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Abstract. Measurements of hailstone diameters and kinetic
energy, collected by the Swiss network of automatic hail sen-
sors, are available in three regions of Switzerland for the pe-
riod between September 2018 and August 2023. In this study,
we propose the use of double-moment normalization for
modeling the hail size number distribution (HSND), which
is defined as the number of hailstone impacts measured, for
each diameter size, by one instrument during one hail event.
This method uses two of the empirical moments of the HSND
to compute a normalized distribution. While the HSND is de-
pendent on the duration and intensity of the event and on the
detection area of the sensor, we show that the normalized
distribution has limited variability across the three geograph-
ical regions of deployment of the sensors. Thanks to its in-
variance in space and time, a generalized gamma function is
used to model the normalized distribution, and its parame-
ters have been determined through a fit over approximately
70 % of the events. The fitted model and the previously cho-
sen pair of empirical moments can be used to reconstruct the
HSND at any location in Switzerland. The accuracy of the re-
construction has been estimated over the remaining 30 % of
the dataset. An additional evaluation has been performed on
an independent HSND, made of estimates of hail diameters
measured by drone photogrammetry during a single event.
This HSND has a much larger number of hailstone impacts
(18 000) than those of the hail sensor events (from 30 to 400).
The double-moment normalization is able to reproduce well
the HSND recorded by the hail sensors and the drone, albeit
with an underestimation of the number of impacts at small

diameters. These results highlight the invariance of the nor-
malized distribution and the adaptability of the method to dif-
ferent data sources.

1 Introduction

Hail has been shown to be the cause of severe damage to
properties and crops in Europe (Púčik et al., 2019), the USA
(Brown et al., 2015), and Australia (Warren et al., 2020), and
it has therefore been an active topic of research for several
decades. In Switzerland, the focus of the current study, there
is currently a large interest in improving the monitoring,
nowcasting, and climatological description of this weather
phenomenon.

Work has been conducted on studying the spatial and tem-
poral distribution of hailstorms (Nisi et al., 2016), produc-
ing a climatology of hail streaks over the Alpine region
(Nisi et al., 2018), and investigating the use of crowdsourced
hail reports (Barras et al., 2019). A collaboration between
the Federal Office of Meteorology and Climatology (Me-
teoSwiss) and partners from various sectors in the Hail Cli-
mate Switzerland project (NCCS, 2021) resulted in a uni-
form national reference on hail hazards. Finally, the ongo-
ing scClim project (ETH Zurich, 2023), involving a series
of public and private partners, aims to establish a seamless
model chain from thunderstorm simulations to the quantifi-
cation of hail impacts.
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In 2015, MeteoSwiss installed a small pilot network with
seven stations in the Napf region to test a new automatic
hail sensor of inNET Monitoring AG (Wetzel, 2018). In June
2018, within a collaboration between MeteoSwiss, La Mo-
bilière, inNET Monitoring AG, and the University of Bern,
work began on the installation of a wider network of 80
hail sensors. The instruments in this network operate con-
tinuously and autonomously, converting the vibration caused
by the impact of individual hailstones into estimates of ki-
netic energy and diameter. The resulting dataset, which cov-
ers multiple years of operation, offers the opportunity for
a variety of studies on the hail size. For instance, Kopp et
al. (2023b) focus on hail events over a single season, while
Kopp et al. (2023a) provide an analysis of the distribution
of all hail diameters recorded since 2018. Using a similar
multi-year dataset, expanded by measurements collected un-
til 1 September 2023, the current article proposes a way to
model the hail size number distribution (HSND) for individ-
ual hail events. The HSND has been defined as the number of
impacts recorded by one instrument for each diameter value,
and it is dependent on the detection area of the instrument
and the duration of the event. It should be noted that this
quantity differs from the hail size distribution (HSD) investi-
gated in a large fraction of the past scientific literature, since
the HSD is usually computed over a unit area and for a fixed
duration of time.

While the existence of automatic hail sensors is a new de-
velopment in the study of distributions of hail sizes, research
on the HSD has been conducted by the scientific commu-
nity for decades using a variety of instruments (Changnon,
1969). Among them, hailpads resemble in some aspects the
hail sensors; they both measure hail at ground level and have
a surface of a similar order of magnitude. While measure-
ment campaigns using these instruments have taken place
over Switzerland in past years (Federer et al., 1986), no con-
temporary dataset is available in the region of deployment of
the hail sensors. However, measurements from hailpads col-
lected in northeastern Italy have been used by Kopp et al.
(2023a) to perform a comparison between the two types of
instruments. The study found that their distribution of diam-
eter sizes, aggregated over multiple hail events, are almost
identical for diameters up to 18 mm.

Spectrometers equipped with a hail/rain separator (Federer
and Waldvogel, 1975) and “hail catchers” (Cheng and En-
glish, 1983) have also been used in early studies on hail size.
Some of these data sources provided the basis for the devel-
opment of the exponential model of the hail size distribution,
originally formulated and expanded upon in the decades fol-
lowing the 1960s (Douglas, 1963; Waldvogel et al., 1978).
As mentioned previously, the subject of these analyses dif-
fers from the HSND, since it is computed over a unit area
and time. This quantity is typically indicated by N(D), with
D denoting the diameter and the quantity N(D)dD provid-
ing the number of hailstones per unit volume whose size is
between D and D+ dD. The exponential model for the hail

size distribution is usually formulated as follows:

N(D)=N0e
−3D , (1)

with N(D) usually expressed in m−3 cm−1.
In the expression above, N0 (same units as N(D)) and 3

(cm−1) are two of the parameters of the exponential model,
while a third one (Dmax, using the same units as D) is pro-
vided by the condition 0.5 cm<D <Dmax. The relationship
between these parameters, possibly leading to a simplified
model with only two independent parameters, as well as their
link to other physical quantities, such as the kinetic energy
and mass fluxes, has been explored by Ulbrich and Atlas
(1982).

While the exponential relationship constitutes a valid rep-
resentation of the HSD, the relatively large size of the dataset
collected by the hail sensors allows us to experiment with
an alternative approach. In this study, we propose the use of
double-moment normalization to model the HSND, follow-
ing the work conducted by Lee et al. (2004) for the drop size
distribution (DSD). Similarly to the hail case, an exponen-
tial relationship between N(D) and D to represent the DSD
has been proposed by early studies on the topic (Marshall
and Palmer, 1948), albeit with some differences, such as the
absence of a minimum or maximum value for D. Later stud-
ies have proposed a generalization, of which the exponen-
tial model represents a particular case, in the form of single-
moment normalization (Sempere-Torres et al., 1994, 1998).
To address some issues with different rainfall types, Lee et al.
(2004) introduced the double-moment normalization, which
allows for representing a DSD using two of its moments and
knowledge of the “normalized distribution”. The latter pro-
vides the overall shape of the DSD and is assumed to be in-
variant over the geographical region and period of time for
which it is used. This property of the normalized distribu-
tion is linked to its independence from the value of the mo-
ments of the DSD (or HSND, in our case), as explained by
Lee et al. (2004). When compared to the method proposed by
Sempere-Torres et al. (1998), the double-moment normaliza-
tion better captures the natural variability in the shape of the
distributions, thanks to the addition of another moment.

A clear benefit of using the double-moment normalization,
at least in the case of liquid precipitation, lies in the links that
can be found between the empirical moments of the distribu-
tion and some radar variables. This relationship allows for the
retrieval of the DSD from radar measurements, covering ar-
eas much larger than the one that would be possible to cover
by in situ instruments, such as disdrometers. This option has
been explored by Raupach and Berne (2017) in the case of
rain; it has been expanded to the small drop sizes of the DSD
(called the drizzle mode) by Raupach et al. (2019), and ex-
amples of research on the topic can be found in contempo-
rary scientific literature (Lee et al., 2023). Using a similar
model for the HSND would, in theory, allow future studies
to mimic the aforementioned studies, ultimately allowing for
the retrieval of the HSND from radar scans. The applicability
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of the double-moment normalization to hail measurements
has already been demonstrated by Field et al. (2019), us-
ing data collected by an airplane inside thunderstorm clouds.
This measurement setup differs from the one used in the cur-
rent article since the hail sensor network provides diameter
estimates at the ground. Phenomena occurring on the falling
hailstones, such as melting (Mason, 1956), may affect their
size, leading to some differences in the HSD. Other differ-
ences between the current analysis and the one presented by
Field et al. (2019) include the evaluation of the spatial in-
variability of the normalized distribution and the usage of
different moment orders.

The usage of a storm-penetrating aircraft does not repre-
sent the sole possible source of airborne measurements of
hail size. The study conducted by Lainer et al. (2024) uses
images collected by a drone, over a relatively flat and uni-
form surface, to retrieve the projection on the view plane at
the ground of the major and minor axes of hailstones. In their
study, the distribution of these estimates of hail sizes is com-
pared to the ones captured by three neighboring hail sensors.
Thanks to the relatively large surface covered by the drone
(750 m2), the number of hailstones recorded during a single
event greatly exceeds the typical number of impacts on an in-
dividual hail sensor. The same dataset of drone-derived hail
size estimates is used in the current study to evaluate how the
parameters of the double-moment normalization, retrieved
solely from hail sensor data, can be applied to a HSND re-
trieved from a different data source.

This comparison with the drone-derived data also allows
us to evaluate the validity of using the HSND rather than the
HSD for our analysis. As mentioned previously, the quan-
tity that we model is not normalized over a unit surface and
a fixed time duration, and throughout the study, it will be
denoted by Nu(D) (where the subscript u stands for unnor-
malized). While N(D) allows for a more direct comparison
between different data sources,Nu(D) offers an advantage in
the simplicity of its computation, which requires no knowl-
edge of the precise area of detection, timing of the impacts, or
duration of the event. These last two aspects become relevant
for distributions derived a posteriori, as is the case for the
drone. However, this lack of normalization leads to consider-
able differences in the values of Nu(D), which become par-
ticularly noticeable in the comparison between drone and hail
sensor. Since the parameters of the double-moment normal-
ization have been computed solely on the hail sensor data, the
performances of the method on the drone HSND will provide
information on its independence from the event duration and
the area over which measurements have been collected.

The current study is structured as follows. Section 2 intro-
duces the datasets and their processing, leading to the def-
inition of the HSNDs. Section 3 describes the method, in-
cluding the theory behind the double-moment normalization
and the error metrics used throughout the analysis. The re-
sults pertaining to the normalized distributions are presented
in Sect. 5, while the ones relative to the HSNDs are in Sect. 6.

Finally, Sect. 7 provides a summary and the conclusions of
the study.

2 Data

In this section, we present the two datasets used in the cur-
rent analysis. Both datasets are comprised of measurements
of hail diameters: the first one is a set of HSNDs collected
by the Swiss network of automatic hail sensors, and the sec-
ond one is a single distribution of hail sizes recorded through
drone photogrammetry.

2.1 Hail sensors

In the period between 2018 and 2020, 80 automatic hail sen-
sors have been deployed in three regions, representing the
three main hot spots for hail in Switzerland: Jura (15 sen-
sors) and Napf (38 sensors) north of the Alps and Ticino
(27 sensors) south of them. Among the three regions, Ticino
stands out as the one where the largest hailstones have been
recorded. Their locations are shown in Fig. 1. While the mi-
crophysical mechanisms involved in the formation of hail are
expected to be the same everywhere, it has been found that
hailstorm frequency and intensity differ between the three re-
gions (Feldmann et al., 2023). Additional information on the
relative positions of the instruments in each region is visible
in the three panels at the bottom of the figure. While detailed
information on the hail sensors and their measurements has
been presented by Kopp et al. (2023a), here we summarize a
series of relevant information for the current analysis.

The hail sensor converts the oscillations caused by the
impact of falling hailstones on a Makrolon disk of approx-
imately 0.2 m2 into estimates of kinetic energy. The latter is,
in turn, converted into an estimate of the diameter (D) of the
falling hailstone. The conversion is performed by assuming
that the hailstone is spherical and has a constant drag coeffi-
cient (Löffler-Mang et al., 2011).

The dataset used in this study spans the period between
9 September 2018 and 1 September 2023. We use the same
radar reflectivity filter (> 35 dBZ) as in Kopp et al. (2023a)
to ensure that there is a storm environment in the vicinity
of the sensor and to minimize the risk of impacts not due to
hailstones. We end up with 15 902 hailstone impacts.

2.1.1 Minimum hailstone size

In addition to the previously mentioned conditions, we ap-
plied a minimum threshold on the size of hailstones, set
to Dmin= 5 mm, following the definition provided by the
“Glossary of Meteorology” (American Meteorological Soci-
ety, 2023). This condition reduces the dataset size to 13 926
impacts. As described by Kopp et al. (2023a), in the process-
ing of the raw measurements of the sensors, a threshold con-
trols the minimum detectable hail size, and diameters below
this threshold are excluded. Until 2022, the threshold was
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Figure 1. The location of the three groups of hail sensors displayed
on the elevation map of Switzerland. The groups are shown as dif-
ferent markers: red circles for Jura, purple diamonds for Napf, and
green triangles for Ticino. A yellow star indicates the location in
which the drone measurements have been collected. While panel (a)
provides an overview of the entire Swiss territory, the details of each
region are provided in the bottom row of panels: panel (b) for Jura,
panel (c) for Napf, and panel (d) for Ticino. The digital elevation
model used in all panels has been provided by the Federal Office of
Topography Swisstopo (2021).

not adjusted every time a sensor was recalibrated, resulting
in a varying lower limit of hail size diameters. As of 2023,
the calibration procedure has been changed, and the lower
threshold is systematically set back to 5 mm.

This variation in the lower limit led to the recording of di-
ameters below 5 mm. The condition D> 5 mm ensures that
such impacts are excluded from our study. HSNDs truncated
at a minimum diameter higher than 5 mm also happened in
some cases. While the minimum diameter can reach up to
8 mm in a handful of extreme cases, minimum values of
6 mm or even 7 mm are relatively more common. Excluding
all measurements below these thresholds would, however,
greatly reduce the number of data available for the analysis,
undermining its robustness. For example, the fit of the gener-
alized gamma function over the normalized distributions, de-
scribed in Sect. 3.1, relies on the availability of a sufficiently
large dataset. The quality of this fit (and of the results deriv-
ing from it) would decrease if we were to remove all data
from the range of diameters in which the highest number of
impacts has been recorded. Therefore, rather than increasing
the minimum threshold, we decided to estimate the impact

of the missing diameters in the lower end of the distribution
on the value of its empirical moments, which play a crucial
role in the double-moment normalization of the HSNDs. This
analysis is presented in Sect. 4.

2.1.2 Definition of the hail events

Once the dataset has been processed, we analyze the time se-
ries of impacts recorded by each hail sensor to identify sep-
arate events. Each of them has been defined as a period in
which hailstones are recorded with a gap between consecu-
tive impacts of less than 15 min, corresponding to the largest
suitable blank period indicated by Kopp et al. (2023a).

Our implementation of the double-moment normalization
follows similar studies, in which the method has been ap-
plied to rain (Raupach and Berne, 2017) and drizzle (Rau-
pach et al., 2019) measurements. These articles, however, uti-
lize datasets considerably larger than the one recorded by the
Swiss hail sensor network, as can be expected given the rela-
tively low frequency of occurrence of hail compared to rain.
Therefore, the method needs to be adapted to accommodate
the lower number of measurements available. We decided to
use the “hail event” as the smallest temporal unit over which
the HSND is computed, without further subdividing it into
intervals with a fixed time duration.

The number of hailstones recorded in the available events
varies considerably. In some cases, the number can be too
low for a meaningful computation of the empirical moments.
Therefore, a threshold on the minimum number of impacts
for each event has to be enforced. We performed a series of
tests to estimate its effect on the dataset size by setting this
minimum number to the following values: 20, 25, 30, 35,
40, 45, and 50. The number of events in the dataset varies
between 129 (threshold equal to 20) and 64 (threshold equal
to 50).

A compromise value equal to 30 impacts has been chosen.
The total number of hailstones in the events that satisfy this
threshold is 9082. While there is a degree of arbitrariness be-
hind this choice, the threshold value has been selected for the
relatively large size of the resulting dataset (97 events) while
also having a limited impact on the largest diameters avail-
able in the various HSNDs. In particular, we focused on im-
pacts for which D> 15 mm, which are rare and particularly
valuable, for their importance in accurately representing the
tail of the HSND. For these relatively large diameters, impos-
ing a minimum threshold equal to 30 removes only 2 more
hailstones across all events than the smallest threshold (20).
This number increases for larger minimum values, as more
events are excluded, reaching 11 additional impacts removed
for the highest threshold (50).

The resulting HSNDs for all events are displayed as a
two-dimensional histogram in Fig. 2. The binning of D has
been performed using a constant width dD= 1 mm, and the
number of impacts recorded at each bin is Nu(D)dD. The
figure shows a relatively large difference in the value of
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Figure 2. Hail size number distributions from the hail sensors and
the drone. The number of impacts for each diameter value (reso-
lution of 1 mm) in all events recorded by the hail sensor is shown
as a two-dimensional color bar, with the conversion between color
and counts provided by the color bar on the right of the panel. The
number of impacts recorded by the drone is shown as an continuous
orange line for diameters above 5 mm.

Nu(D) among the events, especially for the smallest diam-
eters. Another noticeable aspect of Fig. 2 is the scarcity of
measurements for the largest diameters (e.g., above 20 mm),
for which a majority of the events do not have available
data. In total, only eight events in our dataset have hail-
stones with D> 20 mm, while the largest diameter recorded
is D= 41.8 mm. The potential impact of the missing mea-
surements at the tail of the HSND is further explored in
Sect. 4, in which we address their effect on the value of the
empirical moments.

2.2 Drone observations

Estimates of hail size derived from drone photogrammetry
(Lainer et al., 2024) constitute the second data source in
this study. The distribution of diameters derived from the
drone observations during a hail event near Entlebuch (can-
ton of Lucerne, Switzerland) on 20 June 2021, over a field
with an area of approximately 750 m2, is used for valida-
tion purposes. Their independent origin allows us to ver-
ify whether the double-moment normalization derived from
the hail sensor measurements captures the intrinsic qualities
of the HSND. Additionally, thanks to the larger values of
Nu(D) recorded by the drone, we can test how well the re-
sults scale to different sizes of the HSND.

The starting points of our analysis are the minimum and
maximum diameters of hailstones, projected onto the image
plane as seen by the drone, derived by Lainer et al. (2024).
Using each pair of values as the axes of an ellipse, we can
compute the diameter of a circle with the same area. This
value, referred to as the equivalent diameter, is used in the
rest of the analysis.

To allow for a meaningful comparison with the measure-
ments collected by the hail sensor, we decided to impose the

minimum threshold D>Dmin mm on the drone HSND. The
value of Nu(D) for each discrete diameter bin (2 mm inter-
vals) is shown as orange circles in Fig. 2.

Figure 2 also provides us with a direct comparison be-
tween the HSNDs recorded by the drone and the hail sen-
sors. Due to the difference in measuring area (approximately
750 m2 for the drone and 0.2 m2 for each hail sensor), the
drone stands out for the much larger values of Nu(D), which
can reach up to several thousands of impacts for the smallest
diameters. At higher values of D, the availability of a rel-
atively high number of hailstones allows us to evaluate the
double-moment normalization on diameters rarely observed
in the hail sensor dataset.

3 Method

This section provides a brief introduction to the theory be-
hind the double-moment normalization and its implementa-
tion, as well as the definition of a series of error metrics used
throughout the analysis.

3.1 Double-moment normalization

As mentioned in the Introduction, the double-moment nor-
malization was originally introduced by Lee et al. (2004),
with the explicit aim of providing a general representation of
drop size distributions. However, the structure of our analy-
sis follows more closely the one performed by Raupach et al.
(2019), and we will therefore borrow the notation of the latter
throughout our study. Please note that the underlying theory
between the aforementioned studies is the same, and in the
current section, it has been adapted for use with HSNDs.

The starting point of our analysis is the hailstone diame-
ters (D), available from the hail sensor and drone datasets. In
the previous section, we introduced the quantity Nu(D), rep-
resenting the number of impacts recorded at a certain value
of D. Visual representations of the HSND, such as the one
in Fig. 2, require a discrete binning of the range of diame-
ter values, in order to compute the value Nu(D). With such
a binning in place, Nu(D) represents a density of hailstones
per diameter bin, and it is expressed in number of impacts
(no.) per bin. The choice of the size of these bins is arbitrary,
and we assume that, in theory, hailstone sizes vary continu-
ously. Under this continuous assumption, we can better re-
define Nu(D)dD as the number of impacts recorded in an
intervalD+dD, where dD has an infinitesimal size. We can
therefore define the moment of order p of the distributions as

Mp =

Dmax∫
Dmin

Nu(D)D
pdD, (2)

with Dmax denoting the maximum hailstone size. Following
this formulation, the total number of hailstones is therefore
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given by

M0 =

Dmax∫
Dmin

Nu(D)D
pdD. (3)

In practice, for an event with a finite number of impacts, the
integral becomes a sum over all the measured diameters, el-
evated to a power equal to p.

Given two different orders, i and j , we can use the corre-
sponding empirical moments Mi and Mj to define a unitless
quantity called normalized diameter, indicated by the symbol
x and computed using the following formula:

x =
M

1/(j−i)
i

M
1/(j−i)
j

D. (4)

This quantity allows us to compute the normalized distri-
bution, denoted by h(x), and it is linked to the empirical mo-
ments and to the original HSND by the equation

h(x) =
M
(i+1)/(j−i)
j

M
(j+1)/(j−i)
i

Nu(D)

=
M
(i+1)/(j−i)
j

M
(j+1)/(j−i)
i

Nu

M1/(j−i)
j

M
1/(j−i)
i

x

 . (5)

By using HSNDs as input, rather than HSDs, we hypothe-
size that the normalization behind the computation of h(x)
allows for the direct comparison of normalized distributions
from events of different durations and recorded over differ-
ent areas. In practical terms, once a bin size is defined for
x, we can compute the value of h(x) for each event in our
dataset. This provides us with a set of normalized distribu-
tions based on hail measurements, which can be used to esti-
mate an analytical counterpart. This counterpart, denoted by
ĥ(x), is obtained by fitting a generalized gamma distribution
over h(x). In our case, the fit is performed over a subset of
all available events: the training set, defined in Sect. 5.1. Our
approach differs from the one described by Raupach et al.
(2019) since, in our case, the fit uses the values of h(x) from
all events instead of the median or average values at each
discrete x bin.

The analytical form chosen for ĥ(x) is

ĥ(x)= c
0
(j+cµ)/(i−j)
i

0
(i+cµ)/(i−j)
j

xcµ−1 exp

[
−

(
0i

0j

)c/(i−j)
xc

]
, (6)

where µ and c are the parameters of the generalized gamma
distribution, 0 represents the incomplete gamma function,
and the quantity 0p (with p= i or p= j ) is defined by
0p =0(µ+p/c).

As written, Eq. (6) involves ratios of large numbers, re-
sulting from elevating 0i and 0j to an exponent depending

on the moment orders and the parameters µ and c. During
the fitting procedure, as the algorithm modifies the value of
µ and c, issues can arise when any factor in Eq. (6) exceeds
the maximum value allowed for the variable that holds the
result. Even when this limit is not exceeded, performing a
division between very large numbers can result in a loss of
precision. Therefore, we decided to replace the 0 functions
with its logarithm, using the “loggamma” function from the
Python library “scipy” (Virtanen et al., 2020). This allows us,
in turn, to perform subtractions and multiplications in place
of the original divisions and exponentiation. Once these op-
erations have been performed, we compute the exponential
of the results, giving us the same value that we would origi-
nally have obtained from Eq. (6). This procedure effectively
increases the range of suitable values for µ and c, which has
been set to [10−6,500] for both parameters during the fitting
procedure.

After implementing these adjustments to ĥ(x), the fit
can be performed by minimizing the root-mean-square er-
ror (RMSE, defined in Sect. 3.2) between the logarithm of
the various h(x) values in the training set and the logarithm
of ĥ(x). The parameters µ and c have both been initialized
with the value 1, which would result in ĥ(x) having a simple
exponential form. Once ĥ(x) has been estimated, it is used
alongside the empirical moments Mi and Mj to compute an
estimated HSND, indicated by N̂u(D), using the following
formula:

N̂u(D)=
M
(j+1)/(j−i)
i

M
(i+1)/(j−i)
j

ĥ(x). (7)

In summary, we aim to derive a single ĥ(x) function, valid
for the whole of Switzerland and possibly beyond, that can
be used to approximate measured HSNDs using two of their
empirical moments. In practical terms, ĥ(x) fitted over the
training set of hail sensor measurements is used to compute
N̂u(D) over all the available datasets, including the HSND
derived from the drone observations.

3.2 Error metrics

In this section, we introduce a series of metrics to evalu-
ate how closely an estimated value (V̂ ) matches a reference
one (V ). Examples of such comparisons include evaluating
the similarity between N̂u(D) and Nu(D) or estimating the
differences between the values of h(x) in each of the three
regions of deployment of the hail sensors. Given the simi-
larities between our analysis and the one by Raupach et al.
(2019), we will follow the latter in defining the error metrics
used in our analysis.

The quantities V and V̂ depend on the subject of the com-
parison. When dealing with distributions, such asNu(D) and
h(x), the variables D and x undergo a binning procedure,
which divides them into equal intervals, to which an index
k = 1, . . ., K is assigned. Note that in the computation of
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the error metrics, the index k spans the interval of diam-
eters between the smallest and largest hailstones recorded
for the event taken into consideration. At each bin Dk (or
xk), the (normalized) distribution will have a single value
Nu(Dk) (h(xk)). The latter corresponds to Vk in the defini-
tion of the error metrics presented in the following formulas,
while the reconstructed N̂u(Dk) (ĥ(xk)) is used as V̂k . How-
ever, in Sect. 4, the same error metrics are used for the com-
parison of a different set of quantities: the moments of the
distributions. In that specific case, the index k = 1, . . ., K in-
dicates the numbering of the hail events in the dataset, while
Vk and V̂k represent the measured and estimated moments of
the HSND for that specific event.

Having defined the meaning of Vk and V̂k , we can proceed
with the introduction of the first two error metrics:

– the bias, computed as

bias=
1
K

K∑
k=1

(
V̂k −Vk

)
,

– the root-mean-square error (RMSE), defined as

RMSE=

√√√√ 1
K

K∑
k=1

(
V̂k −Vk

)2
.

While RMSE gives us information on the overall error be-
tween the estimated and reference distributions, the bias pro-
vides some additional insight into potential underestimation
or overestimation. Both metrics share the same units, which
depend on the quantities that are compared and which will be
specified throughout the text.

The third metric is the relative bias, expressed as a per-
centage, and defined as

Relative bias= 100 ·
V̂k −Vk

Vk
.

Only non-zero values of Vk can be used for the computation.
Unlike the previous metrics, the relative bias provides us with
K values, one for each index k.

The last metric used in this study is the Pearson correla-
tion coefficient (R), which is unitless. This quantity gives us
a measure of the linear correlation between the reference val-
ues and the estimated ones.

4 Selection of the HSND moments

As anticipated in Sect. 2.1.1 and 2.1.2, there are a series of
factors that can impact the number of hailstones recorded
at the two ends of the HSND. One of them is the issue
with the smallest detectable diameter, which may lead to
the exclusion of some potentially valid measurements from

the dataset. This effect is most noticeable for diameters be-
low 7 mm. Another factor affecting Nu(D) is the choice of a
threshold on the minimum number of hailstones in an event,
which can result in the exclusion of some of the largest di-
ameters. Furthermore, due to the rarity of big hailstones, the
randomness of the impacts on the relatively small surface of
the hail sensor has the potential to affect the representative-
ness of the tail of the measured HSND. This issue has been
the topic of previous literature (Grieser and Hill, 2019).

In this section, we examine the effect of these missing
measurements on the value of the empirical moments com-
puted for each event. As described in Sect. 3.1, the double-
moment normalization requires the selection of two orders,
denoted by i and j . The current analysis allows us to choose
the values of i and j to limit, as much as possible, the impact
of missing sections of the HSND on Mi and Mj .

The empirical moments of orders between 0 and 6 have
been computed for all the events recorded by the hail sen-
sors, providing us with a set of reference values. The compu-
tation of the moments is repeated over three sets of modified
HSNDs. Two types of changes are implemented:

– removal of hailstones with relatively small diameters,
defined as the ones with D< 7 mm,

– removal of hailstones with a relatively large diameter,
comprising all diameters above the quantile 0.9 of the
HSND for each event.

The first two sets have been created by applying the two con-
ditions separately, and in the third one, the two sets have been
used at the same time. Using the error metrics introduced in
Sect. 3.2, the moments from the original set of HSNDs are
compared to the ones from the modified distributions, and
the results are displayed in Fig. 3.

The relationship between the orders and the value of
bias and RMSE has a straightforward explanation. The
double-moment normalization, in the formulation presented
in Sect. 3.1, requires the usage of the non-standardized em-
pirical moments. Therefore, the value of the moments used
for the current analysis increases considerably with the or-
der, since the latter is used in the exponentiation of the value
of the diameters. A comparison between high-order moments
will likely yield differences that are larger, in absolute value,
than their low-order counterparts. Nevertheless, Fig. 3a and b
provide some useful insight into how the removal of small or
large hailstones affects the value of the empirical moments. A
comparison with the moments computed after removing both
(blue bars in the figure) reveals that the exclusion of diame-
ters below 7 mm (light gray bars) is likely the largest con-
tributor for the lowest orders. On the contrary, the removal
of diameters larger than the quantile 0.9 of the HSNDs (dark
gray bars) dominates the error at the highest orders.

Instead of increasing monotonically like the bias and
RMSE, the relative bias (Fig. 3c) and the Pearson correlation
coefficient (Fig. 3d) reach their optima at orders 2 and 3. This
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Figure 3. Comparison of the value of the empirical moments (orders 0 to 6) computed from the original HSND and from the ones in which
small and/or large hailstones have been removed. The analysis uses measurements from all the events of the dataset. Panel (a) shows the bias
between the two sets of moments, panel (b) shows the RMSE, panel (c) shows the relative bias, and panel (d) shows the Pearson correlation
coefficient. The moment order is displayed on the x axis, while the value of the error metric is on the y axis. In panels (a), (b), and (d), the
height of each bar indicates the value of the metric, while in panel (c) the relative bias is shown as a boxplot, in which the central horizontal
line indicates its median value, the box shows the interquartile range (IQR), the capped vertical line represents the location of the quantiles
0.05 and 0.95, and circular markers show values outside this range. The color of the bar/box indicates the HSND used for the comparison:
light gray ones indicate the removal of impacts withD< 7 mm, while the dark gray ones refer to the removal of diameters above the quantile
0.9 of the HSND; the combination of the previous two conditions are shown by the color blue.

behavior can be explained by the combined effect of remov-
ing small and large hailstones, affecting more noticeably the
low- and high-moment orders, and having a smaller impact
on the orders in the middle. Similarly to the bias, the relative
bias is always negative in this comparison, since the removal
of a certain number of impacts from the HSND necessarily
results in a lower value for the empirical moments. The lat-
ter can be considerably lower than its counterpart computed
from the original HSND, as shown in Fig. 3c, where the rela-
tive difference is below −50 % in most cases. The difference
becomes slightly more noticeable at the highest orders than
at the lowest ones. The correlation coefficient behaves simi-

larly, with moments 2 and 3 havingR values above 0.9, while
moment 6 does not even reach a correlation of 0.5. In this
case, the R of the moment of order 4 is considerably lower
than the one visible for order 1.

The information that these four error metrics give us can
be used to select the pair of orders [i,j ] to be used for the
double-moment normalization. In the case of its application
to drop size distributions, Lee et al. (2004) highlight the im-
portance of choosing two non-consecutive orders. Despite
our analysis being centered on hail, rather than rain, we will
follow the same indication. According to the values of rela-
tive bias and R shown in Fig. 3, the orders that are the least
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affected by potential missing diameters at the two ends of
the HSND are the ones between 1 and 4, with the best values
visible at orders 2 and 3.

We selected the order pair [2,4] for performing the rest
of the analysis. This choice results in the following formula-
tions of the normalized diameter and distribution:

x =

√
M2

M4
D, (8)

h(x)=

√
M3

4

M5
2
Nu

(
x

√
M4

M2

)
. (9)

Results for all other pairs can be found in Appendix A. The
latter shows issues in the fit of ˆh(x) for the pair [1,3], which
explains our choice of [2,4] despite order 4 being potentially
more negatively affected than order 1. However, the same
appendix section highlights the relatively small differences
between the error metrics associated with the pair [2,4] and
some of the other tested ones. Therefore, the moment com-
bination [2,4] in this article represents only one among the
many potentially valid pairs that may be used when applying
the double-moment normalization to other HSND datasets.

5 Normalized distributions

The main benefit of computing a normalized distribution is
the reduced spread of the h(x) values at each x when com-
pared to the considerable variability of Nu(D) at each D.
In situations in which the method is applicable, the mo-
ments capture most of the natural variability of the mea-
sured distributions. At the same time, h(x) is independent of
these moments; therefore, differences in its value across the
events considered are assumed to be small. This effect, some-
times referred to as the “collapse” of the normalized distribu-
tions, is what allows us to fit ĥ(x), as described in Sect. 3.1.
Throughout this section, all normalized distributions have
been computed at discrete values of the normalized diame-
ter x. The range of x values has been divided into intervals
dx= 0.1, and in the text, we will refer to each of these inter-
vals by the value of their center point (e.g., x= 0.85 indicates
the values between x= 0.8 and x= 0.9).

5.1 Definition of training and test sets

As mentioned in Sect. 3.1, the measurements collected by
the network of hail sensors have been split into a training set
and a test set. While the former provides us with the data to
compute ĥ(x), the latter is used for the evaluation of the fit of
the normalized distribution and, later in the text, of the simi-
larity between N̂u(D) and Nu(D). The training and test sets
contain approximately 70 % (67 events) and 30 % (27) of the
whole hail sensor dataset, respectively. Data are assigned to

Figure 4. Normalized distributions from the hail sensors and drone
measurements. The value of h(x) at each discrete normalized diam-
eter (intervals dx= 0.1) for the events in the training (a) and test (b)
sets recorded by the hail sensors are shown as a two-dimensional
histogram, with the conversion between color and counts provided
by the color bars on the right of the panels. The fitted generalized
gamma function is represented by a continuous black line, and the
parameters µ and c are shown in the top right corner of panel (a).
The values of h(x) for the drone event are shown as orange circles.

the two sets using the Python pseudo-random number gen-
erator (Python Software Foundation, 2023) and following a
simple set of rules: no hail sensor location can appear in both
sets, and the data from the three regions (Jura, Napf, Ticino)
must follow the same 70 % and 30 % split. Therefore, data
from each region appear in both the training and test sets.
Results from an alternative set definition, in which regions
are kept separated, are presented in Sect. 5.4.

Figure 4 shows the values of h(x) from the training
(Fig. 4a) and test (Fig. 4b) sets. Given the presence of tens
of events in each of them, we decided to display the rela-
tionship between x and h(x) as a two-dimensional histogram
instead of individual curves. The highest numbers of counts
in the histogram are clustered in a relatively narrow band,
which follows a negative trend, with the highest values of
h(x) visible at the smallest normalized diameters.

5.2 Fit of the normalized distributions

Once the value of h(x) has been computed for all the events
in the training set, we can fit ĥ(x). In practical terms, the
fit is performed by minimizing the RMSE between ĥ(x) and
the values of h(x) (in linear units) from individual events
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in the training set. However, the RMSE can be sensitive to
a few isolated points if they deviate considerably from the
narrow band of values that we are attempting to capture with
the fit. In Fig. 4, examples of such points can be found at the
lowest and highest x. Therefore, the fit has been limited to the
discrete x for which at least five valid h(x) values have been
recorded in the training set. This condition effectively limits
the interval of suitable x between x= 0.45 and x= 1.75.

The fit has been repeated with no limits on the minimum
number of valid h(x) to assess its impact on the final product.
While the differences in N̂u(D) between the two cases are
minor, limiting the x interval has some small benefit in im-
proving the performances for higher diameter sizes. A larger
threshold (equal to 10) on the number of valid h(x) has also
been tested, but the excessive limitation that it imposes on
the range of suitable x results in the fitting procedure failing
to find optimal values for µ and c.

With the chosen condition in place, the values of the two
parameters resulting from the fit are c= 0.41 and µ= 36.
Interestingly, the same method applied to the modeling of
DSDs results in a slightly higher value for c and a consider-
ably lower one for µ (Raupach and Berne, 2017). The curve
associated with the parameters resulting from our fit is

ĥ(x)= 0.41
08.4

4

09.4
2
x14 exp

[
−

(
04

02

)0.21

x0.41

]
, (10)

and it has been displayed as a continuous black line over
the normalized distributions of the training (Fig. 4a) and test
(Fig. 4b) sets. The gamma model follows the region with the
highest counts in the two-dimensional histograms, especially
for x close to 1.

The error metrics introduced in Sect. 3.2 provide us with a
way to quantify the similarity between ĥ(x) and h(x). Their
values are displayed at the two leftmost positions in the four
panels that compose Fig. 5. The error metrics have been com-
puted separately for each event, resulting in tens of values
for each set. We decided to summarize this information by
showing a series of statistics of their distribution. The type of
visualization used is known as a boxplot, which comprises a
horizontal line indicating the median value, a box represent-
ing the interquartile range (IQR), two capped lines to show
the position of the quantiles 0.05 and 0.95, and circular mark-
ers displaying all values outside this interval. Since the rel-
ative bias provides us with a series of values for each event
(instead of a single number), we decided to show only the
distribution of its mean for each event in the training and test
sets.

Figure 5a reveals the predominance of negative values for
the bias, which are consistent with the position of the ĥ(x)
curve in Fig. 4, slightly below the region with the highest
count numbers in the histogram. The bias over the train-
ing and test sets have similar median values, while a more
marked difference can be observed in the RMSE, in Fig. 5b.
Both metrics are likely considerably more affected by the er-

Figure 5. Comparison of the fitted ĥ(x) with the normalized dis-
tributions in the training and test sets, as well as with h(x) com-
puted from the drone measurements. Each panel shows a different
error metric, following the same order as Fig. 3. The values of each
metric in the training and test sets are shown as boxplots, with a
structure analogous to the one used for the relative bias in Fig. 3.
The values of the error metrics for the drone event are shown as an
orange circle.

rors at the smallest normalized diameters for which h(x) is
orders of magnitude larger than at the highest x values. While
the generalized gamma model struggles to adequately fit the
values for x < 0.5, we could not find a suitable alternative
that results in better overall performances. From a visual in-
spection of Fig. 4, it may seem that an exponential model for
ĥ(x) may better capture the trend in the data points. How-
ever, given the conditions defining the ĥ(x) candidates suit-
able for the double-moment normalization, in the current for-
mulation the only possible exponential model would be the
one obtained by replacing µ= 1 and c= 1 in Eq. (6). We
tested this possibility, and while it reduces the underestima-
tions for the smallest normalized diameters for the moment
pair [2,4], it also results in a slightly higher underestimation
for the remaining x interval while also lowering the overall
performances in all other error metrics. However, the expo-
nential could represent a valid alternative form of ĥ(x) for
other moment pairs for which an optimum value of µ or c
cannot be found within the valid interval. The error metrics
resulting from this approach are presented in Appendix B.

Returning to the analysis of Fig. 5, the relative bias is cen-
tered around 0 %, but the location of the quantiles is asym-
metrical, with the quantile 0.05 closer to the median than the
quantile 0.95. More variability can be observed in the train-
ing set than in the test set, probably due to the higher number
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of events present in the former. Finally, the Pearson corre-
lation coefficient behaves similarly to the RMSE, with the
training set having a better score than the test set. While the
former has a median value close to 0.9, the latter has a me-
dian correlation of approximately 0.8 and a larger interquar-
tile range.

Given the nature of x and h(x), the exact value of some of
the metrics can sometimes be difficult to interpret. However,
they allow us to understand better the reason behind some of
the differences between N̂u(D) andNu(D), discussed later in
the text. Additionally, they provide a reference for the com-
parison with the drone-derived dataset, presented in the next
section.

5.3 Comparison with the drone-derived normalized
distribution

The normalized distribution computed from the HSND re-
trieved by the drone is shown in Fig. 4 as a series of or-
ange circles displayed above the two-dimensional histogram
and alongside the ĥ(x) line. Despite the difference in Nu(D)

between drone and hail sensors, shown in Fig. 2, the align-
ment between the h(x) from the drone and the region with
the highest counts in the two-dimensional histogram is re-
markable, especially around x= 1. The normalized distri-
bution of the drone event follows the ĥ(x) line, too, even
though none of its measurements have been used for the fit.
Some discrepancies can be seen around x= 0.5 and x= 1.5,
where the h(x) values from the drone dataset are within the
extremes of the populated bins of the two-dimensional his-
togram but markedly above the ĥ(x) line. The drone h(x) is
again closer to the normalized distribution fit at the highest x
values, where only a handful of measurements from the hail
sensors are available.

In terms of error metrics, a comparison of ĥ(x) with the
drone-derived normalized distribution is provided in Fig. 5,
alongside the metrics for the training and test sets. A negative
value for the bias can be seen in the drone dataset, similar to
the one described in Sect. 5.2 and consistent with the loca-
tion of the fit line with respect to the h(x) markers in Fig. 4.
Contrasting with some extremely positive values in the rel-
ative bias in the hail sensor dataset, the comparison of ĥ(x)
with the drone-derived h(x) results in a negative relative bias,
once again close to the quantile 0.05 of the distributions from
the training and test sets. The Pearson correlation coefficient
is the only metric in which the fitted ĥ(x) has better perfor-
mances for the drone event than for most of the hail sensor
ones. While we do not know for certain the cause of this, it
could be linked to the drone HSND having a higher number
of impacts, especially for relatively large diameters, when
compared to the hail sensor ones. This can lead to smaller
fluctuations of h(x) for high x values and therefore a better
agreement between h(x) and ĥ(x).

Despite ĥ(x) having better skill overall in approximating
most of the hail sensor events than the drone one, its sim-

ilarity to the drone-derived h(x) is still notable. These re-
sults offer us a first confirmation of the validity of applying
the double-moment normalization to model the HSND, es-
pecially given the independent nature of the drone measure-
ments and their coverage of diameter ranges rarely recorded
by the hail sensors. However, the ability of a unique ĥ(x)
to correctly represent the normalized distribution throughout
the Swiss territory still needs to be tested. This verification
of the spatial invariability of the normalized distributions is
presented in the next section.

5.4 Spatial invariability of the normalized distributions

While the previous analysis was based on a comparison of
ĥ(x), computed using data from all three regions, with the
values of h(x) derived from drone and hail sensor measure-
ments, in this section we present a comparison of normalized
distributions from the three regions of deployment of the hail
sensors. By looking at how much the h(x) values from each
region resemble the ones from the same and other regions,
we can investigate whether significant differences between
them exist. We also provide the results of a set of alternative
ĥ(x) fits, computed over two regions and verified over the
remaining one.

The first comparison has been performed on an event-by-
event basis, and the values of the resulting error metrics are
shown in Fig. 6. For each event in a reference region, indi-
cated on the x axis of the figure, its normalized distribution
is compared to h(x) from a different event, whose geograph-
ical region is indicated by the color of the boxplot. Given the
high number of possible combinations, the spread of values
in each metric is larger than in previous figures of the same
type.

In all regions, the bias is within the interval [−1,+1] for
the majority of the events. Ticino stands out for its higher
bias values when compared to the other two regions. The
RMSE distributions have median values close to 1, with al-
most the totality of event pairs having values between 0.1 and
10. Lower RMSE can be consistently seen when Jura or Napf
are the reference regions, while Ticino often has the highest
ones, with some remarkable extreme values. The relative bias
is often negative and further from the 0 % line when Ticino
is the reference. Furthermore, while a large majority of event
pairs have a relative bias between −50 % and 50 %, there
are some exceptional values, reaching up to 1000 %, espe-
cially for Ticino. The Pearson correlation coefficient varies
considerably, with Jura once again offering the best score
when used as the reference. Negative correlations are visi-
ble in all cases, even though they represent a minority of all
event pairs.

Despite the regional differences listed above, the similarity
in the error metrics among the different combinations is no-
ticeable. In all cases, the median value of the metric for event
pairs belonging to the same region is within the interquartile
range of the values for events from different regions. Addi-
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Figure 6. Comparison of the normalized distributions from all the events recorded in each of the three regions of deployment of the hail
sensors. The comparison is performed between all possible combination of pairs of events, one of which belongs to a reference region shown
on the x axis, while the region of the second one is shown by the line colors and the position of the boxplot: red for Jura (leftmost one), purple
for Napf (central one), and green for Ticino (on the right). All combinations of different events have been used for the computation of the
error metrics. The order in which these error metrics have been assigned to different panels and the structure of the individual boxplots are
analogous to the ones in Fig. 5. The scale of the y axis in panels (a) and (c) is linear in the intervals [−0.1,0.1] and [−100,100], respectively,
and logarithmic outside them.

tionally, the boxplots show considerable overlap between the
three IQRs (and between the interquantiles [0.05,0.95]) at
each reference region, in all four panels. These results sug-
gest that the variability of the normalized distributions of dif-
ferent events within the same region is comparable to the
variability between events from different regions. Together
with the similarity between the h(x) computed from the
drone dataset and the hail sensors one, this result is another
indicator of the potential suitability of the double-moment
normalization for modeling HSNDs over the Swiss territory.

Before proceeding with the discussion on the alternative
ĥ(x) fit, we include a short comparison between the median
value of h(x) at each x value (discretized at a resolution
dx= 0.1) from the three regions. A similar quantity has been

used by Raupach et al. (2019) to fit ĥ(x) when modeling the
distribution of drizzle diameters. While in our analysis the fit
has been performed over all events from the training set at
once, without pre-computing any statistics from the original
h(x), we decided to include a short comparison of these me-
dian values for completeness and for the clarity with which
they highlight even small differences between the regions.
The resulting error metrics are shown in Fig. 7, which fol-
lows a structure analogous to Fig. 6.

Two features of this figure are particularly relevant to our
analysis. The first is the overall goodness of all metrics in
Fig. 7 when compared with the ones in Fig. 4. Our interpreta-
tion of these results is that the differences between the typical
normalized distribution in the three regions (represented by
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Figure 7. Comparison of the median value of h(x) between the
three regions of deployment of the hail sensors. Similarly to Fig. 3,
the values of bias (a), RMSE (b), and R (d) are indicated by the
height of the vertical bars, while the information on the distribution
of the relative bias (c) is provided in the form of boxplots. As in
Fig. 6, the reference region for h(x) is shown on the x axis, while
the color of the bars/boxplots shows the region to which it is com-
pared.

the median h(x)) are smaller than the ones between the indi-
vidual h(x) values and the generalized gamma model fitted
through them. The second interesting feature is the similar-
ity between the hail events recorded in Napf and Jura. Even
though the differences between regions are relatively small,
Ticino stands out for its worse error metrics in Fig. 7. In our
opinion, while discrepancies between the typical normalized
distributions in the three regions are too faint to be captured
by the model we selected as ĥ(x), it may be possible, with a
larger dataset, to refine the analysis and explore these spatial
differences in more detail.

Finally, Fig. 8 shows the error metrics obtained by fitting
ĥ(x) over two regions and by using the remaining one for
evaluating the fit. As for Fig. 5, the bias suggests an under-
estimation of the normalized distributions. Additionally, the
values of all metrics for the three fits are comparable with the
ones shown in Fig. 5. A comparison of the three regions con-
firms their similarity, already noted in Figs. 6 and 7. In partic-
ular, a considerable overlap between the plotted interquartile
ranges can be observed for all error metrics. However, when
Napf is used to evaluate the fit, slightly worse values can be
seen for the bias, RMSE, and correlation coefficient. More-
over, the same fit is characterized by a larger interquartile

Figure 8. Comparison of the error metrics (on the y axis) associated
with the ĥ(x) fits performed over two regions, using the remaining
one for validation (indicated on the x axis). The order in which the
error metrics are displayed in the four panels is the same as in Fig. 5.
The limits of the y axis have been reduced in panels (a) and (b) to
enhance the readability. A single point with bias equal to −5.3 and
RMSE equal to 9.2, obtained when Ticino is chosen as the region
for the verification, is therefore not visible in the plots.

range for the RMSE and correlation coefficient, which could
be linked to the higher number of events recorded in Napf,
resulting in a smaller size of the training set. The fit evalu-
ated over Jura stands out, instead, for its relative bias skewed
toward positive values. As noted in the case of Fig. 7, these
small differences between regions could be further investi-
gated in future studies, when a larger dataset will be avail-
able.

6 Hail size number distributions

In this section, we examine the differences between the dis-
tributions N̂u(D) reconstructed using the double-moment
normalization and the ones retrieved by the hail sensors and
by the drone. The analysis mirrors the one of Sect. 5, with a
focus first on the hail sensor measurements and later on the
drone ones. In both cases, N̂u(D) is always computed using
ĥ(x) presented in Sect. 5.2 and the empirical moments com-
puted from the HSNDs that compose the various datasets,
following the formula in Eq. (7). The value of ĥ(x) has been
computed on a fixed series of discrete x values, separated by
an interval dx= 0.1. Since the conversion between x and D
requires the value of the empirical moments Mi and Mj , the
discretization of D varies between events. The resulting size
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of each bin is usually between 0.5 and 1 mm, but smaller and
larger values can be observed in some cases.

To better visualize the shape of the HSNDs discussed in
the next sections, we include here four examples of N̂u(D)

from different events superimposed on the measured Nu(D).
These examples, shown in Fig. 9, have been recorded by
the drone (Fig. 9a) and by the hail sensors in the three re-
gions: Jura (Fig. 9b), Napf (Fig. 9c), and Ticino (Fig. 9d).
The events displayed in the last three panels all belong to the
test set and have been selected to exemplify the variety in the
number of hailstones. In particular, Fig. 9d shows an event
with a relatively high number of impacts, a condition that is
not uncommon in Ticino, while Fig. 9b illustrates an exam-
ple with a much lower number. The event in Fig. 9c has a
number of impacts in between the previous two.

The similarity between N̂u(D) and Nu(D) for the drone
event is noteworthy, especially for diameter ranges between
10 mm<D< 20 mm and for D close to 30 mm. Since a dif-
ferent instrument (hail sensors) has been used for defining
ĥ(x), this result suggests that ĥ(x) is largely linked to mete-
orology, not the instrument. It should be noted, however, that
the reconstructed HSND underestimates the number of im-
pacts, and the same behavior can be noticed for the hail sen-
sor examples, in the other three panels. The lack of hailstones
is mainly noticeable at low diameter values, even though the
relationship between N̂u(D) and Nu(D) forD close to 5 mm
can differ, as exemplified by Fig. 9c.

6.1 Hail sensor dataset

In this section, we focus the analysis on the sole hail sen-
sor measurements. While the three events in Fig. 9 give us
some indications of how N̂u(D) matches Nu(D), a compari-
son of the two sets of HSNDs encompassing the whole train-
ing and test sets requires a different type of visualization.
Figure 10 shows two scatterplots, one for each set of hail
sensor measurements, with Nu(D) on the x axis and N̂u(D)

on the y axis, and the value of D is indicated by the color
of each marker. A logarithmic scale has been chosen due to
N̂u(D) spanning several orders of magnitude.

In both the training and test sets, a large fraction of the
pairs in the scatterplot lie close to the identity line, with
more noticeable deviation for low numbers of impacts. While
these discrepancies are made more evident by the logarithmic
scale, their existence is linked with Nu(D) being an integer
number (since it represents the number of impacts recorded
by the hail sensors in a specific diameter bin), while N̂u(D)

can be equal to any positive real one. The underestimation
of the fallen hailstones by N̂u(D), mentioned in the previ-
ous section, appears more systematic for Nu(D)> 10, which
usually corresponds to small diameters.

While Fig. 10 gives us an overview of the similarity be-
tween N̂u(D) andNu(D), a quantitative comparison requires
the usage of error metrics, whose values are shown in Fig. 11.
The value of the bias in Fig. 11a confirms again the slight un-

derestimation of the number of impacts by N̂u(D), which is
in most cases of less than five impacts per diameter bin. The
RMSE, in Fig. 11b, indicates a slightly higher overall error,
whose distribution can reach 10 impacts per bin more fre-
quently than the bias. The average relative error is centered
around 0 %, similarly to the ĥ(x) case, with an IQR reaching
values of several tens of percent. Finally, the correlation co-
efficient is relatively high, with a median value close to 0.9
for the training set and 0.8 for the test set, even though, for
the latter, the quantile 0.25 reaches values slightly below 0.7.

Given the importance of large diameters in the wider con-
text of hail studies, we decided to repeat the analysis by in-
cluding only impacts with D> 10 mm. The error metrics,
computed over events with at least five hailstones that sat-
isfy this condition, are shown in Fig. 12. Since the largest
diameters are relatively rare, the number of events available
is low. For this reason, Fig. 12 shows the error metrics for the
individual events in the test set rather than summarizing their
distribution with a boxplot.

The bias values, in Fig. 12a, are less negative than the ones
in Fig. 11a, while the RMSE is lower than the one com-
puted from the full HSNDs. This behavior is not surpris-
ing, given the rarity of large hailstones in our dataset. The
relative bias is markedly more negative than its counterpart
of Fig. 11d, highlighting the underestimation of the number
of impacts in N̂u(D). The correlation coefficient, instead, is
slightly higher, especially for the test set, even though this
metric may not be particularly robust in this case, given the
low number of data points available.

In summary, the comparisons presented in this section re-
veal an overall agreement between N̂u(D) and Nu(D), with
the former usually underestimating the hail sensor measure-
ments. The differences are particularly noticeable for diam-
eters above 10 mm, where the double-moment normalization
suffers from a relatively low number of impacts available.
In our opinion, improvements in the representation of this
part of the HSNDs may be achieved in future studies. As
the hail sensor network continues to operate, more measure-
ments will be available for computing ĥ(x) and for a more
robust evaluation of the performances, especially over rela-
tively large diameters.

6.2 Drone dataset

The drone dataset is composed of a single event, albeit with
a relatively large number of hailstones. Given the differences
in Nu(D) between the drone and hail sensor measurements,
the inclusion of the error metrics for the former in Fig. 11
would have altered the scale of the y axis, making the val-
ues associated with the hail sensor datasets difficult to read.
Therefore, we decided to present the error metrics for the
drone event separately in Table 1. The table includes values
computed over the whole HSND, as well as the ones for the
hailstones whose diameters are larger than 10 mm.
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Figure 9. Original and reconstructed HSNDs from the hail sensors and drone measurements. Each panel shows the value ofNu(D) as vertical
bars, with the color indicating their origin: drone measurements in orange (a), Jura in red (b), Napf in purple (c), and Ticino in green (d).
For the three regions, only a single event from the test set has been displayed. The HSND reconstructed using ĥ(x) and the moments from
the original HSND are shown as black lines, with circular markers indicating the exact value at the position of the bars. The value of the
reconstructed HSND beyond the minimum and maximum measured diameters is shown as a dotted gray line, with triangular markers.

Table 1. Error metrics from the comparison of Nu(D) and N̂u(D)
for the drone event. The names and values of the metrics are shown
in separate columns. Different parts of the HSND have been used
for computing the metrics shown in the two rows of the table: the
top row shows the metrics for the full HSND, while only diameters
above 10 mm have been used to compute the ones in the bottom
row.

Bias RMSE Relative bias R

[no. per bin] [no. per bin] [%] [–]

All diameters −313 640 −33.0 0.974
D> 10 mm −66.6 137 −29.5 0.987

Similarly to the hail sensor case, the double-moment nor-
malization results in an underestimation of the drone-derived
Nu(D), as indicated by the negative bias value. While both
bias and RMSE are considerably larger than their counter-
parts in Figs. 11 and 12, we should take into account that
the drone recorded a particularly large number of hailstones,
with several thousand counts for the smallest diameter bins.
This results in a relatively small (and negative) relative bias,

whose values decrease slightly for D> 10 mm. A close look
at Fig. 11c reveals a slightly worse performance over the
whole drone-derived HSND when compared to the median
relative bias for the hail sensor datasets. However, the per-
formances for diameters above 10 mm are in line with the
ones of Fig. 12d. Finally, when compared to its hail sensor
counterparts, the correlation between N̂u(D) and Nu(D) for
the drone is higher while also being computed over a larger
number of discrete D bins. A small improvement in the cor-
relation coefficient can be seen for D> 10 mm.

Overall, while the visual comparison of N̂u(D) andNu(D)

from Fig. 2.a shows a good agreement between the two, the
error metrics presented in this section highlight some in-
accuracies in the output of the double-moment normaliza-
tion. Of particular interest is the underestimation of Nu(D)

even for relatively large diameters, which confirms the pat-
tern described in the previous section, with added robust-
ness thanks to the higher number of measurements recorded
by the drone. The relatively high correlation coefficient sug-
gests that N̂u(D) follows the shape of Nu(D). So, despite
the slightly lower values of impacts in N̂u(D), we consider
these results a positive indicator of the ability of the double-
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Figure 10. Comparison of Nu(D) (on the x axis) and N̂u(D) (on the y axis) over the training (a) and test (b) sets. The value of the diameter
D corresponding to each pair [Nu(D),N̂u(D)] is shown by the color of the circular markers, while the corresponding color bar has been
placed at the bottom of the figure. The dashed gray line that divides each panel represents the identity line.

Figure 11. Error metrics from the comparison ofNu(D) and N̂u(D)
over the training and test sets. The placement of the error metrics in
each panel and the structure of the individual boxplots are the same
as in Fig. 6. While the training and test sets are shown at different
positions on the x axis, the drone HSND has been excluded from
the figure due to its considerably higher values of bias and RMSE.

Figure 12. Same as Fig. 11 but using only the values Nu(D) and
N̂u(D) for diameters above 10 mm. Measurements for at least five
discrete diameter values have to be present in each event for it to
be included in the comparison. Due to the scarcity of such events
in the test set, the values of the error metrics for each of them are
displayed individually as triangular markers.
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moment normalization to scale adequately to a much larger
number of impacts than the ones used in the training of the
algorithm.

7 Summary and conclusions

In this study, the double-moment normalization has been
used to model the shape of a series of hail size number dis-
tributions collected by the Swiss network of automatic hail
sensors. All hail events with more than 30 impacts recorded
between 9 September 2018 and 1 September 2023 have been
selected, giving us a dataset of 97 HSNDs. An additional
HSND, retrieved through the use of drone photogrammetry,
has been used to evaluate the method on an independent data
source.

According to the theory first presented by Lee et al. (2004),
the hailstone diameters (D) and their associated number of
impacts (Nu(D)) are converted to a series of normalized di-
ameters (x) and normalized distributions (h(x)). After divid-
ing the hail sensor dataset into a training set and a test set,
we used the former to fit a generalized gamma model (ĥ(x)).
The method, then, uses ĥ(x) and two empirical moments of
the original distributions (Mi and Mj ) to reconstruct an esti-
mate of the HSND (N̂u(D)).

Due to variations in the smallest hailstone size detectable
by the instrument, the lowest diameter sizes could be erro-
neously filtered out by some of the instruments for a limited
amount of time. Furthermore, the small area in which im-
pacts are detected and the relative rarity of large hailstones
can lead to a certain degree of randomness in how accurately
these large diameters are represented in the measured HSND.
Therefore, an analysis has been conducted to identify the
moments least affected by these potential missing measure-
ments, leading to the choice of the values i= 2 and j = 4
for the moment orders for the double-moment normalization.
Using this moment pair, the final formula for the HSND es-
timated by the proposed method is

N̂u(D) = 0.41

√
M5

2

M3
4

08.4
4

09.4
2

(√
M2

M4
D

)14

exp

−(04

02

)0.21
(√

M2

M4
D

)0.41 . (11)

Given the deployment of the hail sensors in three separate
regions of Switzerland (Jura, Napf, and Ticino), we tested the
similarity of the normalized distributions recorded in each
of them to verify whether a single ĥ(x) fit can accurately
represent all of them. A comparison of h(x) from individ-
ual events reveals that the variability between events from
different regions is comparable to the variability within the
region itself. Furthermore, the median values of h(x) from
the three regions show a considerable degree of similarity,
exceeding the one between ĥ(x) and most of the normalized

distributions in the training and test sets. This behavior in-
dicates a level of uniformity in h(x) over the three regions
adequate for our choice of a sole generalized gamma model
as ĥ(x). However, the relatively high variability in the nor-
malized distribution of the events in Ticino, highlighted by
the error metrics in Sect. 5.4, may indicate some differences
between this region and the remaining two. As mentioned in
the Data section, Ticino is the only region south of the Alps
and the only one in which the largest hailstones have been
recorded. These features could be investigated in future stud-
ies, when more measurements will be collected by the hail
sensors.

The fit of the normalized distribution has been evaluated
by comparing ĥ(x) with h(x) for all events. While ĥ(x) is
close to the most common values of h(x) at each discrete
x, it usually slightly underestimates the value of the normal-
ized distribution in both the training and test sets. Despite
the considerably higher number of impacts recorded by the
drone, its h(x) values are close to their hail sensor counter-
parts and ĥ(x). This underlines the reduction in variability
resulting from the usage of the normalized distribution rather
than the original HSNDs and further confirms the suitability
of the double-moment normalization to model the hail size
number distribution.

The final evaluation of the proposed method lies in a
comparison between the reconstructed and original HSNDs,
which reveals that N̂u(D) is overall similar to Nu(D). In the
case of the drone measurements, this similarity is particularly
striking, considering the difference in the number of impacts
between this event and the ones used in the training of the
algorithm. However, a negative bias is noticeable in all the
datasets analyzed. The RMSE between the reconstructed and
original distribution is often between 5 and 10 hailstones per
discrete D bin for the hail sensor, while it reaches up to sev-
eral hundreds in the drone case. This value usually decreases
when only relatively large hail stones (D> 10 mm) are taken
into consideration.

In summary, the most noticeable differences between
N̂u(D) and Nu(D) are at the two ends of the HSND. These
discrepancies, often consisting of an underestimation of the
number of impacts by N̂u(D), suggest that better perfor-
mances may be achievable by using a different function for
the ĥ(x) fit. However, the limited amount of events avail-
able in our dataset complicates the testing of complex ĥ(x)
models. The randomness and variability intrinsic to the hail
sensor measurements would undermine the robustness of a
hypothetical analysis that strays from previous studies using
a completely different model for ĥ(x). Fortunately, given the
permanent nature of the hail sensor installation, the dataset
of hail events grows with every passing year. As this num-
ber increases, future studies may be able to experiment with
more unusual functions for ĥ(x). Additional measurement
campaigns with the drone may also provide sets of events
with a high number of impacts for a correct evaluation of the
reconstructed HSND for relatively large hailstone diameters.
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If a high enough number of drone observations are collected
across different regions of Switzerland, it may also be possi-
ble to use them for further refining the fit of h(x), thanks to
the larger amount of data available for each x bin.

Finally, the results presented in this study offer, in our
opinion, an opportunity for future investigation into the re-
trieval of HSNDs from weather radar. By finding a link be-
tween the empirical moments of the HSND and the radar
measurements, it would be possible to use the formula and
parameters of ĥ(x) defined in this study to estimate the full
distribution of hail diameters expected at the ground. This
application would be similar to the ones retrieving the drop
size distribution in rain (Raupach and Berne, 2017) or driz-
zle (Raupach et al., 2019) cases. While the moment orders
2 and 4 have been chosen for our analysis, other pairs may
have clearer links to certain sets of features in the radar data.
In this case, Appendix A provides a summary of the perfor-
mances that could be expected for different combinations of
empirical moments.

Appendix A: Double-moment normalization for all
moment pairs

While the main body of the article focuses on the moment or-
ders [2,4], in this appendix we discuss all the moment orders
tested in this study. Their distribution of values is displayed
in Fig. A1. The median value and the spread increase with
the moment order, since the latter is used as exponent in the
computation of the moments. This figure provides some ad-
ditional context for interpreting the error metrics previously
shown in Fig. 3.

In the following sections, we use all combinations of these
moments to repeat the analysis provided in the main body of
the article. For each of the 21 pairs, we compare N̂u(D) and
ĥ(x) with Nu(D) and h(x), respectively, providing the error
metrics computed over the test set and over the drone dataset.

Figure A1. Distribution of the moment value (x axis) for the orders
(y axis) between 0 and 6. The distribution is summarized by a box-
plot, following the same conventions as in Fig. 3. The orders 2 and
4, selected to illustrate the method throughout the article, have been
highlighted in blue.

Table A1. Parameters c and µ of the generalized gamma model
resulting from its fit over the training set, using different pairs of
moment orders. Moment pairs whose fit did not find an optimum
for c and µ within the interval defined in Sect. 3.1 are italicized.

Moment pair c [–] µ [–]

0, 1 0.11 500
0, 2 0.11 500
0, 3 0.12 500
0, 4 0.13 500
0, 5 0.13 500
0, 6 0.54 31
1, 2 0.11 500
1, 3 0.11 500
1, 4 0.12 500
1, 5 0.48 32
1, 6 1.2 4.8
2, 3 0.11 500
2, 4 0.41 36
2, 5 1.2 3.6
2, 6 1.8 1.4
3, 4 1.2 2.9
3, 5 1.8 0.93
3, 6 2.8 0.11
4, 5 2.8 0.000001
4, 6 2.8 0.000001
5, 6 2.7 0.000001

A1 Normalized distributions for all moment pairs

For each pair of moment orders, a generalized gamma is fit-
ted over the normalized distributions of all events in the train-
ing set. The parameters c and µ resulting from the fit are
displayed in Table A1. Due to computational limitations, the
range of values for the two parameters had to be limited to
[10−6,500] during the fit, as explained in Sect. 3.1. These
limits are visible in the table as the value for c or µ for the
moment pairs [0,1], [0,2], [0,3], [0,4], [0,5], [1,2], [1,3],
[1,4], [2,3], [4,5], [4,6], and [5,6]. Their appearance may
indicate that the chosen model for ĥ(x) may not adequately
fit the shape of the normalized distribution for these specific
moment pairs. This analysis complements the one presented
in Sect. 4, highlighting how some combinations of moments
less sensitive to the lack of measurements at low and high D
(e.g., [1,3]) may still not be suitable for the proposed method
(and ĥ(x)model). In all remaining figures of this section, the
moment pairs listed above have been highlighted in red to
distinguish them from the ones with c and µ within the valid
interval. Error metrics that refer to the pair [2,4] are instead
shown in blue.

The values of c and µ are used to compute ĥ(x) for a se-
ries of discrete normalized diameters x (resolution dx= 0.1),
which is compared to the normalized distribution h(x) of
each event in the test set. The distributions of values for the
four error metrics introduced in Sect. 3.2, computed for each
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moment pair, are displayed in Fig. A2. The moment pair
[2,4], used throughout the study and highlighted in blue in
the figure, has average performances when compared to the
other pairs. Their values of relative bias are noticeable for
their closeness to 0 %, while theirR is lower than the one vis-
ible for many other moment combinations. Among the other
pairs, the ones including the orders 0 and 1 have bias and
RMSE values particularly close to 0, even though their as-
sociated µ parameter may indicate some issue during the fit,
as explained above. High orders, on the other hand, have the
worst performances in terms of bias and RMSE, with often a
markedly broad distribution for the two metrics.

Figure A2. Comparison of the fitted ĥ(x) with the normalized distributions in the test set, using all available pairs of moment orders, whose
value is displayed on the x axis. Each panel shows a different error metric, following the same order as in Fig. 3. The distribution of each
metric is shown as a boxplot, with a structure analogous to the one used for the relative bias in Fig. 3. The pair [2,4], used in the main body
of the article, has been highlighted in blue. Combinations of moments for which a valid optimum for c and µ has not been found during the
fitting of ĥ(x) have been highlighted in red. The scale of the y axis in panel (a) is linear between −1 and +1 and logarithmic outside this
interval.

A similar comparison between ĥ(x) and h(x) for the drone
dataset has been performed, and the resulting error metrics
are displayed in Fig. A3. Figure A3a and b illustrate a be-
havior similar to the one described for Fig. A2, with combi-
nations including high-moment orders usually having worse
performances than their low-order counterparts. A pattern
emerges from Fig. A3a, b, and c: the skills of ĥ(x) are bet-
ter the closer the moment orders in the pair are. A notice-
able exception can be found for the pair [0,2] in Fig. A3c,
which stands out for its extremely high relative bias. Finally,
the pattern in Fig. A3d is different from the other panels. The
correlation coefficient is slightly lower for pairs including the
lowest and highest moment orders, and the maximum value
is instead achieved by the pair [2,4].
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Figure A3. Same as Fig. A2 but for the drone-derived dataset. Since the latter contains only one event, a single marker has been used instead
of boxplots. The scale of the y axis in panel (c) is linear between −100 and +100 and logarithmic outside this interval.

Figure A4. Comparison of N̂u(D) with Nu(D) for the events in the test set, using all available pairs of moment orders. The figure follows a
structure analogous to the one of Fig. A2. The extent of the y axis in panel (b) has been limited between 0 and 20 no. per bin to improve its
readability, resulting in the exclusion of a single data point from the plot: for the moment pair [5,6], one event has a value of RMSE close to
36 no. per bin.
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A2 Hail size number distributions for all moment pairs

Having computed ĥ(x), it is possible to estimate the HSND
for each event in the test set using Eq. (7). The resulting
N̂u(D) is compared to Nu(D), giving us the distribution of
error metrics presented in Fig. A4. While the bias shares
some similarity to its ĥ(x) counterpart in Fig. A2a, the dif-
ferences between different moment pairs are less noticeable.
This behavior is even more evident in Fig. A4b, in which
high-moment orders do not have markedly higher RMSE val-
ues than the low-order ones. In both cases, the pair [2,4] has
performances in line with most other moment combinations.
Figure A4c also shares some similarities with Fig. A2c, with
the moment pair [2,4] having a relative bias centered around
0 %, even though there are a few other pairs with similar
skills and an even narrower distribution of the error metric.
In the case of the correlation coefficient, shown in Fig. A4d,
the median value is often between (or close to) 0.8 and 0.9
for all moment combinations. The pair [2,4], as in the ĥ(x)
case, has one of the worst performances, with a relatively low
median and a large IQR.

Figure A5. Same as Fig. A3 but for the comparison of N̂u(D) with Nu(D) instead of the normalized distribution. The scale of the y axis in
panel (c) is the same as in Fig. A3d.

The same error metrics, computed for the drone dataset,
are shown in Fig. A5. Interestingly, the bias and RMSE devi-
ate from the 0 no. per bin value more rapidly as the values of
i and j increase more than in the case of normalized distribu-
tions described in the previous section. The pattern described
for Fig. A3a, b, and c can also be seen in Fig. A5, with combi-
nations of moments of similar order outperforming the ones
in which the difference between i and j is larger. The values
of the correlation coefficient in Fig. A5 are almost identical
to the ones in Fig. A3d, and the pair [2,4] is once again the
one with the maximum R value.

Overall, the comparison between the various combinations
of moments does not show any of the pairs clearly outper-
forming the others. In terms of HSNDs and normalized distri-
butions, the choice of i > 3 (with j > i) often results in worse
values of bias and RMSE. While lower orders are often as-
sociated with better performances, Table A1 highlights how
difficulties can be encountered in their ĥ(x) fit. The compar-
ison between different moment combinations, in conjunction
with Sect. 4, suggests that the pair [2,4] is a valid choice for
the analysis presented throughout the article: for this pair, the
ĥ(x) fit does not result in extreme µ and c values, while the
error metrics associated with N̂u(D) are in line with the one
seen for several other combinations of moments, with a few
cases in which they excel (e.g., R for the drone dataset).

https://doi.org/10.5194/amt-17-7143-2024 Atmos. Meas. Tech., 17, 7143–7168, 2024



7164 A. Ferrone et al.: Double-moment normalization of HSNDs over Switzerland

Appendix B: Exponential function for the fit of the
normalized distribution

As shown in Appendix A, the fit of the normalized distri-
bution did not find an optimum for the parameters µ and c
within their respective valid interval for the moment pairs
[0,1], [0,2], [0,3], [0,4], [0,5], [1,2], [1,3], [1,4], [2,3],
[4,5], [4,6], and [5,6]. Therefore, we decided to test an ex-
ponential curve to represent ĥ(x) for these pairs, defined by
substitutingµ= 1 and c= 1 in Eq. (6). The same analysis has
also been conducted for the moment pair [3,6], given its im-
portance in applications of the double-moment normalization
to other hydrometeor types (Raupach et al., 2019) and its rel-
atively poor performances shown in Appendix A, especially
in terms of RMSE and correlation coefficient. In all figures
of this section, the values associated with it have been high-
lighted in purple to distinguish it from other moment pairs.

Figure B1. Same as Fig. A2 but for the exponential form of ĥ(x). The error metrics for moment pairs whose fit did not find an optimum for
c and µ within the interval defined in Sect. 3.1 are shown in black, while the ones for the pair [3,6] are highlighted in purple. Note that in
panel (a) the y axis scale is linear between −1 and 1 and logarithmic outside this range.

The error metrics resulting from the comparison of the
exponential form of ĥ(x) with the normalized distributions
recorded by the hail sensors in the test set and by the drone
are shown in Figs. B1 and B2, respectively. The values
of RMSE are higher for combinations of moment orders
above 4 in both datasets. The same pairs are also character-
ized by a larger spread of values for the bias, relative bias,
and correlation coefficient in Fig. B1. The predominantly
negative bias values for most of the moment pairs suggest
an underestimation of the value of h(x), similar to the one
observed in Appendix A2. The bias is also negative in the
drone dataset, with values further away from zero at higher
moment orders.

After reconstructing the HSND using the exponential
ĥ(x), we compared it to the ones measured by the hail sen-
sor in the training set and by the drone. The resulting error
metrics are shown in Figs. B3 and B4. As in Fig. B1, a larger
spread in the values of error metrics can be observed at high-
moment orders. However, the same moment orders have me-
dian values of bias, RMSE, and relative bias in line with other
pairs, indicating similar performances in most cases.
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Figure B2. Same as Fig. B1 but for the drone-derived dataset.

Figure B3. Same as Fig. A4 but for the moment pairs and exponential ĥ(x) model used in Appendix B.

https://doi.org/10.5194/amt-17-7143-2024 Atmos. Meas. Tech., 17, 7143–7168, 2024



7166 A. Ferrone et al.: Double-moment normalization of HSNDs over Switzerland

Interestingly, even though the fit of h(x) with a general-
ized gamma model did not find the optimal values of c and µ
for most of the pairs tested in this appendix, the values of the
error metrics obtained from the former are still slightly better
than the ones associated with the exponential ĥ(x). Further-
more, except for the moment pair [5,6], the bias is negative
for most events, indicating that the underestimation of the
number of impacts persists.

Figure B4. Same as Fig. B3 but for the drone-derived dataset.

Data availability. Until the end of the operation of the hail sen-
sor network, La Mobilière is the data owner of the hail sen-
sor measurements. At the end of the operation, the data own-
ership goes from La Mobilière to MeteoSwiss. For the time
being, we have to refer any request for data to La Mobil-
ière. The drone-derived dataset, instead, is available on Zenodo
(https://doi.org/10.5281/zenodo.10609730, Lainer, 2024).
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