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Abstract. Understanding the 3D structure of clouds is of cru-
cial importance to modeling our changing climate. Both ac-
tive and passive sensors are restricted to two dimensions: as
a cross-section in the active case and an image in the passive
case. However, multi-angle sensor configurations contain im-
plicit information about 3D structure, due to parallax and
atmospheric path differences. Extracting that implicit infor-
mation requires computationally expensive radiative transfer
techniques. Machine learning, as an alternative, may be able
to capture some of the complexity of a full 3D radiative trans-
fer solution with significantly less computational expense. In
this work, we develop a machine-learning model that pre-
dicts radar-based vertical cloud profiles from multi-angle po-
larimetric imagery. Notably, these models are trained only
on center swath labels but can predict cloud profiles over the
entire passive imagery swath. We compare with strong base-
lines and leverage the information–theoretic nature of ma-
chine learning to draw conclusions about the relative util-
ity of various sensor configurations, including spectral chan-
nels, viewing angles, and polarimetry. Our experiments show
that multi-angle sensors can recover surprisingly accurate
vertical cloud profiles, with the skill strongly related to the
number of viewing angles and spectral channels, with more
angles yielding high performance, and with the oxygen A
band strongly influencing skill. A relatively simple convolu-
tional neural network shows nearly identical performance to
the much more complicated U-Net architecture. The model
also demonstrates relatively lower skill for multilayer clouds,

horizontally small clouds, and low-altitude clouds over land,
while being surprisingly accurate for tall cloud systems.
These findings have promising implications for the utility
of multi-angle sensors on Earth-observing systems, such as
NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)
and Atmosphere Observing System (AOS), and encourage
future applications of computer vision to atmospheric remote
sensing.

1 Introduction

Clouds regulate the global climate system in many impor-
tant ways. Cloud radiative effects can be both warming and
cooling, depending on the type and altitude of the cloud
(Stephens and Webster, 1981). As the climate changes, the
global cloud distribution will be affected by numerous feed-
back cycles, some of which are not fully understood (Ceppi
et al., 2017; Gettelman and Sherwood, 2016). As a result,
clouds and cloud feedbacks are among the greatest sources
of uncertainty in climate sensitivity models (Pörtner et al.,
2022; Meehl et al., 2020; Bony et al., 2015). Monitoring the
response of global cloud distributions to a changing climate
will be of utmost importance in the coming decades. Under-
standing the 3D structure of clouds, as well as the vertical
distribution of cloud phase and thickness, is of great impor-
tance to climate modeling studies, such as the characteriza-
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tion of positive and negative cloud feedbacks (Rossow et al.,
2022; Marchand et al., 2010).

Satellite remote sensing can help reduce these uncertain-
ties by providing a source of consistent global data. Three
satellite missions are of particular relevance to this work.
One of these is Polarization and Anisotropy of Reflectances
for Atmospheric Sciences coupled with Observations from a
Lidar (PARASOL), a French Centre National D’études Spa-
tiales (CNES) mission which launched in 2004 and remained
operational until 2013. POLarization and Directionality of
the Earth’s Reflectances (POLDER) was a multi-angle po-
larimeter, the third of which (POLDER 3) was mounted on
PARASOL. It was designed to improve understanding of
clouds, aerosols, and their climate interactions (Deschamps
et al., 1994; Buriez et al., 1997). POLDER data continue to
provide diverse insights into aerosol properties near clouds
(Waquet et al., 2013), constraints on global emissions (Chen
et al., 2019), multilayer cloud identification (Desmons et
al., 2017), and more. The second relevant mission is Cloud-
Sat – a NASA mission which observed the vertical distri-
bution of clouds, aerosols, and precipitation using backscat-
ter from its cloud-profiling radar (CPR) (Stephens et al.,
2002; Im et al., 2005). From its launch in 2006 to its end-of-
life in 2023, CloudSat provided diverse insights into clouds,
aerosols, and precipitation (L’Ecuyer et al., 2015; Smalley et
al., 2014; Haynes et al., 2009; Liu, 2008). Finally, Cloud–
Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO), which launched in 2006, carried an active lidar
sensor and passive imagers, enabling the study of the verti-
cal distribution of clouds and aerosols (Winker et al., 2009).
All three of these satellites at one point shared an orbital
constellation known as the A-Train, yielding nearly simul-
taneous observations of the surface (Stephens et al., 2018).
CloudSat left the A-Train in 2018, followed by CALIPSO,
but remained in orbit for several more years. These mis-
sions have reached their end of life now but remain an in-
valuable resource for preparing for the next generation of at-
mospheric satellites, like PACE (Plankton, Aerosol, Cloud,
ocean Ecosystem) (Werdell et al., 2019).

The characterization of the vertical structure of clouds can
be done from both passive and active sensors. Cloud-top
height is often derived from passive thermal infrared mea-
surements (Baum et al., 2012). These tend to provide only
the top altitude of clouds in a column and struggle in multi-
layered cloud systems (Holz et al., 2008; Mitra et al., 2021)
but have the advantage of broad spatial coverage. Active sen-
sors, like CloudSat’s CPR, have the advantage of providing
a more complete vertical profile at the expense of coverage.
For example, CloudSat observed a narrow cross-section of
clouds at nadir, whereas POLDER’s maximum swath width
(across-view angles) was approximately 2200 km (Buriez et
al., 1997). In addition, some passive sensors are multi-angle,
allowing the use of stereoscopic methods to retrieve cloud
structure.

Prior work has explored the usage of A-Train data to un-
derstand the structure of clouds, e.g., Barker et al. (2011),
in which off-nadir cloud properties are estimated by nearest-
neighbor matching with actively observed pixels, using the
Moderate resolution Imaging Spectroradiometer (MODIS)
radiances. Another approach estimates the cloud profiles
from MODIS using a conditional generative adversarial net-
work (Leinonen et al., 2019). Another work has explored
the usage of POLDER data to understand the structure of
clouds, using a decision tree to predict whether each pixel
contains single-layer or multilayer clouds (Desmons et al.,
2017). Observations from the Multi-angle Imaging Spectro-
Radiometer (MISR) in tandem with MODIS have been used
to estimate two-layer cloud properties (Mitra et al., 2023).
Airborne multi-angle platforms like the Research Scanning
Polarimeter (RSP) have been used to study multilayer clouds
(Sinclair et al., 2017). The estimation of vertical cloud pro-
files in geostationary data using machine learning has been
studied (Brüning et al., 2024). This concurrent work employs
a similar strategy to ours but on geostationary, single-view
imagery. To our knowledge, our work is the first to estimate
the full vertical cloud profiles from POLDER data.

The problem of reconstructing 3D geometry has a rich
history in both remote sensing and computer vision, but the
techniques used differ greatly between those fields. Whereas
computer vision techniques nearly always assume a pin-
hole camera model, remote sensing uses a variety of dif-
ferent models, depending on the sensor’s design. One com-
mon model for push broom sensors is the rational polyno-
mial camera model (Gupta and Hartley, 1997; Zhang et al.,
2019), which is incompatible with standard 3D reconstruc-
tion pipelines. Additionally, remote-sensing reconstruction
typically operates on individual stereo pairs, rather than si-
multaneously reconstructing more than two views (Schön-
berger and Frahm, 2016). Even within the remote-sensing
space, most 3D reconstruction approaches operate on rela-
tively high-resolution imagery (on the order of several me-
ters; e.g., Castro et al., 2020) and not on wide-swath imagery
like POLDER, whose pixels are 6 km× 7 km wide (Buriez
et al., 1997). Another scale-related difficulty is the differ-
ence between horizontal and vertical resolution. Many ver-
tical cloud profiles are reported at sub-kilometer vertical res-
olution (Stephens et al., 2002), which may be difficult or
impossible to accurately retrieve from low-resolution pas-
sive imagery like POLDER. Another example of 3D recon-
struction is the MISR INteractive eXplorer project (MINX),
which performs a stereo height retrieval of aerosol plumes
in MISR data (Nelson et al., 2010). However, the smaller
pixel size and larger parallax simplifies the determination
of height. Cloud-top height retrievals were performed with
the Along Track Scanning Radiometer (ATSR) sensor series
(Muller et al., 2007). Both MISR and ATSR have sharper res-
olutions than the 6 km× 7 km pixels of POLDER (Buriez et
al., 1997), with MISR at 275–1100 m (Diner et al., 1998) and
with ATSR at 1 km (Muller et al., 2007).
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As an alternative to stereoscopic 3D reconstruction, we
elect to directly estimate the vertical cloud distribution of
each location. This is accomplished with a deep-learning
method, which essentially takes passive imagery as input and
estimates an active sensor product as output but on the same
spatial grid as the input. The model takes a flat represen-
tation of the multi-angle imagery as an input and produces
a dense 3D binary cloud/no-cloud grid. The 3D masking
task is known in the computer vision literature as volumet-
ric segmentation (as opposed to image segmentation). Deep
learning for volumetric segmentation is well studied, particu-
larly within medical applications like computed tomography
(Çiçek et al., 2016; Soffer et al., 2021; Ardila et al., 2019;
Jnawali et al., 2018). However, these methods take a 3D in-
put. By contrast, our method stacks the various viewpoints
of the surface (as seen from different angles), as is done in
3DeepCT (Sde-Chen et al., 2021), in which deep learning
is used to regress 3D liquid water content. Our motivation
for stacking multiple viewpoints is “depth from disparity”,
where the disparity (in appearance between viewpoints) is an
indicator of the depth (distance from sensor). Another highly
relevant work is VIP-CT (Ronen et al., 2022), which directly
regresses the extinction coefficient of a 3D cloud field us-
ing simulated multi-angle data. Figures in this paper were
generated with the matplotlib (Hunter, 2007) and seaborn
(Waskom, 2021) libraries.

2 Data

In order to satisfy the data requirements of a deep neural net-
work, we synthesize POLDER data with a CloudSat prod-
uct called 2B-CLDCLASS (Sassen and Wang, 2008). Both
the original POLDER and CloudSat data are made avail-
able by the AERIS/ICARE Data and Services Center (see the
“Code and data availability” section). The original POLDER
data come from the level 1B product, whereas for Cloud-
Sat, we use a product called 2B-CLDCLASS provided by
the Calxtract application from ICARE. We call the fused
and re-formatted dataset the A-Train Cloud Segmentation
(ATCS) Dataset due to the orbital constellation that these
satellites shared. The ATCS dataset and related API are avail-
able as an archive in the SeaWiFS Bio-optical Archive and
Storage System (SeaBASS) (https://seabass.gsfc.nasa.gov/
archive/NASA_GSFC/ATCS/ATCS_dataset/associated, last
access: 31 October 2023).

2.1 POLDER data

The POLDER level 1B data used in this study are in HDF5
format and organized by date. Each file corresponds to one
PARASOL half-orbit (the daytime side). POLDER level 1
and higher products are generated on a gridded equal-area si-
nusoidal projection, with each pixel in this grid correspond-
ing to approximately 6 km× 7 km on the surface (Hagolle

et al., 1996). Each pixel contains the co-registered quasi-
simultaneous multi-angular viewpoints. There are up to 16
viewing angles (from PARASOL’s perspective) from which
a point on the Earth can be observed. The maximum delay
between these quasi-simultaneous observations is on the or-
der of several minutes. See Table 1 for a description of the
POLDER 3 spectral bands. See Fig. 1 for an example of nadir
views in 10 POLDER 3 scenes from the test set.

2.2 2B-CLDCLASS

These files are merged with 2B-CLDCLASS data, a Cloud-
Sat product which contains CPR data, and are classified into
eight cloud types (Sassen and Wang, 2008). While the eight
cloud types are preserved in the ATCS dataset, this study
treats cloud presence as a binary label. The CPR range ex-
tends from beneath the surface up to 25 km, the vertical res-
olution is 240 m, and there are 125 height bins in the data.
There are few to no clouds in many of the higher-altitude bins
(above 14 km) for the sampled data, which are discarded.
Sub-surface bins are discarded as well. There are 59 bins in
the valid range.

There are related products which combine the CloudSat
radar and the CALIOP (Cloud-Aerosol Lidar with Orthogo-
nal Polarization) lidar, such as 2B-GEOPROF-LIDAR (Mace
and Zhang, 2014). When including lidar, the data contain
many optically thin clouds, especially cirrus clouds, to which
POLDER and many other passive sensors are often not sen-
sitive. This caused issues when applying supervised learn-
ing; the loss function was dominated by optically thin clouds
and performance on the radar-observed clouds suffered as a
result. This course of study was therefore discontinued but
could prove interesting for future work.

Generally, POLDER 3 and CPR are sensitive to differ-
ent physics. It should be impossible for a method with ac-
cess to only the shortwave information in POLDER 3 to
fully capture a radar product. Some loss of information is
expected, but this study aims to provide a reasonable lower
bound on the degree to which POLDER 3 contains the
2B-CLDCLASS information. This goes both ways because
MODIS is sensitive to some cloud features that are not de-
tected by CloudSat and CALIOP, particularly low and op-
tically thin clouds (Chan and Comiso, 2011; Christensen et
al., 2013). POLDER 3 should also be able to detect these
features, given its similar spectral sensitivity to MODIS. We
focus our efforts on quantifying the passive-to-radar estima-
tion rather than the converse in order to capture the benefits
of a wide swath.

2.3 Sampling strategy

As the quantity of available data is more than sufficient
to train a deep network, we make use of uniform sam-
pling to compile the dataset. We randomly sampled half-
orbit files for both PARASOL/POLDER and CloudSat/2B-
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Table 1. POLDER 3 spectral bands.

Band (nm) 443 490 565 670 763 765 865 910 1020

Bandwidth (nm) 20 20 20 20 10 40 40 40 20
Polarization No Yes No Yes No No Yes No No

Figure 1. True color POLDER 3 images from the test set, illustrating a diversity of cloudy scenes.

CLDCLASS from every day in a predetermined date range
and discarded invalid data. The date range was determined
by the availability of valid data; before 27 November 2007,
our data extraction process was unable to recover valid data.
In December 2009, PARASOL lowered its orbit to exit the A-
Train (Stephens et al., 2018), meaning POLDER 3 data were
no longer quasi-simultaneous with CloudSat. Data were con-
sidered invalid under any of the following conditions: (1) any
of the POLDER, 2B-CLDCLASS, or CALIPSO/CALIOP
half-orbit files were missing; (2) the half-orbit file start times
were off by more than 10 min (potentially indicating an in-
complete record); (3) the produced records did not contain
valid data for 13 or more angles in the POLDER imagery; or
(4) the produced records did not contain 50 or more labeled
pixels.

Standard practice in machine learning involves splitting
datasets into separate sets for training, validation, and test-
ing. Labels from the training set are used to optimize the
model’s parameters. The validation set is used to examine
the model’s performance, and its labels are held out so they
cannot directly affect the model’s parameters. However, hy-
perparameters (e.g., learning rate and how many layers in a
model) are typically optimized with respect to the validation
set. Neither parameters nor hyperparameters should be op-
timized with respect to the test set, which is the final mea-
sure of a method’s efficacy. Commonly, the training set is the
largest. We separately generate a training+ validation (train-
val) set and a test set, with the test set being approximately
one-quarter the size of the trainval set. The trainval set is
then split with 80 % of half-orbit files assigned to training
and 20 % assigned to validation.

The trainval set has two files per day, and the test set has
one file per day. For each 2B-CLDCLASS half-orbit file,
we uniformly sampled random locations along the Cloud-
Sat track, attempting the alignment procedure described in
the next section until acquiring enough patches, with 16 for
the trainval set and 8 for the test set. The patches are
100 px× 100 px, as these have sufficient spatial context with-
out yielding overly large file sizes. Since each pixel contains
hundreds of values corresponding to various angles and spec-

tra, increasing the patch size quickly becomes costly to stor-
age space. Conversely, smaller patch sizes reduce spatial con-
text, which contains useful information for the segmentation
algorithm.

2.4 Alignment strategy

Alignment between POLDER and 2B-CLDCLASS data is
performed with sub-pixel accuracy with respect to POLDER.
The POLDER grid is a sinusoidal (equal-area) projection of
the globe (Hagolle et al., 1996). Each pixel in this grid con-
tains multi-angular sensor data, geography (latitude, longi-
tude, and altitude), and geometry (viewing angle, solar zenith
angle, and relative azimuth). The 2B-CLDCLASS data are
provided temporally, with each timestamp associated with a
vertical cloud profile; a latitude/longitude point on the Earth;
and some metadata, such as quality flags. Although we could
quantize the 2B-CLDCLASS locations to the POLDER grid,
doing so would cause substantial quantization error. Instead,
we compute ground distances to find nearest neighbors in the
POLDER data for each 2B-CLDCLASS observation. As it
would be computationally prohibitive to compute these dis-
tances between all point pairs, we first use a k-d tree (Bent-
ley, 1975) to find the top 20 POLDER matches in latitude/-
longitude space for each CloudSat observation. Although the
latitude/longitude grid is far from having an equal area, at
sufficiently small distances, the effect of Earth’s curvature on
the distance ranking approaches zero. We then compute ap-
proximate ground distances from the CloudSat observation
to these 20 points using the World Geodetic System 1984
(WGS 84) ellipsoid model of the Earth. From these 20 points,
we select the closest ones that are found to the northeast,
southeast, southwest, and northwest of the CloudSat observa-
tion. These four points are used as interpolation corners, with
weights defined by their ground distances. Standard bilinear
interpolation leverages the separability of the x and y com-
ponents of the interpolation equation, but these corners are
neither on a flat plane nor are they guaranteed to be rectan-
gular. For these reasons, the normalized inverse distance is a
more appropriate choice for the corner-weighting function.
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For a pair of half-orbit files, the above defines a mapping
from CloudSat observations to their corners in the POLDER
grid. In order to sample patches, we compute all of the lat-
itude intervals which would yield a 100 px north–south dis-
tance in the POLDER grid. We also compute the latitude-
dependent longitude intervals which would yield a 100 px
east–west distance in the POLDER grid. We uniformly sam-
ple latitude intervals and use our longitude intervals to com-
pute an index from a 100× 100 patch into the POLDER grid.
As an additional step, we uniformly shift patches east or west
by one-quarter of the patch window so that labels are not al-
ways found in the center of the patch. All patches are north-
aligned; we do not perform any rotation. Only CloudSat ob-
servations which have four corners within the patch are kept.
If there are fewer than 100 CloudSat observations in a patch
then that patch is discarded. Additionally, occasional quanti-
zation or out-of-bound errors can cause the patch to contain
fewer than 100 px× 100 px or to contain 101 px× 100 px. In
these cases, we discard the patch. This process loops until
sufficient patches are found for a file. Sufficient valid patches
were found for every file.

We validate our alignment accuracy by computing (ap-
proximate) ground distance between the latitude and lon-
gitude values of the projected CloudSat observations and
the weighted interpolation of the latitude and longitude val-
ues of the corresponding corners in the POLDER grid. The
mean projection error across both the training and validation
datasets is 881 m, with a maximum error of 2216 m. This is
significantly less than a single pixel in the POLDER grid,
which is approximately 6 km× 7 km. Sub-pixel alignment
accuracy ensures that each pixel in the POLDER grid con-
tains sensor values from the correct location.

2.5 Dataset statistics

ATCS is a large-scale dataset, enabling the training of deep
neural networks. The 2B-CLDCLASS vertical cloud profiles
are used as labels for the PARASOL imagery, which is used
as input to the neural network. The ATCS dataset contains
20 352 labeled instances and 5032 instances in the test set,
whose labels are withheld. The labeled instances are divided,
with an 80 % / 20 % training / validation split. On average, in
the labeled set, there are 116 labeled locations per 100× 100
patch, with a standard deviation of 18, a minimum of 55, and
a maximum of 171.

Data were sampled uniformly in the geographic sense,
except for latitudes greater than ± 80°, which cause com-
plications with geometric processing. There is great value
in this global coverage, as cloud dynamics and appearance
vary greatly by region. The difficulty of the cloud segmen-
tation task is also strongly regionally dependent. For exam-
ple, near the poles, there are high-albedo icy and snowy sur-
faces, which are more visually cloud-like than typical terres-
trial surfaces, complicating the segmentation task (Stillinger
et al., 2019).

Table 2. Comparison of three architectures of increasing complex-
ity. Results are reported for the test set. U-Net achieves the highest
performance but has more parameters. The meaning of values in
bold is the best-scoring (including ties) value in each column.

Architecture No. of param. Dice score (%) Accuracy (%)

Single pixel 1.2× 105 68.6 93.7
Simple ConvNet 1.2× 106 73.0 94.3
U-Net 9.5× 107 73.2 94.3

Cloudiness also correlates strongly with altitude. There is
a strong “class imbalance” between the clouds at various al-
titudes – a randomly sampled pixel is much more likely to
contain clouds at a lower altitude than to contain clouds at
the upper-altitude range, i.e., near 14 km.

3 Approach

Our approach is to learn a functional mapping from multi-
angle imagery to per pixel vertical profiles of cloud occur-
rence using a deep convolutional neural network (CNN).
This had two primary motivations. First, by training a model
on labeled nadir pixels and applying it to unlabeled off-
nadir pixels, we produce a wide-swath vertical cloud prod-
uct, which has independent value. Second, the supervised
learning setup allows for ablation experiments; various sen-
sor properties (angle, spectral band, and polarization) can be
omitted from the input data. The resulting change in model
skill provides insights into the utility of these properties for
estimation of cloud structure. The use of a neural network
allows the characterization of highly non-linear relationships
between these input fields and the cloud profile outputs, and
deep learning outperforms shallow learning, as shown in Ta-
ble 2.

We used convolutional neural networks to incorporate spa-
tial context, which are necessary in order to account for the
parallax present in multi-angle data. Convolutions are useful
for data which exhibit some form of translational invariance,
meaning that some elements of appearance do not change
due to translations in image space. Interestingly, convolu-
tions are particularly suitable for satellite data, since they ex-
hibit lower translational variance than ground-level imagery
due to less perspective variation in depth. The spatial context
provided by convolutional architectures can capture the ap-
parent shift in location due to the parallax present in a cloudy
scene, which is useful for the network to predict depth and
vertical structure.

3.1 Representation

Instances are defined as input/output pairs, where input con-
tains a 100× 100 patch of multi-angle, polarimetric imagery
from POLDER, as well as the pre-computed weights used for
interpolation, and output contains the vertical cloud profiles
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from 2B-CLDCLASS. Each pixel in the input has data for up
to 16 viewing angles. When data are missing for one or more
viewing angles, a standard missing value of −1 is used. The
median number of available viewing angles over the train-
ing and validation sets is 14, and 98 % of pixels have at least
13 available viewing angles. At each of the viewing angles,
there are nine spectral bands, three of which measure linear
polarization (Table 1). Linear polarization is represented as
the Q and U components of the normalized Stokes’ parame-
ters (also known as S2, S3). Therefore, the channels without
polarization have one value, I , while the polarization chan-
nels have three (I,Q, and U ).

Raw sensor inputs must be converted into features which
can be used by a neural network. Most inputs can simply
be normalized before use, but some inputs must be more
heavily modified. In addition to the nine intensity values, I ,
and the three pairs of Q,U values, there are four geometry
fields, namely viewing angle, solar zenith angle, relative az-
imuth, and solar azimuth. We found there to be little differ-
ence from using view azimuth instead of relative azimuth.
Rotations are discontinuous at 360°, which poses issues for
a neural network as a small change in rotation can cause a
large change in the output. We use a technique from the ob-
ject recognition literature which encodes angles into binary
membership in two of eight overlapping bins, as well as two
in-bin floating point offsets (Mousavian et al., 2017), result-
ing in a vector with a length of 10. The eight overlapping
intervals are [0°,90°], [45°,135°], . . ., [315°,45°]. The in-
bin regression values are relative to the bin centers. As an
example, consider the angle 100°. This occupies the second
bin [45°,135°] and the third bin [90°,180°], giving it a bin
membership encoding of 01100000. Its differences with the
centers of the second and third bins are 10 and −35°, re-
spectively. This yields a feature vector with a length of 10,
{0,1,1,0,0,0,0,0,10°,−35°}, although the angles are con-
verted to radians in practice. This transformation is only nec-
essary for the azimuth angles, not the zenith angles, as zenith
angles are bounded in the range [0°,90°].

There are 27 input values per view, with 6 non-polarized
channels, 3 polarized channels with three values each
(I,Q,U ), a view azimuth feature with a length of 10, 1
view zenith angle, and 1 solar zenith angle. The solar az-
imuth feature with a length of 10 does not vary with view an-
gle. Therefore, when using all 16 available angles, the chan-
nel depth (features per pixel) is 442. In addition, there are
(non-angular) fields included for the convenience of other re-
searchers. These values are not provided as an input to any
model trained in this study and include latitude, longitude,
surface altitude, and a land-or-sea flag.

Each input patch is represented as an image cube, created
by stacking the multispectral and multi-angular features, as
well as the geometry features described above. In line with
standard practice in computer vision, each of the spectral fea-
tures is normalized by subtracting their mean and dividing by
their standard deviation with respect to the training set.

3.2 Architectures

Ideally, the selection of model architecture could be derived
directly from the scene geometry. The receptive field of a
pixel in the output of a convolutional neural network (CNN)
is the extent of the input (in pixels) which can theoretically
have affected it. In almost all sufficiently deep CNNs, the
receptive field far exceeds the input image size. One could
establish a relationship between the maximum possible dis-
parity in pixel space due to parallax and derive a network
architecture from that. There are two limitations with this
approach. First, is that the model may benefit from having
broader context about the scene. Second, is that the “effec-
tive receptive field” is always much smaller than the actual
receptive field and is not straightforward to compute (Luo et
al., 2017). For both these reasons, we instead elect to present
a few reasonable architectures. We experimented with many
more architectures than are presented here but found these
three to be the best representatives of three different reason-
able hypotheses.

3.2.1 Single-pixel network

A simple baseline approach to cloud segmentation is to in-
dependently estimate the vertical profile of cloud occurrence
at each pixel. The hypothesis behind this architecture is that
spatial context does not matter for this task. A multilayer per-
ceptron (i.e., a simple neural network) predicts this vertical
profile of a single pixel at a time from the sensor observa-
tions of that pixel. The single pixel model is implemented
using 2D convolutions with kernel size 1× 1. Since the ker-
nel size is always 1× 1, the independence of pixels is pre-
served (i.e., the network has no spatial context) but has the
important property of keeping the same number of pixels per
batch as the later experiments using 2D convolutions. Batch
size would otherwise be a potentially confounding variable in
any comparison between the single-pixel model and models
which ingest an entire image at a time. We test a single-pixel
model with three linear layers, with all but the last layer fol-
lowed by batch normalization (features averaged across each
batch) and a rectified linear unit (ReLU), which is defined as
f (x)= x for x ≥ 0, f (x)= 0 for x < 0.

3.2.2 Simple CNN

We also test a simple multilayer convolutional neural net-
work, with the hypothesis behind this architecture being that
spatial context does matter but a high depth (number of lay-
ers) does not. This model has five 3× 3 convolutional layers.
As with the single-pixel model, all but the last convolutional
layer are followed by batch normalization and ReLU. Each
convolutional layer includes 1 px of padding, so the image
resolution stays constant during the forward pass.
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3.2.3 U-Net

Finally, we implement U-Net (Ronneberger et al., 2015).
The hypothesis behind this model is that both spatial con-
text and depth are important for this task. A U-Net consists
of a fixed number of down-sampling “blocks”, followed by
the same number of up-sampling blocks, as well as skip
connections between blocks at the same level of the spa-
tial pyramid. The down-sampling blocks capture the typical
structure of a convolutional neural network for image clas-
sification, where each subsequent layer represents a gradual
trade-off of spatial resolution for increasing feature depth.
U-Net also adds up-sampling blocks, which effectively do
the opposite, namely decreasing the feature depth while in-
creasing spatial resolution. This architecture is related to the
commonly used encoder–decoder network. Unlike encoder–
decoder networks, U-Net has skip connections which al-
low the preservation of spatially located features in the up-
sampling path. We use five blocks in our U-Net, with the per
block feature depths using the same scheme as described in
Eq. (1). It is worth noting that increasing the channel depth in
this way substantially affects both U-Net’s parameter density
and the size of the intermediate features during the forward
pass. We experimented with several different schemes to de-
cide channel depth and found this approach to be the most
stable configuration for U-Net.

3.2.4 Channel depths

The number of input channels to our network is approxi-
mately 2 orders of magnitude higher than ground-level im-
agery; RGB imagery has three channels, but our multi-angle,
multispectral images (which include a geometry encoding)
have hundreds of channels. For example, the 8-angle multi-
spectral experiments have 226 input channels.

A common choice for choosing channel depths in CNNs is
to use increasing powers of two for historical reasons related
to the use of pooling operators. This would result in unrea-
sonably high feature depth, even after a few convolutional
layers. Instead, we compute a scaling factor which yields a
desired depth after a certain number of layers. These layer-
wise feature depths ci are given by the following, where
cinput is the input channel depth, coutput is the desired output
channel depth, and b·c is the floor operator:

ci =

⌊
cinput ∧

(
1+

(
log(coutput)

log(cinput)
− 1

)
i

5

)
+ 0.5

⌋
. (1)

For the simple convolutional network, coutput is the number
of height bins (59), and the input depth is used for the first
layer’s feature depth. Thus for our five-layer CNN, the per
layer depths would be 226, 173, 132, 101, and 59. For the U-
Net, coutput is the channel depth after the decoder half of the
U-Net, which we set to be 1024. Again, for an input depth
of 226, the feature depths would be 306, 414, 560, 757, and
1024. This scaling ensures a consistent rate of change in the

feature depth, rounded to the nearest integer. Note that the
base of the log does not matter as long as it is consistent.

3.3 Interpolation

One novel element of our network architecture is the use
of interpolation during the forward pass of the model. The
CloudSat labels are only available for some locations in the
input images, and these locations are not quantized to the
POLDER grid. Therefore, after the up-sampling blocks, the
model has an interpolation layer, using the corners and cor-
ner weights described in Sect. 2.4. As a weighted average is
differentiable, back-propagation can still be used to train the
network. After the interpolation layer, the network has two
fully connected layers. Figure 2 illustrates the forward pass,
including a depiction of the interpolation process. Note the
difference between this and bilinear interpolation; the bilin-
ear interpolation is linearly separable. For accuracy, the in-
terpolation model utilized here uses a latitude–longitude grid
rather than a Cartesian grid, so the standard separability does
not apply.

The networks can be applied to data without interpolat-
ing. This is as simple as omitting the interpolation module.
In Fig. 2, the 100× 100× 59 tensor can simply be used as the
wide-swath prediction. The reduction down to a P × 59 ten-
sor is only necessary for the application of the loss function.
Interpolation is slightly more complicated for U-Net, which
is discussed in Appendix A.

3.4 Training procedure

In all experiments, the model is trained for 30 epochs using
the Adam optimizer (Kingma and Ba, 2017) and the binary
cross-entropy loss. The cross-entropy loss is theoretically
well-founded; it measures how many bits would be needed
to encode an event from the actual probability distribution,
assuming the optimal encoding from the learned distribution.
Cross-entropy also tends to converge quickly. Let σ(·) be the
sigmoid operator, y the binary labels, and x the network’s
unbounded outputs (also referred to as logits). The binary
cross-entropy loss is given by

`n = yn · log(σ (xn))+ (1− yn) · log(1− σ(xn)). (2)

We experimented with data augmentation, including
random flips and rotations, but found these to signifi-
cantly worsen performance, even when accounting for these
changes in the geometry features. The purpose of these aug-
mentations is to introduce symmetric and rotational invari-
ance into the model without the need for more data. However,
symmetric and rotational invariance are less important from
an orbital view, and the model may benefit from memorizing
the north-locked perspective inherent to the data. Therefore,
we omitted data augmentation from our final experiments.

Each experiment is repeated three times for reasons dis-
cussed further in Sect. 4.2. Model checkpoints are saved ev-
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Figure 2. Diagram illustrating the forward pass. The color blue denotes inputs, orange denotes intermediate tensors, and green denotes
output. C denotes channel depth, and P denotes the number of labeled pixels in an instance. The model maps the input POLDER 3 imagery
to predictions for each of the 59 height bins. These predictions are then interpolated and represented by the sample and weighted average
blocks. Simply skipping the interpolation step allows the generation of wide-swath predictions.

ery five epochs. Our implementation uses the PyTorch frame-
work (Paszke et al., 2019). Training is performed using a sin-
gle NVIDIA Tesla V100 GPU with 32 GB of memory. Train-
ing plus validation typically takes between 2 and 6 h per ex-
periment.

4 Results

We evaluate the model’s performance on the test set. Some
qualitative results can be seen in Fig. 3. More qualitative re-
sults are presented in Appendix B. Qualitative results suggest
that the model is skillful at capturing the larger-scale struc-
ture of clouds, with worse performance for smaller cloud seg-
ments and multilayer clouds.

We perform a series of ablation experiments. The first ex-
periment compares the skill of the three aforementioned ar-
chitectures on the test data. In subsequent experiments, we
deprive the model of various aspects of the available input
data and measure the resulting effect on skill. These abla-
tion studies reveal the impact of the viewing angles, the spec-
tral configuration, polarimetry, and the scene geometry. The
baseline “default” experiment consists of the simple convo-
lutional model with 8 of 16 viewing angles, all available
spectral channels (with polarimetry when applicable), and
all geometry fields. Other experiments vary from the default
experiment only in the exact ways specified in Tables 2, 3,
and C1 and Figs. 4–6.

As the network is trained using the cross-entropy loss, its
unbounded outputs (also known as logits) cannot directly be
treated as probabilities. Within the loss function, the logits
are passed into a sigmoid function to bound them within the
[0,1] range. A threshold of 0.5 after the sigmoid function
corresponds to a threshold of 0 before. Therefore, to evaluate
the output of the network, we simply threshold the logits at 0
to convert them to a binary value, which we compare with
the ground-truth cloud profiles.

4.1 Dice score

To evaluate our models, in addition to accuracy, we use the
Dice score. The Dice score, originally used in an ecologi-

Table 3. Comparison of various viewing geometries, using the sim-
ple convolutional model. The two-angle view contains only the pair
of angles closest to nadir. The four-angle view adds the next in-
nermost pair of angles, proceeding outward until all 16 angles are
included. The bold values show the highest-scoring rows (including
ties) in each column.

No. of view angles Dice score (%) Accuracy (%)

2 68.9 93.6
4 71.6 94.1
6 72.2 94.2
8 73.0 94.3
10 73.2 94.3
12 73.8 94.5
14 74.1 94.5
16 73.8 94.4

cal context (Dice, 1945), was adopted in the medical seg-
mentation literature as a validation metric for segmentation
of MRI imagery (Zijdenbos et al., 1994). Its use has since
become standard, due to its several advantages over pixel-
wise accuracy metrics, including its tolerance to infrequent
positive samples and that it penalizes differences in location
more than differences in size. The Dice score is thus a better
measure of perceptual quality than pixel-wise metrics. Let A
and B be two sets representing all of the discretized locations
of two respective objects. The Dice score between A and B
is twice the intersection divided by the sums of the sizes of A
and B. It can be contextualized in terms of the true positive
(TP), false positive (FP), and false negative (FN):

Dice(A,B)=
2× |A∩B|
|A| + |B|

=
2×TP

2×TP+FP+FN
. (3)

We report the Dice score as a percentage. The Dice score
is related to the intersection over union, also known as the
Jaccard index, another metric commonly used in the segmen-
tation literature. Both metrics have a range of [0,1], but the
Dice score is strictly greater than the Jaccard index.

Notably, there is significant evidence that for many appli-
cations, the loss function, which is used to optimize the net-
work, should be metric-specific. In segmentation, Jaccard-
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Figure 3. Results for four instances in the test set, using the default experiment. The true cloud profiles are shown in the top row (a–d), and
predictions are in the bottom row (e–h). The CALTRACK 2B-CLDCLASS file names are included at the top.

Figure 4. Experiments using the simple convolutional model with different viewing geometries. Panel (a) shows the altitude-dependent
proportion of pixels labeled as clouds in the dataset. Panel (b) shows the altitude-dependent Dice score of experiments with different viewing
geometries. Note the significant difference between the two- and four-angle experiments, with diminishing returns with more angles.

like loss functions often outperform their pixel-wise coun-
terparts (such as cross-entropy) (Eelbode et al., 2020; Mo-
hajerani and Saeedi, 2021; Wang et al., 2024). We exper-
imented with Jaccard-like losses early in project develop-
ment but observed no apparent improvement over the stan-
dard cross-entropy loss.

The Dice score generalizes to an arbitrary number of di-
mensions. While it is typically used for 2D data, we make
use of it in both 1D and 2D contexts. The overall Dice scores
presented in the tables are 2D, while the altitude-dependent
Dice scores in Figs. 4, 5, 6, 8, and 11 are 1D, as they describe
a single row of the time and altitude cross-section given in the
2B-CLDCLASS labels.

Alongside the Dice score, we report the bin-wise accuracy,
which is the rate at which the model correctly assigns a pixel
and altitude bin pair as cloudy or not cloudy. This metric
is less strict than the Dice score and is less suited to labels
with a strong imbalance between positives and negatives, as
in our data. Our findings are therefore mostly based on the
Dice score, but the inclusion of accuracy allows for easier

comparison with other works.

Acc(A,B)=
|A∩B| + |¬A∩¬B|

|A| + |¬A|
=

TP+TN
TP+TN+FP+FN

(4)

4.2 Inter-run variability

Due to the stochastic nature of machine learning, the same
experiment will yield variable results given different initial-
izations of the network, as well as differences in the shuf-
fled order of the training set. In this work, the inter-run vari-
ability is an important factor to consider. Repeating the U-
Net experiment three times, for example, yielded validation
set Dice scores of 72.8 %, 73.1 %, and 73.4 %, although the
simpler architectures experience less variance. We report the
maximum test set accuracy over three runs; for all runs of an
experiment and for all saved model checkpoints, we use the
model which yields the highest Dice score on the validation
set and report its Dice score on the test set. There is little
variation between the validation set and the test set metrics.
U-Net, for example, has a max validation set Dice score of
73.4 %, which drops to 73.2 % on the test set.
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Figure 5. (a) As in Fig. 4. Panel (b) shows the altitude-dependent Dice score of experiments, with various channels omitted, compared to
the default labeled “none”.

Figure 6. (a) As in Fig. 4. Panel (b) shows the altitude-dependent Dice score of experiments using only one or two channels at a time
compared to the default labeled “all”.

4.3 Architecture complexity

The three architectures described in Sect. 3.2 are evaluated,
with results shown in Table 2. There is a large increase in
skill from the single pixel model to the simple convolutional
model and a negligible increase from the simple convolu-
tional model to the U-Net.

As the POLDER 3 data are georeferenced using the sur-
face elevation (and not the cloud-top height), there is a
parallax-induced shift when clouds are present, particularly
if those clouds occur at a higher altitude. The single-pixel
model, which lacks spatial context, does not have access to
adjacent pixels. The simple convolutional network and the

U-Net, by contrast, can leverage surrounding pixels, making
use of the information contained in the parallax. Another po-
tentially useful quality of spatial context is that it captures
more information about the scene dynamics, which may be
used by the model.

The results suggest that there are diminishing returns from
increasing model capacity. It is unlikely, in our estimation,
that larger models will achieve significantly higher perfor-
mance on this dataset without changes in other aspects of the
data-processing pipeline or optimization procedure.
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4.4 Viewing angles

Multi-angle POLDER measurements are particularly sen-
sitive to parallax, providing useful information on vertical
cloud distribution. The impact of parallax on model skill was
studied via an ablation experiment in which various view-
ing geometries were provided for the model. First, we started
with an experiment using only the two central (closest to
nadir) viewing angles. Next, we progressively added subse-
quent pairs of angles (in increasing zenith angle order) until
all angles were included, running independent experiments
on each configuration. The results are shown in Table 3, as
well as Fig. 4, which captures the altitude-dependent Dice
score of experiments using various numbers of angles. There
is a significant improvement between two and four angles,
with diminishing returns from the inclusion of more angles.
There is a clear increasing trend, with 14 viewing angles
achieving the best performance. The drop in performance
from including the outermost pair of angles is unsurprising,
as these angles contain little to no valid data in most scenes,
due to the viewing geometry of POLDER 3. We elected to
use eight angles as the default for other experiments, as it
marked a good trade-off between performance and training
time.

An important factor to consider in the evaluation of these
results is the difference between the 2B-CLDCLASS verti-
cal resolution of 240 m with the 6 km× 7 km horizontal res-
olution of POLDER 3. Even an extreme difference in view-
ing angles may not be enough to overcome the stark reso-
lution difference. The multiple angles may aid the model to
constrain the possible reflectance distribution functions at-
tributable to a surface, helping to identify surface type and
altitude, rather than being useful in the stereoscopic sense.
This offers one potential explanation for the diminishing re-
turn from including more angles, but other explanations re-
main possible.

4.5 Spectra

We perform two ablation studies to understand the impact the
nine spectral bands have on model skill. In the first, shown
in Fig. 5, one or two bands can be omitted at a time, and the
resulting decrease in model skill provides a measure of the
unique (non-redundant) information content present in that
band. In the second, shown in Fig. 6, only one or two bands
can be provided at a time, and the model skill represents the
bulk information content of that single band. In both studies,
we include the 763 nm (oxygen A band) and 765 nm bands,
as well as a combination of both 763 and 765 nm bands,
as they are often jointly used to derive the oxygen pressure
within an atmospheric column, which can be used to infer
cloud structure (Ferlay et al., 2010). A summary of all the
spectral experiments can be found in Appendix C and Ta-
ble C1.

Figure 5 demonstrates the utility of various bands, with
larger drops in performance suggesting that the omitted band
contains uniquely useful information content. The oxygen
absorption feature at 763 nm is highly correlated with model
skill, consistent with the known relationship between this
feature and cloud structure. The next greatest drop in skill
is captured in the 910 and 1020 nm band omission experi-
ments. The range at 910 nm is a water vapor band, which
provides information on scattering and absorption interac-
tions between clouds and vapor (Dubuisson et al., 2004). The
near-infrared 1020 nm band might be useful for low-altitude
clouds over the ocean, as clouds are quite bright in this wave-
length, while oceans are quite dark.

4.6 Polarimetry

The importance of polarization to model skill is evaluated by
comparing the default experiment to one without the polar-
ization parameters. This is achieved by omitting the Q and
U channels from the I,Q,U Stokes’ parameterization. This
caused a reduction in Dice score from 73.0 % to 72.6 %. This
difference is smaller than we hypothesized. One possibility
is that the Stokes’ vector is not the ideal parameterization
for this task. Another possibility is that the particular po-
larization channels in POLDER 3 have only limited unique
utility for the derivation of cloud structure. Prior work has
found that blue light polarization is disproportionately use-
ful for the retrieval of aerosol layer height, especially with
wavelengths of 410 nm or lower (Wu et al., 2016), but the
POLDER 3 shortest-wavelength polarization band is 490 nm.
The shorter-wavelength polarization information from fu-
ture missions, like the Hyper-Angular Rainbow Polarimeter
(HARP2) aboard PACE (Werdell et al., 2019), might prove
more useful. For example, it has been shown that the po-
larized 440 nm band in HARP2 provides some sensitivity to
aerosol altitude (Gao et al., 2023).

4.7 Cloud extent

The vertical and horizontal extent of the cloud being ob-
served is related to the model’s skill. Vertical extent is eval-
uated by stratifying results by two variables, namely cumu-
lative 2B-CLDCLASS depth and distance to the top of the
cloud. Cumulative depth is simply the cumulative sum of
240 m cloudy bins along each column in the 2B-CLDCLASS
product (starting at the top of the atmosphere) multiplied by
the vertical extent of each bin (240 m). Distance to the top
of the cloud is the distance between a predicted bin and the
top of the topmost cloudy bin in 2B-CLDCLASS for that
column. Figure 7 illustrates the cumulative depth and top-of-
cloud distance for a single instance. It is important to note the
distinction between cumulative 2B-CLDCLASS depth, opti-
cal depth, and geometric depth. First, the 2B-CLDCLASS
depth is more akin to geometric depth than optical depth,
as the (binarized) 2B-CLDCLASS cloud-type product does
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not discriminate between optically thin and optically thick
clouds. Still, it is not quite the same as geometric depth ei-
ther as it is discretized to 240 m bins.

Results on the test set are binned according to both the cu-
mulative depth and top-of-cloud distance, and the Dice score
is computed for each bin. Figure 8 shows both the propor-
tion of data and the Dice score for bins in both variables.
While performance increases with cumulative cloud depth,
it decreases with top-of-cloud distance. This indicates that
the model is good at identifying very tall cloud systems and
struggles with identifying multilayer clouds. These findings
are consistent with the qualitative examples in Appendix B.

Quantifying horizontal extent is more complicated. In or-
der to do this, we utilized a connected components algorithm
(Bolelli et al., 2020) on the 2B-CLDCLASS mask. A con-
nected component in the cloud mask can be understood as
a set of cells for which every pair of cells in that set can
be mutually reached via only horizontal and vertical steps
without crossing a non-cloudy pixel. We then measure the
horizontal extent of each component. Figure 9 shows an ex-
ample of horizontal extent computed on an instance in the
test set, while Fig. 10 shows the relationship between hori-
zontal extent and model skill. Note that there are some lim-
itations to this type of analysis. First, this only considers
the along-track horizontal extent of the cloud and assumes
that clouds are approximately (horizontally) circular. Clouds
which are short in the along-track direction and long in the
cross-track direction, or the opposite, will skew these results.
A second limitation of this analysis is that clouds whose hor-
izontal extent exceeds the extent of their corresponding in-
stance in the ATCS dataset will be truncated. Note the sharp
spike in the counts in Fig. 8, which corresponds to the most
common along-track extent of instances in our dataset, a
result of our 100 px× 100 px sampling size in POLDER 3
and the geometric relationship between the POLDER 3 and
2B-CLDCLASS products. The distribution of cloud horizon-
tal extent approximates the power law relationship found in
prior work (Wood and Field, 2011).

It is clear from Fig. 10 that model skill improves as cloud
horizontal extent increases. This trend is especially strong at
lower horizontal extents, suggesting that the model’s skill is
not primarily related to parallax. This may result from the
dynamics we use to train the model. Larger clouds will ex-
ert more influence on the model’s supervisory signal than
small clouds, even if those smaller clouds would more eas-
ily be distinguished from their background with stereo meth-
ods. Performance on only the smallest clouds (horizontal ex-
tent < 10 km) may suffer due to the limited resolution of
POLDER 3. Increases in the resolution of both the passive
and active sensor, such as the Atmosphere Observing Sys-
tem (AOS) mission, should allow a similar approach to attain
higher performance on clouds with lower horizontal extent.

Stereo methods are expected to perform better on high
clouds (more observable parallax) with a lower horizontal
extent (distinct features). As these are two weak points of our

method, an ensemble model could offer a promising avenue
of study.

4.8 Terrain

Performance varies depending on terrain. Distinguishing
clouds from the surface using visible or near-infrared chan-
nels is more difficult over brighter terrain and easier over the
ocean, which is dark. The POLDER 3 data products con-
tain a flag indicating whether each pixel is “Land” (100),
“Sea” (0), or “Mixed” (50). This terrain flag is interpolated
from the POLDER 3 grid to the 2B-CLDCLASS grid with
the method described in Sect. 3.3. Any value greater than 0
and less than 100 is treated as “Mixed”. Figure 11 shows re-
sults stratified by terrain type and altitude. The gap between
Land and Sea/Mixed performance is greatest at altitudes be-
low 3 km, where parallax alone is likely insufficient to dis-
tinguish clouds from the surface, due to the limited spatial
resolution of POLDER 3 data.

5 Discussion

The results demonstrate the feasibility of estimating
3D cloud structure from passive, multi-angle imagery. The
inclusion of spatial context significantly improved results,
while the improvement from using a more complex model
was modest (Table 2). Increasingly, extreme view angles ex-
hibit diminishing returns (Fig. 4). It is possible that stacking
the view angles in the channel dimension might not be the
most effective feature representation for retrieving 3D struc-
ture. The spectral results (Figs. 5 and 6; Table C1) con-
firm the known utility of the oxygen A band, water vapor
band, and the near-infrared for the study of clouds. Polariza-
tion only proved modestly useful for the cloud profiling task
(Fig. 5 and Table C1), but this may be a limitation of the
specific polarization bands available in POLDER 3 data.

Even the best experimental configuration only reaches a
Dice score of 74.1 %, which is slightly lower than the av-
erage results in the segmentation literature (Eelbode et al.,
2020). Seemingly, this dataset is challenging, and it is likely
that there exists a limit to a model’s skill. This should be un-
surprising, given the nature of the labeled data; in most seg-
mentation results, the labels come from human annotators.
The human annotation process guarantees that the labels are
predictable from the imagery up to the skill of the human
annotator. However, our dataset is not annotated by humans
but involves the fusion of two different sources of satellite
data, which are sensitive to inherently different physics. This
manifests in several ways. For example, one notable charac-
teristic of the qualitative results is that all models struggle
to mask the lower layer of multilayer clouds or to predict
the extent of optically thick clouds. The penetration depth of
clouds is quite low in the visible and near-visible spectrum. It
is possible the models may not have any inputs that allow cor-
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Figure 7. (a) As in Fig. 3 and showing the 2B-CLDCLASS mask for a single instance. (b) Cumulative depth for each cell in the mask.
(c) Top-of-cloud distance for each cell in the mask. Panels (b) and (c) differ when there are non-cloudy areas beneath the cloud.

Figure 8. (a) Dice score for bins by cumulative 2B-CLDCLASS depth. (b) Dice score for bins by top-of-cloud distance.

Figure 9. (a) Cloud mask for an instance in the test set. (b) Corresponding cloud horizontal extent of the connected components in the cloud
mask. The smallest cloud components are nearly invisible due to their low horizontal extent.

Figure 10. Relationship between cloud horizontal extent, counts, and Dice score. The count indicates how many locations in the 2B-
CLDCLASS product were assigned to each cloud horizontal extent bin. Dice score indicates the default model’s skill over each horizontal
extent bin. Note that the spike in count near 615 km corresponds to clouds that exceed the extent of their instances which are truncated.
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Figure 11. (a) As in Fig. 4. Panel (b) shows the altitude-dependent Dice score of the default experiment separated by terrain type.

rect classification beneath cloud tops. Related to this problem
is the performance drop across all models at low altitudes.
Some of this skill decrease is likely due to penetration depth
but may also relate to lower parallax near the surface, making
it harder for the model to vertically resolve cloud location.
Another phenomenon this approach may struggle to capture
is optically thin clouds. As the labels are based on a cloud
fraction product and not an optical depth product, there are
extremely optically thin clouds present in the data. The infor-
mation contained in the visible and near-visible wavelengths
may not be enough to detect such clouds.

One of the most important findings of this work is the im-
portance of spatial context. As we move into the next gen-
eration of multi-angle sensors with PACE and AOS, we can
expect the resolution of these products to improve. In order
to achieve the same spatial context in these higher-resolution
products, the convolutional architectures will require more
layers. U-Net is likely not worth the high number of pa-
rameters for POLDER 3 data, but it may be a more optimal
choice for PACE and AOS. In addition to finer spatial res-
olution, the HARP2 polarimeter aboard PACE provides bet-
ter polarimetric accuracy than POLDER 3 but lacks its ab-
sorption channels. Evaluating the impact of this trade-off on
3D cloud masking skill should yield valuable insights. The
EarthCARE mission (Wehr et al., 2023) will have periodic
simultaneous overpasses with PACE, and its two active in-
struments will enable the application of similar, partially su-
pervised, techniques.

6 Conclusions

We designed a supervised machine-learning method to per-
form 3D cloud masking over a wide swath from multi-angle
polarimetry and introduced a dataset to support this method.

The dataset should be useful for future research in this area,
as it is designed for ease-of-use in machine-learning appli-
cations. The code accompanying the dataset includes every-
thing necessary to reproduce the results in this paper to train
and validate models, generate figures, and even to create cus-
tom datasets.

By performing extensive ablations with various model in-
puts and hyperparameters, we analyzed the qualities of both
POLDER 3 and CloudSat CPR data, as well as their relation-
ship. Our conclusions both confirm existing knowledge and
offer new insights. We found a strong relationship between
the number of angles and model skill, with the 2-angle and
14-angle variations in our default experiment achieving Dice
scores of 68.9 and 74.1 %, respectively, which is a 5.2 % dif-
ference – confirming the value of multi-angle sensors. The
multispectral nature of the POLDER data is also strongly
related to skill, with the oxygen absorption band proving
particularly important. Omission of the oxygen absorption
bands alone resulted in a drop in the Dice score from 73.0 to
71.0 %, and there is a 6.1 % difference in Dice score between
the best-performing single-band experiment (66.9 %) and the
default multiband experiment (73.0 %). Our method works
well for optically thick and horizontally long clouds, un-
like stereo methods, suggesting the two approaches may have
some synergy. In particular, model skill was worse for clouds
below 10 km altitude over land surfaces, while it was similar
for land and sea surfaces above 10 km. Finally, model skill
was predictably worse for multilayer clouds but surprisingly
high for very tall cloud systems. Overall, results are promis-
ing and suggest the continued use of machine learning as a
means to understand the relationships between various sen-
sor modalities. Additionally, machine learning might, with
further refinement, offer a useful way to retrieve 3D cloud
masks from satellite data at an unprecedented scale, which
would be an invaluable source of data for climate modeling.
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This study constitutes an initial foray into the combined
use of machine learning and multi-angle polarimetry for
3D cloud masking. Whereas its use here provided insights
into the POLDER 3 sensor, other sensors have yet to be stud-
ied in such a way. The recently launched PACE mission and
the upcoming AOS mission will carry multi-angle polarime-
ters, providing a useful test bed for this approach.

The model’s supervision in this study was provided by
an active radar constrained to nadir locations. The off-nadir
performance of our approach has yet to be validated and
would likely require cross-referencing with ground-based
radar. The validation of its 2D (flattened) accuracy could be
performed with other wide-swath cloud products, like the
MODIS cloud mask (Ackerman et al., 2015). Having such
a wide-swath 3D cloud mask product, were its accuracy suf-
ficient, could prove useful for climate modeling.

Alternative approaches from the computer vision literature
may be better suited to the stereoscopic nature of these data.
3D reconstruction pipelines such as COLMAP (Schönberger
and Frahm, 2016; Schönberger et al., 2016) might be adapted
for wide-swath multi-angle imagery, as has been done for
high-resolution satellite imagery (Zhang et al., 2019). These
would allow the estimation of 3D cloud structure without the
need for radar-based supervision.

Appendix A: U-Net forward pass

Interpolation during the forward pass is more complicated
for the U-Net model, as illustrated in Fig. A1. During de-
velopment, we found that the U-Net model performed bet-
ter if it included fully connected layers after the interpola-
tion module. However, these fully connected layers can still
operate on the full (not interpolated) features with a shape
of 100× 100×C. By flattening this to a 10 000×C tensor,
passing it into the fully connected layers to get a 10 000× 59
tensor, and unflattening it to 100× 100× 59, the network can
be applied to wide-swath data. At training time, the interpola-
tion module is applied to the 100× 100×C tensor to retrieve
a P ×C feature, which is then passed through the fully con-
nected layers to get a P × 59 tensor, which is then compared
with the ground-truth labels in the loss function.

Figure A1. Diagram illustrating the forward pass. The color blue denotes inputs (the shown image is from POLDER 3), orange denotes
intermediate tensors, and green denotes output. C denotes channel depth, and P denotes the number of labeled pixels in an instance. The
dotted line represents an alternate pathway which skips the interpolation module and is used to get wide-swath results.
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Appendix B: Qualitative results

We include more qualitative examples in Fig. B1, for refe-
rence.

Figure B1. Results for 20 instances in the test set, using the default experiment. The true-cloud profiles are shown in the top row, and
predictions are in the bottom row.
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Appendix C: Spectral results

The full table of spectral results (Table C1) is included here
for reference. The experiments here are the same ones illus-
trated in Figs. 5 and 6.

Table C1. Results for a variety of experimental configurations. The first section shows with and without polarization, the second section
shows the effect of omitting each spectral band, and the third section shows the results when only one band is included at a time.

Wavelength (nanometers) Polarization? Dice score (%) Accuracy (%)

443 490* 565 670* 763 765 865* 910 1020

X X X X X X X X X X 73.0 94.3
X X X X X X X X X 72.6 94.2

X X X X X X X X 72.1 94.2
X X X X X X X X 72.4 94.2
X X X X X X X X 72.0 94.2
X X X X X X X X 71.8 94.2
X X X X X X X X 70.3 93.8
X X X X X X X X 72.4 94.2
X X X X X X X 71.0 94.0
X X X X X X X X 72.2 94.2
X X X X X X X X 71.3 94.0
X X X X X X X X 71.3 94.0

X 64.1 92.9
X 64.0 92.9

X 62.9 92.7
X 64.2 92.8

X 63.9 92.8
X 64.3 92.9

X X 66.9 93.4
X 64.2 92.9

X 64.6 92.8
X 64.0 92.8

∗ POLDER 3 bands for which polarimetry is available.

Appendix D: Solar geometry

The relationship between solar geometry and model skill was
examined by stratifying the results by the POLDER 3 solar
zenith and solar azimuth, with both angular dimensions di-
vided into 5° bins. Figure D1 shows these results, including
both the test set instance count and the default model’s Dice
score, for each bin. Most solar geometry bins are empty, due
to the sun-synchronous orbit of the A-Train. Local Equator-
crossing time for PARASOL was in the early afternoon dur-
ing the dataset’s time interval (from 2007 to 2009). Solar geo-
metry in this dataset is mostly a function of latitude.

No strong relationship between solar geometry and model
skill was found. The only notable drops in Dice score occur
in bins with very little corresponding data. This means the
results are less statistically significant, but it also suggests
that the performance drop results from the model fitting to the
dominant mode in the dataset rather than from the physical
properties of observations of the rare geometries.
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Figure D1. Results stratified by solar zenith and azimuth. Panel (a) shows the number of instances in the test set in each bin. Panel (b) shows
the Dice score of the default model’s predictions for each bin.
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available prior to publication and can be retrieved us-
ing SeaBASS, which can be found at the following link:
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