uncertainty of
the transverse component is significantly reduced, while the
longitudinal uncertainty still remains below the uncertainty
of the transverse component. Another possibility is to only
apply the post-processing to the transverse component. This
approach does not increase the uncertainty of the longitudi-
nal component. However, it depends on the application of
the data whether a differentiated processing of the individual
wind data components is permissible or not.

Figure 4. Uncertainty propagation analysis with post-processing.
A Gaussian filter is applied with a window length of n= 6 data
points. (a, c) Segment of the input wind velocity data (blue) and
the corresponding reconstructed data (orange). (b, d) Normalized
histogram of the deviation between the input data and the recon-
structed and post-processed data. The dashed line shows a Gaussian
fit to the distribution, with the resulting measurement uncertainty
σ . (a, b) Transverse component (x component). (c, d) Longitudinal
component (y component).

Figure 5. The measurement uncertainty depends on the length of
the post-processing averaging window n. The plot shows the results
of the uncertainty propagation analysis based on a synthetic wind
data set with input parameters as defined in Table 2. The x compo-
nent corresponds to a transverse component of the wind vector in
the measurement coordinate system and the y component denotes
the longitudinal component. The curve of the measurement uncer-
tainty of the transverse component has a minimum for a certain av-
eraging length, in this specific case at about seven data points (red
cross).
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Figure 6. Measurement uncertainty of reconstructed and post-
processed wind components for various measurement rates. Results
are based on the uncertainty propagation model with a synthetic
wind data set in default configuration (see Table 2).

4.5 Dependence on the measurement rate

Up to now, we have considered the uncertainty propaga-
tion model with synthetic input data with a fixed measure-
ment rate. The CTL is developed to measure with a rate of
10 Hz. However, depending on the aerosol density in the air,
higher (or lower) measurement rates are possible, while pre-
serving the same SNR in the frequency spectra from which
the wind velocities are extracted. Thus, it is worth inves-
tigating how the post-processing parameters for decreasing
the measurement uncertainty depend on the measurement
rate of the system. Figure 6 shows the results of the uncer-
tainty propagation model in the default configuration (see
Table 2) with synthetic input data with various measurement
rates. To generate such data, the time step of the Ornstein–
Uhlenbeck process is changed while keeping the other input
parameters (Var, τ , and µi) constant. The results show that
the uncertainty of the transverse component is smaller for
higher measurement rates independent of the window length
(Fig. 6). Furthermore, the minimum of the transverse uncer-
tainty shifts to larger window lengths n for higher measure-
ment rates. At lower measurement rates, the ability to re-
duce the transverse uncertainty becomes smaller. It thus fol-
lows that, compared to the results of the previous sections,
the transverse uncertainty can be even further reduced when
the aerosol density in the air allows for higher measurement
rates.

From a physical point of view, it would also make sense to
investigate various measurement rates depending on an aver-
aging time instead of the window length n. However, for the
experimental setup and its application in the field, the win-
dow length is the relevant quantity and was thus chosen as
the variable parameter.

4.6 Dependence of the uncertainty on turbulence
characteristics

As mentioned above, the ability to reduce the measurement
uncertainty by averaging over multiple data points depends
on geometric parameters and the measurement uncertainty
on the one hand and turbulence characteristics on the other
hand. Increasing the averaging length will first decrease the
uncertainty of the transverse components until a minimum
is reached (Fig. 5). This minimum depends on the turbu-
lence characteristics, i.e., the size (variance) and integral time
length (correlation time) of turbulent fluctuations of the data
set. Figure 7a shows the average lengths that yield the mini-
mum measurement uncertainty of the transverse components
for a wide range of typical turbulence characteristics. Fig-
ure 7b gives the value of the respective uncertainty minima.
The results plotted in the figures are calculated as follows: for
a given variance and correlation time, a synthetic wind data
set is generated. The uncertainty propagation model provides
the dependency of the measurement uncertainty on the aver-
aging length, i.e., the length of the filter window. The win-
dow length for which the uncertainty gets minimized is de-
termined and plotted for various values of variance and corre-
lation time. Input parameters for Fig. 7 are the same as above
and noted in Table 2.

The results show that the measurement uncertainty of the
transverse component can be reduced compared to the case
without averaging (σx,n=1 = 0.28 m s−1) for all turbulence
values used for the calculations. In the case of small variance
and long correlation time, it gets reduced the most. In this
case, the weak fluctuation of the data allows long averaging
without losing measurement accuracy.

5 Experimental application

The results of the last section (Sect. 4) are based on syn-
thetic data generated by an Ornstein–Uhlenbeck process. The
dependency of the measurement uncertainty of the recon-
structed wind components on the length of the averaging
window, turbulence characteristics of the wind data set, and
other parameters was analyzed. In this section, experimental
input data sets are used as input data for the uncertainty prop-
agation model. It will be investigated whether the findings
from the first part can be transferred to an actual experiment.

5.1 Uncertainty analysis with experimental wind data

For various experimental data sets the measurement uncer-
tainty of the CTL in default configuration (see Table 2) is
calculated depending on the length of the averaging window
as explained in Sect. 3.3. For this, the experimental wind data
are taken as the initial wind data, assuming that the data set
represents the actual wind for the measurement rate used.
Then the measurement data are calculated, which means a
projection of the initial data on the measurement unit vectors.
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Figure 7. (a) Length of the filter window n for which the measurement uncertainty of the transverse wind components gets minimized by
a post-process low-pass filtering, i.e., averaging. The minimum depends on the correlation time and variance of the synthetic data set used
for the uncertainty analysis (input parameters are the same as for the other figures; see Table 2). (b) Value of the minimized measurement
uncertainty for various values of correlation time and variance. The values of uncertainty, which are 30 %, 40 %, and 50 % less than the
uncertainty without post-processing (σ = 0.28 m s−1), are plotted with dashed white lines. The red cross indicates the default configuration
(standard values of variance and correlation time; see Table 2) in both plots.

After adding Gaussian-distributed errors at each measure-
ment channel, the 3D data set is reconstructed and compared
to the initial data set. The results of the uncertainty analy-
sis with experimental data (see Sect. 3.2) from the MPCK
and from ground-based sonic anemometer measurements are
plotted in Fig. 8 (only the transverse component x is shown).
The uncertainty of the transverse component (x) is reduced
for all data sets and for averaging lengths up to nine data
points. The z component shows similar behavior. The lon-
gitudinal component (y) increases for all averaging lengths,
which is not shown in the figures. It is possible to approxi-
mately halve the measurement uncertainty of the transverse
components. In this case, the uncertainty of the longitudi-
nal component increases but stays below the uncertainty of
the transverse component. In conclusion, by using experi-
mental wind data from MPCK measurement campaigns as
raw measurement data, it could be shown that for typical
conditions in an MPCK measurement campaign, it should
be possible to achieve measurement uncertainties of around
σ = 0.15 m s−1.

5.2 Comparison of results with experimental and
synthetic wind data

For the comparison of the uncertainty propagation model
with experimental and synthetic wind data, a value for the
variance and correlation time of the turbulence was deter-
mined for each experimental data set. The method of charac-
terizing the turbulence of experimental data is explained in
Sect. 3.2. The turbulence characteristics were used as defin-
ing parameters for the generation of synthetic data, which
allows comparing the results of the uncertainty analysis with
experimental and synthetic data of similar turbulence char-

acteristics. The analysis presented in this paper uses experi-
mental data from an ultrasonic anemometer mounted either
on the MPCK (Stevens et al., 2021) or on a ground-based
measurement platform (Bertens, 2021). In the case of the
ground-based wind velocity data, we expect a better predic-
tion of the turbulence characteristics since the data include
no oscillations due to movements of the measurement plat-
form. Figure 8b shows the results of the uncertainty analysis
with ground-based experimental wind data compared to the
results based on a synthetic wind data set, generated with
the turbulence characteristics of the experimental data set as
an input parameter. The curves are very similar. This result
validates the approach of using synthetic data sets for the un-
certainty analysis and again shows the possibility of reducing
the measurement uncertainty for the transverse components
in an actual experiment. Figure 8a shows the comparison be-
tween the results of the uncertainty analysis with MPCK data
and the respective synthetic data set with the same turbulence
characteristics. All curves show similar behavior for averag-
ing lengths of up to five data points. For larger averaging
lengths, the differences between the experimental data sets
are in the same range as the differences between an experi-
mental curve and its respective synthetic counterpart (same
color). In the case of one data set (Flight 6), the curves devi-
ate significantly.

6 Discussion

Due to the geometric constraints of the setup, the transverse
components of the reconstructed wind vector initially suffer
from rather high uncertainties. We discuss the mechanism of
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Figure 8. The uncertainty propagation model gives similar results when either synthetic data or experimental data are used. The plots show
the measurement uncertainty of the transverse component (x) of experimental (bold lines) and synthetic wind data (dotted lines) with similar
turbulence characteristics for varying post-processing window lengths. (a) Experimental wind data from an ultrasonic anemometer mounted
on the MPCK, as well as synthetic wind data with similar turbulence characteristics, are used as input data for the uncertainty propagation
model. The synthetic wind data are generated based on the characterization of the experimental data. Panel (b) shows the comparison between
data from a ground-based ultrasonic anemometer (Bertens, 2021) and respective synthetic data sets with similar turbulence characteristics.
The figure shows good consistency of the results of both data sets. Both figures use assumptions on the measurement system geometry and
the measurement uncertainty as summarized in Table 2.

uncertainty reduction and how to decide on the best post-
processing parameters in an actual experiment.

The results of the uncertainty analysis with synthetic wind
data show that a reduction of the transverse uncertainty is
possible when applying a post-processing low-pass filter (see
Figs. 5 and 7). The minimum of uncertainty depends, be-
sides some fixed system assumptions (see Table 2), mainly
on the post-processing filter length and the characteristics of
the measured wind fluctuations. The increase in averaging
time has multiple effects on the measurement uncertainty. On
the one hand, a longer averaging time can increase the uncer-
tainty due to the loss of information about the dynamics of
the data in the averaging time. On the other hand, it can de-
crease the uncertainty since every single measurement chan-
nel adds random statistically independent errors to the data.
By averaging over multiple data points these statistically in-
dependent errors can be reduced to some extent. If the filter
window is too small the errors introduced by the measure-
ment instrument do not average out. If the filter window is
too large, wind fluctuations get smoothed out and we lose
information; see Fig. 9. For small timescales, the fluctuation
of the data is small compared to the uncertainty. Here, an
uncertainty reduction is possible since averaging mainly im-
pacts the errors and not the data. For longer averaging times,
the averaging smooths wind fluctuations and the uncertainty
increases again.

In Sect. 4.5 it could be shown that the ability to reduce un-
certainties also depends on the measurement rate. If the mea-
surement rate can be increased due to high aerosol density
in the air the minimum of uncertainty achievable by post-

Figure 9. The mechanism behind the uncertainty reduction is based
on the interplay between the timescales and magnitudes of measure-
ment errors and wind fluctuations. A synthetic wind data set in the
default configuration (see Table 2) is used and post-processed with
a simple moving average (box filter) with varying window lengths,
i.e., timescales. The analysis is done for the transverse x component.
The blue curve (“Transverse uncertainty”) shows the measurement
uncertainties of this data set for different window lengths, calculated
with the uncertainty propagation model. The orange curve (“Error
size”) shows the influence of the averaging on the errors introduced
by the lidar measurement. For this, the standard deviation σ of the
distribution of the error size is plotted when applying a simple mov-
ing average with varying window length n. The green curve (“Fluc-
tuation”) is calculated as follows: each data point of the initial wind
data is subtracted from the mean around this data point, calculated
with a given window length n. The standard deviation of these val-
ues is a measure of the fluctuations.
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processing averaging can be even further reduced. The ran-
dom errors that define the intrinsic measurement uncertainty
are added to each data point. The error fluctuation is therefore
on the timescale of the measurement rate. On the other hand,
the timescale of the wind fluctuation does not change for dif-
ferent measurement times. At higher measurement rates, it
is therefore possible to average over more data points before
smoothing the wind fluctuations of interest.

In an actual experiment, the system parameters like mea-
surement rate, geometry, and measurement uncertainty are
known and/or predicted based on profound knowledge. How-
ever, for determining the post-processing parameters to
minimize the measurement uncertainty, knowledge of the
timescales and size of fluctuations of the measured wind data,
i.e., the turbulence characteristics, is additionally required.

The challenge in finding the turbulence characteristics of
the measured wind to determine post-processing parameters
is that the contribution of the statistical errors mostly dom-
inates the data fluctuations for the transverse components
(x,z), which is illustrated in Fig. 10. Here, the sizes of the
fluctuations of an initial data set and a reconstructed data set
are shown. The latter suffers from errors introduced by the
measurement, which are geometrically “amplified” for the
transverse components (x and z). Thus, the turbulence char-
acteristics of the transverse components cannot be directly
derived by analyzing the reconstructed data set. However,
this is possible with sufficient accuracy for the longitudinal
component. We could therefore use the turbulence character-
istics of the longitudinal component (y component) to deter-
mine the best n (post-processing filter length) for all compo-
nents if we assume that the fluctuations in all three spatial
components are similar. We could then run the uncertainty
analysis with a synthetic data set defined by the assumed tur-
bulence characteristics. The best n can then be found by de-
termining the minimum in uncertainty like in Fig. 5 or by de-
termining the intersection of the fluctuation of the wind data
with the curve of the error fluctuation, as plotted in Fig. 9.
It needs to be validated whether the approach of using the
turbulence characteristics of the longitudinal component to
determine the post-processing parameters of the transverse
components is generally valid, i.e., for all data sets and typi-
cal atmospheric conditions. This will be addressed in upcom-
ing measurement campaigns with the CTL.

In Sect. 5 we present the results of the uncertainty analy-
sis with experimental data and conclude that the accuracy of
the characterization is mostly sufficient for a correct predic-
tion of the reduction of uncertainty due to post-processing.
However, the determination of the correlation time, espe-
cially in the case of airborne wind data, should be interpreted
with caution. The correlation time is determined based on
the autocorrelation function of the wind data, calculated as
explained in Sect. 3.2. We saw that in the characterization
procedure, the autocorrelation function does not completely
decay to zero, even when using the entire data set as input
values. The function still oscillates around zero, even for long

Figure 10. The longitudinal component (y) of the measured wind
data can be used for determining optimal post-processing param-
eters. This figure shows the fluctuation of an initial wind data set
(“initial”, bold lines) and the fluctuation of the data set reconstructed
from the “erroneous” measurement data (“reconstructed”, dotted
lines) for all three spatial components. The fluctuations are defined
as the standard deviation of the distribution of the deviations of a
data point from the mean of several data points. The x axis denotes
the averaging length for calculating the mean. The reconstructed
data set is calculated as explained in Sect. 3.3. The initial data set is
the experimental MPCK data set “Flight 3” (3D sonic anemometer;
see Sect. 3.2).

lag times. Thus, a value for the correlation time can only
be vaguely estimated. For a more precise determination of
the correlation time, a profound post-processing is needed
to filter out oscillations from the measurement platform and
choose segments for which the correlation time can be re-
garded as constant. Nevertheless, it could be shown that the
quality of the determination of the correlation time is mostly
sufficient for a good match of results between experimental
and synthetic data, especially when using wind data from a
ground-based sonic anemometer, which does not suffer from
platform-induced oscillations.

Another approach to determine the best n, i.e., the best
post-processing filter length, is also possible without the
characterization of the measured data. The theoretical analy-
sis of the measurement uncertainties (Sect. 4) shows which n
leads to an uncertainty reduction for typical atmospheric con-
ditions. In Fig. 7 we show that for a wide range of turbulence
characteristics, the uncertainty of the transverse component
can be reduced. The minimum is reached for the most data
sets when using a filter length of n= 3–9. Also, the exper-
imental results (Sect. 5) show that a post-processing with a
filter length in this range reduces the uncertainty of all ex-
perimental data used. Thus, choosing a post-processing filter
length of n= 5 is a reasonable choice for the CTL or similar
multi-beam lidars with the assumptions defined in Table 2.
Figure 11 shows that the transverse uncertainty is reduced
by at least 30 % for all experimental data given. In an ex-
periment with unknown wind characteristics a reduction of
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Figure 11. Uncertainty of transverse component (x) by applying a
post-processing Gaussian filter with a window length of five data
points (n= 5). The uncertainty is reduced for nearly all values of
variance and correlation time used. White indicates uncertainties
larger than the uncertainty without averaging (0.28 m s−1). The red
cross indicates the turbulence characteristics of the synthetic data
set used for all plots in this paper (default configuration; see Ta-
ble 2), unless otherwise stated. The red dots indicate the results of
the characterization of the MPCK field campaign wind data. The
red triangles indicate the characterization of the ground-based sonic
anemometer wind data sets. The white lines show the values at
which the uncertainty is reduced by 30 %, 40 %, and 50 % of the
uncertainty without post-processing (σ = 0.28 m s−1).

30 %–50 % can thus be expected. The uncertainty of the lon-
gitudinal component will always increase but stays below the
uncertainty of the transverse component. It is also possible to
apply the post-processing only to the transverse component
if differentiated data processing of the components does not
cause problems for further use.

7 Conclusions

In this work, the measurement uncertainty of the CTL or
similar multi-beam wind lidar systems was analyzed. The
CTL has three optical heads which are spatially separated
and focused on one point in a defined distance (< 50 m).
The lidar is designed for mounting on airborne platforms
like the MPCK. To derive a 3D wind vector from the data
of the three spatially separated lidar telescopes a reconstruc-
tion algorithm is needed, which is presented in this paper. An
uncertainty propagation model is introduced which reveals
the dependencies of the measurement uncertainty on sys-
tem design and wind characteristics. The model was tested
with synthetic wind data generated based on an Ornstein–
Uhlenbeck process, as well as with experimental wind data
from an MPCK measurement campaign and from a ground-
based sonic anemometer. The spatial components of the re-
constructed 3D wind vector in the transverse directions (x,z)
to the main lidar direction have a high uncertainty due to the

geometric amplification of measurement-introduced statisti-
cal errors in the reconstruction process.

A post-processing approach was introduced that consists
of applying a Gaussian low-pass filter to reduce the statisti-
cally independent errors of the individual measurement chan-
nels, which can be considered averaging over multiple data
points. This post-processing filters out statistically indepen-
dent errors but at the same time smoothes out wind fluctua-
tions on a certain timescale. Nevertheless, the uncertainty of
the 3D wind measurement can be reduced for typical wind
conditions (correlation time values ranging from 1–10 s and
variance values of 0–5 m2 s−2) and for the assumptions on
the system design (measurement rate, measurement uncer-
tainty, etc.) and geometry (telescope separation and focus
distance).

It could be shown that the characterization of the mea-
sured data to determine the best post-processing parame-
ter can be challenging in an actual experiment. However,
even without precise knowledge of the turbulence charac-
teristics, it turned out that a reduction by around 30 %–
50 % of the measurement uncertainty of the transverse wind
component can be expected when averaging over five data
points. The resulting measurement uncertainties for the CTL
are < 0.2 m s−1 for all spatial components. These results are
valid for a multi-beam wind lidar with parameters compara-
ble to the CTL (telescope separation, focus distance, mea-
surement rate, measurement accuracy, etc.) as well as for a
wide range of turbulence characteristics and thus for typical
wind conditions.

Highly resolved 3D wind measurements with the Cloud-
Kite Turbulence LiDAR or other multi-beam, airborne-
mounted wind lidars are thus possible and useful for turbu-
lence research.

Appendix A: Consideration of other sources of
measurement uncertainty

In this section, we present the estimation of potential error
sources other than the measurement error that we focus on in
the main text.

A1 Geometric tolerances

We expect this to be a negligible source of error since the
precise geometric dimensions of the measurement frame can
be measured before mounting of the device to the CloudKite
balloon. This includes the distances between the telescopes
(side length) and also the distance and lateral position of the
foci, which are straightforward to measure in a laboratory
setting with millimeter accuracy. The analysis presented here
also assumes that all three beams hit the focal volume under
the same angles, which is more intricate to ensure. A geodetic
instrument like an absolute tracker can be used to precisely
measure all coordinates (instrument and foci) in 3D space
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Figure A1. 2D schematic for the estimation of the change in lateral
focus position (1x) depending on the change in angular orientation
(γ ) of one telescope head (blue circle).

with an accuracy far better than 1 mm. From this calibration
procedure the angles can be extracted and compensated for.

A2 Influence of wind on the measurement geometry

The spatial resolution, i.e., the measurement volume, is as-
sumed to be 1 m3. This results from the foci being signifi-
cantly longer (about 1 m) than their lateral dimensions. Dur-
ing alignment of the setup, before mounting, all three foci
are superimposed onto one point through the use of deflec-
tion mirrors in the telescope heads.

The change in angular orientation of one single telescope
required for its focus to move by 0.5 m, i.e., half the spatial
resolution, can be estimated. As illustrated in Fig. A1, the
change in angular orientation can be approximated by γ =
arctan

(
1x
df

)
, where1x is the change in lateral position of the

focus and df = 15 m is the distance of the focus. For 1x =
0.5 m, this yields γ = 1.9°. Considering the stiffness of two
connected carbon tubes (see Fig. 1) and the very small attack
surface for the wind, 1.9° seems like an unrealistically high
value for bending due to wind, which is why we think this
error is also of minor importance.

A3 Influence of temperature on the measurement
geometry

Concerning the effect of temperature, we assume operating
temperatures between 0–40 °C and alignment of the setup
under lab conditions at 20 °C. Thus, a maximal change in
temperature of 20 °C must be considered. The temperature
extension coefficient of carbon is 2×10−6 K−1. Considering
the longest dimension, i.e., the 3 m bars between the tele-
scopes, this results in a maximal change in length of merely
0.12 mm, which is negligible.

A4 Dynamic tolerance due to platform motion

With dynamic tolerance we refer to the fact that the Cloud-
Kite and the attached measurement device are moving during
the actual measurement. There are several points to consider
here: first, it should be mentioned that the absolute location
(in world coordinates) of the point of measurement does not
have to be known precisely for these types of measurement.

Second, the influence of the motion during the acquisition
of a single data point, i.e., during 100 ms, must be considered.
It is known from previous measurement campaigns that the
CloudKite platform motion has its main frequencies around
1 Hz (Schröder, 2023). This is 1 order of magnitude slower
than the acquisition of a single data point. However, there
might still be some movement within 100 ms. This can be
regarded as an increase in the actual measurement volume.

Third, there is platform motion during the whole measure-
ment run, which might last up to many hours. This leads to a
motion of the focus, i.e., the point of measurement. This mo-
tion can be tracked using inertial measurement units (IMUs).
For this reason, two IMUs in each telescope head are inte-
grated into the measurement device. Whether this also al-
lows for the correction of the tracked movement depends on
the parameter of interest in the post-processing. For example,
the mean wind velocity could be corrected for the platform
motion. For other parameters it can be more intricate or even
impossible. However, this is an error source that influences
the analysis of the measured data but hardly the individual
measurement data points. Therefore, a detailed analysis of
the consequences of this platform motion is beyond the scope
of this paper.
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Appendix B: Measurements with a high signal-to-noise
ratio

To investigate the distribution of velocity measurements,
experiments under defined laboratory conditions were per-
formed. Data from the internal reference channel were an-
alyzed. Also, measurements with a single telescope, i.e.,
one measurement channel, on a hard target (laboratory wall)
placed in the focus were done. Figure B1 shows the his-
tograms of the peak positions of 1000 measurements for the
reference channel (Fig. B1a) as well as for the hard target
(Fig. B1b) and a Gaussian fit. Both histograms approximate
a normal distribution.

Figure B1. (a) Histogram of 1000 measurement values extracted from the reference channel. The measured frequency shifts, which corre-
spond to a velocity, approximate a normal distribution with standard deviation σf = 0.11 kHz. This equals σv = λσf /2= 0.09×10−3 m s−1,
where λ= 1545 nm is the laser wavelength. (b) Histogram of 1000 measurements performed on a hard target (lab wall) placed in the focus
of measurement channel 1. The measured frequency shifts approximate a normal distribution with standard deviation σf = 0.15 kHz. This
equals σv = λσf /2= 0.12× 10−3 m s−1.
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Appendix C: Simulation of the effect of white noise on
the peak position

To investigate the influence of a low signal-to-noise ratio
(SNR) on the fluctuations of the peak position in the mea-
sured frequency spectra, a numerical Monte Carlo simula-
tion was performed. Data sets of 4096 samples were gener-
ated with a beat frequency of 5 MHz. White noise was added
to simulate the shot-noise-limited measurement regime. The
data were then multiplied with a flat-top window and then
fast-Fourier-transformed. The absolute values of 4000 spec-
tra were averaged to get one target spectrum. From this tar-
get spectrum the peak position was extracted using a Gaus-
sian fit. Also, the SNR was calculated by dividing the peak
height by the standard deviation of the background noise.
Figure C1a shows the distribution of the obtained frequency
shifts for an SNR of 6.1, as might be the case in actual wind
measurements. A Gaussian fit yields a standard deviation that
corresponds to σv = 0.009 m s−1. Figure C1b shows that the
standard deviation decreases with increasing SNR.

Figure C1. (a) Histogram of 1000 simulated measurements with white noise and an SNR of 6.1. (b) Measurement uncertainty as obtained
from the fitted histograms for simulations with varying SNR.
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Appendix D: Comparison of averaging implementations

Figure D1 shows the comparison of four low-pass-filter im-
plementations, which correspond to an averaging over data
points. The data set is convolved with a certain filter func-
tion. The function can either be a window function of a given
length with defined weights (uniform and triangular) or a
function with a given shape, e.g., Gaussian. Here we com-
pare a uniform window, which corresponds to a simple mov-
ing averaging, a triangular window, a Gaussian filter, and a
so-called Butterworth filter. The Butterworth filter is imple-
mented as a low-pass filter in frequency space and applied
forwards and backwards to reduce phase delays and have a
pass band as flat as possible. The Gaussian filter is defined as
explained in Sect. 3.4 with a standard deviation of σ filt

=
n
4

and truncated to a window length of n.
One can observe in Fig. D1 that, in the case of filtering

with a window function, the uncertainty is lower for an odd
number of averaging lengths than for even numbers. Com-
paring the processed data set with the initial data set requires
assigning the data points to each other point by point. The
result of an averaging over a segment has to be assigned to
the data point in the middle of this segment. In the case of
even numbers, the resulting data set is shifted compared to
the initial data set due to the abundance of an index in the
middle of the averaging segment. This behavior introduces
an additional error. This error has no physical origin, but for
better interpretation of the results, the Gaussian filter is used
for the results in the present analysis, which does not suffer
from these errors.

Figure D1. The figure shows the comparison of different post-
processing implementations. A synthetic input data set is used as
the input data set for the uncertainty propagation model explained
in Sect. 3.3. The results with different post-processing algorithms,
i.e., different filtering implementations, are plotted. Only the trans-
verse component (x) of the reconstructed 3D wind vector is shown.
The black dot indicates the measurement uncertainty without aver-
aging.

Appendix E: Optimizing mounting geometry

One goal of this work is to optimize the data quality of
an airborne-mountable 3D wind lidar. To this end, it is
also worth investigating the geometrical configuration which
yields the highest measurement accuracy. The uncertainty
depends on the angle between the line-of-sight directions of
the three telescopes and the spatial component of interest.
This angle is determined by the telescope distance dt and
the focus distance df (see Sect. 2.3). Figure E1 shows the
transverse measurement uncertainty in terms of the standard
deviation depending on the focus distance and the telescope
distance, respectively. One can observe a nearly linear rela-
tion between the focus distance and the measurement uncer-
tainty of a reconstructed spatial wind speed component. The
dependence of the measurement uncertainty on the telescope
distance follows an approximately reciprocal decay. To op-
timize the measurement uncertainty, the telescope distance
should be maximized and the focus distance should be min-
imized within the given limitations. Furthermore, the result
shows that due to the approximately reciprocal behavior of
the uncertainty dependency on the telescope distance, the
value of 3 m for the telescope distance is a good compro-
mise since for larger distances the uncertainty decreases only
slowly (second decimal place).

Figure E1. The measurement uncertainty of the transverse compo-
nent (x component) of the reconstructed wind vector as a function
of geometrical parameters of the CTL. The telescope distance is set
to 3 m for changes in the focus distance (orange). The focus dis-
tance is set to 15 m for changes in the telescope distance (blue). The
same input data and parameters were used as defined in Sect. 4.1.
The results of this plot are based on the uncertainty propagation
model based on synthetic wind data and include a post-processing
Gaussian filter with a window length of six data points (n= 6).
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