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Abstract. We present a thorough investigation into the accu-
racy and reliability of gravity wave (GW) spectral estimation
methods when dealing with observational gaps. GWs have
a significant impact on atmospheric dynamics, exerting in-
fluence over weather and climate patterns. However, empir-
ical atmospheric measurements often suffer from data gaps
caused by various factors, leading to biased estimations of
the spectral power-law exponent (slope) β. This exponent de-
scribes how the energy of GWs changes with frequency over
a defined range of GW scales. In this study, we meticulously
evaluate three commonly employed estimation methods: the
fast Fourier transform (FFT), generalized Lomb–Scargle pe-
riodogram (GLS), and Haar structure function (HSF). We as-
sess their performance using time series of synthetic obser-
vational data with varying levels of complexity, ranging from
a signal with one frequency to a number of superposed sinu-
soids with randomly distributed wave parameters. By pro-
viding a comprehensive analysis of the advantages and lim-
itations of these methods, our aim is to provide a valuable
roadmap for selecting the most suitable approach for accu-
rate estimations of β from sparse observational datasets.

1 Introduction

Gravity waves (GWs) are ubiquitous phenomena that play a
crucial role in the dynamics of the Earth’s atmosphere, where
they impact weather and climate patterns (Hines, 1960; Ern
et al., 2018). Various sources, including convection, topog-
raphy, and jet streams, generate these waves (Crowley and
Williams, 1987; Fritts, 1989). As they propagate through
the atmosphere, they can break and mix with the surround-
ing atmosphere, redistributing their energy and momentum.

This leads to significant changes in the atmospheric ther-
modynamics and large-scale circulation patterns of the at-
mosphere, including wind speeds and temperature gradients
(Lindzen, 1981; Holton, 1983; Fritts and Alexander, 2003).
Observations of these meteorological variables reveal that
GWs exist for the most part in the form of a spectrum of
superposed waves within a wave packet and occasionally as
quasi-monochromatic waves (Maekawa et al., 1984; Ecker-
mann and Hocking, 1989). To understand the physical pro-
cesses that govern the generation, propagation, and dissipa-
tion of these wave packets, it is often useful to examine their
spectral properties such as their frequencies, amplitudes, and
scales (Axford, 1971; Fritts and VanZandt, 1993).

On that note, VanZandt first introduced the concept of
a “universal atmospheric GW spectrum” (VanZandt, 1982).
This spectrum facilitated efficient parameterizations of how
GWs affect the mean atmospheric state (Narendra Babu
et al., 2008). For instance, the spectra of GWs are often
used in model parameterization, including source spectra
parameterization, Lagrangian spectral parameterization, and
subgrid-scale parameterization, enabling the simulation of
the dynamics of the middle and upper atmospheres (Beres
et al., 2005; Song and Chun, 2008; Houchi et al., 2010).
Overall, accurate predictions of GW activity can improve
weather forecasting, while they contribute significantly to
climate modelling in parameterizing physical processes like
turbulence and mixing (Alexander et al., 2002; Smith, 2012;
Liu et al., 2014).

This GW spectrum exhibits a power law scaled by an ex-
ponent (or slope) β, which describes the rate at which wave
energy changes with its wavenumber (or frequency). The
basis for this spectrum for atmospheric GWs is supported
not only by a strong foundation in theoretical works (De-
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wan and Good, 1986; Weinstock, 1990; Hines, 1991; De-
wan, 1994; Gardner, 1994), but also in observational studies
(Smith et al., 1987; Fritts et al., 1988; Gardner et al., 1995;
Nastrom et al., 1997; Zhang et al., 2006, 2017). These values
of β depend on not only the type of spectra (e.g. temporal or
horizontal, or vertical wavenumber) but also the geophysical
variables measured (e.g. temperature, horizontal or vertical
wind); see Table A1 for a summary. Thus, an accurate esti-
mation of β is essential to validate different theoretical pre-
dictions of GW power spectral densities (PSDs) (Dewan and
Grossbard, 2000) and improve climate models and weather
forecasts (Lindgren et al., 2020).

Determining β from empirical atmospheric measurements
is challenging due to various factors, such as the inevitable
presence of data gaps, observational noise, and the finiteness
of data length and resolution. Data gaps can occur for numer-
ous reasons, including instrumental errors, data transmission
issues (e.g. due to weather conditions like clouds in the case
of lidar), and signal interference (in the case of radar). When
gaps exist in multiscale time series, data points representing
certain frequencies are lost, which distorts the spectra and in-
troduces significant bias into the estimation of β (Brown and
Christensen-Dalsgaard, 1990; Rigling, 2012). To minimize
the effect of these gaps on the spectra, data-filling schemes
are often applied. Though linear interpolation is usually used
to fill in these gaps (Meisel, 1978; Lepot et al., 2017), even
adaptively implemented interpolators produce artefacts in the
time series at low gap percentages (GPs), which contribute
additional bias in the spectra (Schulz and Stattegger, 1997;
Hall and Aso, 1999). Bias in spectral estimates can also be
caused by other relevant sources, such as spectral leakage,
steep spectra (β > 2), and in-signal components with larger
periods than the observed time span T (Klis, 1994).

In this paper, we systematically quantify the advantages
and limitations of estimation methods of GW spectra in
handling these error sources. We also propose a procedure
for selecting unambiguously suitable methods for β esti-
mation. Even though this study is motivated by the analy-
sis of atmospheric GWs, the conclusions and the methods
can be generalized to different fields with similar time-series
characteristics in other branches of geophysics. Two com-
monly used methods are considered, namely the fast Fourier
transform (FFT) (Cooley and Tukey, 1965) and the gener-
alized Lomb–Scargle periodogram (GLS) (Zechmeister and
Kürster, 2009), as well as the fairly recent Haar structure
function (HSF) (Lovejoy and Schertzer, 2012). FFT is the
standard method to analyse spectra of evenly sampled data.
The Lomb–Scargle periodogram (LS) has been used in many
studies as the main analysis method (or as a reference) of
GW spectra (e.g. Hall and Aso, 1999; Zhang et al., 2006;
Guharay and Sekar, 2011; Qing et al., 2014). As far as the au-
thors are aware, HSF has never been used in atmospheric GW
studies. Both GLS and HSF are specifically known to handle
unevenly sampled data. In an effort to closely mimic real ob-
servations of GWs, we simulate time-series data with varied

levels of complexity, beginning with a signal with one fre-
quency and increasing in complexity to a superposition of si-
nusoids with randomly distributed frequencies (and phases).

Previous studies have investigated these spectral methods
and others for estimating power-law spectra and compared
their performance using synthetic and observed data. For in-
stance, Zhan et al. (1996) found that using FFT of linearly in-
terpolated signals is the best approach to analyse radar wind
data at 50 % GP (only for the case of β = 5/3) compared to
the correlogram and LS. However, a quantitative analysis of
the effect of changing β or the GP was not conducted. Sim-
ilarly, Munteanu et al. (2016) showed that FFT outperforms
LS, Z transform, and discrete Fourier transform in estimat-
ing β from Venus’ magnetic field data, although the effect
of changing β was not considered either, since the power-
law spectra were not simulated. In contrast, Hébert et al.
found that HSF consistently surpassed other methods in es-
timating β, without the need to interpolate the gapped (sim-
ulated palaeoclimate) data for β ∈ (0,3), except in the case
of β ∈ (−1,0), where they concluded that LS would be the
best option (Hébert et al., 2021). Nonetheless, the impact of
altering the GP was not quantitatively presented; instead, the
skewness of the gaps’ (gamma) distribution was used as a pa-
rameter to refer to the irregularity of the time series. These
three studies showed that the LS method suffers from signifi-
cant leakage in the case of power-law spectra, which persists
even when multi-taper methods (MTMs) are used.

The rest of the paper is organized as follows: in Sect. 2, we
describe the methods used in our study, including a descrip-
tion of FFT, GLS, and HSF. In Sect. 3 we introduce the data
simulation procedures. In Sect. 4 we discuss data processing.
In Sect. 5 we present the results of our simulations, compar-
ing the performance of these methods in different scenarios.
In Sect. 6 we discuss the implications of our findings and
provide recommendations for spectral analysis of GW time
series with data gaps. Finally, in Sect. 7, we present a sum-
mary of our relevant results and conclusions.

2 Spectral methods

2.1 The fast Fourier transform

FFT is the most commonly used method for estimating fre-
quency spectra of evenly sampled data (Cooley and Tukey,
1965). It enables the approximation of a time series sam-
pled from a continuous distribution over discrete time steps,
through a series of complex sine and cosine waves with vary-
ing frequencies. Under the assumption of a unit sample inter-
val, (forward) FFT converts a time series zn of lengthN from
its original domain (time or space) into a set of coefficients
Zk in the (temporal or spatial) frequency domain by employ-
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ing the following relation:

Zk =

N−1∑
n=0

zne
−2πikn/N ,k = 0,1, . . ., N − 1. (1)

In our work, FFT will serve as the benchmark spectral es-
timation method. The expected Fourier transform of a dis-
cretized signal is given by the convolution of the true trans-
form and the transform of a Dirac comb window function
designating those measurement times (Vanderplas, 2018). In
the case of gapped data, the symmetry in the Dirac comb is
destroyed, causing the resulting transform to be noisy with
incorrect peak positions and heights. Consequently, the true
transform of gapped data will not be recoverable. This dis-
advantage can be bypassed by applying data reconstruction
methods such as interpolation, sparse approximation, etc., to
approximate the true Fourier transform (Babu and Stoica,
2010). Unfortunately, these reconstruction methods can in-
troduce artefacts into the signal, which depend on the distri-
bution of the gaps and their sizes (Munteanu et al., 2016).

2.2 The generalized Lomb–Scargle periodogram

The GLS periodogram developed by Zechmeister and
Kürster (2009) offers a method for estimation of the PSD
of unevenly sampled time series. It is a generalization
of Lomb’s least-squares approach (Lomb, 1976), which is
equivalent to the modified Schuster’s periodogram (Schus-
ter, 1898; Scargle, 1982) (based on FFT) in the case of evenly
sampled data. GLS produces a spectrum by least-squares fit-
ting a model of a weighted sinusoid given by

y(t)= a cosωt + b sinωt + c (2)

to the time series at each sampled frequency ω. The offset c
compensates for the assumption that the mean of the time se-
ries z is equal to the mean of the fit y. This floating-mean
approach is advantageous, considering that the mean of a
periodic signal may change statistically, especially for small
N (Ferraz-Mello, 1981). Furthermore, the purpose of using
weighted sums is to account for the observational noise for
which the original LS does not.

The LS method has often been used to seek dominant peri-
odic frequencies or cycles (Zhang et al., 1993; Pichon et al.,
2015; Rao et al., 2017), analyse seasonal changes in signifi-
cant modulations of GW fields (Beldon and Mitchell, 2010),
and estimate the spectral indices β and amplitudes of GW
power-law spectra (Hall and Aso, 1999; Zhang et al., 2006;
Guharay and Sekar, 2011; Qing et al., 2014). In addition, LS
is known as the most efficient method for estimating the vari-
ance in both gapped and non-gapped stationary time series
with a single periodicity, without the need to fill in miss-
ing data (Marinna et al., 2019). In contrast, Vio et al. (2010)
found that LS is reliable for analysing neither semi-periodic
nor aperiodic signals with non-stationary noise or signals
made of more than one wave, without additional steps.

2.3 The Haar structure function

HSF is a mathematical tool used in conducting scaling anal-
ysis of signals (Lovejoy and Schertzer, 2012), which is based
on the Haar wavelet (Haar, 1910). It is a simple yet powerful
method for decomposing a signal x(t) whose power spectral
density exhibits a power law, i.e. PSD∝ τH with a scaling
(Hurst) exponent H , over a scale (lag) τ = 1/f , into fluctua-
tions 1x = x(t+ τ)−x(t). The first-order Haar fluctuations
Hτ at a lag τ are defined by the following relation:

Hτ (x(t
′))=

2
τ

∣∣∣∣∣∣∣∣∣
∑

t+
τ

2
< t ′ < t + τ

x(t ′)−
∑

t<t ′<t+
τ

2

x(t ′)

∣∣∣∣∣∣∣∣∣ .
(3)

The qth-order structure function Sq(τ ) is then obtained as an
approximation by ensemble-averaging these fluctuations as
follows:

SH,q(τ )= 〈Hτ (x(t))〉 ≈ τ
qH−K(q). (4)

In the quasi-Gaussian case, the moment scaling function is
K(q)≈ 0, so for the first-order structure function (q = 1)
only H determines the scaling of mean fluctuations.

A power spectrum which follows a power-law PSD∝ τβ

is related to the Hurst exponent by β = 1+qH−K(q); since
the power spectral density is a second-order moment, we take
q = 2. Thus, under our quasi-Gaussian approximation, we
re-scaled HSF to a comparable scale to the PSD using the
following relation:

SH,q=1 ∝ τ
H
≈ τ

β−1
2 , (5a)

SH,q=1 · τ
1/2
∝ τβ/2 , (5b)

S2
H,q=1 · τ ∝ τ

β
∝ PSD . (5c)

Despite the term K(2) being fairly small, it is nontrivial in
the non-Gaussian case and for higher moments q, and HSF
allows for its calculation (Lovejoy and Schertzer, 2012), but
this is beyond the scope of this paper. HSF is particularly
suitable for estimating the scaling exponent of time series
withH ∈ (−1,1) or β ∈ (−1,3). This range of β values cov-
ers the vast majority of atmospheric processes from weather
(where τ < 10 d and 1< β < 3) to macroweather (where
10d< τ < 10–30 years and −1< β < 1) systems. HSF also
possesses the advantage of handling unevenly sampled data,
which is a consequence of the fact that it is computed by tak-
ing the mean of absolute fluctuations (Lovejoy, 2014). Nev-
ertheless, HSF is not employed to estimate the frequency of
a wave or its amplitude, since it only measures how much
frequency components contribute to the total variance. The
Python code implementation of HSF is readily accessible
(Mossad, 2023) and was derived from the R code originally
developed by Raphaël Hébert (Hébert, 2021).
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3 Data simulation

In this section, we present the simulation procedures used to
generate time series similar to actual GWs measurements. In
measurements, GWs can exhibit various behaviours, ranging
from superposed waves within wave packets with multiple
frequencies, amplitudes, and phases to more coherent quasi-
monochromatic waves (Maekawa et al., 1984; Eckermann
and Hocking, 1989; Sica and Russell, 1999). In Sect. 3.1, we
simulate signals with each having one frequency to mimic
quasi-monochromatic waves, by which the goal is to accu-
rately estimate the correct frequency and amplitude of each
signal. In Sect. 3.2, however, we simulate time series com-
posed of a superposition of waves with random frequencies
and power-law amplitudes. The exponents/slopes β of their
power-law spectra are used to assess the bias in the spectral-
analysis methods. While our simulation adopts a simpli-
fied linear saturation theory approach through the superpo-
sition of sine waves (Dewan and Good, 1986; Smith et al.,
1987), we acknowledge that other explanations for the spec-
tral character of GWs exist, including “nonlinear damping”
(Weinstock, 1982, 1990; Gardner, 1994), “Doppler spread-
ing” (Hines, 1991), “saturated-cascade similitude” (Dewan,
1994), and high-Reynolds-number “stratified turbulence”
(Pinel and Lovejoy, 2014); see Table A1 for more details.

By analysing both simulations, we can determine the ac-
curacy of each of the methods at different levels of signal
complexity and identify potential limitations and sources of
error in the analysis of GWs spectra. Random gaps are then
introduced to resemble observational gaps for both simula-
tions. The units and values of the variables used in this simu-
lation have been chosen to represent average values or ranges
characteristic of typical GW time series.

3.1 Single-frequency signal simulation

Quasi-monochromatic GWs can be observed under specific
conditions where a single frequency dominates other com-
ponents (Muraoka et al., 1988; Swenson et al., 1999). This
kind of GW can be approximated as an evenly sampled
single sinusoid x(t)= Asin(2πf t +ϕ), with a known fre-
quency f , phase shift ϕ, and amplitude A, at time t . For
both simulations, the time resolution 1t is 5 min with a to-
tal span of T = 6 h, as this resolution and this duration align
with the average values of lidar measurements commonly
used in atmospheric studies (Gardner et al., 1995; Gerding
et al., 2008). As a result, the number of points N in each
signal is equal to T

1t
= 72. Each simulated sinusoid has an

amplitude of A= 4 K and a randomly chosen frequency f
from the set 1/{6,3,1.5,1,0.5,1/3} [h−1]. Changing the fre-
quency serves as a test to examine whether the bias in the
methods is frequency-dependent. The phase shift ϕ is also
randomly chosen from a uniform distribution within the in-
terval [0,2π ].

The amplitude of the time series is equivalent to the
estimated height of the main peak in the spectrum. It is
computed from the FFT coefficients (Eq. 1) as AFFT =

maxk
(

2|Zk |
N

)
and from the GLS fit coefficients (Eq. 2) as

AGLS =maxk

(√
a2
k + b

2
k

)
. The frequency of that peak fk

corresponds to the estimated frequency of the signal. As a
metric for the accuracy of estimation of the true values of
frequencies and amplitudes, we used the relative bias given
by

relative bias=
value estimated− value expected

value expected
. (6)

Since real data are susceptible to observational noise, it is
crucial to consider the case where white noise is added to
the simulated signal as a random variable r(t) from a stan-
dard normal distribution. Here, the signal-to-noise ratio is
defined by SNR= A2/2σ 2

r , where σ 2
r is the noise variance

(Horne and Baliunas, 1986). To strike an appropriate balance
between capturing meaningful noise characteristics and min-
imizing low SNR bias, an average SNR value of 8 is chosen
for this simulation.

3.2 Spectral power-law simulation

As reported before (see Table A1), the spectra of GWs are
characterized by a power law; i.e. PSD∝ 1/f β (in the case
of spatial data, PSD∝ 1/(k, l,m)β , where k, l, and m are
horizontal and vertical wavenumbers). On that account, we
are interested in estimating the value of β of simulated time
series whose spectra would have β ∈ {−1,0,1,5/3,2,2.5,3}
and comparing it with the true value. The simulated evenly
sampled time series x(t) consists of a sum of M sinu-
soids, each with frequency fi and power-law amplitudes
Ai = f

−β
i , as follows (Rice, 1944; Billah and Shinozuka,

1990; Kirchner, 2005):

x(t)∼

M∑
i

√
Ai sin(2πfi t +ϕi)

=

M∑
i

(fi)
−β/2 sin(2π(fi)t +ϕi) . (7)

We used for our simulationM = 35 for each time series. It is
driven by the objective of reconciling the inclusion of a min-
imum of 20 waves based on observational (Sica and Russell,
1999) and modelling (Dewan, 1994; Hamilton, 1997) sug-
gestions while simultaneously incorporating a sufficiently
large number of waves to mitigate random spectral errors
(Keisler and Rhyne, 1976; Shinozuka, 2005). This approach
enables the demonstration of the power-law spectrum with-
out the need for excessive averaging. The phase shifts ϕi are
also randomly chosen from a uniform distribution within the
interval [0,2π ]. The frequencies fi are statistically indepen-
dent, uniformly distributed random values, selected within
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the range
[

1
T
, 1

21t

]
=

[
1

6 h ,
1

10 min

]
. Hence, the time series

is composed of non-harmonic components and there are no
favoured frequencies, which is a better approximation of at-
mospheric GWs than an idealistic case where frequencies are
only integer multiples of a fundamental frequency. Here, x(t)
is proportional to the square root of the amplitudes Ai , since
β is estimated from PSD-normalized spectra, which are the
squared modulus of the amplitudes.

The PSD is obtained by FFT using the relation 2ZkZ∗k1t
N

,
where Z∗k is the complex conjugate of Zk . This definition is

equivalent to the GLS spectrum N
∣∣a2
k+b

2
k

∣∣1t
2 of evenly sam-

pled data. HSF is however normalized according to Eq. (5c)
to estimate a comparable scale to the PSD. The bias in β es-
timation is defined for this simulation as

β bias= value estimated− value expected . (8)

3.3 Gap simulation

After creating a time series with the desired spectral proper-
ties, gaps are introduced by randomly removing data points
(except both endpoints), assuming that all data points are
equally likely to be removed (i.e. a uniform distribution).
Based on the simulated GP p in the data, an integer num-
ber of random points NG =

N ·p
100 is removed. Thus, a 0 % GP

means that no points were removed, while a 50 % GP means
that 36 points were randomly removed, since N = 72. To as-
sess the dependence of bias in spectral-analysis methods on
the gaps, we conducted simulation runs spanning GPs rang-
ing from 0 % to 90 % in increments of 10 % for each time
series analysed. Each of these simulation runs was repeated
1000 times at each GP increment to ensure the statistical sig-
nificance of our results, since the frequencies, phases, and
gaps are randomized. Then we computed the average val-
ues of the estimated amplitude and period (for the single-
frequency signal simulation) and β (for the spectral power-
law simulation).

4 Processing steps

Before applying spectral methods to the generated time series
from the simulations in Sect. 3, the following steps are taken:

– The time series is first interpolated using the original
time step of 5 min; this is only necessary for FFT.

– The mean of the signal z is subtracted to account for the
zero-frequency component of the Fourier transform Z0.

When computing the spectrum for a time step 1t , the fre-
quency grids of all methods are defined as follows:

– The frequency range spans from 1
T

to 1
21t .

– The frequency spacing is given by 1f = 1
T

.

In the presence of gaps where1t is not constant, the Nyquist
frequency is then defined as follows:

– fNy =
1

2p , where p is the largest value that allows ti =
t0+ nip to be possible for all ti values, and ni com-
prises integers (Eyer and Bartholdi, 1999). This value
corresponds to the same Nyquist frequency as that of
our non-gapped data, which is 0.1 min−1.

– This approach is more appropriate for GLS and HSF
than applying a “pseudo-Nyquist” limit based on an av-
erage or a minimum value of 1t (Scargle, 1982; Van-
derplas, 2018).

To estimate β, the spectra are fitted by taking the following
steps:

– A maximum likelihood estimator (MLE) is employed
to determine the fit parameter β (Duvall and Harvey,
1986).

– The MLE fit involves minimizing the negative log-
likelihood function− lnL(O) of observationsOi at fre-
quency fi using the equation

− lnL(O)=
n∑
i=1

ln〈Oi〉+
Oi

〈Oi〉
, (9)

where 〈Oi〉 refers to the power-law model c
( 1
f β

)
being

fitted, with c as a normalization coefficient.

– The MLE fit is recommended over least-squares regres-
sion because the latter assumes a Gaussian distribution
of periodogram residuals, leading to a biased estimate
of β (Clauset et al., 2009).

5 Results

5.1 Single-frequency signal

First, we show an example of the time series generated by the
simulation described in Sect. 3.1, which consists of a 0.5 h
wave in a 6 h time series. As can be seen in Fig. 1a, in the
absence of gaps, an accurate estimation of the 4 K amplitude
and the 0.5 h period of this signal is acquired by both GLS
and FFT. In addition, the spectra obtained by FFT and GLS
are (as expected) equivalent in the case of evenly sampled
data (Scargle, 1982). When the random gaps replace 50 % of
the data points, a significant difference between the ampli-
tude spectra is observed; see Fig. 1b. Both methods still pro-
vide an accurate estimate of the signal’s period. Linear inter-
polation of the 50 % gapped signal preserves the structure of
the wave but loses some of the high-frequency components,
which leads to a significant underestimation of the amplitude
by 43 % in the FFT spectrum. In contrast, the amplitude of
the highest peak in the GLS spectrum is not affected by the
gaps and has not changed from the expected value.
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Figure 1. Time series of a 0.5 h wave in a 6 h observation time generated according to Sect. 3.1. Panel (a) shows the time series (upper
left) and its temporal amplitude spectrum (lower left) in the absence of gaps. Panel (b) shows the time series (upper right) and its temporal
amplitude spectrum (lower right) after the addition of a number of random gaps equal to 50 % of the total data length.

When comparing average relative period bias for differ-
ent simulation periods, Fig. 2a shows that GLS demonstrates
no period bias below 80 % GP and a negligible bias beyond
(within ±20 % deviation interval). Figure 2b shows, contrar-
ily, that the smaller the simulated period of the signal, the
more FFT overestimates it at GPs larger than 40 %. This
is due to linear interpolation replacing the removed high-
frequency components with lower-frequency ones, which
eventually dominate as the GP gradually increases. To put
these results in perspective, at 70 % GP, FFT inaccurately
determines the period of a 0.5 h wave as 2.93 h (i.e. over-
estimates it by 486 %). Given that there are quite few data
points left in the time series at 70 % GP, it is expected that
FFT is not able to recover the correct period; however, GLS
is still capable of obtaining the exact value of the period (i.e.
an error of 0 %). Not only is GLS a much better estimator of
the period on average, but also since its standard deviation
remains trivially small until 80 % GP, it is a more reliable
choice on a case-by-case basis.

Similarly, FFT’s amplitude bias experiences clear depen-
dency on the frequency of the signal, while GLS demon-
strates a negligible amplitude bias at GPs below 80 %; see
Fig. 3. In particular, the results show that the mean estimated
amplitude from the FFT spectrum deviates exponentially
from the expected value as the frequency of the signal in-
creases, even at gap percentages below 50 %. In addition, the
standard deviation of amplitude estimation by GLS increases
as the GP increases, although it remains within a ±10 % de-
viation interval up to 80 % GP. On the contrary, the standard
deviation of amplitude estimation by FFT significantly in-
creases as both the frequency of the signal and the GP in-
crease, implying that FFT is more inconsistent and highly
sensitive to missing data, especially for high-frequency sig-
nals.

Overall, GLS provides a more robust estimation of the pe-
riod and amplitude of gapped time series, while FFT’s perfor-

mance is simultaneously dependent on the GP and frequency
of the signal.

5.2 Spectral power-law signal

A time-series example is shown in Fig. 4 to illustrate the
complexity of a signal produced according to Sect. 3.2 for
β = 2, showcasing the signal before and after the introduc-
tion of gaps. As the percentage of gaps in the data increases,
the impact on the spectral components varies depending on
their frequency range. High-frequency components (rapid
fluctuations over short periods) are most vulnerable when
data are being removed. Subsequently, the lower-frequency
components (slow variations over longer periods) follow, ex-
hibiting greater resilience to data gaps. In essence, a consid-
erably greater number of gaps are required to significantly
affect the estimation of the latter. A distorted spectrum of
this time series can be seen, which is a result of the limited
sample length and resolution (Roberts et al., 1987). In addi-
tion, as the signal comprises numerous waves with random
frequencies, the presence of closely spaced frequencies leads
to the emergence of complex and broad peaks in the spectrum
(Horne and Baliunas, 1986; Dewan and Grossbard, 2000).

In the absence of gaps, the true value of β is accurately
estimated from the spectra of all methods (see Fig. 4a).
However, after removing 50 % of the data points (Fig. 4b),
the estimated spectrum by HSF remains relatively unaltered,
while the GLS and FFT spectra diverge. The overestimation
of β (bias= 0.6) by FFT is due to the amplitudes of high-
frequency components being underestimated, which is a re-
sult of the interpolation (Schulz and Stattegger, 1997; Hall
and Aso, 1999). This overestimation of β can also be ex-
plained by the fact that these interpolated (high-frequency)
components contribute locally by β = 3 to the overall slope
of the spectrum, which results in positive bias when the true
β is less than 3 (Lovejoy, 2014). In the case of HSF, where no
interpolation of the signal is done, an even smaller bias (0.1)
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Figure 2. Comparison of relative period bias (Eq. 6) as a function of the gap percentage for GLS (a) and FFT (b), here shown for each
simulated period (frequency). The bias is estimated from the average estimated values of the periods, and its standard deviation is scaled
accordingly. Note that the y axis (relative period bias) is limited between [−0.2,0.2] for GLS and [−4,20] for FFT. This shows how extremely
different the accuracy of each method is.

Figure 3. Comparison of relative amplitude bias (Eq. 6) as a function of the gap percentage for GLS (a) and FFT (b), here shown for each
simulated period (frequency). According to Fig. 2b, past a certain GP threshold, the highest peak in the FFT spectrum does not belong to the
true frequency but to meaningless interpolation noise. For this reason, the amplitude bias reported in Fig. 3 is limited by relative period bias<
3, since amplitude values beyond this threshold should not be relied upon. Note that the upper and lower limits of the y axis are different for
each method as well.

results. In contrast, the true power law can be seen for the
first few low frequencies in the GLS spectrum; then it starts
to flatten at intermediate and high frequencies with a sub-
stantial bias of −1.41. This occurs because the lack of data
points constrains the least-squares fit by GLS, which leads
to the interpolation of power at these frequencies (i.e. a flat
line).

For a statistically significant picture, we show the distri-
butions of estimated β values from 1000 simulation runs
in Fig. 5. In the non-gapped case (see Fig. 5a), the dis-
tributions of all methods overlap within a small standard-
deviation range of ±0.2 around β = 2. In contrast, we see
that gaps cause the estimated β values from the FFT spectra
to shift their distribution to higher values around β = 2.3 in
Fig. 5b, while the distribution of GLS becomes narrower and
is diverted far below the expected value of 2. The mean of
estimated β values from HSF spectra is clearly the closest to
both the true value and its mean in the absence of gaps, which

shows consistency and less sensitivity to the gaps. It is worth
noting that the distributions in Fig. 5a show that even in the
absence of gaps, estimated β lies mostly within the range of
[1.5,2.5] and not exactly at 2, as single spectra are distorted
without averaging. It is also important to mention that the re-
sults of the bias are almost identical whether β is estimated
from averaging power-law exponents of single spectra or it is
estimated from fitting an averaged spectrum.

To further explore the behaviour of the bias under different
conditions, we evaluated the effect of changing the simulated
value of β on the estimation bias (see Fig. 6). At 0 % GP, all
methods show no bias, except for β > 2 and β =−1, where
there is an apparent deviation. The first deviation is expected
because the more β is larger than 2, the more the spectrum
suffers from “low-frequency leakage” due to the finite length
of the time series (Klis, 1994; Schulz and Mudelsee, 2002).
The other case of small deviation takes place on the opposite
end of the spectral slope range (β =−1), where high fre-
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Figure 4. A time-series example (upper left and right) generated by the spectral power-law simulation (according to Sect. 3.2) with a spectral
exponent of β = 2 within a 6 h observation time, before (a) and after (b) the addition of 50 % gaps. The estimated power spectral densities of
both non-gapped and gapped time series are shown in the lower left and right. Here, both x and y axes in the spectra figures were log-scaled
so that a linear function can be identified. The dotted lines (in red, green, and blue) represent the fits of the PSD of each method.

Figure 5. Histograms of the estimated β values from 1000 spectra of time series generated by the spectral power-law simulation (according
to Sect. 3.2) before (a) and after (b) the addition of 50 % gaps. The simulated spectral exponent was β = 2, and each time series had a 6 h
observation span. The vertical lines in the histograms of the gapped case refer to the mean estimated values of β by each method.

quencies dominate. The power at these frequencies is quite
easily aliased, hence underestimated, as they are the clos-
est to the Nyquist limit. These deviations do not mean that
spectra of β =−1 or β > 2 cannot be obtained but that on
average, they are very likely to be misestimated.

In the instance of gapped time series, our results show that
as the GP increases, the biases in the estimated exponent also
became more pronounced for all three methods. Similarly to
the non-gapped situation, GLS demonstrates an exceptional
efficiency in estimating flat spectra where β = 0 with a negli-
gible bias. This is a consequence of the absence of frequency
dependency in a flat spectrum, which renders the gaps irrel-
evant in terms of introducing bias, since the GLS spectrum
is already flat. As β increases (indicating a steeper decline
in power with increasing frequency) and the percentage of
gaps in the data increases, the bias in the GLS spectrum be-
comes more prominent. For instance, in the case of β tran-
sitioning from 1→ 3 where power is skewed towards low
frequencies, gaps cause GLS to mistakenly assign excessive
power at the missing high frequencies, ultimately resulting

in a steady underestimation of β. In contrast, when β =−1,
high-frequency components dominate low-frequency ones.
Consequently, there is a loss of power at these high frequen-
cies as the gaps disrupt their sampling. This loss of power
causes the GLS method to overestimate β, mirroring the GLS
bias observed when β = 1.

In similar fashion, both FFT and HSF demonstrate a rela-
tively constant bias for β = 3 of approximately −0.3 at all
GPs. However, as β decreases from 2→−1, their biases
monotonically increase as the GP increases. Nevertheless,
HSF shows substantially less bias than FFT when the GP
exceeds 10 %. The FFT bias is attributed to the established
interpolation effects. Therefore, as more data points are inter-
polated, the FFT spectrum progressively underestimates the
amplitude of the high frequencies. This underestimation re-
sults in the bias being positive for all β values, except β = 3,
where leakage causes FFT to overestimate these frequencies.
Overall, averaging β values from single spectra is a good
measure of the expected value because of their low standard
deviation except at very high GPs.
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Figure 6. Comparison of the bias in the mean β estimates obtained from FFT (a), GLS (b), and HSF (c) as a function of the gap percentage.
The results of each method are shown for spectra with power-law exponents β ∈ {−1,0,1,5/3,2,2.5,3}.

In light of the aforementioned considerations, it can be
argued that the FFT technique demonstrates competence in
generating accurate spectral estimations for non-gapped time
series. Nevertheless, it encounters challenges as the data in-
corporate an increasing number of gaps, necessitating inter-
polation techniques which introduce inherent biases. Mean-
while, HSF is demonstrated to be a particularly reliable ap-
proach for analysing GW time series with spectral power-
law exponents β ∈ {1,5/3,2,2.5,3} and in between. Its per-
formance, however, exhibits limitations primarily in cases
where the spectrum of a time series possesses a power-law
exponent β < 1. Notably, such occurrences have only been
observed and predicted within measurements of vertical wind
time series, as indicated in Table A1. One can reasonably
anticipate that spectra falling within the range of β values
between 1 and 3 will be prevalent across the majority of at-
mospheric time series.

Conversely, the GLS method yields similarly favourable
outcomes, particularly for time series whose spectra are flat
and high-frequency-dominated, so that it even surpasses the
accuracy of HSF when β possesses values between−1 and 0.
Nonetheless, the GLS method exhibits an increasing bias as
the value of β increases beyond 0, rendering it a less cer-
tain choice for timescales extending beyond a few hours,
which commonly occur in the context of atmospheric gravity
waves. Clearly, the consistent and overall impeccable GLS

performance in estimating periods and amplitudes of signals
with single frequencies does not seem to translate to univer-
sally resolving the level of superposition of many random
periodicities with power-law amplitudes.

6 Discussion

6.1 Low-frequency leakage

The problem of power leakage from low frequencies into
higher ones arises as a result of the constrained frequency
range, which itself is limited by the observed time span T .
This leakage takes place not only in the case of spectra with
β > 2, but also in the spectra of time series with periods
longer than T . GWs can often have these kinds of periods
longer than the simulated time span of 6 h, and normally
these periods are not resolved. Thus, we also quantitatively
tested the effect of these long periods on the estimated spec-
tra by adding three extra waves of 8, 10, and 12 h periods
into the simulated time series. Two cases were examined, one
where each of the three waves has an amplitude equivalent to
the lowest-frequency component in each simulation. In an-
other case, we scaled their amplitudes by the same power-law
exponent β as all frequencies in the simulation.

In both cases, longer-than-T periods produced quite simi-
lar effects on the spectra, with a substantial positive bias ob-
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served for all signals with β < 2 and a significant negative
bias for β > 2, even in the absence of gaps. For instance,
Fig. 7a and b show an example of this leakage in averaged
spectra for β = 3, without and with the extra waves. A com-
mon feature of both cases is the spectral power being exces-
sively concentrated at the lowest frequencies. When the extra
long waves are added, the leakage becomes more drastic for
GLS and FFT, and their absolute biases of β increase. In con-
trast, HSF is less affected by these long periods compared to
FFT and GLS. This effect of longer-than-T waves in the time
series resembles that of trends, which contribute to the spec-
tral shape with a power-law exponent β = 2 (Klis, 1994).

While a weighted fit of the spectra can reduce the bias, it
does not fully rectify the problem of leakage; it also requires
a smoothed spectrum and may be confounded by other biases
from observational noise, gaps, or method inefficiencies. One
approach to counteract this leakage from unresolved low-
frequency power is based on “prewhitening” the time series
and then “postdarkening” the spectra (Blackman and Tukey,
1958). Prewhitening is a technique to decorrelate the time se-
ries (reduce its autocorrelation close to that of a white noise
signal) before calculating the PSD (Keisler and Rhyne, 1976;
Dewan and Grossbard, 2000; Guharay and Sekar, 2011). This
step serves to decrease the rate of change in PSD(f )with fre-
quency f ; hence, the distribution of the power is more even.
The prewhitened time series is obtained by the means of first
differencing, where each data point is subtracted from its suc-
cessive one; i.e.1x(t)= x(t)−x(t−1t). By doing this, the
contribution of the mean becomes negligible and trends are
transformed into constants (Bieber et al., 1993). The spec-
trum of this prewhitened series 1x(t) is related to the origi-
nal spectrum of x(t) by

PSDx(t)(f )=
PSD1x(t)(f )

2(1− cos(2πf1t))
. (10)

This factor 2(1− cos(2πfn1t)) is derived from the Fourier
transform of the autocorrelation function of 1x(t) and is
used to compensate for the prewhitening process (Houbolt
et al., 1964). This compensation postdarkens (recolours)
the resulting spectrum. Note that the spectrum of the
prewhitened series 1x(t) should be smoothed first using a
Hann window to suppress the random fluctuations before
postdarkening.

In Fig. 7c, we present the postdarkened spectra after
prewhitening the time series for β = 3. This approach com-
pletely cancels out the bias in all methods for both cases. This
confirms the effectiveness of the prewhitening and postdark-
ening method in correcting the leakage problem. However,
this approach is not a perfect solution, since it may introduce
additional bias for less steep spectra (where β < 1) which do
not suffer from leakage. When the spectrum is constant in the
low-frequency part, the prewhitening process might cause it
to be distorted as well.

6.2 Method selection procedure

The spectral analysis of GW time-series data is a complex
task that requires careful consideration of various factors.
Based on our simulation results, we propose a flowchart (see
Fig. 8) that outlines a practical guide for selecting appro-
priate spectral estimation methods for GW studies, taking
into account the characteristics of the observed data such
as their complexity and percentage of gaps in them. From
the flowchart, it is clear that there are recognizable differ-
ences between the patterns of the time series of superposed
waves and signals with one frequency. Even within the for-
mer classification, the anti-persistent time series whose spec-
tra have β ∈ [0,−1] are still differentiable from those long-
range-dependent ones where β ∈ [1,3]. It is also safe to say
that theoretical predictions of GW spectra with β ∈ [0,−1]
exist only for measurements of vertical wind time series (see
Table A1). Otherwise, β ∈ [1,3] spectra should be expected
for the vast majority of atmospheric time series. Note that,
even in the absence of gaps in the signal, caution must be
taken if the estimated β is approximately equal to or less than
2. If it is, then it can be an accurate estimation or caused by
one of the systematic errors such as interpolation or longer-
than-T variations.

7 Conclusions

The domain of observational analyses, especially in atmo-
spheric physics, is vast and complex. The intrinsic nature of
these measurements requires precision, reliability, and adapt-
ability of analytical methods to extract meaningful insights.
Observational gaps due to instrument failures or adverse con-
ditions are also common in atmospheric physics. Our re-
search on synthetic atmospheric gravity wave (GW) time
series offers a comprehensive overview of different spec-
tral estimation methods, shedding light on their strengths
and limitations. The methods compared in this study are the
fast Fourier transform (FFT) (which requires interpolation of
gaps) and the generalized Lomb–Scargle method (GLS) and
the Haar structure function (HSF) (both which can handle
unevenly sampled data without interpolation). Their perfor-
mance is assessed by evaluating whether the output spectra of
simulated time series (with known a priori features and gap
distributions) match the input parameters of the data, includ-
ing the frequency, amplitude, and spectral slope. Building on
our findings, we propose the following recommendations:

Determination of the time-series nature. Initially, the se-
ries is assessed to determine if it represents a pattern of a
signal with one frequency. If it does, the analysis proceeds di-
rectly to using the GLS method, especially if the time series
contains gaps and/or demonstrates rapid variations. Rather
than interpolating these gaps to use FFT, which alters the
data’s characteristics, GLS offers far more accurate spectral
estimates.
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Figure 7. Averaged temporal spectra of non-gapped time series generated by the spectral power-law simulation with a spectral exponent
of β = 3 within a 6 h observation time: (a) non-prewhitened, without extra long waves; (b) non-prewhitened, after the addition of three
extra waves with frequencies lower than f = 1/T (particularly 8, 10, and 12 h) to the simulation; and (c) the postdarkened spectra of the
prewhitened time series with extra waves. Here, both axes were also log-scaled so that a linear function can be identified. The dotted lines
(in red, green, and blue) represent the fits of the PSD of each method.

Figure 8. Recommended procedure for estimating power spectra of gravity wave time series.

Evaluation of data gaps. For more complex series, partic-
ularly those characterized by a superposition of waves or the
power-law spectrum, the data are first assessed for observa-
tional gaps. The presence of such gaps profoundly affects the
accuracy of traditional spectral-analysis methods like FFT. If
variations are rapid (i.e. the slope of that power-law spectrum
β is in the range [−1,0]), the series is again subjected to the
GLS method. However, for slower variations such as the vast

majority of atmospheric measurements, represented by a β
value in the range of [1,3], the HSF method is consistently
the least biased.

Mitigate low-frequency leakage. When the spectra of the
time series with slow variations are analysed (even in the
absence of gaps), it should be investigated whether low-
frequency leakage takes place. Finite time series, very steep
spectra, and waves with periods longer than the observed

https://doi.org/10.5194/amt-17-783-2024 Atmos. Meas. Tech., 17, 783–799, 2024



794 M. Mossad et al.: Assessing atmospheric gravity wave spectra

time span cause this kind of leakage. All tested methods, to
varying extents, struggled with this leakage from unresolved
low-frequency power, leading to biases in estimating the
spectral slope β. Thus we recommend cautiously applying
the approach of prewhitening the time series and postdark-
ening the spectrum to address this problem. Prewhitening
can be actualized by first-differencing the series, which ren-
ders its spectrum close to that of white noise. Subsequently,
postdarkening the spectrum is required to compensate for the
prewhitening process via division by a frequency-dependent
factor. Nevertheless, depending on the characteristics of the
analysed time series, further steps (e.g. windowing) might be
necessary to help counter other causes of leakage.

These sequential decisions highlight the importance of tai-
loring analysis methods to the characteristics of the data at
hand. Employing a one-size-fits-all method can result in bi-
ased spectra, which are especially critical in GW parameter-
izations in all atmospheric models. Our recommendations,
grounded in rigorous research on synthetic gravity wave time
series, aim to guide researchers in making informed deci-
sions, ensuring the accuracy of spectral results and advancing
our understanding of the dynamics of the atmosphere.
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Appendix A

Table A1. Comparison of theoretical predictions and selected observed values of the power-law exponent β of GW spectra. Here T refers to
temperature, W is wind, and ρ is density.

Reference Type of spectra Spectral exponent
or β

“Universal” spectrum (VanZandt, 1982, and ref. within) Vertical wavenumber spectra by Doppler navigator and
anemometer of horizontal W observations

2.4

Linear instability theory (Dewan and Good, 1986; Smith
et al., 1987)

Vertical wavenumber spectra of horizontal W 3

Saturated-cascade theory (Dewan, 1994) Horizontal wavenumber spectra of horizontal W, T , and
fractional ρ

5/3

Saturated-cascade theory (Dewan, 1994) Vertical wavenumber spectra of vertical W −1
Saturated-cascade theory (Dewan, 1994) Temporal spectra of vertical W 0
Saturated-cascade theory (Dewan, 1994) Temporal spectra of horizontal W, T , and fractional ρ 2
Lidar observations (Shibata et al., 1988) Vertical wavenumber spectra of T data 2.5 to 3
Diffusive filtering theory (Gardner, 1994) Vertical wavenumber spectra of horizontal W 3 (p = 2)
Diffusive filtering theory (Gardner, 1994) Temporal spectra of horizontal W 2 (p = 2)
Diffusive filtering theory (Gardner, 1994) Vertical wavenumber spectra of vertical W −1 (p = 2)
Diffusive filtering theory (Gardner, 1994) Temporal spectra of vertical W 0
Diffusive damping theory (Weinstock, 1990; Zhu, 1994) Temporal spectra of horizontal W p

Diffusive damping theory (Weinstock, 1990; Zhu, 1994) Vertical wavenumber spectra of horizontal W 3
Doppler spread theory (Hines, 1991) Vertical wavenumber spectra of horizontal W 3
Doppler spread theory (Hines, 1991) Temporal spectra of horizontal W p

Lidar observations (Gardner et al., 1995) Temporal spectra of ρ data 2.3
Lidar observations (Gardner et al., 1995) Temporal spectra of T data 1.6
Lidar observations (Gardner et al., 1995) Temporal spectra of vertical W data ≈ 0
Lidar observations (Gardner et al., 1995) Vertical wavenumber spectra of ρ data 3.5
Lidar observations (Gardner et al., 1995) Vertical wavenumber spectra of T data 2.5
Lidar observations (Gardner et al., 1995) Vertical wavenumber spectra of vertical W data 1.4 to 1.9
Radiosonde observations (Zhang et al., 2017) Vertical wavenumber spectra of zonal W data 2.4 to 2.68
Radiosonde observations (Zhang et al., 2017) Vertical wavenumber spectra of meridional W data 2.53 to 2.76
Radiosonde observations (Zhang et al., 2017) Vertical wavenumber spectra of vertical W data 0.2 to 0.3
Balloon observations (He et al., 2020) Vertical wavenumber spectra of T data 2.18 to 2.63
Balloon observations (Hertzog and Vial, 2001) Lagrangian wavenumber–frequency spectra of

horizontal W (meridional and zonal) data
1.9 to 2.2

Balloon observations (Hertzog and Vial, 2001) Lagrangian wavenumber–frequency spectra of vertical
W data

0.2 to 0.5

Balloon observations (Podglajen et al., 2016) Lagrangian temporal spectra of horizontal W data in
period range [4h,20min]

1.78 to 1.96
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