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Abstract. The shape of ice crystals affects their radiative
properties, growth rate, fall speed, and collision efficiency;
thus, it plays a significant role in cloud optical properties and
precipitation formation. Ambient conditions, like tempera-
ture and humidity, determine the basic habit of ice crystals,
while microphysical processes, such as riming and aggre-
gation, further shape them, resulting in a diverse set of ice
crystal shapes and effective densities. Current classification
algorithms face two major challenges: (1) ice crystals are of-
ten classified as a whole (at the image scale), necessitating
identification of the dominant component of aggregated ice
crystals, and (2) single-label classifications lead to informa-
tion loss because of the compromise between basic habit and
microphysical process information. To address these limita-
tions, we present a two-pronged solution here: (1) a rotated
object detection algorithm (IceDetectNet) that classifies each
component of an aggregated ice crystal individually and (2)
a multi-label classification scheme that considers both basic
habits and physical processes simultaneously. IceDetectNet
was trained and tested on two independent datasets obtained
by a holographic imager during the NASCENT campaign in
Ny-Ålesund, Svalbard, in November 2019 and April 2020.
The algorithm correctly classified 92 % of the ice crystals
as either aggregate or non-aggregate and achieved an overall
accuracy of 86 % for basic habits and 82 % for microphysi-
cal process classification. At the component scale, IceDetect-
Net demonstrated high detection and classification accuracy
across all sizes, indicating its ability to effectively classify in-
dividual components of aggregated ice crystals. Furthermore,

the algorithm demonstrated a good generalization ability by
classifying ice crystals from an independent generalization
dataset with overall accuracies above 70 %. IceDetectNet can
provide a deeper understanding of ice crystal shapes, leading
to better estimates of ice crystal mass, fall velocity, and ra-
diative properties; therefore, it has the potential to improve
precipitation forecasts and climate projections.

1 Introduction

The shape of ice crystals within clouds impacts the Earth’s
radiation budget (Ehrlich et al., 2008; Sun and Shine, 1994;
Matus and L’Ecuyer, 2017; Flanner et al., 2007; Järvinen et
al., 2018). As ice crystals interact with solar and terrestrial
radiation, they scatter, absorb, and emit radiation, thereby in-
fluencing the radiative properties of the atmosphere (Flanner
et al., 2007; Järvinen et al., 2018; Yang et al., 2015). Fur-
thermore, the shape of ice crystals has a substantial effect
on global precipitation, influencing both the spatial distribu-
tion and precipitation rate (Sterzinger and Igel, 2021; Woods
et al., 2007; Jensen et al., 2017). The growth mechanisms of
ice crystals play a crucial role in precipitation formation (We-
gener, 1911; Findeisen, 1938; Lohmann et al., 2016; Kalina
and Puxbaum, 1994; Mosimann et al., 1993). The efficiency
of these processes is largely determined by the ice crystal
shape, further highlighting its importance (Heymsfield, 1972;
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Khvorostyanov and Curry, 2002; Bailey and Hallett, 2004;
Mitchell, 1996; Mitchell et al., 1990; Wang and Ji, 2000).

The initial shape of an ice crystal, also known as its ba-
sic habit (e.g., column or plate), is governed by the ambi-
ent meteorological conditions, such as the temperature and
supersaturation, that it experiences during its initial diffu-
sional growth phase (Libbrecht, 2016; Bailey and Hallett,
2004). The change in the ambient environment, such as in
a convective system, leads to a complex basic habit, such as
columns on capped columns (CPCs; observed by Pasquier
et al., 2023). They are further shaped by microphysical pro-
cesses, including riming (i.e., supercooled cloud droplets col-
lide and freeze on the ice crystal) and aggregation (i.e., indi-
vidual ice crystals collide and stick together). This leads to a
wide range of ice crystal shapes, sizes, and densities, intro-
ducing considerable challenges with respect to the systematic
classification of ice crystals.

Early ice crystal classification techniques used simple fea-
tures like edge complexity (Cunningham, 1978), circular de-
ficiency (Rahman et al., 1981), the surface area and perime-
ter (Duroure et al., 1994), and the complexity (combined of
several geometric features, such as the particle area and area
ratio) (Schmitt and Heymsfield, 2014) to classify the shape of
ice crystals, but they cannot distinguish between composite
ice crystals, such as irregular crystals, aggregates, or bullet
rosettes. More advanced techniques, like ice crystal classi-
fication with principal component analysis (Lindqvist et al.,
2012) and logistic regression (Praz et al., 2017), have been
developed and have achieved 80 %–90 % accuracy, but they
still require manual feature extraction (e.g., aspect ratio).
Furthermore, these algorithms have demonstrated limitations
with respect to their ability to perform effectively on different
datasets, as their classification performance is strongly influ-
enced by the characteristics of the training dataset (Bishop
and Nasrabadi, 2016; Goodfellow et al., 2016), which is
defined as the generalization ability of the models. This
dependency requires significant adjustments to the optimal
thresholds when these algorithms are applied to new, unseen
datasets.

The emergence of convolutional neural networks (CNNs)
as part of deep learning algorithms has introduced significant
improvements to the classification of ice crystal habits, with
their capability for automated feature extraction (Li et al.,
2021; Albawi et al., 2017; Touloupas et al., 2020). Although
CNNs exhibit a remarkable capacity to recognize key aspects
of images, they struggle when faced with complex ice crys-
tals such as CPCs or aggregates consisting of different ba-
sic habits (Zhang, 2021). Furthermore, CNNs that are based
on single-label classification schemes face the challenge of
information loss when composite ice crystals are classified
(Zhang, 2021; Xiao et al., 2019). For example, an aggregated
column can only be labeled either as “aggregate” or column,
which results in information loss with respect to either the
basic habit or the microphysical process. According to the
study by Korolev et al. (1999), in Arctic clouds, pristine ice

habits (ice crystals that have not undergone any microphysi-
cal processes) account for only 3 % of the particles observed,
which would result in losing a substantial fraction (97 %) of
ice information regarding either basic habits or microphys-
ical processes when implementing a single-label classifica-
tion scheme if the ice habits are still recognizable. Moreover,
in stratiform clouds, Korolev et al. (2000) found that 84 % of
the ice crystals are irregular ice, which is everything except
needles and dendrite. These irregular ice crystals would be
either aged or aggregated by our definition (see Sect. 2 and
Appendix B). To tackle this problem, Zhang et al. (2022) first
proposed that the ice shape label should contain two types
of information: the basic habits and the microphysical pro-
cesses that the ice has experienced. Thus, they recommend
that a multi-label should be assigned to one ice crystal. Jaf-
feux et al. (2022) combined data from the Precipitation Imag-
ing Probe and 2DS-Stereo Probe to train CNNs to classify
ice crystals according to their basic habit and the occurrence
of riming and aggregation. Although their study considered
potential microphysical processes for each ice crystal cate-
gory manually after the CNN classification, the specific mi-
crophysical processes associated with individual components
of an aggregated ice crystal remained unknown.

To summarize, there are two key limitations of current ice
crystal classification algorithms:

1. Algorithms often classify the images of an ice crystal as
a whole, necessitating the identification of the dominant
component of an aggregated ice crystal; thus, they are
not able to account for the presence of multiple basic
habits in an aggregated ice crystal.

2. Single-label classification algorithms require a compro-
mise between basic habit and microphysical process in-
formation, leading to information loss.

To address these issues, we propose a novel approach
that consists of a rotated object detection algorithm (called
IceDetectNet) along with a multi-label classification scheme.
IceDetectNet can classify the ice crystals down to the scale
of aggregated ice crystal components with both basic habit
and microphysical process information, thereby eliminating
the need to identify a dominant aggregated component. The
multi-label classification scheme simultaneously accounts
for both the basic habits and microphysical processes of an
ice crystal, reducing information loss. However, like all su-
pervised learning methods, our approach is limited to the
ice categories present in the training dataset, limiting its ap-
plicability until the model is fine-tuned on a new dataset.
The data used to train and test IceDetectNet are described in
Sect. 2. The structure of IceDetectNet is presented in Sect. 3.
The performance of our proposed algorithm is evaluated in
Sect. 4. Finally, Sect. 5 and Sect. 6 present the relevant dis-
cussion and conclusions of this study, respectively.
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2 Data description

The data used in this study were collected in Arctic mixed-
phase clouds during the NASCENT campaign (Pasquier et
al., 2022a) conducted in Ny-Ålesund, Norway. Ice crys-
tal images were captured by the HOLIMO holographic im-
ager mounted on the HoloBalloon tethered balloon system
(Ramelli et al., 2020). The measured ice particle sizes ranged
from 50 µm to 2.4 mm. First, the cloud particles were clas-
sified as cloud liquid droplets and ice crystals using a con-
volutional neural network (CNN) approach, as described
in Touloupas et al. (2020). This preliminary classification
served as the basis for the subsequent detailed classification
of the ice crystals.

Following this initial categorization, each ice crystal was
classified into one of seven basic habits: column, plate, lol-
lipop (Pasquier et al., 2022a), CPC, irregular, frozen droplets,
and small. Our seven basic habit categories were determined
by their presence and distinct shape features observed in our
dataset collected in the aforementioned Arctic mixed-phase
clouds in Ny-Ålesund. These basic habit classes are based on
the categories used in Pasquier et al. (2022a), as we used the
same dataset. Additionally, up to two microphysical process
attributes (i.e., aggregate and aged) were assigned to each
ice crystal. Table 1 describes the seven basic habits and four
microphysical process categories (i.e., pristine, aged, aggre-
gate, and aged and aggregate). Thus, the final habit classifica-
tion of an ice crystal is a combination of the basic habit and
microphysical processes (i.e., the final classification = ba-
sic habit + microphysical processes). Not all combinations
of basic habits and microphysical processes are feasible, re-
sulting in a total of 19 ice classes (examples are shown in
Fig. B1) rather than the theoretically possible 28 (7× 4) cat-
egories. For instance, the small class refers ice crystals that
are too small to determine their habit, making it impossible
to derive their microphysical processing. Furthermore, all ice
crystals in the lollipop, CPC, and irregular classes are de-
fined as aged ice instead of pristine ice (as they are not newly
produced ice), although they are still basic habit categories.
For a more detailed discussion of the categorization criteria,
we refer to Appendix B. However, due to data limitations,
our dataset does not capture every possible basic ice habit,
such as needles and rosettes, although the existence of these
ice habits is well acknowledged (Kikuchi et al., 2013). This
limitation is acknowledged and further discussed in Sect. 5,
where we look at potential extensions to IceDetectNet. As
new data containing additional ice habits become available,
IceDetectNet can be updated, as it is designed to incorporate
these new habits through fine-tuning, ensuring the continued
evolution of the model.

The dataset collected on 11 November 2019 (Pasquier et
al., 2022b), hereafter the training dataset, was used to train
IceDetectNet. During the training, it was divided into a train-
ing subset (comprising 80 % of the data) and a validation sub-
set (made up of the remaining 20 %), using a cross-validation

method (see the detailed introduction in Sect. 3.8.1). This
validation subset serves a similar purpose to the traditional
test sets used in other studies (Jaffeux et al., 2022; Xiao et
al., 2019; Touloupas et al., 2020), providing an initial eval-
uation of the model’s performance under known conditions.
On the other hand, the generalization dataset was collected
on a different date, 1 April 2020 (Pasquier et al., 2022b), and
is not used during training; rather, it is employed to evaluate
the generalization abilities of IceDetectNet.

Table 2 offers a summary of both the training and gener-
alization datasets. The training dataset consists of 18 864 ice
particles, where the column and CPC classes were dominant,
accounting for 47.5 % of the ice crystals in the training data.
Non-pristine ice, which is ice that is not freshly formed, ac-
counts for 70.5 % of the ice crystals in the training data. Ad-
ditionally, 18.8 % of the non-pristine ice crystals have under-
gone two microphysical processes, and aggregated ice makes
up 12 % of the ice crystals in the training dataset.

In contrast, the generalization dataset has a significant
fraction of irregular (47.3 %) and small (23.4 %) ice crys-
tals (Fig. B1). Unlike the training dataset, the generaliza-
tion dataset does not include any instances of the lollipop
or CPC classes and, consequently, the corresponding com-
pound categories “lollipop–aggregate” or “CPC–aggregate”
do not exist. Moreover, the generalization dataset only con-
tains three occurrences of the frozen droplet class, with small
numbers for “frozen droplet–aged” (8) and “frozen droplet–
aged–aggregate” (12), while “frozen droplet–aggregate” is
not present. The proportion of non-pristine ice increases from
70.5 % in the training dataset to 93.9 % in the generalization
dataset. The fraction of aggregate ice increases from 11.9 %
in the training dataset to 37.7 % in the generalization dataset.

The difference between the training and generalization
datasets is an example of the natural variability in field obser-
vations. In our case, the two datasets were collected during
different seasons, resulting in variations in the environmental
conditions. The training dataset was collected in the temper-
ature range from−8 to−3 °C (mostly in the column regime),
whereas the generalization dataset was collected between
−23 and−15 °C (mostly in the plate regime) (Pasquier et al.,
2022b). These differences allow us to assess the generaliza-
tion ability of IceDetectNet and to examine its performance
under diverse environmental conditions.

3 Methodology

In this section, we first provide an overview of convolutional
neural networks (CNNs), which serve as the foundation for
the object detection algorithm in IceDetectNet. We start by
explaining the overall structure of CNNs (Sect. 3.1), fol-
lowed by an introduction to the rotated object detection algo-
rithm developed in this study and implemented into IceDe-
tectNet (Sect. 3.2). Subsequently, we discuss the data prepa-
ration (Sect. 3.4) and training process (Sect. 3.7), outlining
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Table 1. Description of the ice crystal categories, including seven basic habits and four microphysical process categories.

Property Class Description

Basic habits

Column Columnar ice crystal

Plate Plate-like ice crystal

Frozen droplet Frozen cloud or drizzle droplets characterized by nonspherical
shapes or distortions

Smalla Ice crystals that seem small during visual assessment by the hand labeler
(usually smaller than 75 µm)

Columns on capped columns Ice crystals that contain both columnar and plate-like features, often
(CPC)b resembling a “H”; formed when growing in both the column and

plate temperature regimes (Pasquier et al., 2023)

Lollipopb Formed when a supercooled droplet collides with columns
and freezes upon impact (Keppas et al., 2017)

Irregularb Irregular-shaped ice crystal with no clearly defined ice habit

Microphysical processes

Pristine Ice crystals with an easily identifiable shape that have not undergone
any microphysical processes

Aged Ice crystals that have undergone microphysical processes such as riming
or sublimation

Aggregate Ice particles that are composed of two or more ice crystals stuck together

Aged and aggregate Ice crystals that have undergone both aging and aggregation
a Ice crystals are categorized as pristine. b Ice crystals are categorized as aged.

the essential steps for training the model. Lastly, the evalua-
tion metrics are introduced that are used to assess the perfor-
mance of IceDetectNet on the training dataset and its ability
to generalize to the unseen generalization dataset (Sect. 3.8).

3.1 Convolutional neural networks (CNNs)

CNNs are a class of neural networks widely recognized for
their exceptional performance in image classification tasks
(Gu et al., 2018; Albawi et al., 2017; Rawat and Wang, 2017;
Touloupas et al., 2020). CNNs consist of a specific archi-
tecture designed to extract meaningful features from images.
The key components of a typical CNN include convolutional
layers, pooling layers, and fully connected layers (Fig. 1).
These layers work together to enable effective image anal-
ysis. The convolutional layer scans the input image with a
small filter or kernel, extracting low-level features such as
edges and color. The pooling layer reduces the spatial size of
the convolved feature (feature map shown in Fig. 1) and aims
to decrease computational complexity. The fully connected
layer, which is usually the final layer of a CNN, performs the
classification using the flattened or pooled output from the
preceding layers.

In practice, CNN structures can be much more complex
than the basic CNN described above. He et al. (2016) pro-
posed a deep residual learning approach that stores input in-
formation and propagates it directly from the first layer to
the last. This approach has been successfully used in subse-

quent object detection algorithms that utilize the ResNet-50
structure (He et al., 2016). Due to this success, IceDetectNet
(described in Sect. 3.5) is trained using the preexisting pa-
rameters of ResNet-50, which was trained on the ImageNet
dataset consisting of approximately 1.3 million images la-
beled into 1000 categories, with the exception of the last
layer due to the different number of categories in ice clas-
sification (Deng et al., 2009; He et al., 2016). This helps to
speed up the training process and achieve better performance.

3.2 Rotated object detection algorithm

Building on the foundations of CNNs, object detection al-
gorithms serve as an extension to detect and classify objects
within images. While CNNs typically classify the image as a
whole, object detection algorithms localize and classify spe-
cific objects within these images, providing both their loca-
tion (through the bounding box) and class labels (Zhao et
al., 2019). The rectangular box that tightly encloses the ob-
ject of interest is called a bounding box (as shown in Fig. 2).
Rotated object detection algorithms additionally predict the
angle of rotation of the bounding box (Zou et al., 2023). In
this study, we introduce such a rotated object detection al-
gorithm for ice crystal classification as part of IceDetectNet.
This algorithm classifies multiple components of aggregated
ice crystals individually and predicts the center, the dimen-
sions, and the rotation angle of bounding boxes enclosing the
ice crystal components. This ensures that the ice components
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Table 2. Overview of the number of ice crystals in each class for both the training and generalization datasets, along with illustrative examples
for each class. The green circles with a plus symbol indicate that the corresponding ice class is part of the aggregate/non-pristine category in
the dataset, while the orange circles with a minus symbol indicate the opposite. Please note that the examples shown are intended for visual
reference only and may not be representative of the entire dataset.

are captured within the smallest feasible rectangle, which of-
fers a more accurate recognition of the object by minimizing
the inclusion of background pixels (Ding et al., 2019). Here,
we use the S2ANet network structure (Han et al., 2021) as
the base structure of the rotated object detection algorithm
within IceDetectNet.

3.3 Hand-labeling of bounding boxes and ice categories

Accurate hand labeling is essential for training IceDetect-
Net, as for all supervised learning methods. In contrast to
conventional classification algorithms, rotated object detec-
tion models such as IceDetectNet require a two-step hand-
labeling process: (1) locate the ice components within the
images by drawing bounding boxes and (2) assign the ap-
propriate category labels to each component based on our
multi-label classification scheme.
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Figure 1. General structure of a CNN with an example of ice crystal classification. The input ice crystal is classified into one of the ice
classes based on computed probabilities, with the highest probability determining the assigned class. In this example, the input ice crystal is
classified as “column–aged–aggregate” with a 70 % probability.

Figure 2. Structure of the IceDetectNet algorithm, consisting of predicting potential bounding boxes (step 2), removing duplicate predicted
bounding boxes (step 3), cropping the remaining bounding box for classification (step 4), and predicting the ice crystal categories of each
bounding box (step 5). The yellow and orange dashed lines indicate bounding boxes predicted by the algorithm and their corresponding
labels and confidence intervals (step 5), whereas the solid lines show the hand-labeled bounding boxes (step 3). The individual steps are
described in the main text.

In the present study, both the training and generalization
datasets were initially hand-labeled at the image scale using
our multi-label ice classification scheme (Sect. 2). For the
image-scale hand-labeling, the basic habit of the largest ice
component is considered the basic habit of the image. Re-
garding microphysical processes, any image containing an

ice component with signs of aging was labeled “aged”. Addi-
tionally, images consisting of multiple ice components were
categorized as “aggregated”. The image-scale hand-labeling
served as the basis for the component-scale hand-labeling.

For the hand-labeling of non-aggregated ice crystals (iden-
tified using the hand label at the image scale), we applied an
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automated method for drawing bounding boxes. The method
uses the color contrast between the typically black ice pix-
els and the typically gray background to identify the location
of the ice component regions. Then, we calculated the mini-
mum bounding rectangle of the ice regions automatically as
the bounding box of these non-aggregated ice crystals. The
non-aggregated ice crystals were assigned the same ice cate-
gory labels as the corresponding labels at the image scale.

For aggregated ice crystals, the hand-labeling of the
bounding boxes (i.e., drawing) was done manually using
the platform provided by AngoAI (2022), as illustrated in
Appendix A and Fig. A1. Bounding boxes representing the
minimum enclosing rectangle of each ice component were
manually drawn. Furthermore, every bounding box was vi-
sually classified in an ice category following the multi-
label classification scheme introduced in Sect. 2. In to-
tal, we manually labeled 2255 aggregated ice crystals and
16 609 non-aggregated ice crystal components. Note that the
component-scale hand-labeling was only done for the train-
ing dataset due to the large effort involved with the hand-
labeling of bounding boxes and ice categories. The general-
ization dataset was only hand-labeled at the image scale.

3.4 Image preprocessing

Before the image is fed into IceDetectNet, the initial image
is enlarged by 15 % (with respect to both length and width),
to ensure full bounding box coverage and maintain the aspect
ratio (see input in Fig. 2), by adding black pixels (pixel val-
ues= 1) around the borders. This augmentation ensures that
the entire bounding box is located within the image, even
when parts of the bounding box extend beyond the original
image frame. To ensure consistency across the network for
training and testing, all images are then uniformly resized to
512 px× 512 px by employing bilinear interpolation after the
enlargement.

The input images are normalized to meet the pretrained
ResNet-50 model’s input specifications. For example, the
pretrained ResNet-50 model requires an RGB image as input,
which consists of three dimensions by default. Given that our
images only have one dimension, we replicate the single di-
mension three times to emulate the three-dimensional struc-
ture of RGB images and to produce pseudo-RGB images.

3.5 Inference process of IceDetectNet

The structure of the IceDetectNet algorithm is shown in
Fig. 2. The input for IceDetectNet (step 1 in Fig. 2) comprises
the processed images undergoing the preprocessing steps de-
scribed in Sect. 3.4. The algorithm uses the ResNet-50 back-
bone network (He et al., 2016) to extract image features at
a per-pixel scale. After feature extraction, IceDetectNet pre-
dicts potential bounding boxes for individual ice components
(step 2 in Fig. 2). These predicted bounding boxes contain the
location, size, and rotation angle of the respective ice com-

ponents. Multiple bounding boxes might be predicted for the
same ice component, or some predicted bounding boxes may
be too large to tightly capture an ice component, while others
could be too small, missing some parts of an ice component
(step 2 in Fig. 2). Prior to classification, duplicate bound-
ing boxes are removed (step 3 in Fig. 2) by a feature align-
ment module (Sect. 3.6). The remaining predicted bounding
boxes enclosing the individual ice components are the in-
put for the classification module (step 4 in Fig. 2), which
outputs a predicted ice label with a confidence level (step 5
in Fig. 2). After classification, a post-processing step is per-
formed to further remove duplicate bounding boxes (step 6
in Fig. 2) by comparing all predicted bounding boxes instead
of hand-labeled bounding boxes using the intersection over
union (IoU) threshold and the confidence level of classifica-
tion. The IoU quantifies the overlap between two predicted
bounding boxes and is calculated as follows:

IoU=
area of overlap
area of union

. (1)

If the IoU between two predicted bounding boxes exceeds
a threshold, the bounding box with the lower confidence level
is discarded. This threshold was set to 50 % in the present
study to minimize the number of aggregated ice crystals mis-
classified as non-aggregated and vice versa. Previous studies
suggested that an IoU threshold within the range of 50 % to
75 % leads to the best performance (Zhang et al., 2019).

3.6 Training process of IceDetectNet

The training phase of IceDetectNet is a crucial and complex
process, as it requires a careful balance between reducing
detection errors (step 2 in Fig. 2) and classification errors
(step 5 in Fig. 2), all via a process of loss minimization. The
feature alignment module (step 3 in Fig. 2) is trained to re-
duce the difference between the predicted and hand-labeled
bounding boxes. If the IoU between a predicted and a hand-
labeled bounding box is above 50 %, the prediction is consid-
ered correct (Zhang et al., 2019). On the contrary, an IoU be-
low 50 % indicates an incorrect prediction, resulting in a loss
that the training process then aims to minimize. To reduce the
loss, a method called backpropagation is employed. Back-
propagation adjusts the model’s parameters to reduce errors
and refines the feature extraction to improve the accuracy of
the bounding box prediction in step 2. The primary objective
of the feature alignment module is to fine-tune the orienta-
tion and position of bounding boxes, especially those with
an IoU below 50 %. The images within the refined bound-
ing boxes are then processed by the classification module.
Incorrectly predicted labels contribute to the model’s loss in
classification, which is further minimized using backpropa-
gation as well, leading to improved classification in step 5.
Steps 6 and 7 belong to post-processing and are not subject
to training.

https://doi.org/10.5194/amt-17-7109-2024 Atmos. Meas. Tech., 17, 7109–7128, 2024
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3.7 Training details

The training details of IceDetectNet and the hyperparame-
ters used during training are described here. To prevent the
model from memorizing the training data (a problem known
as “overfitting”) and to lower the generalization errors when
it is applied to new unseen data, we introduced transforma-
tions to our training images. More specifically, we applied a
technique called data augmentation which performs random
flips of the images in the horizontal, vertical, and diagonal
directions with a 25 % probability. During the inference, no
data augmentation was applied to prevent any distortion in
the final output.

The training was executed on a computational system
equipped with four RTX 2080 GPUs. A batch size of 64 was
chosen to optimize computational efficiency and training sta-
bility.

The learning rate underwent a structured adaptation during
the training process as follows:

1. Initially, the learning rate was set to 0 and linearly in-
creased to 0.0025 over the initial 500 steps. Here, a
“step” is defined as a single iteration in the training pro-
cess, in which one batch of data is processed to update
IceDetectNet’s parameters.

2. After the first 500 steps, the learning rate was kept con-
stant at 0.0025.

3. A reduction by a factor of 10 was applied at specific
epochs; the learning rate was set to 0.00025 from the
64th to the 88th epochs and further reduced to 0.000025
after the 88th epoch. This decremental strategy aimed
at refining model parameters with progressively smaller
updates as the training advanced.

To ensure model robustness and prevent overfitting, we
employed the early-stopping technique (Jabbar and Khan,
2015). Checkpoints were integrated to retain the best-
performing model based on the validation dataset.

3.8 Evaluation

To evaluate the performance of IceDetectNet, we used a
cross-validation approach (Sect. 3.8.1) and a range of evalua-
tion metrics (Sect. 3.8.2): overall accuracy, precision, recall,
and the confusion matrix, as highlighted in the following sec-
tions.

3.8.1 Cross-validation

IceDetectNet was validated by applying a 5-fold cross-
validation approach, which is a method that minimizes the
variance in performance estimation while also maximizing
the use of available data for training (Browne, 2000). Here,
we randomly partitioned the dataset into five equally sized
subsamples or “folds”. Four of the five subsamples were used

for training the model, while the remaining subsample was
retained as the validation data for testing the model. This pro-
cess was then repeated five times (the folds), with each of the
five subsamples used exactly once for validation. Each fold
was designed to include images from every class, thus en-
suring that the model was trained and evaluated on a diverse
set of ice crystals from all categories. This helped to pre-
vent bias in the evaluation of the model’s performance due to
an unrepresentative selection of training and test data (Arlot
and Celisse, 2010). The five outcomes from the folds were
then averaged to produce a single estimation of IceDetect-
Net’s performance.

In future applications, if the performance of the five
individual models is similar (performance is evaluated in
Sect. 4), a single model could be selected for use, simpli-
fying the process. Alternatively, the ensemble of five models
can be used to make the final predictions, increasing reliabil-
ity. For example, if three models predict one ice component
as a column but two predict it as a plate, the component is
predicted as a column. The advantage of this method over re-
peated random subsampling is that all ice crystals are used
for both training and validation and each ice crystal is used
for validation exactly once. This method, although computa-
tionally expensive, provides a robust evaluation of IceDetect-
Net’s performance and its ability to generalize to new, unseen
data (Arlot and Celisse, 2010).

3.8.2 Evaluation metrics

To assess the performance of IceDetectNet, we employ sev-
eral metrics that evaluate the model performance with regard
to different aspects, including the overall accuracy, precision,
recall, confusion matrix, and F1 score. The overall accuracy
is defined as the ratio of the number of correct predictions
to the total number of particles (Goodfellow et al., 2016).
An overall accuracy of 100 % means that, for example, all
ice particles were correctly predicted, whereas an overall ac-
curacy of 0 % indicates that all particles were mispredicted.
While overall accuracy provides a quick and straightforward
metric to interpret the model performance, it can be mislead-
ing when dealing with imbalanced datasets where classes are
not equally represented. In such cases, the model may per-
form well with respect to predicting the dominant classes
but struggle to predict rare classes. Precision and recall both
measure the accuracy of a deep learning classification model
with respect to predicting a single category from two per-
spectives. Precision is calculated as the ratio of the number
of correct predictions of a specific class to the total number
of predictions (Goodfellow et al., 2016), while recall is de-
fined by the ratio of the number of correct predictions of a
specific class to the total number of this class (Goodfellow
et al., 2016). A high precision score indicates effective iden-
tification of a specific class, while a high recall score indi-
cates that the model excels in identifying instances of a par-
ticular class and is less likely to miss relevant instances that
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belong to the class. All of these metrics can be combined
and visualized in a so-called confusion matrix (Goodfellow
et al., 2016). In a confusion matrix, the diagonal, from the
top left to the bottom right, corresponds to correct predic-
tions made by the model, whereas the elements outside of
this diagonal represent misclassifications. The bottom-right
cell of the matrix displays the total number of ice crystals
and the overall accuracy. The bottom row provides the ac-
tual counts per class and their respective per-class precision.
Similarly, the rightmost column presents the predicted counts
per class and the associated per-class recall. The F1 score is
a harmonized metric that combines precision and recall, pro-
viding a balanced measure of a model’s performance, partic-
ularly in situations where the balance between precision and
recall is critical (Goodfellow et al., 2016). This score reaches
its best value at 1 (indicating perfect precision and recall)
and its worst value at 0. In the context of IceDetectNet, a
high F1 score would indicate not only that the model accu-
rately identifies ice particles (high precision) but also that it
successfully detects the majority of actual ice particles (high
recall), making it a robust metric for evaluating model per-
formance across different classes, especially in the presence
of imbalanced datasets.

4 Results

4.1 Evaluation of model performance

The evaluation of IceDetectNet differs from traditional deep
learning classification algorithms because both detection
(Sect. 4.1.1) and classification (Sect. 4.1.2) steps need to be
evaluated. As described in Sect. 3.8.1, we trained five mod-
els using a 5-fold cross-validation approach. Four folds were
used for training, and the remaining fold was used for vali-
dation. A small portion of the images for which no bounding
boxes were predicted (validation fold in training dataset: 11
of 3755) were labeled as “none” and excluded from the fol-
lowing analysis.

4.1.1 Performance of aggregate detection

The detection performance of IceDetectNet was examined by
first evaluating the ability of the algorithm to distinguish be-
tween aggregate and non-aggregate ice. Images with a single
bounding box were defined as non-aggregate ice, whereas
images with multiple bounding boxes were defined as aggre-
gate ice. The aggregate/non-aggregate detection was evalu-
ated by comparing the number of predicted bounding boxes
with the number of hand-labeled bounding boxes for the
training dataset (Fig. 3a). Hand-labeled and predicted bound-
ing boxes are in good agreement, with an overall accuracy of
92 %, reflecting the ability of IceDetectNet to correctly clas-
sify images as aggregated or non-aggregated ice.

To understand the source of the 8 % of misdetected ag-
gregate and non-aggregate ice, we analyzed the number of

overdetected and underdetected bounding boxes. Here, we
consider it overdetection when the algorithm predicts mul-
tiple bounding boxes for an ice crystal that is hand-labeled
as non-aggregate (i.e., one bounding box) and underdetec-
tion when the algorithm predicts one bounding box for an
ice crystal that is hand-labeled as aggregate (i.e., multiple
bounding boxes). In absolute numbers, there were 266 in-
stances of overdetection and 63 instances of underdetection
(Fig. 3b). In relative terms, 40 % of the predicted aggregates
were hand-labeled as non-aggregates (overdetection), result-
ing in a recall of 60 % for actual non-aggregates. Conversely,
only 2 % of the predicted non-aggregates were hand-labeled
as aggregates (underdetection), indicating a high recall of
98 % for actual aggregates (Fig. 3c). This shows that, while it
tends to overestimate the presence of aggregates, the model is
highly effective at identifying actual aggregates. Considering
that only 12 % of the training dataset was aggregate ice (as
detailed in Sect. 2), a few mispredictions of non-aggregate
ice as aggregate can significantly increase the overdetection.
For example, if 2 % (66) of the non-aggregate ice crystals
were misclassified as aggregate, this would lead to a 14.6 %
overdetection. Until this point, we have evaluated how well
the predicted categories match the actual categories. As a
complement, we now turn our attention to precision, exam-
ining the accuracy of the predictions in terms of correctly
identified categories. The precision is 88.7 % for aggregate
(i.e., 88.7 % of the predicted aggregates were hand-labeled
as aggregates) and 77.1 % for non-aggregate, consistently
showing the model’s tendency to overpredict the numbers of
bounding boxes.

To address the issue of the overdetection or underdetection
of bounding boxes, it is possible to adjust the IoU thresh-
old in the post-processing (as introduced in Sect. 3.2). In
the present study, an IoU threshold of 50 % was applied to
remove duplicate bounding boxes (see Fig. 2), but the IoU
threshold can be changed based on the relative composition
of the ice classes in the dataset. Generally, when an overde-
tection problem was identified, a higher IoU threshold could
be implemented to reduce the number of detected bounding
boxes, and the opposite adjustment could be made if un-
derdetection was observed. Thus, the IoU threshold can be
used as a tuning parameter to reduce/increase the number of
bounding boxes kept after the post-processing.

4.1.2 Performance of ice classification

The classification performance of IceDetectNet was exam-
ined by quantifying the accuracy with which detected com-
ponents are categorized into their respective basic habit
and microphysical process classes (following the multi-label
classification scheme detailed in Sect. 2). As discussed in
Sect. 3.3, the basic habit of an ice crystal (i.e., image scale)
is determined by the largest bounding box. The presence or
absence of an aged classification is based on the detection of
aging signatures among all bounding boxes, while aggrega-
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Figure 3. (a) Histogram of the number of hand-labeled (orange) and model-predicted (brown) bounding boxes (average over five models).
Instances with more than three bounding boxes are combined into a single category, whereas instances with no detected bounding boxes (11)
are excluded. (b) Histogram of the number of predicted bounding boxes for hand-labeled aggregated (blue) and non-aggregated (orange) ice
crystals. The shaded orange and blue regions denote areas of overdetection and underdetection, respectively. Panel (c) is the same as panel (b)
but all bounding boxes larger than one are combined, thereby providing an intuitive visualization of the percentages of overdetection and
underdetection.

tion is defined by ice crystals with more than one bounding
box. We evaluated the performance of the five trained models
using the cross-validation approach described in Sect. 3.8.1.
The overall accuracies for the five models; their mean val-
ues; and the mean F1 scores for ice multi-label classification
(19 classes), basic habit classification (7 classes), and micro-
physical process classification (4 classes) are shown in Ta-
ble 3. The mean overall accuracies range between 78 % (for
multi-label classification) and 86 % (for basic habit classifi-
cation) and, thus, indicate good classification performance.
Standard deviation values of the overall accuracy (OA) be-
low 1 % on all data demonstrate robust results among the five
models. In contrast, the performance on average F1 scores,
ranging from 54.9 % (for multi-label classification) to 78.8 %
(for basic habit classification) is generally worse than that
on average OA values, indicating that IceDetectNet performs
worse on rare classes. Furthermore, the low standard devia-
tion values of averaged F1 scores (below 2 %) on all data
further indicate that the five models have relatively similar
results.

To gain further insights into IceDetectNet’s performance
in each ice category, we analyzed the confusion matrices
(mean of five models) for basic habit classification (Fig. 4)
and microphysical process classification (Fig. 5). IceDetect-
Net achieved an overall accuracy of 86 % for the basic habit
categories (Fig. 4). The confusion matrix shows that IceDe-
tectNet performed well for the ice categories that are repre-
sented as a large fraction in the dataset, like column (preci-
sion of 90 %, 1978 instances) and small (precision of 93 %,
324 instances). However, IceDetectNet encountered chal-
lenges with respect to accurately classifying rare classes
such as plate (67 %, 47 instances) and lollipop (77 %, 73 in-
stances). The main source of misclassification for plate ice
crystals was confusion with the column class (7 instances).
For the microphysical process category (Fig. 5), IceDetect-
Net achieved an overall accuracy of 82 %. While the model

performed well with respect to identifying pristine ice crys-
tals (92 %), it showed worse performance for predicting ag-
gregate (47 %) and aged–aggregate (49 %) ice crystals. This
might be explained by the imbalanced dataset: pristine ice
crystals dominated with a total contribution of 66 %. This
suggests that balancing the dataset could further optimize
IceDetectNet’s classification performance for aggregate and
aged–aggregate ice crystals in future iterations. A closer ex-
amination of the misclassified ice crystal images shows that
the primary source of error was an underdetection of the
number of bounding boxes. For example, in an image con-
taining two aged columns, only one column–aged crystal was
detected resulting in it being mislabeled as aged instead of
aged–aggregate.

To investigate the classification performance of IceDetect-
Net in simpler scenarios, we evaluated the performance on
non-aggregated ice and aggregated ice separately (Table 4).
The evaluation on non-aggregated ice provides a benchmark,
as non-aggregated ice images consist of a single ice com-
ponent and, thus, allow us to compare the performance to
traditional deep learning algorithms. When considering only
non-aggregated ice crystals, IceDetectNet has an accuracy of
82 % for all data, 90 % for basic habits, and 85 % for micro-
physical processes (Table 3). Previous studies using single-
label classification (Xiao et al., 2019; Jaffeux et al., 2022;
Zhang, 2021) have reported overall accuracies above 90 %,
which is higher compared with IceDetectNet for all data
(82 %). However, for the multi-label classification, IceDe-
tectNet classifies both basic habits and microphysical pro-
cesses. While non-aggregated ice does not have an aggre-
gation process, aging processes are still present. When one
considers solely the basic habit classification, the accuracy
of IceDetectNet (90 %) for non-aggregated ice closely aligns
with the results reported in the aforementioned studies. Thus,
under the same classification domain, IceDetectNet performs
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Table 3. Overall accuracy of the multi-label, basic habit, and microphysical process ice classification. The table displays the overall accuracy
values for each of the five models, along with the mean and standard deviation (SD) values (all reported as percentages). The validation
set is broken down into aggregate (Agg) and non-aggregate (Non-agg) subsets. For the full validation set, the mean OA and F1 score are
highlighted in bold.

1 2 3 4 5 Mean OA Mean F1 score SD-OA SD-F1

All data (19-class) 78.1 78.0 78.3 77.0 79.4 78.2 54.9 0.9 1.9
Multi-label Non-agg (10-class) 82.5 81.3 81.3 83.5 82.0 82.1 71.7 0.9 1.6

Agg (9-class) 46.1 53.7 54.4 47.0 50.5 50.3 41.4 3.8 5.9

All data (7-class) 86.5 86.5 86.3 85.6 87.2 86.4 78.8 0.6 1.3
Basic habit Non-agg (7-class) 89.4 90.0 89.4 88.8 90.7 89.7 81.8 0.7 1.3

Agg (6-class) 71.7 76.1 72.6 70.7 71.3 72.5 58.5 2.1 3.4

All data (4-class) 81.4 82.0 81.3 80.8 82.6 81.6 66.9 0.7 1.1
Microphysical processes Non-agg (2-class) 85.6 84.0 84.6 84.7 86.2 85.0 84.3 0.9 1.0

Agg (2-class) 48.9 55.0 56.1 48.3 52.4 52.1 62.3 3.5 2.8

Figure 4. Confusion matrix of the mean performance of the basic
habit classification for the training dataset (mean of five models).
The y axis represents predicted values, whereas the x axis repre-
sents hand-labeled values. The bottom black row presents the num-
ber of hand-labeled ice crystals (white) and precision (blue) in each
class. The bottom-right box shows the overall number of ice crys-
tals (white) and the overall accuracy (blue). The rightmost black
column presents the number of ice crystals predicted (white) and
the recall (blue) in each class. The boxes in the middle (non-black
boxes) evaluate the hand-labeled and predicted labels of the clas-
sification. For example, the second box in the first row means that
101.6 ice crystals are predicted as column but the actual labels of
these 101.6 ice crystals are columns on capped columns (CPCs).
The percentage in this box represents the ratio of the number of ice
crystals in this box (i.e., 101.6) to the total number of hand-labeled
CPCs (i.e., 785).

Figure 5. Similar confusion matrix to that in Fig. 4 but for physical
processes.

competitively with existing classification models and offers
additional information regarding microphysical processes.

When shifting our focus to aggregated ice, the inherent
complexity of classifying the multiple components of an ag-
gregate becomes evident due to a decreased classification ac-
curacy (Table 3). The accuracy drops to 50 % for multi-label,
72 % for basic habit, and 52 % for microphysical processes.
The reduction in performance between non-aggregate and
aggregate ice subsets was more pronounced for the classi-
fication of microphysical processes (85 %–52 %), compared
with the classification of the basic habit (90 %–72 %). This
suggests that the reduced performance of IceDetectNet in the
all-class classification can be attributed primarily to the chal-
lenges with respect to classifying microphysical processes.
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Table 4. Overall accuracy of the multi-label, basic habit, and microphysical process ice classification. The table displays the overall accuracy
values for each of the five models, along with the mean and standard deviation (SD) values (all reported as percentages). The generalization
dataset is broken down into aggregate (Agg) and non-aggregate (Non-agg) subsets. For the full validation set, the mean OA and F1 score are
highlighted in bold.

1 2 3 4 5 Mean OA Mean F1 score SD-OA SD-F1

All data (14-class) 67.5 66.7 67.2 67.5 68.3 67.5 48.5 0.6 1.6
Multi-label Non-agg (8-class) 72.8 73.3 71.2 74.5 73.2 73.0 58.3 1.2 2.0

Agg (6-class) 46.3 50.0 53.1 47.7 51.2 49.7 45.4 2.7 1.4

All data (7-class) 81.6 79.9 79.6 80.7 81.3 80.6 68.7 0.8 0.6
Basic habit Non-agg (5-class) 86.4 85.9 85.4 84.8 86.7 85.9 70.3 0.7 0.8

Agg (5-class) 64.7 69.1 65.3 69.6 71.7 68.1 61.0 2.9 1.7

All data (4-class) 72.8 72.3 72.5 72.9 73.4 72.77 64.8 0.4 0.3
Microphysical processes Non-agg (2-class) 78.5 78.0 77.4 78.1 77.3 77.8 74.6 0.5 0.8

Agg (2-class) 45.2 51.1 50.9 46.6 48.4 48.4 67.9 2.6 0.6

4.2 Detection and classification performance on the
aggregated component scale

In the previous sections, the detection and classification per-
formance of IceDetectNet was evaluated at the image scale.
In this section, our focus shifts from the image scale to
the aggregate component scale, specifically to the bounding
boxes of aggregate ice crystals. To evaluate the detection and
classification performance at the aggregate component level,
we followed a structured approach:

1. Pairing of bounding boxes. For each hand-labeled
bounding box of an aggregate, we search for the pre-
dicted bounding box with the highest IoU.

2. Detection performance. The detection was considered
correct if the IoU between the paired predicted and
hand-labeled bounding box was larger than 0.5, other-
wise the detection was considered incorrect.

3. Classification performance. The classification was con-
sidered correct if the label of the hand-labeled bounding
box matched the label of the paired predicted bounding
box, otherwise it was considered incorrect.

In contrast to the previous sections where the mean per-
formance of all five models was examined, the performance
was evaluated on a single model which was randomly se-
lected (due to the robustness among the model runs). We cat-
egorized the bounding boxes into small, medium, and large
using the areas of the predicted bounding boxes. The thresh-
olds were set at the 33 % and 66 % percentiles of all bounding
box areas, corresponding to below 32 331 px, from 32 331
to 71 275 px, and above 71 275 px, respectively. For a more
intuitive understanding, these ranges correspond to squares
with side lengths of below 180 px, from 180 to 267 px, and
above 267 px, respectively.

When evaluating the detection and classification perfor-
mance of IceDetectNet at the aggregate component scale

for the three bounding box size categories (small, medium,
large; Fig. 6), we find good detection performance among all
size categories, with accuracies ranging between 84 % (small
bounding box) and 72 % (large bounding box). The detection
performance decreases for larger bounding box sizes, which
might be explained by an increased variability in appearance,
texture, and scale for larger bounding boxes. The classifica-
tion accuracies for correctly detected bounding boxes ranged
between 66 % and 71 %, with medium-sized boxes achiev-
ing the highest classification accuracy of 71 %. This suggests
that medium boxes may offer an ideal balance between de-
tectability and feature richness. Thus, IceDetectNet shows
good detection and classification performance for bounding
box sizes down to 662 px and up to 294 903 px.

In general, the detection performance of IceDetectNet at
the aggregate component scale is higher (72 %–84 %) than
the classification performance (66 %–71 %). When combin-
ing the detection and classification performance (i.e., detec-
tion× classification), similar overall performance to that re-
ported in Table 3 for the aggregate subset (i.e., image scale) is
obtained (50 %). For example, the accuracy for small bound-
ing boxes was determined to be 54.6 %, derived from the
product of 65 % classification accuracy and 84 % detection
accuracy. The higher performance with respect to detection
compared with classification suggests that the lower perfor-
mance observed in the aggregate subset compared with the
non-aggregate subset (as described in Sect. 4.1.2) is primar-
ily due to misclassifications and not misdetections.

4.3 Generalization ability of IceDetectNet

4.3.1 Generalization ability on aggregate detection

The generalization ability of IceDetectNet was evaluated by
applying it to an independent generalization dataset, which
was not used to train the algorithm and was collected during a
different season (detailed in Sect. 2). The same evaluation for
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Figure 6. Sunburst diagrams to evaluate the detection (Det) and classification (Class) performance for (a) small, (b) medium, and (c) large
bounding box sizes. Inner layers show detection results, while outer layers show classification results. The percentages indicate the proportion
of bounding boxes in each category that were correctly or incorrectly detected and classified.

detection and classification at the image scale was performed
as for the training dataset (Sect. 4.1.1).

The detection performance for aggregates of the general-
ization dataset shows an overall accuracy of 84 %, with an
overdetection error of 26 % and an underdetection error of
8 % (Fig. 7a, b). This corresponds to a 14 % decrease in
overdetection and a 6 % increase in underdetection compared
with the training dataset. It is consistent across both the train-
ing (as described in Sect. 4.1.1) and generalization datasets
that overdetection is a larger problem than underdetection.
However, the different ice category distribution in the gen-
eralization dataset, specifically the increase in the aggregate
class from 12 % in the training dataset to 37.7 % in the gener-
alization dataset, is likely responsible for the shift in under-
detection and overdetection between the training and gener-
alization datasets. Thus, when the algorithm is applied to the
generalization dataset (with a higher fraction of aggregate ice
crystals), the problem of overdetection is reduced but still ex-
ists.

4.3.2 Generalization ability on ice classification

The classification accuracy on the generalization dataset
showed overall accuracies ranging from 67 % (for the all
data category) to 80 % (for the basic habits category) (see
Fig. 7c and Table 4). Consistent with the performance on
the training dataset, the values of OA are still higher than
the averaged F1 scores, ranging from 48.5 % (for the all data
category) to 68.7 % (for the basic habit category) (see Ta-
ble 4). Compared with the training dataset, the classifica-
tion performance decreased. The most significant decrease
of 11 % was observed in the classification of all classes on
OA, while the smallest decrease was observed in the classi-
fication of basic habits (6 %) on OA and the classification of
microphysical processes (2.1 %) on the averaged F1 score.
The observed decrease in performance between the training
and generalization datasets is small, especially when consid-
ering a domain shift, a situation in which the data distribu-
tion differs between the training and generalization datasets

(Stacke et al., 2020). Specifically, the training and generaliza-
tion datasets have different compositions of non-pristine ice
crystals, with 71 % in the training set and 94 % in the test set.
IceDetectNet’s ability to adapt to different data compositions
and maintain relatively high accuracy indicates the ability of
the algorithm to generalize to different dataset characteris-
tics. Within the non-aggregate subset, IceDetectNet showed
good classification performance for all classes (73 %), basic
habits (86 %), and microphysical processes (78 %) on OA (as
summarized in Table 4). Although the averaged F1 scores are
still lower than OA, the percentage decrease in the averaged
F1 scores is smaller than in OA. In the aggregate subset, per-
formance levels were lower than in the non-aggregate subsets
(50 %–68 % on OA; 45 %–68 % on averaged F1 scores). The
observed reduction in the aggregate subset is mainly due to a
domain shift, reflecting the difference in aggregate ice frac-
tion between the training (12 %) and generalization (38 %)
datasets. The generalization dataset, with a higher propor-
tion of aggregated ice, presented more complexity and vari-
ability. Aggregates, with their multiple bounding boxes and
variable structures, are inherently more difficult to classify
than non-aggregates. This increased complexity in the test
set likely contributed to the drop in performance, highlight-
ing the challenges posed by domain shifts in the data. Con-
sistently low standard deviation values (below 3 % on OA;
below 2 % on averaged F1 scores) were observed across all
models in all data subsets, indicating the stable and repro-
ducible performance of IceDetectNet. These standard devi-
ation values represent the variability in classification perfor-
mance among different runs or configurations of the IceDe-
tectNet model.

To gain further insights into IceDetectNet’s performance
in each ice category, we analyzed the confusion matrices
(mean of five models) for basic habit classification (Fig. 8)
and microphysical process classification (Fig. 9) for the gen-
eralization dataset as well.

IceDetectNet achieved an overall accuracy of 81 % for
the basic habit categories (Fig. 8) The confusion matrix
shows that IceDetectNet still performed better for the ice
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Figure 7. Panels (a) and (b) show the same as Fig. 3b and c but for the generalization dataset. Panel (c) shows the overall accuracy of
IceDetectNet for the training dataset (blue) and the generalization dataset (gray) with respect to classifying basic habits, microphysical
processes, and all classes.

categories that comprise a large fraction of the dataset, like
small ice crystals (precision of 90 %). However, among these,
column classification performance had a large performance
drop (18 % decrease in precision compared with the training
dataset), and its two main misprediction sources were irreg-
ular and plate ice crystals, which represent almost all of the
mispredictions (29 %). This could be due to the data distribu-
tion shift from column to plate. Under the general decreasing
trend among all categories, the irregular class surprisingly
has a 10 % increase in precision. The main misprediction of
the irregular class comes from column ice crystals in both
the training dataset and generalization data, which could be
the reason that IceDetectNet learned many column features
in the training dataset and, thus, distributed higher weights to
these column features. In contrast, the number of column ice
crystals is much lower in the generalization dataset and, thus,
leads to better performance with respect to the classification
of irregular ice crystals. For the missing categories, like lol-
lipop and CPC, that had no actual occurrences, IceDetectNet
still predicted 113 ice crystals as lollipop and 50 as CPC,
with most misclassifications being irregular ice crystals. This
problem is likely due to the model’s handling of sparse data
and its tendency to fit irregular into these less common cat-
egories, as irregular was associated with the most complex
features and, thus, any unrecognizable shape is classed as ir-
regular.

For the microphysical process category (Fig. 9), IceDe-
tectNet achieved an overall accuracy of 73 % (with a 9 %
drop compared with the training dataset). The model still
performed well with respect to identifying pristine ice crys-
tals (82 %). In contrast, it shows better performance with re-
spect to predicting aggregate (17 % higher than in the train-
ing dataset) and aged–aggregate (7 % higher than in the train-
ing dataset) ice crystals. This could be due to the changes in
the data distribution, especially the changes in the aggregate
fraction from 12 % in the training dataset to 37.7 % in the
generalization dataset, which further emphasizes the impor-
tance of the balance of the dataset. After checking the main
source of misprediction, we can see that underdetection still

Figure 8. Similar confusion matrix to that in Fig. 4 but for the gen-
eralization dataset. The CPC and lollipop classes are missing in the
dataset; thus, they are represented using “0” in the corresponding
columns.

plays an important role, for example, the main source of mis-
prediction of aggregate ice crystals is pristine ice crystals,
which is a typical misprediction problem.

5 Discussion

There are still opportunities to improve the generalization
ability of IceDetectNet, particularly in the area of accurate
detection and classification of aggregated ice crystals. In
the case of imbalanced datasets, balancing strategies such
as oversampling or undersampling techniques can be con-
sidered. Enriching the training dataset with a more compre-
hensive and diverse collection of ice crystal data would im-
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Figure 9. Similar confusion matrix to that in Fig. 5 but for the gen-
eralization dataset.

prove the robustness and generalization capabilities of the
algorithm. However, gathering more training data is a time-
consuming process; therefore, reducing the time needed for
manual labeling of bounding boxes is an important task for
future research. New techniques, including contrastive learn-
ing (Le-Khac et al., 2020) and unsupervised learning algo-
rithms, should be investigated to reduce the need for exten-
sive manual labeling. Furthermore, the efficacy of fine-tuning
as an approach to include new ice crystal classes holds con-
siderable promise for IceDetectNet. Fine-tuning – the pro-
cess of adapting a pretrained model (i.e., IceDetectNet) to a
new, although still related, dataset – has been validated in a
variety of fields as a means of achieving improved perfor-
mance with comparatively smaller datasets (Tajbakhsh et al.,
2016). This technique is consistent with the broader concept
of transfer learning (Pan and Yang, 2009), which has seen
widespread success in adapting models to new domains of
application.

As the current dataset used for the training of IceDetect-
Net does not include some basic habits, such as needles and
rosettes, we plan to adapt IceDetectNet to include these cat-
egories once additional datasets containing these habits are
available.

6 Conclusion

In this study, we introduced IceDetectNet, a novel rotated
object detection algorithm that is able to classify ice crystals
not only at the image scale but also down to the aggregate
component scale. The algorithm was used in combination
with a multi-label classification scheme that assigns both a

basic habit and microphysical processes to each ice compo-
nent. The algorithm was trained and tested on two indepen-
dent holographic ice crystal datasets, which were collected
during the NASCENT campaign in Ny-Ålesund, Svalbard.

The performance of IceDetectNet was evaluated in terms
of its detection and classification performance, at both the
image and aggregate component scale. At the image scale,
IceDetectNet showed good detection performance, correctly
classifying 92 % of the ice crystals into the aggregate and
non-aggregate classes. In terms of classification perfor-
mance, it achieved an overall accuracy of 86 % for ba-
sic habits and 81 % for microphysical processes. Moreover,
IceDetectNet achieved comparable classification accuracies
to traditional deep learning algorithms on the non-aggregate
subset, whereas the classification accuracies were lower for
the aggregate subset. At the component scale, IceDetect-
Net showed good detection and classification performance
across all bounding box sizes, indicating its ability to accu-
rately classify components of aggregated ice crystals down
to 662 px.

The generalization ability of IceDetectNet was examined
on an independent generalization dataset that was collected
during a different season. IceDetectNet showed good de-
tection performance with an overall accuracy of 84 %. Al-
though the classification accuracy decreased compared with
the training dataset, the overall accuracy remained satisfac-
tory for basic habit (81 %) and microphysical process (72 %)
classification. The aggregate subset showed lower perfor-
mance compared with the non-aggregate subset, possibly due
to imbalances in the dataset. This highlights the potential
to further optimize the generalization ability of IceDetect-
Net through dataset-balancing techniques, enlargement of
the training dataset, or fine-tuning.

However, the ice categories used in this study are specific
to the environmental and microphysical conditions present
during the collection of the training data. In addition, the dis-
tinction between small and irregular ice categories combines
both size and shape information, making the distinction dif-
ficult to classify. While these categories are appropriate for
the current dataset, they may pose challenges when applying
IceDetectNet to other datasets or comparing results with ex-
isting studies. However, adding or refining categories can be
easily achieved through model fine-tuning.

IceDetectNet provides detailed shape information on the
basic habit and microphysical processes of ice crystals down
to the aggregate component scale; thus, it has the potential to
improve the estimates of microphysical properties, such as
the riming rate, aggregation rate, and ice water content. Due
to the good generalization ability of IceDetectNet, we expect
that it can also be applied to other cloud imaging probes in
connection with fine-tuning. This will help to better under-
stand the radiative properties of clouds and the microphysical
processes leading to precipitation formation.
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Appendix A: Hand-labeling platform

An essential component of training the rotated object detec-
tion algorithm is the hand-labeling of bounding boxes and ice
crystals, which was done through the hand-labeling platform
created by AngoAI (2022). The platform offers a graphical
user interface to draw bounding boxes, adjust their size and
rotation, and assign labels (Fig. A1).

Appendix B: Detailed criteria for ice crystal
classification

The classification of ice crystals into their respective basic
habits and microphysical processes is a challenging task that
requires a set of rules to ensure consistency and accuracy
across the dataset. Here, we describe the criteria used for the
multi-label classification of ice crystals. We randomly select
several images from each category as examples (see Fig. B1)
and present the process of how we hand-label an ice crystal
(see Fig. B2).

The classification process begins by using human judg-
ment to determine whether the ice particle is an aggregate
that contains more than one component. If an ice crystal is
not aggregated, the classification process proceeds directly
with the classification of the basic habit. For aggregated crys-
tals, the process differs between the training and evaluation
of IceDetectNet. In training, each component is manually
located with a bounding box (i.e., smallest rectangle box)
around the component, and these boxes are then classified. In

Figure A1. Overview of the graphical user interface for hand-labeling on the hub.ango.ai (AngoAI, 2022). Users can draw and adjust
bounding boxes around components of aggregated ice and assign labels.

the multi-label classification, only the largest visually identi-
fied component of the aggregate is classified, without draw-
ing a bounding box. The classified basic habit of this largest
component will represent the basic habit of the whole aggre-
gate ice crystal.

The next step is to classify the basic habits of the ice crys-
tals/components. If the basic habit is not recognizable (as de-
fined in Table 1), the size of the ice/component is assessed by
eye. Small crystals are classified as small, whereas all oth-
ers are classified as irregular–aged. If the basic habit is rec-
ognizable, we classify based on shape. Special shapes, like
lollipop–aged for lollipop-like crystals or frozen droplets for
those with droplet features, are classified first. Rectangular-
shaped ice crystals (with four distinct edges) are classified as
columns, whereas rectangular-shaped ice crystals with mul-
tiple branches at the end of the maximum dimension are la-
beled CPC–aged. Note that the CPC–aged categories also in-
clude needle bundles with missing plate sections. Hexagonal
crystals (with six distinct edges) are classified based on their
aspect ratio: a high aspect ratio indicates a column, whereas
a low aspect ratio indicates a plate. Crystals/components that
do not fit these categories are considered irregular–aged.

Once the basic habit is determined, the appearance of the
edges of the ice/component determines whether the ice/com-
ponent is aged or not. As mentioned earlier (see Sect. 2), ir-
regular, CPC, and lollipop–aged are aged by default, whereas
small ice crystals are pristine by definition. Therefore, we
only need to decide if column, plate and frozen drops are
aged or not. Usually, when an ice/component is aged, it has
some tiny bumps on the edges.
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Figure B1. A randomly selected sample of ice crystal images from each category based on the multi-label classification scheme.
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Figure B2. The process of classifying ice crystals.
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