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Abstract. The continued increase in global plastic produc-
tion and poor waste management ensures that plastic pol-
lution will be a serious environmental concern for years
to come. Because of their size, shape, and relatively low
density, plastic particles between 1 and 1000 µm in size
(known as microplastics or MPs) emitted directly into the
environment (“primary”) or created due to degradation (“se-
condary”) may be transported through the atmosphere, simi-
larly to other coarse-mode particles such as mineral dust.
MPs can thus be advected over great distances, reaching
even the most pristine and remote areas of Earth, and may
have significant negative consequences for humans and the
environment. The detection and analysis of MPs once air-
borne, however, remains a challenge because most observa-
tional methods are offline and resource-intensive and, there-
fore, not capable of providing continuous quantitative infor-
mation.

In this study, we present results using an online in situ air-
flow cytometer (SwisensPoleno Jupiter; Swisens AG; Em-
men, Switzerland) – coupled with machine learning – to de-
tect, analyze, and classify airborne single-particle MPs in
near real time. The performance of the instrument in differen-
tiating between single-particle MPs of five common polymer
types (including polypropylene, polyethylene, polyamide,
poly(methyl methacrylate), and polyethylene terephthalate)
was investigated under laboratory conditions using combined
information about their size and shape (determined using

holographic imaging) and fluorescence measured using three
excitation wavelengths and five emission detection windows.
The classification capability using these methods was deter-
mined alongside other coarse-mode aerosol particles with
similar morphology or fluorescence characteristics, such as
a mineral dust and several pollen taxa.

The tested MPs exhibit a measurable fluorescence signal
that not only allows them to be distinguished from other flu-
orescent particles, such as pollen, but also differentiated from
each other, with high (> 90 %) classification accuracy based
on their multispectral fluorescence signatures. The classi-
fication accuracies of machine learning models using only
holographic images of particles, only the fluorescence re-
sponse, and combined information from holography and flu-
orescence to predict particle types are presented and com-
pared. The last model, using both the holographic images and
fluorescence information for each particle, was the most opti-
mal model used, providing the highest classification accuracy
compared to employing models using only the holography or
fluorescence response separately. The results provide a foun-
dation for significantly improving the understanding of the
properties and types of MPs present in the atmosphere.
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1 Introduction

Plastics composed of synthetic or semi-synthetic polymer
materials are ubiquitous in nearly all areas of contemporary
society. From packaging to consumer products to roadway
materials, plastics are utilized because of their low cost of
production and material properties. Due to these factors and
rising demands, plastic production has been increasing by
approximately 8.4 % annually, where only ∼ 9 % of plastics
are recycled, 12 % are incinerated, and the rest accumulate in
landfills and in the environment (Geyer et al., 2017). In recent
years, public awareness and concerns about plastic pollution
as a global environmental crisis have been increasing (Davi-
son et al., 2021), while, concurrently, the amount of plastic
pollution in the environment more than doubled in the period
from 2000 to 2019 (Agrawala et al., 2022).

Plastics may be introduced into the environment through
their origin as “primary” particles, i.e., purposefully manu-
factured particles for specific applications, such as personal
care products (Fendall and Sewell, 2009) or industrial abra-
sives and paints (Verschoor et al., 2016). Once in the envi-
ronment, plastics may undergo physical (e.g., mechanical),
radiative, chemical, and biological degradation, which al-
ters their size, shape, and mobility within their environment
(Brandon et al., 2016; Mao et al., 2020; Othman et al., 2021;
Zhang et al., 2021). This degradation produces “secondary”
fragments or particles. Primary or secondary particles are
categorized into various size classes: macroplastics (> 1 cm),
mesoplastics (between 1 and 10 mm), microplastics (re-
ferred to throughout this publication as MPs; 1–1000 µm),
and nanoplastics (1–1000 nm) (Hartmann et al., 2019; In-
ternational Organization for Standardization, 2023). While
MPs have been a known source of contamination in aquatic
ecosystems (Barnes et al., 2009; Cole et al., 2011; Cózar et
al., 2014), an interest in research to better understand air-
borne particles has been on the rise (Beaurepaire et al., 2021;
Brahney et al., 2021; Enyoh et al., 2019). Because of their
size, shape, and material characteristics (such as their low
density; Driedger et al., 2015), MPs and nanoplastics may
be emitted into the atmosphere and transported long dis-
tances (Brahney et al., 2021), similar to other coarse-mode
(maximum length > 1 µm) particles such as mineral dust
(Schepanski, 2018; Weinzierl et al., 2017), reaching even the
most pristine and remote areas of Earth (Aves et al., 2022;
Bergmann et al., 2019; Brahney et al., 2020; Evangeliou et
al., 2020). In addition, airborne MPs may cause significant
health impacts if inhaled, as some particles can be in the res-
pirable size range (Gasperi et al., 2018; Stuart, 1984), toxic
(Prata et al., 2020), and bio-persistent (Mammo et al., 2020).
Understanding of the health impacts of microplastic particles
is still evolving, and knowing their concentration, size distri-
bution, and polymer type is imperative for addressing this
growing concern (Prata, 2018).

The atmosphere remains the least understood environmen-
tal compartment for the fate of MPs (Akdogan and Guven,

2019; Zhang et al., 2020). The ubiquity of MPs in the en-
vironment and this lack of understanding have created the
need for reliable, fast, and quantitative analysis methods. In
particular, significant progress in studying the impact of at-
mospheric MPs is hindered by the lack of analytical meth-
ods that can effectively characterize particles in situ and in
the size range relevant to atmospheric transport. As parti-
cle size decreases, the time and effort required for identifi-
cation of the plastic particles increase (Shim et al., 2017) and
the size limits of detection for common, robust microplastic
identification instruments are reached (such as 10–25 µm for
FTIR and Raman spectroscopy) (Primpke et al., 2020). Addi-
tionally, most conventional methods of MP detection and/or
characterization are offline (i.e., they do not measure con-
tinuously) and require tedious sample preparation (Primpke
et al., 2020). Many standard analysis protocols are also lim-
ited in the information they can provide about the MPs. For
example, some methods may be limited to only providing in-
formation connected to the chemical signature of the material
being analyzed, while others – such as the popular methods
utilizing optical microscopy – may only provide limited in-
formation about MP size and relative abundance (Primpke et
al., 2020; Shim et al., 2017).

An often-overlooked material property of airborne mi-
croplastics that has the potential to specify the particle type
is their natural ability to fluoresce, or autofluoresce, which
results from the spontaneous emission of light at one wave-
length by the fluorophores (a molecule or compound ca-
pable of fluorescence) of the polymers from excited elec-
tromagnetic states when exposed to higher-energy, lower-
wavelength light (Lakowicz, 2006). For polymers, this can
strictly be due to their molecular structure, containing aro-
matic rings, conjugated double bonds, or other fluorophores;
stabilizers, additives, or impurities unintentionally added to
the substance during the polymerization process or after pro-
duction; or some combination thereof. Most studies exam-
ine extrinsic fluorescence of MPs, which is a method of ap-
plying a dye stain that adheres to plastics (Capolungo et
al., 2021; Primpke et al., 2020) and only provides a means
of distinguishing MPs from other non-fluorescing materi-
als when viewed on filter media from an optical microscope
(Erni-Cassola et al., 2017; Maes et al., 2017). This technique
may be prone to misidentification (Beaurepaire et al., 2021)
and, like other popular MP identification methods, is offline
and labor-intensive. Some commercially available polymers
were previously examined for their autofluorescence (Allen
et al., 1976; Asfour et al., 2020; Hawkins and Yager, 2003;
Könemann et al., 2018; Lionetto et al., 2022; Monteleone
et al., 2021a, b; Ornik et al., 2020; Piruska et al., 2005;
Spizzichino et al., 2016), but identification of polymer types
using their autofluorescence has been limited. For exam-
ple, Ornik et al. (2020) examined the fluorescence spectra
of eight large commercially obtained polymer samples – in-
cluding polypropylene, polyethylene, polyethylene tereph-
thalate, and two polyamides – and demonstrated that their
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emission spectra are generally distinguishable from non-
polymer samples. They acknowledged that these same prin-
ciples can be applied to microplastics of various sizes and
shapes while leveraging advanced analysis methods such as
machine learning for high-accuracy classification.

One recent work has shown promising ability to clas-
sify airborne MPs using their autofluorescence (Gratzl et
al., 2024). Here, Gratzl et al. (2024) leveraged the Wide-
band Integrated Bioaerosol Sensor (WIBS; Droplet Mea-
surement Technologies, Longmont, CO, USA) to detect mi-
croplastics based on specific fluorescence signatures excited
at two wavelengths and detected in two emission wavelength
bands. While their approach provides a promising step to-
wards greater understanding of MPs in the atmosphere, the
recent introduction of the SwisensPoleno air-flow cytometer
(Swisens AG; Emmen, Switzerland) was recently shown to
classify biological aerosol particles with high accuracy (Erb
et al., 2023, 2024; Sauvageat et al., 2020), expanding the
spectral capabilities of the WIBS, and combines additional
particle information to strengthen the classification ability
of MPs and other atmospheric coarse-mode aerosols. The
SwisensPoleno (Jupiter model) characterizes single particles
by combining sensor information from digital holography
from two orthogonal holographic imagers and steady-state
spectrally resolved fluorescence intensity. The multi-method
platform is complemented by state-of-the-art machine learn-
ing algorithms that provide classification of airborne particle
types in near real time.

The objective of this study is to assess the fluorescence
responses of various common microplastics and to iden-
tify whether this information, together with holographic im-
ages of the individual particles measured using the Swisen-
sPoleno, can be used to distinguish MPs from other parti-
cle types. This fluorescence and the other measured param-
eters, such as the particle morphology, are compared to the
data of other airborne, coarse-mode particles, including min-
eral dust, several taxa of pollen, and water droplets. These
comparisons yield an estimation of viability for the online
in situ detection and classification of airborne MPs using the
SwisensPoleno’s multi-sensor approach.

2 Methods

2.1 SwisensPoleno

The SwisensPoleno (Jupiter model, manufactured by
Swisens AG; Emmen, Switzerland) is an air-flow cytome-
ter providing continuous in situ characterization of single,
coarse-mode aerosol particles using multiple measurement
methods in a single instrument. It combines sensor infor-
mation to characterize single particles using digital hologra-
phy from two orthogonal holographic imagers and spectrally
resolved fluorescence intensity measurements. In addition,
the instrument provides a measurement of elastic forward

and polarized side-scattering of each particle; for this study,
however, we focus on using only the fluorescence and holo-
graphic imaging systems of the SwisensPoleno. The final
component of this multi-method instrument is an integrated
machine learning classification model, allowing the instru-
ment to identify particle types in near real time by training
models using all measured properties of individual airborne
particles. According to the manufacturer, the instrument has
an effective flow rate of 40 L min−1, and particles in the size
range 0.5–300 µm can be detected in their multi-sensor sys-
tem.

The SwisensPoleno resolves two digital holograms of the
same single particle in the sample stream using digital in-
line holography (Berg, 2022; Berg and Videen, 2011), with
imaging sensors placed perpendicularly to each other and the
imaging plane perpendicular to the sample flow. Using only
holographic imaging and image analysis, the SwisensPoleno
has been used to detect and classify pollen particles from
several different plant species in the size range between 10
and 200 µm with high accuracy (Sauvageat et al., 2020), later
adapted to identify fungal spores during ambient monitoring
in Switzerland (Erb et al., 2023) and recently shown to be
successful when combining holography and fluorescence in-
formation for pollen classification (Erb et al., 2024). After
hologram reconstruction and processing, each particle image
is 200× 200 px, with a resolution of 0.595 µmpx−1. For size
and shape statistics, each holographic image is binarized and
analyzed using the scikit-image software package (van der
Walt et al., 2014) to determine a wide range of characteristic
image properties (e.g., mean pixel intensity) and morpholog-
ical features for each particle, including shape (e.g., eccen-
tricity, solidity) and size (e.g., major and minor axis lengths,
area-equivalent diameter).

For fluorescence measurements, the SwisensPoleno uses
LEDs at 280 and 365 nm and a 405 nm laser diode for flu-
orescence excitation. The excitation sources are collimated
(405 nm) or focused (280 and 365 nm) and filtered using
bandpass filters to narrow their emission spectrum around
their center wavelength. The wavebands for detecting fluo-
rescence emissions are 333–381, 411–459, 465–501, 539–
585, and 658–694 nm (referred to further using their cen-
ter wavelengths 357, 435, 483, 562, and 676 nm). Note that
the λex/λem= 365/357 and 405/357 nm channels are not in-
cluded in the SwisensPoleno measurement or analysis, be-
cause the fluorescence emission detection wavelengths are
longer than the excitation wavelengths. Thus, the combina-
tion of excitation sources and measurement channels pro-
vides 13 viable measurements for each particle, which we
will refer to using the notation of λex/λem for each exci-
tation and emission channel. The instrument’s fluorescence
system covers the excitation and emission range typical of
bioaerosols (Pöhlker et al., 2012). Importantly, the Swisen-
sPoleno does not differentiate between natural particles that
are inherently autofluorescent, such as some bioaerosols and
particles derived from synthetic materials such as microplas-
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tics. Further details of the SwisensPoleno fluorescence sys-
tem can be found in the Supplement.

The integrated instrument software makes use of a ma-
chine learning classification model for real-time, single-
particle classification using its holographic images. The
model used for real-time or “live” particle classification dur-
ing instrument deployment is developed, trained, and tested
offline on particle types the user expects the instrument to en-
counter. The SwisensPoleno is shipped with a default model
trained by MeteoSwiss with supervised learning on a subset
of common central European pollen taxa and water droplets.
However, users can train, evaluate, and update their instru-
ment with a classification model prepared on other data. For
this study, machine learning classification models were cre-
ated, trained, and evaluated in a separate Python program-
ming environment decoupled from the instrument. The de-
tails of the machine learning models used in this study are
outlined in Sect. 2.4 and in the Supplement.

To create individual particle datasets for this study, the
SwisensPoleno instrument inlet was coupled to a particle at-
omizer (SwisensAtomizer) – also manufactured by Swisens
AG – that entrains solid, dry test particles into the sample
flow of the instrument in laboratory or test environments. The
atomizer uses a small (∼ 5 cm) acoustic speaker to apply me-
chanical vibrations of user-specified frequencies and ampli-
tudes to a small volume of test particles (typically< 1.5 mL).
The sample volume is physically in contact with the speaker,
so that the acoustical vibrations are transferred directly to the
test material inside the sample volume, sometimes inducing
granular convection. Particles at the top of the volume are
aerosolized because of this vibration, and a small amount of
air is introduced into the sample volume to encourage the
aerosolized particles to exit the sample volume and enter the
sample stream of the SwisensPoleno instrument.

2.2 Materials and material preparation

A total of 15 particle types were analyzed using the Swisen-
sPoleno instrument in a laboratory setting, assessing their
fluorescence response and morphology through fluorescence
spectroscopy and holographic imaging, respectively. An
overview of the particles used in this study can be found
in Table 1, including their class names, which are referred
to throughout this work for simplicity. In addition, the to-
tal number of events (number of individual particles suc-
cessfully detected with both holographic imaging and flu-
orescence) for each class are shown. The investigated par-
ticle types are categorized as “microplastic”, “pollen”, and
“other”. The five microplastic particle types tested were
polyamide 12 (PA), polyethylene (PE), polyethylene tereph-
thalate (PET), poly(methyl methacrylate) (PMMA), and
polypropylene (PP), which represent common polymers used
in society and frequently found as microplastics in the en-
vironment (Koelmans et al., 2022; Plastics Europe AISBL,
2022; Zhang et al., 2020). All microplastic particles were

commercially purchased and tested in the dry state. To the
best of the authors’ knowledge, the polymer samples used in
this study are free from solvents, additives, or colorants. In
addition to these MPs, the other particle types tested included
Arizona Test Dust, a volcanic ash sample from Iceland, wa-
ter droplets, glass reference microspheres, and pollen sam-
ples from six different taxa. Although not all particle types
in this study are atmospherically relevant for ambient particle
classification (e.g., glass microspheres), they were selected to
represent a mixture of overlapping morphology, size, and/or
fluorescence properties to assess the instrument’s ability to
differentiate between similarly featured aerosol particles.

PA, also known as nylon 12 or PA12, was purchased
in powder form (Goodfellow GmbH; Hamburg, Germany).
The listed particle size range was 10–50 µm with a reported
density of 1.020 g cm−3. PA has many practical applica-
tions, including product packaging, electrical insulating ma-
terials, and sports-related materials (Griehl and Ruesteivi,
1970), and is a common pollutant of the environment (Sun
et al., 2019).

Low-density PE microspheres in the nominal size range
of 10–106 µm were purchased from Cospheric LLC (Santa
Barbara, CA, USA). The reported density is 0.96 g cm−3. PE
is used, for example, in reusable bags, rigid trays and con-
tainers, and agricultural and food packing films and is made
up of approximately 14.4 % of the 2022 global plastic pro-
duction (Plastics Europe AISBL, 2022). Because of its high
commercial use and potential environmental impact (Royer
et al., 2018), PE remains a potentially important atmospheric
microplastic to characterize.

PET is one of the most common polymer types in use and
has applications in textiles, beverage bottles, packaging ma-
terials, and other common uses (De Vos et al., 2021). While
PET remains one of the most recyclable polymer materials
(Plastics Europe AISBL, 2022), much of it ends up in the
environment (Schmid et al., 2021). For this study, PET MPs
were generated by milling larger PET granules (Goodfellow
GmbH; Hamburg, Germany) using a Retsch ZM200 rotor
mill. The MPs were sieved through a 50 µm stainless steel
mesh, yielding a size fraction of < 50 µm for the sample.

A sample of PMMA microspheres was purchased from
Cospheric LLC (Santa Barbara, CA, USA). According to the
manufacturer, the density is 1.19 g cm−3, and more than 90 %
of the purchased PMMA microspheres are reported to lie in
the size range of 27–45 µm. PMMA, also known as acrylic,
has a wide variety of practical uses (Ali et al., 2015), in-
cluding use as a transparent plastic alternative to glass (i.e.,
Plexiglas). PMMA can be found in environmental pollution
(Brahney et al., 2020; Thompson, 2004), reaching even the
most remote regions of the world (Aves et al., 2022), but rep-
resents a polymer with low demand from plastic converters
(Plastics Europe AISBL, 2022).

PP microplastics were produced by milling larger gran-
ules purchased from Sigma-Aldrich (reference no. 427888;
isotactic, average Mw∼ 250 000). Briefly, the granules were
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Table 1. Overview of the particles tested in this study and their properties.

Category Particle type Abbreviation/class Material supplier/source Morphology Material Maximum Number
name densitya area-equiv. of

(g cm−3) diameterb events
(µm)

Polyamide (nylon) 12 PA Goodfellow GmbH Irregular 1.02 27.46± 3.38 15 933

Polyethylene PE Cospheric LLC Spherical 0.96 25.32± 7.73 12 717

Microplastic Polyethylene terephthalate PET Goodfellow GmbH Irregular 1.38 15.15± 3.64 6930

Poly(methyl methacrylate) PMMA Cospheric LLC Spherical 1.19 32.45± 4.40 8485

Polypropylene PP Sigma-Aldrich Irregular 0.86 24.00± 9.05 8679

Pollen

Fagus sylvatica Beech Thermo Fisher Scientific Irregular Unknown 44.53± 2.53 6840

Betula pendula Birch Thermo Fisher Scientific Irregular Unknown 21.83± 1.73 15 503

Poa pratensis Grass Thermo Fisher Scientific Irregular Unknown 25.85± 2.35 11 521

Corylus avellana Hazel Thermo Fisher Scientific Irregular Unknown 25.23± 1.71 10 603

Pinus nigra Pine From source Irregular Unknown 48.03± 2.60 8798

Ambrosia artemisiifolia Ragweed Thermo Fisher Scientific Quasi-spherical Unknown 19.93± 1.11 9102

Other

Volcanic ash Ash From source Irregular 2.6c 10.12± 2.40 6064
(Eyjafjallajökull)

Mineral dust Dust Powder Technology Inc. Irregular 2.5–2.7 12.47± 4.18 9430

Soda lime glass Glass Thermo Fisher Scientific Spherical 2.5 30.67± 1.77 5801
microspheres

Water droplets Water Ultrapure MilliQ water Spherical 1 12.73± 4.42 5666

a Provided by the manufacturer, unless otherwise noted.
b Defined as the diameter of a circle with the same area as the imaged particle, taking the maximum value from the two holographic images of each particle. The values represent the mean of each
dataset ±1 standard deviation.
c Schumann et al. (2011).

melted into thin (∼ 1 mm) cuboids at 180 °C for 1 h and then
frozen at−70 °C. The frozen cuboids were then milled in ice-
cold ethanol for seven 30 s cycles with a knife mill (Retsch
GmbH) and size-fractionated using a vibratory sieve shaker
(Retsch GmbH). The fraction taken from the vibratory sieve
shaker was between 38 and 50 µm. This fraction was dried
prior to use.

While the pollen taxa in this study represent a small
subset of other fluorescent airborne bioaerosols (Pöhlker et
al., 2013), pollen particles are included in this study to assess
the ability of the instrument to distinguish between aerosol
particle types beyond those previously analyzed with the
SwisensPoleno (Erb et al., 2024; Sauvageat et al., 2020). The
six different pollen samples tested in the SwisensPoleno were
measured in a desiccated state. The bulk densities of these
samples are unknown. Betula pendula (birch), Fagus syl-
vatica (beech), Corylus avellana (hazel), Ambrosia artemis-
lifolia (ragweed), and Poa pratensis (grass) source materi-
als were purchased from Allergon AB (Ängelholm, Sweden)
and were introduced into the SwisensPoleno instrument us-
ing the SwisensAtomizer as described above. A sample of
pine pollen presented in this study was sampled directly from
a recent cutting of a flowering pine tree (Pinus nigra). The
cutting with male flowers was placed within a sealed cham-

ber that was continuously flushed with particle-free air and
directly connected to the SwisensPoleno. Pollen shedding
was encouraged by blowing air at the flowers using a small
fan.

Arizona Test Dust (Powder Technology Inc., Arden Hills,
MN, USA) was investigated with the SwisensPoleno for its
response to a reference mineral dust sample. In the figures,
the class name for this sample is “dust”. For this study, the A2
“fine” size fraction was tested in the instrument, where the
manufacturer reports a nominal size range of up to 80 µm and
a composition of multiple mineral components dominated by
silicates. Mineral dust and microplastics may share emission
pathways (Brahney et al., 2021), and the use of mineral dust
in this study represents a particle type with a similar size
and morphological features to microplastic fragments. The
mineral dust particles contain a variety of mineral compo-
sitions which depend greatly on their geographical location
(Engelbrecht et al., 2016), some of which have been shown
to autofluoresce (Savage et al., 2017). The autofluorescence
of Arizona Test Dust was previously measured (Pöhlker et
al., 2012), which showed a relatively low autofluorescence
intensity with no discernable spectral features.

A sample of volcanic ash was collected following the 2010
volcanic eruption of Eyjafjallajökull in Iceland. This polydis-
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perse sample represents an additional coarse-mode particle
type with similar morphologies and sizes to the microplastic
fragments found in the atmosphere.

Water droplets were produced through the nebulization of
Milli-Q 18.2 M�-cm ultrapure water using a medical nebu-
lizer. Ultrapure water is expected to have no fluorescence re-
sponse (see the Supplement for more information about the
SwisensPoleno fluorescence system); however, the spherical
morphology presents an opportunity to test the classification
accuracy alongside other spherical or quasi-spherical parti-
cles.

Glass microspheres, purchased from Thermo Fisher Sci-
entific Inc., represent a common NIST-traceable particle
standard for use in aerosol instrument calibration and test-
ing (Dollner et al., 2024; Pinnick et al., 1981). Here, we
tested glass microspheres with a nominal mean diameter of
30± 1.9 µm as reported by the manufacturer. While the fluo-
rescence information of glass microspheres will not be rele-
vant for ambient coarse-mode aerosol monitoring, the micro-
spheres share a morphology of other common spherical mi-
croplastic beads used in, for example, personal care products
(Rochman et al., 2015), and they will provide useful informa-
tion in assessing the instrument’s ability to discern different
quasi-spherical particles.

2.3 Dataset creation and cleaning

The SwisensAtomizer was physically coupled to the in-
let system of the SwisensPoleno, and each class of tested
particles was introduced into the instrument by adjusting
the atomizer’s vibrational frequency and amplitude and the
amount of air introduced into the sample volume. Particles
were generated in this manner for each particle type until a
suitable number (> 5000) of them were successfully detected
by both the holographic imaging and fluorescence systems,
referred to henceforth as an event. A total of 142 072 events
were used in this study. After a dataset for one particle type
is recorded, further processing is needed to filter unwanted
events from the dataset. These unwanted events, for example,
can include events for which a particle lies outside a suitable
position for holographic image reconstruction, which results
in a blurred, out-of-focus particle image; events clearly con-
sisting of particle aggregation; or unambiguous contamina-
tion by particles of types not intended for measurement and
visible through holographic imaging or detectable through
unexpected fluorescence spectra of individual particles. For
example, while training for the mineral dust dataset, a pine
pollen particle event can be unambiguously filtered out due
to its distinct shape and fluorescence response measured by
the SwisensPoleno. During dataset preparation for machine
learning training and testing, corrections for stray light (i.e.,
measurements without particles present in the measurement
volume) are applied to the individual events in each dataset.

The distribution of events among the particle types, along
with a count distribution of each particle’s maximum area-

equivalent diameter (defined as the diameter of a circle with
the same area as the imaged particle, taking the maximum
value from the two holographic images of each particle), is
illustrated in Fig. 1.

2.4 Machine learning

The combination of measurement methods from the Swisen-
sPoleno creates a unique set of data for each particle event.
These particle event data can then be used to train a super-
vised machine learning classification model to predict par-
ticle types in near real time. A supervised machine learn-
ing classification model is one that maps predefined, dis-
crete categories or classes to the input data corresponding
to that output (Müller and Guido, 2016); in this study, the
input data are represented by the two holographic images
and/or the fluorescence spectra for each particle, and the out-
put is the known particle type from that event. The Swisen-
sPoleno has already demonstrated high-accuracy pollen taxa
classification using its holographic imaging system, using
its holographic imaging system with a supervised machine
learning classification model (Sauvageat et al., 2020), and,
by combining holographic images with more information,
such as fluorescence, the classification accuracy of pollen
can increase (Erb et al., 2024). This is especially important
if the features that are used to describe the particle overlap
across different particle types, such as particle autofluores-
cence (Pöhlker et al., 2012). In such cases, the use of ma-
chine learning can be particularly useful for finding relation-
ships between particle types and measured particle data that
traditional analysis methods cannot distinguish.

In this study, two convolutional neural network (CNN)
models and a multilayer perceptron (MLP) model were
trained and tested using the Keras (https://keras.io/, last
access: 12 September 2023) and TensorFlow (Abadi et
al., 2016) frameworks in the Python programming language
to understand the ability of the SwisensPoleno’s single-
particle holography and fluorescence measurements to ac-
curately predict the particle type. One CNN model (“Holo.-
Only”) used only the two holographic images of a particle
as input, an MLP model used only the fluorescence spec-
tra as input (“Fl.-Only”), and the third, hybrid CNN and
MLP model used both images and fluorescence as input
(“Holo.+Fl.”). Each of the three models was evaluated on
the same set of particle events. The two models that con-
tained the holographic images as an input layer (Holo.-Only
and Holo.+Fl.) additionally employed transfer learning us-
ing EfficientNet (Tan and Le, 2019) to improve the model
performance by increasing the generalization and efficiency
and greatly reducing the resources needed for training. The
dataset for this study was divided into training and testing
subsets using a random 60 %/40 % split. This partitioning
resulted in 56 824 events distributed across the 15 datasets
that were subsequently used for model evaluation. The clas-
sification accuracy was evaluated using a weighted average
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Figure 1. Count distributions by (a) class and (b) size for each particle type. The maximum area-equivalent diameter is defined as the
diameter of a circle with the same area as the imaged particle, and the maximum is taken from the two holographic images from each event.

f score (Müller and Guido, 2016), which will be reported as
an accuracy in this work. Further details of the model archi-
tecture and other specifications can be found in the Supple-
ment.

3 Results

3.1 Morphology through digital holography

Figure 2 shows two representative events acquired using the
instrument’s imaging system for each particle type, display-
ing the range of sizes and morphological features of parti-
cles used in this study. The maximum area-equivalent diam-
eter means (±1 standard deviation) for each class are shown
in Table 1. The distributions of the particle measurements
for the data of each class, including the maximum area-
equivalent diameters, maximum major axis lengths, max-
imum eccentricity, and maximum solidity, are shown in
Figs. S1–S4 in the Supplement. The ash particle type rep-
resented, on average, the smallest particles measured in this
study, with a mean maximum area-equivalent diameter of
10.12± 2.40 µm; pine particles contained the largest mean
size of 48.03± 2.60 µm. However, the PP MP class had the
largest single particles and greatest range for their measured
size, with the major axis lengths ranging from∼ 5 to 100 µm.
Despite sieving during sample preparation, the milling of PP
and PET particles from larger granules yielded an unexpect-
edly large number of particles smaller than 10 µm, which –
because the samples were untreated – may have aggregated
to form large clusters to create the resulting wide size dis-
tributions. The PE, PMMA, ragweed, glass, and water par-
ticle types represent the (quasi-)spherical particles tested in
this study, while the PA, PET, PP, ash, mineral dust, and
remaining “pollen” types are non-spherical and irregular in
shape. The eccentricity (a measure of how elliptical a parti-

cle is, where a value of 0 indicates a circle and values ap-
proaching 1 indicate that a particle is becoming more el-
liptical) of PMMA, glass, PE, water, and ragweed are the
lowest of the different types, with mean minimum eccentric-
ities of 0.16± 0.05, 0.16± 0.06, 0.22± 0.08, 0.25± 0.12,
and 0.25± 0.08, respectively. The PP, PET, mineral dust, and
ash types represent irregular, asymmetric, and rough-edged
particles, and their size distributions are similar to each other
but much broader compared to the other types (Fig. 1). So-
lidity, a measure of a particle’s 2D projected roughness (Liu
et al., 2015; Sinkhonde et al., 2022) for PP, PET, mineral
dust, and ash, is the lowest of all the types (0.91± 0.04,
0.91± 0.04, 0.92± 0.04, and 0.94± 0.03, respectively). As
expected, the various pollen types tested were more homoge-
nous in morphology compared to the other types, as indicated
by their narrow maximum area-equivalent diameter size dis-
tribution (Fig. 1).

3.2 Absolute fluorescence spectra

The mean absolute fluorescence response as measured by the
SwisensPoleno for the different particle types is shown in
Fig. 3. Here, the water dataset is shown to represent the base-
line fluorescence response of the instrument, as the ultrapure
water is expected to have no detectable autofluorescence be-
yond an instrument background signal.

The “other” category of particles (i.e., ash, mineral dust,
glass, and water) shows generally low and featureless flu-
orescence across the excitation and emission channels. The
glass microspheres have an enhanced fluorescence response
in all the channels with the 280 nm excitation source and in
the λex/λem= 405/676 nm channel, which has been shown
to be non-negligible in a previous investigation (Boiko et
al., 2015). Mineral dust shows a slightly enhanced fluores-
cence response above the baseline that is broadly spread
across the excitation and emission channels, coinciding with
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Figure 2. Representative holographic images of two particles from each particle category and each particle type. For each valid imaging
event, two images are produced per particle, labeled here as “Holo. 0” and “Holo. 1”. Each image is 200× 200 px at 0.595 µmpx−1; 100 µm
scale bars are shown for each image.

a previous investigation (Pöhlker et al., 2012). The ash sam-
ple displayed little to no fluorescence above the water (back-
ground) signal.

Pollen particles show an enhanced fluorescence response
in all the channels. For the 365 and 405 nm excitation
sources, the average fluorescence response is more similar
among the pollen types, exhibiting a broad “hump” across
the detection wavelengths, where the intensities are highest
in the 483 nm emission detection channel for most pollen
types. Generally, the grass pollen (Poa pratensis) showed
the highest absolute signal response compared to the other
pollen species, similar to previous studies (Lichtenthaler and
Schweiger, 1998; Pöhlker et al., 2013).

For MPs, the mean fluorescence in the
λex/λem= 280/357 nm channel exhibits the highest re-
sponse compared to the other particle types tested, where
the absolute intensity is several orders of magnitude higher
than the instrument background (water) signal. Conversely,
the signal from the 658–694 nm waveband for all excitation
sources was about 1 order of magnitude lower for MPs

compared to the tested pollen species. Thus, for the 280
and 365 nm excitation sources, the mean intensity of the
absolute fluorescence signal decreased with increasing
wavelength. For the λex/λem= 280/357 nm channel, the
mean measured absolute fluorescence response for PET
was highest (0.41± 0.19 V) compared to the other datasets
tested. For the other two excitation sources, the highest
absolute fluorescence response among the MPs was from the
PP class. However, this is due to the largest particles found
in the PP dataset, where measured absolute fluorescence
intensity increases with particle size following a power law
relationship (Hill et al., 2002). In order to address this and
other dependencies, the SwisensPoleno calculates a relative
fluorescence for each detected particle, as described in the
Supplement.

3.3 Relative fluorescence spectra

Figure 4 details the differences between absolute and rela-
tive fluorescence for the 280 nm excitation source across all
the detection wavebands for the five MP particle types. The
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Figure 3. Mean absolute fluorescence intensity (Volt) measured by the SwisensPoleno for all the particle classes, where error bars are omitted
for plot clarity. The columns represent three excitation sources, and the x axis of each subplot shows the center wavelengths of the emission
channels (not to scale). In each subplot, the “water” class represents the instrument background fluorescence signal, and a logarithmic y axis
is used. (a) “Other” category, (b) “pollen” category, and (c) “microplastic” category, where the enhanced fluorescence of MP particles in the
280/375 nm excitation/emission can be seen, several orders of magnitude above the water background signal.

size dependence for this excitation source and the measure-
ment channels of the absolute fluorescence shows a power
law relationship with the measured intensity; that is, the rela-
tionship between absolute fluorescence intensity and size is
linear in the log–log space, and the slope of this relationship
typically varies between ∼ 2 and 3 (Hill et al., 2015; Köne-
mann et al., 2018). This relationship holds for all the MPs
tested in this study except for PET, which has a slope of∼ 1.5
for the 280 nm excitation source response. After applying the
normalization technique to calculate a relative fluorescence,
the size dependence (among other non-idealities) was largely
eliminated from the measurements (Fig. 4b).

The mean relative fluorescence response for the various
tested particle types is shown in Fig. 5. The relative fluores-
cence spectra for MPs exhibit a noticeably higher response
in the λex/λem= 280/357 nm channel compared to the other
particles tested, which do not display this spectral feature: the
mean λex/λem= 280/357 nm relative fluorescence values for
MPs are greater than∼ 0.44, whereas for all the other particle
types tested the mean values are less than 0.33. Across all the
excitation and emission channels, the mean relative fluores-
cence values for the tested pollen types remain below ∼ 0.5,
indicating that no one channel contributed to the majority
of the spectral response of the respective excitation source.
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Figure 4. (a) Absolute and (b) relative fluorescence of the 280 nm excitation source for MP classes and water droplets, indicating how the
size dependence of the fluorescence is mostly eliminated using a relative metric. For each dataset shown, the fluorescence values are averaged
for each discrete size bin, and the error bars represent the calculated standard error for the means in each bin.

Because water, ash, mineral dust, and glass particles exhibit
relatively low fluorescence and little variation across the de-
tection wavelength bands, their relative fluorescence spectra
are generally flat.

The relative fluorescence spectra represent 13 pieces of
data for each valid event in the SwisensPoleno, and it be-
comes difficult to discern common patterns and relationships
in this multidimensional dataset. We employed Uniform
Manifold Approximation and Projection (UMAP) analysis
(McInnes et al., 2018) to better understand the similarities
and differences of the relative fluorescence spectra. UMAP is
a nonlinear dimensionality reduction technique that aims to
preserve the local and global structures of high-dimensional
data in a lower-dimensional space (McInnes et al., 2018).
The algorithm builds a weighted nearest-neighbor graph,
where the weights of the connections are determined by the
local density of points and their distances in the original high-
dimensional space. UMAP then optimizes the embedding by
finding a low-dimensional representation that minimizes the
difference between the distances of connected points in the
graph and their distances in the lower-dimensional space,
capturing the inherent underlying structure of the data and
highlighting the relationships and similarities or differences
between neighboring points. This 2D representation can then
be used to aid visualization and highlight these relationships
between the data. Figure 6 shows the results of the UMAP
algorithm applied to the relative fluorescence for all events
of each data type used in this study, projected into two di-
mensions. The spacing of the data points in the UMAP plot
reflects their similarities or differences: points that are close
together indicate that they are more similar based on their
spectral characteristics or fluorescence spectra; conversely,
points that are far apart in the UMAP plot suggest greater
dissimilarity or differences in their spectral properties. As

expected, the events from each dataset form relatively tight
clusters, and datasets which share relative fluorescence spec-
tral features have clusters in the UMAP plot that are close
together or overlap. For example, water, ash, mineral dust,
and glass particles overlap in the center of the plot, indicat-
ing that their relative fluorescence spectral features also over-
lap. The birch and hazel pollen datasets share similar relative
fluorescence spectral shapes (Fig. 5b), and this is reflected
in the UMAP representation with slightly overlapping clus-
ters. For all the other particle types, clustering in the UMAP
plot is more distinct, which leads to the interpretation that the
underlying relationships in the relative fluorescence spectral
features are also quite distinct from one another.

3.4 Particle classification using machine learning

An integrated component of the SwisensPoleno workflow is
the ability to classify particle types in near real time by ap-
plying a trained machine learning model. This capability was
assessed using the measurements in this study by employing
three different machine learning model architectures utiliz-
ing holographic images and relative fluorescence spectra of
the particles as input parameters for particle type classifica-
tion.

The first model investigated uses a CNN that employs
only the two holographic images as input (Holo.-Only).
This model differs from the models used in previous stud-
ies of bioaerosol identification (Erb et al., 2024; Sauvageat et
al., 2020) by expanding the classified particle types beyond
bioaerosols and evaluating a different model architecture. Su-
pervised learning classification models often employ a con-
fusion matrix to convey model performance. The values in a
normalized confusion matrix show the classification or mis-
classification for different classes in a classification model,
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Figure 5. Relative fluorescence intensities for each particle type category, where the spectral “signature” of the various particles tested is
more apparent and where error bars are omitted for plot clarity. (a) “Other” category, (b) “pollen” category, and (c) “microplastic” category.

where the values are expressed as percentages or proportions
relative to the total number of particles in each true class. The
diagonal values represent the correct classification for each
class, while the off-diagonal values represent the misclassi-
fication percentages. The confusion matrix and performance
for the Holo.-Only model can be seen in Fig. 7. The model
training resulted in an overall accuracy of 90 % for the test
dataset. Particle types that share size and shape characteris-
tics perform worse than those with defining features, such
as pollen. For example, the ash, mineral dust, hazel, PET,
and PP particle types had an individual classification accu-
racy of less than 81 % that resulted from their shared irregu-
lar morphologies and/or similar size distributions. PET par-

ticles were incorrectly classified in 21 % of the 2773 events
used in the test dataset as either ash or mineral dust parti-
cles, while PP was incorrectly classified as PET in 12 % of
the 3458 test dataset events. Interestingly, the spherical parti-
cle types (glass, water, ragweed, PE, and PMMA) performed
surprisingly well (accuracy> 96 %) considering the overlap
in their general morphological characteristics and the size
of the tested particles. Of the pollen types, hazel particles
were most frequently classified incorrectly with an accuracy
of 76 %, where nearly all the misclassified particles (23 %)
were classified as birch, highlighting an existing challenge
in identifying these two particular pollen taxa based on their
very similar morphologies alone.
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Figure 6. UMAP plot of the relative fluorescence spectra for every event in this study. The UMAP analysis depicts the high-dimensional
relative fluorescence spectra in a low-dimensional (2D) representation, where each dot represents one event in the study. This 2D represen-
tation also provides insight into the relative similarity and difference between the relative fluorescence spectra: the closer each event is, the
more similar their relative fluorescence spectra are; conversely, events that are further apart represent relative fluorescence spectra that are
more dissimilar. Each dot is colored according to its class name in the legend; the text for each class is colored according to the category of
particle types. The events from the particle classes in the “other” category (i.e., ash, dust, glass, and water) are clustered and overlap near the
center of the UMAP plot, indicating the underlying similarity of relative fluorescence in this study.

Figure 7. Performance of the Holo.-Only machine learning model using a normalized confusion matrix. The diagonal values in the matrix
represent the proportion of true positives or the percentage of correctly classified particles for the respective true class on the y axis. The
off-diagonal values represent false positives, indicating the misclassification of particles into their respective predicted classes on the x axis.
The matrix is normalized along each row.

Atmos. Meas. Tech., 17, 6945–6964, 2024 https://doi.org/10.5194/amt-17-6945-2024



N. D. Beres et al.: Holography, fluorescence, and machine learning for airborne MP analysis 6957

The second machine learning classification model was a
multilayer perceptron using only the relative fluorescence
spectra as input (Fl.-Only). Here, the Fl.-Only model had
an overall classification accuracy of 94 %, and the distribu-
tion of the prediction accuracy is shown in Fig. 8. The accu-
racy for all the pollen and MP particle types was greater than
92 %, improving on deficiencies when using only the Holo.-
Only model for these classes. When assessing MP particle
types alone, the Fl.-Only model performed with an accuracy
of greater than 98 %. In contrast, the accuracy for correct
classification of water, ash, mineral dust, and glass particles
had a mixed performance, with accuracies of greater than
95 % for glass particles but less than 74 % for ash, mineral
dust, and water particles.

The third model tested combined the holographic images
and relative fluorescence approaches into a single, multi-
input model (Holo.+Fl.). An overall prediction accuracy of
98 % was found for this model when using the particle types
tested in this study. Figure 9 shows the normalized confusion
matrix for these results, indicating the prediction accuracy
across all the particle types. An accuracy of less than 95 %
was observed only for the ash and mineral dust particle types
(85 % and 82 %, respectively). All MP particles were cor-
rectly classified at least 98.5 % of the time. Comparing the
classification accuracies in Figs. 8 and 9, all the particle types
improved their classification performance compared to the
models using only their relative fluorescence or holographic
images.

4 Discussion

Digital holography can provide improved information about
aerosol particle size and shape beyond other light-scattering
methods (Berg et al., 2017) and has been demonstrated for
various coarse-mode particles, including bioaerosol (Erb et
al., 2024; Sauvageat et al., 2020), ice crystals (Touloupas et
al., 2020), and more (Berg et al., 2017). The SwisensPoleno
is a powerful instrument for capturing a diverse range of
single-particle morphologies in near real time. The MP parti-
cles tested in this study closely represent two common MP
morphologies – spherical beads and fragments – found in
the environment (Cowger et al., 2020; Helm, 2017; Yu et
al., 2023). However, particles that share morphological fea-
tures and size distributions may be misclassified by a ma-
chine learning model that uses 2D images as the only train-
ing data input, as was demonstrated in this work. For exam-
ple, fragmented, irregular particle types in this study that had
similar size distributions – such as PP, PET, volcanic ash,
and mineral dust – performed with lower accuracies (accu-
racies< 81 %) when using a machine learning model em-
ploying holographic images as the only input, where includ-
ing additional, concurrent measurement information may in-
crease the accuracy of real-time particle identification. On
the other hand, spherical and quasi-spherical particle types –

such as ragweed pollen, water droplets, glass beads, PE mi-
crospheres, and PMMA microspheres – performed well (ac-
curacies> 96 %) when considering their holographic images
only, indicating that this machine learning model can find
distinctive features not easily identifiable by the eye.

The MP particles tested in this study have an absolute fluo-
rescence response greater than or on the same order as pollen
particles. The exceptionally strong fluorescence observed for
PET particles aligns with expectations, as PET contains an
aromatic ring in its composition acting as a strongly emit-
ting fluorophore. PET MPs and nanoplastics were previously
observed to exhibit autofluorescence, due to their strong ab-
sorption in the UV region (Lionetto et al., 2022). While PET
exhibits fluorescence when excited at longer wavelengths
(i.e., in the visible spectrum), the results from this study
showed that, as the excitation wavelength increases, the fluo-
rescence intensity decreases. However, polymers which lack
aromatic or highly conjugated double-bond structures (i.e.,
PA, PMMA, PP, and PE) are not traditionally associated with
strong autofluorescence (Shadpour et al., 2006); nonetheless,
the PA, PMMA, PP, and PE microplastics used in this study
displayed fluorescence intensities on the same order as the
primary biological particles tested. These results may sug-
gest the presence of other factors that contribute to their mea-
sured fluorescence, such as the unintended presence of im-
purities or additives (i.e., unintentionally added substances;
Bridson et al., 2023). Additionally, while polyolefins like PE
and PP do not contain fluorophores in their chemical struc-
ture, photooxidation or thermal oxidation (Allen et al., 1977;
Zhao et al., 2022), impurities (Bridson et al., 2023; Laatsch
et al., 2023), fiber structural defects (Poszwa et al., 2016),
or formation of high-molecular-weight clusters (Laatsch et
al., 2023) can cause PE and PP to become fluorescent.
For example, during the photooxidation process, enones and
dienones can be formed (Allen et al., 1977), which makes
those polymers gain fluorescent properties. Further investiga-
tion is required to understand the specific mechanisms driv-
ing the fluorescent properties observed.

While the autofluorescence properties of other airborne
particles (such as polycyclic aromatic hydrocarbons – PAHs
–, mineral dust, or pollen) may overlap (Pöhlker et al., 2012;
Savage et al., 2017), the use of the SwisensPoleno instrument
is a very promising method to overcome the challenge of
distinguishing MPs from other airborne particles due to the
combined information of particle morphology and fluores-
cence provided by the instrument. The relative fluorescence
spectra for the tested particles show distinct spectral features
that can be distinguishable from each other, as demonstrated
by, for example, the UMAP dimensionality reduction tech-
nique (Fig. 6). The relative fluorescence measurement sys-
tem, combined with a machine learning classification model,
allows for particles that share morphological characteristics
to be distinguished by a high degree of accuracy, such as the
spherical particles used in this study (water droplets, ragweed
pollen, glass, PE, and PMMA microspheres). When using
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Figure 8. Performance of the Fl.-Only machine learning model using a normalized confusion matrix. The diagonal values in the matrix
represent the proportion of true positives or the percentage of correctly classified particles for the respective true class on the y axis. The
off-diagonal values represent false positives, indicating the misclassification of particles into their respective predicted classes on the x axis.
The matrix is normalized along each row.

Figure 9. Performance of the Holo.+Fl. machine learning model using a normalized confusion matrix. The diagonal values in the matrix
represent the proportion of true positives or the percentage of correctly classified particles for the respective true class on the y axis. The
off-diagonal values represent false positives, indicating the misclassification of particles into their respective predicted classes on the x axis.
The matrix is normalized along each row. For example, 4 % of all the hazel particles in the test dataset were misclassified as birch using the
Holo.+Fl. model.
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the relative fluorescence of the particles in a machine learn-
ing model, the overall classification accuracy was enhanced
compared to when particle holographic images were only
used for model inference, increasing from 90 % to 94 %. Par-
ticles that exhibit a distinct fluorescence spectral pattern can
be differentiated from other particle types with high accuracy
using the machine learning model; conversely, particles that
have low relative fluorescence and indistinct spectral features
– such as water and mineral dust – were more often mis-
classified in model evaluation. This result could prove prob-
lematic for any ambient measurements that rely strictly on
fluorescence in environments where the interaction of water
droplets and mineral dust is possible. Here, too, future work
using the SwisensPoleno may help classify these ambiguous
fluorescence events by including the polarized scattering in-
formation for each event.

It is important to acknowledge that the atmosphere con-
tains a wide variety of aerosols in terms of composition,
size, and shape (Seinfeld and Pandis, 2016). This study only
considers specific subsets of particle types that the Swisen-
sPoleno instrument might encounter during ambient moni-
toring; therefore, while the machine learning models in this
study exhibited generally high classification accuracies, gen-
eralizing them to ambient measurements with the Swisen-
sPoleno will likely lead to misclassifications. For example,
while not addressed in this study, future work should assess
how the SwisensPoleno’s fluorescence response is affected
by different variables, such as the source and age of vari-
ous pollen taxa, both commercially available reference pol-
lens and freshly collected samples. Additionally, spores of
various bacteria and fungi – known to be an important atmo-
spheric bioaerosol that autofluoresces (Hill et al., 2009) – are
not considered here and would certainly be misclassified if
the models used in this study – lacking the necessary train-
ing data – were used in ambient particle identification. For
MPs, while the MPs tested in this study were assumed to be
without additives, many plastics are produced with additives
that enhance their performance or functionality (Hahladakis
et al., 2018). Thus, it can be assumed that many of the MPs
in the environment also contain additives, which could al-
ter their measured fluorescence in the SwisensPoleno. Addi-
tionally, further investigation is required to understand how
components of airborne microplastics found in the environ-
ment – such as particles comprised of multiple components
(i.e., tire and road wear particles; Kreider et al., 2010), those
containing pollutants adsorbed onto the surface (e.g., Fu et
al., 2021; Gao et al., 2021), or those that have undergone
environmental weathering processes such as photooxidation
(Sun et al., 2020) – contribute to changes in measured fluo-
rescence and how this may impact their measurement in the
SwisensPoleno.

5 Conclusions

In this study, the high-performance capabilities of the
SwisensPoleno’s measurement system and application of
a machine learning classification model were evaluated to
accurately characterize and identify five different polymer
types of MP particles under controlled laboratory conditions.
The instrument’s ability to identify and differentiate MPs
from similarly featured coarse-mode aerosol particles, in-
cluding mineral dust, various pollen taxa, and water droplets,
was demonstrated. This was achieved through the application
of a machine learning model that was trained and validated
on separate datasets consisting of holographic images and
fluorescence spectral data for each particle type. The high
classification accuracy of the model affirmed the instrument’s
effectiveness in distinguishing between single coarse-mode
particles.

The microplastics tested in this study represent common
polymer types for microplastics found in environmental pol-
lution. They display sufficient fluorescence intensities that
can be measured with the SwisensPoleno and have distinct
spectral features, aiding in distinguishing particle types be-
tween both MPs and non-MPs. In the machine learning clas-
sification model configurations used in this study, model per-
formance increased when combining holographic images of
single microplastic particles with their measure relative fluo-
rescence, expanding on previous studies using the instrument
for bioaerosol identification. Future work is required to un-
derstand how increasing sample complexity can affect instru-
ment performance and particle typing accuracy. For example,
more particle types with varying morphologies and composi-
tions need to be tested, such as MP fibers, MP particles that
have experienced atmospheric processing or weathering, and
MP particles with additives or other chemical composition
differences. The prediction accuracy of these various other
MPs needs to be evaluated alongside other autofluorescing
aerosol particles, including additional bioaerosol types such
as spores, combustion byproducts such as PAHs, and tire and
road wear particles.

While an improvement to the comprehensiveness of the
data used can improve future studies, all MPs tested in this
study demonstrated detectable fluorescence, falling within
the measurement range of the SwisensPoleno. The combi-
nation of fluorescence and holographic imaging enabled the
machine learning models to distinguish various MP types in
the study, between one another and other coarse-mode par-
ticles, suggesting the potential suitability of the instrument
for monitoring airborne MPs under ambient conditions. The
ability to monitor and accurately classify MPs in situ and
in near real time would provide a substantial increase in the
understanding of the abundance, distribution, properties, and
potential impact MP particles could have on humans and the
environment.
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Poszwa, P., Kędzierski, K., Barszcz, B., and Nowicka,
A. B.: Fluorescence confocal microscopy as effec-
tive testing method of polypropylene fibers and sin-
gle polymer composites, Polym. Test., 53, 174–179,
https://doi.org/10.1016/j.polymertesting.2016.05.025, 2016.

Prata, J. C.: Airborne microplastics: Consequences
to human health?, Environ. Pollut., 234, 115–126,
https://doi.org/10.1016/j.envpol.2017.11.043, 2018.

Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., and
Rocha-Santos, T.: Environmental exposure to microplastics: An
overview on possible human health effects, Sci. Total Environ.,
702, 134455, https://doi.org/10.1016/j.scitotenv.2019.134455,
2020.

Primpke, S., Christiansen, S. H., Cowger, W., De Frond, H.,
Deshpande, A., Fischer, M., Holland, E. B., Meyns, M.,
O’Donnell, B. A., Ossmann, B. E., Pittroff, M., Sarau, G.,
Scholz-Böttcher, B. M., and Wiggin, K. J.: Critical Assessment
of Analytical Methods for the Harmonized and Cost-Efficient
Analysis of Microplastics, Appl. Spectrosc., 74, 1012–1047,
https://doi.org/10.1177/0003702820921465, 2020.

Rochman, C. M., Kross, S. M., Armstrong, J. B., Bo-
gan, M. T., Darling, E. S., Green, S. J., Smyth, A. R.,
and Veríssimo, D.: Scientific Evidence Supports a Ban
on Microbeads, Environ. Sci. Technol., 49, 10759–10761,
https://doi.org/10.1021/acs.est.5b03909, 2015.

Royer, S.-J., Ferrón, S., Wilson, S. T., and Karl, D.
M.: Production of methane and ethylene from plas-
tic in the environment, PLoS One, 13, e0200574,
https://doi.org/10.1371/journal.pone.0200574, 2018.

Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy,
B., Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou,
K.: Real-time pollen monitoring using digital holography, At-
mos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-
13-1539-2020, 2020.

Savage, N. J., Krentz, C. E., Könemann, T., Han, T. T., Mainelis,
G., Pöhlker, C., and Huffman, J. A.: Systematic characteriza-
tion and fluorescence threshold strategies for the wideband inte-

grated bioaerosol sensor (WIBS) using size-resolved biological
and interfering particles, Atmos. Meas. Tech., 10, 4279–4302,
https://doi.org/10.5194/amt-10-4279-2017, 2017.

Schepanski, K.: Transport of Mineral Dust and Its
Impact on Climate, Geosciences-Basel, 8, 151,
https://doi.org/10.3390/geosciences8050151, 2018.

Schmid, C., Cozzarini, L., and Zambello, E.: Mi-
croplastic’s story, Mar. Pollut. Bull., 162, 111820,
https://doi.org/10.1016/j.marpolbul.2020.111820, 2021.

Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin,
A., Forster, C., Baumann, R., Sailer, T., Graf, K., Mannstein, H.,
Voigt, C., Rahm, S., Simmet, R., Scheibe, M., Lichtenstern, M.,
Stock, P., Rüba, H., Schäuble, D., Tafferner, A., Rautenhaus, M.,
Gerz, T., Ziereis, H., Krautstrunk, M., Mallaun, C., Gayet, J.-
F., Lieke, K., Kandler, K., Ebert, M., Weinbruch, S., Stohl, A.,
Gasteiger, J., Groß, S., Freudenthaler, V., Wiegner, M., Ansmann,
A., Tesche, M., Olafsson, H., and Sturm, K.: Airborne observa-
tions of the Eyjafjalla volcano ash cloud over Europe during air
space closure in April and May 2010, Atmos. Chem. Phys., 11,
2245–2279, https://doi.org/10.5194/acp-11-2245-2011, 2011.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and
Physics: From Air Pollution to Climate Change, 3rd edn., John
Wiley & Sons, Inc., 1152 pp., ISBN: 978-1-118-94740-1, 2016.

Shadpour, H., Musyimi, H., Chen, J., and Soper, S. A.: Physiochem-
ical properties of various polymer substrates and their effects on
microchip electrophoresis performance, J. Chromatogr. A, 1111,
238–251, https://doi.org/10.1016/j.chroma.2005.08.083, 2006.

Shim, W. J., Hong, S. H., and Eo, S. E.: Identification methods
in microplastic analysis: a review, Anal. Methods-UK, 9, 1384–
1391, https://doi.org/10.1039/C6AY02558G, 2017.

Sinkhonde, D., Rimbarngaye, A., Kone, B., and Herring, T. C.:
Representativity of morphological measurements and 2-d shape
descriptors on mineral admixtures, Results in Engineering, 13,
100368, https://doi.org/10.1016/j.rineng.2022.100368, 2022.

Spizzichino, V., Caneve, L., Colao, F., and Ruggiero, L.: Char-
acterization and discrimination of plastic materials using
laser-induced fluorescence, Appl. Spectrosc., 70, 1001–1008,
https://doi.org/10.1177/0003702816641267, 2016.

Stuart, B. O.: Deposition and clearance of inhaled
particles, Environ. Health Persp., 55, 369–390,
https://doi.org/10.1289/ehp.8455369, 1984.

Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., and
Ni, B. J.: Microplastics in wastewater treatment plants: De-
tection, occurrence and removal, Water Res., 152, 21–37,
https://doi.org/10.1016/j.watres.2018.12.050, 2019.

Sun, Y., Yuan, J., Zhou, T., Zhao, Y., Yu, F., and Ma,
J.: Laboratory simulation of microplastics weathering
and its adsorption behaviors in an aqueous environ-
ment: A systematic review, Environ. Pollut., 265, 114864,
https://doi.org/10.1016/j.envpol.2020.114864, 2020.

Tan, M. and Le, Q. V.: EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks, in: Proceedings of the 36th In-
ternational Conference on Machine Learning Research, edited
by: Chaudhuri, K. and Salakhutdinov, R., PMLR, 97, 6105–
6114, https://proceedings.mlr.press/v97/tan19a.html (last access:
12 Septemebr 2023), 2019.

Thompson, R. C.: Lost at Sea: Where Is All the Plastic?, Science,
304, 838–838, https://doi.org/10.1126/science.1094559, 2004.

https://doi.org/10.5194/amt-17-6945-2024 Atmos. Meas. Tech., 17, 6945–6964, 2024

https://doi.org/10.1007/s10311-021-01197-9
https://doi.org/10.1175/1520-0450(1981)020<1049:COKFLS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1981)020<1049:COKFLS>2.0.CO;2
https://doi.org/10.1039/b508288a
https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
https://doi.org/10.5194/amt-5-37-2012
https://doi.org/10.5194/amt-6-3369-2013
https://doi.org/10.1016/j.polymertesting.2016.05.025
https://doi.org/10.1016/j.envpol.2017.11.043
https://doi.org/10.1016/j.scitotenv.2019.134455
https://doi.org/10.1177/0003702820921465
https://doi.org/10.1021/acs.est.5b03909
https://doi.org/10.1371/journal.pone.0200574
https://doi.org/10.5194/amt-13-1539-2020
https://doi.org/10.5194/amt-13-1539-2020
https://doi.org/10.5194/amt-10-4279-2017
https://doi.org/10.3390/geosciences8050151
https://doi.org/10.1016/j.marpolbul.2020.111820
https://doi.org/10.5194/acp-11-2245-2011
https://doi.org/10.1016/j.chroma.2005.08.083
https://doi.org/10.1039/C6AY02558G
https://doi.org/10.1016/j.rineng.2022.100368
https://doi.org/10.1177/0003702816641267
https://doi.org/10.1289/ehp.8455369
https://doi.org/10.1016/j.watres.2018.12.050
https://doi.org/10.1016/j.envpol.2020.114864
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1126/science.1094559


6964 N. D. Beres et al.: Holography, fluorescence, and machine learning for airborne MP analysis

Touloupas, G., Lauber, A., Henneberger, J., Beck, A., and Lucchi,
A.: A convolutional neural network for classifying cloud parti-
cles recorded by imaging probes, Atmos. Meas. Tech., 13, 2219–
2239, https://doi.org/10.5194/amt-13-2219-2020, 2020.

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne,
F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T.:
scikit-image: image processing in Python, PeerJ, 2, e453,
https://doi.org/10.7717/peerj.453, 2014.

Verschoor, A., De Poorter, L., Dröge, R., Kuenen, J., and de Valk,
E.: Emission of microplastics and potential mitigation measures:
Abrasive cleaning agents, paints and tyre wear, Rijksinstituut
voor Volksgezondheid en Milieu RIVM, RIVM Report 2016-
0026, 2016.

Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker,
N., Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freuden-
thaler, V., Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kan-
dler, K., Kristensen, T. B., Mayol-Bracero, O. L., Müller, T.,
Reitebuch, O., Sauer, D., Schäfler, A., Schepanski, K., Spanu,
A., Tegen, I., Toledano, C., and Walser, A.: The Saharan
Aerosol Long-Range Transport and Aerosol–Cloud-Interaction
Experiment: Overview and Selected Highlights, B. Am. Meteo-
rol. Soc., 98, 1427–1451, https://doi.org/10.1175/BAMS-D-15-
00142.1, 2017.

Yu, J. T., Diamond, M. L., and Helm, P. A.: A fit-for-purpose catego-
rization scheme for microplastic morphologies, Integr. Environ.
Asses., 19, 422–435, https://doi.org/10.1002/ieam.4648, 2023.

Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang,
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