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S1 Saturation at cloud base 

 

Figure S1: SNRco and SNRcross measured by Utö-32XR at the cloud base. 

S2 Post-processing 

For a successful fit, aerosol- and hydrometeor- free (background or noise-only) range gates need to be identified 5 

in the profile. Firstly, the data is averaged every hour, and the SNRco and SNRcross profiles are then decomposed 

by stationary wavelet transform (Nason and Silverman, 1995) with the wavelet bior2.6 using Pywavelets (Lee et 

al., 2019). Next, the variance of the noise in the SNR is removed by applying a hard threshold shrinkage function 

using universal thresholding (Donoho and Johnstone, 1994) to the approximation and detail coefficients from 

level 1 to level 4 resulted from the wavelet transform (Nason and Silverman, 1995). The SNR is then reconstructed 10 

using inverse stationary wavelet transform (Nason and Silverman, 1995). Finally, the background range gates are 

identified as those having reconstructed SNRco values less than the standard deviation of the instrument noise 

floor divided by the squared root of the number of profiles averaged in that hour. The 2nd order polynomial fit can 

then be performed on those noise-only data points identified in the profile. The fit follows Eq. (S1) and the 

correction is then applied to the entire SNR profile, similar to (Vakkari et al., 2019). 15 

𝑆𝑁𝑅𝑧 = 𝑎 + ℎ𝑧 ⋅ 𝑏 + 𝑐 ⋅ ℎ𝑧
2 , (𝑆1) 

where 𝑆𝑁𝑅𝑧 and ℎ𝑧 are the background SNR and height at each range gate, z, and 𝑎, 𝑏, 𝑐 are the parameters of the 

fit for each profile.  

Next, the aerosol-only range gates are identified based on the result of the AI algorithm applied to the original 

non-averaged data. If 80 percent of original the non-averaged measurements at a range gate in an hour were 20 

identified as aerosol by the Aerosol Identification algorithm, then that 1-hour averaged range gate is identified as 

aerosol measurement. Finally, following Vakkari et al., 2021, the bleed-through corrected δ of aerosol can be 

calculated following Eq. (3) in the manuscript, utilizing the estimated bleed through obtained in Table 3. 

 

Uncertainty in δ of aerosol 25 
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The background and the bleed through corrections include uncertainties that will propagate through to the 

uncertainty in the final retrieved δ of aerosol. A Bayesian approach utilizing Stan (Carpenter et al., 2017) has been 

used to estimate these uncertainties. The full Bayesian inference is obtained through a sampling method based on 

Hamiltonian Monte Carlo simulation (Betancourt and Girolami, 2015), which is a form of Markov chain Monte 

Carlo sampling (van Ravenzwaaij et al., 2018). The resulting posterior distribution is used to estimate the mean 30 

and uncertainty of the parameters and generate the posterior predictive distribution of the variables. 

The 2nd order polynomial model of SNR is similar to Eq. (S1), but with the error component added: 

𝑆𝑁𝑅𝑟 = 𝑎 +  ℎ𝑟 ⋅ 𝑏 + 𝑐 ⋅ ℎ𝑟
2  + 𝜖 , (𝑆2) 

where 𝜖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2). 

Equation S2 is equivalent to 𝑆𝑁𝑅𝑟~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑎 +  ℎ𝑟 ⋅ 𝑏 + 𝑐 ⋅ ℎ𝑟
2, 𝜎), or the so-called likelihood 35 

𝑝(𝑆𝑁𝑅 | 𝑎, 𝑏, 𝑐 , 𝜎, ℎ𝑟). The standard non-informative prior was used for all parameters:  

𝑝(𝑎)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 103) 

𝑝(𝑏)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 103) 

𝑝(𝑐)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 103) 

𝑝(𝜎)~𝐺𝑎𝑚𝑚𝑎−1(0.001, 0.001) 40 

The posterior distributions of the parameters are then obtained by sampling through Stan.  

𝑝(𝑎, 𝑏, 𝑐, 𝜎| 𝑆𝑁𝑅, ℎ)  ∝ 𝑝(𝑆𝑁𝑅 | 𝑎, 𝑏, 𝑐, 𝜎) 𝑝(𝑎, 𝑏, 𝑐, 𝜎) 

Four different sampling chains (van Ravenzwaaij et al., 2018) are utilized with 2000 samples for each chain 

(excluding the 500 warmup/burn-in samples), and convergence diagnostics have been carried out to ensure that 

the chains converged. The sampling results represent the posterior distribution of all the parameters. 45 

From these posterior distributions, the mean and standard deviation of the parameters can be calculated. The fitted 

background SNR distribution at all heights can be generated by sampling from the posterior predictive 

distribution. It is done through selecting random draws from the posterior, which are then plugged into Eq. (S2) 

to calculate the posterior predictive samples. The mean and standard deviation of the fitted background SNR at 

each height can be estimated by calculating the mean and standard deviation of the generated samples at each 50 

height. 

The samples of the corrected SNR distribution at each height are calculated by dividing the original SNR by the 

samples from the estimated background SNR distribution at each height. The samples of the final δ of aerosol 

distribution at each height are then calculated following Eq. (3) assuming the bleed-through follows a normal 

distribution with mean and standard deviation from Table 3. The mean and uncertainty of the final δ of aerosol is 55 

estimated by calculating the mean and standard deviation of the samples at each height. 

 

The effect of the post-processing procedure on δ of aerosol 
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Figure S2: 2D histogram of the changes of δ of aerosol from the post-processing procedure in relation with SNRco in a) 60 
Utö-32, b) Utö-32XR, c) Hyytiälä-33, d) Hyytiälä-46, e) Vehmasmäki-53, f) Sodankylä-54  

 

Instrument 
% of total aerosol data point with 

|δcorrected – δoriginal| > 0.05 

% of total aerosol data point with 

|δcorrected – δoriginal| > 0.1 

Utö-32 18.2% 6.6% 

Utö-32XR 11.0% 1.9% 

Hyytiälä-33 31.8% 9.3% 

Hyytiälä-46 24.6% 7.1% 

Vehmasmäki-53 15.5% 2.7% 

Sodankylä-54 17.9% 5.1% 

Table S1: Percentage of aerosol data with the changes of δ resulted from the post-processing procedure. The second 

column displays the percentage of aerosol data that has δ changed more than 0.05. The third column displays the 

percentage of aerosol data that has δ changed more than 0.1. 65 

Fig. S2 demonstrates the impact of the background correction to δ of aerosol. For all the instruments except 

Sodankylä-54, the background correction increases δ of aerosol. The increase is higher for aerosol with weaker 

SNRco. The effect is negligible for strong aerosol signal with SNRco larger than 0.01. Table S1 shows the 

percentage of data affected by this background correction. The effect is most prominent for the instruments at 

Hyytiälä; as 31.8% and 24.6% of the aerosol data have δ changed by 0.05 for Hyytiälä-33 and Hyytiälä-46 70 

respectively. However, significant changes of aerosol δ more than 0.1 is only at 9.3% and 7.1% for these 

instruments. This result shows the importance of background correction in the retrieval of weak aerosol signals. 
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Without it, biases from the 2nd order polynomial component in the background would propagate into the δ of 

aerosol. 

S3 Aerosol Identification algorithm 75 

The detailed steps of the algorithm are explained below, with an example shown in Fig. 7. 

1. The first step of the algorithm involves preliminary detection of potential hydrometeors and aerosols 

from background signals based on β’ and SNRco. Result from this step is shown in Fig. 7a. 

o All data points with SNRco larger than one standard deviation of the background SNRco and with 

β’ values less than 10-5.5 Mm-1 sr-1 are marked as aerosol. A 2D median kernel was then 80 

convolved with these aerosol data points to remove noisy signals due to instrumentation and 

attenuation.  

o All data points with SNRco larger than three standard deviations of the background SNRco and 

with β’ > 10-5.5 Mm-1 sr-1 were marked as hydrometeor. A 2D median and maximum kernel were 

then convolved with these hydrometeor data points to remove noisy signals due to 85 

instrumentation and attenuation. 

2. The falling hydrometeor detection step involves separating aerosol in downdrafts due to boundary layer 

mixing from precipitation using both β’ and w. Regions containing both up- and down- drafts are 

considered to be characteristic of boundary layer mixing, while a region of continuous downdrafts 

indicates precipitation. The result from this step is shown in Fig. 7d. 90 

o The updraft proxies are identified by selecting data points that have w > 1 m s-1. 2D median and 

maximum kernels were then convolved to remove noisy signal and expand the updraft proxies. 

o Next, precipitation proxies are selected, having β’ > 10-7 Mm-1 sr-1 and w < -1 m s-1. A 2D 

median kernel was then convolved with these data points to remove noisy signals. The 

precipitation proxies that are in the updraft proxies are then removed. 95 

o All-precipitation regions are identified having β’ > 10-7 Mm-1 sr-1 and w < -0.5 m s-1. A 2D 

median kernel was then convolved with these data points to remove noisy signals. 

o The updraft region is identified having w > 0.2 m s-1. A 2D maximum kernel was then convolved 

with these data points to increase the size of the updraft region. 

o Finally, precipitation data points are identified by including the precipitation proxies that 100 

overlap with any all-precipitation regions but not with updraft regions. A 2D maximum kernel 

was used for this iterative process. 

o The precipitation data points are then overwritten the aerosol data points from step 1 as 

hydrometeor. 

3. An attenuation correction step sets all observations above clouds and precipitation with their 105 

corresponding class since the signal has been heavily attenuated. The result from this step is shown in 

Fig. 7f. 

4. In the final step, a fine-tuned aerosol process is utilized to improve the aerosol class determination 

accuracy. The final result is shown in Fig. 7h. 

o First, aerosol clusters are identified in the time and height domain using the Density-Based 110 

Spatial Clustering of Applications with Noise (DBSCAN) algorithm (Ester et al., 1996).  
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o A cluster is flagged as hydrometeor if the mean w of the cluster < -0.5 m s-1.   

o The rest of the clusters which are connected to the ground are classified as aerosol.  

o The rest of the clusters that have w > -0.2 m s-1 are classified as aerosol.  

o All clusters that do not satisfy of the previous criteria are classified as undefined. 115 

S4 The effect of relative humidity 

 

Period Location Slope p-value R squared 

Whole data 

Utö -0.073 < 10-3 0.012 

Hyytiälä -0.14 < 10-3 0.105 

Vehmasmäki -0.194 < 10-3 0.219 

Sodankylä -0.165 < 10-3 0.142 

May-June 

Utö -0.147 < 10-3 0.045 

Hyytiälä -0.208 < 10-3 0.166 

Vehmasmäki -0.169 < 10-3 0.145 

Sodankylä -0.127 < 10-3 0.057 

Table S2: Linear regression analysis summary for δ = Slope × RH + off-set (not shown in the table), where δ is the δ of 

aerosol and RH is the surface relative humidity (at 2 m a.g.l). The p-values for the slopes are < 10-3, indicates that all 

the slopes’ values are statistically significant (i.e., different than 0). The R squared describes the proportion of variance 120 
in δ that can be explained by RH. 

S5 Hyytiälä and Utö on April 2018 

 

Figure S3: Aerosol subtype V4.2 (Kim et al., 2018; Liu et al., 2019) derived from CALIOP data onboard CALIPSO 

(Winker et al., 2009) on 2018-04-15. A layer of dust can be observed near Hyytiälä lidar (61.84oN,24.29oE). 125 
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Figure S4: Dust Aerosol Optical Depth at 550 nm wavelength from CAMS model forecast (Benedetti et al., 2009; 

Morcrette et al., 2009) 

 

Figure S5: Air mass origin for the elevated layer at 2.5-3.5 km a.g.l. observed on 2018-04-15 at 03 UTC at Hyytiälä. a) 130 
PES summed up for all heights for 7 days before arrival at Hyytiälä. b) Sum of PES in the lowest 500 m a.g.l. for 7 days 

before arrival at Hyytiälä. c) Vertical distribution of PES in the lowest 5 km a.g.l. for 7 days before arrival at Hyytiälä. 
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S6 Utö on May 2018 

 

Figure S6: Air mass origin for the elevated layer at 1-2 km a.g.l. observed on 2017-05-13 at 18 UTC at Utö. a) PES 135 
summed up for all heights for 7 days before arrival at Utö. b) Sum of PES in the lowest 500 m a.g.l. for 7 days before 

arrival at Utö. c) Vertical distribution of PES in the lowest 5 km a.g.l. for 7 days before arrival at Utö. 


