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Abstract. Atmospheric clouds greatly impact Earth’s radia-
tion, hydrological cycle, and climate change. Accurate auto-
matic recognition of cloud shape based on a ground-based
cloud image is helpful for analyzing solar irradiance, wa-
ter vapor content, and atmospheric motion and then predict-
ing photovoltaic power, weather trends, and severe weather
changes. However, the appearance of clouds is changeable
and diverse, and their classification is still challenging. In re-
cent years, convolution neural networks (CNNs) have made
great progress in ground-based cloud image classification.
However, traditional CNNs poorly associate long-distance
clouds, making the extraction of global features of cloud im-
ages quite problematic. This study attempts to mitigate this
problem by elaborating on a ground-based cloud image clas-
sification method based on the improved RepVGG convo-
lution neural network and attention mechanism. Firstly, the
proposed method increases the RepVGG residual branch and
obtains more local detail features of cloud images through
small convolution kernels. Secondly, an improved channel at-
tention module is embedded after the residual branch fusion,
effectively extracting the global features of cloud images. Fi-
nally, the linear classifier is used to classify the ground cloud
images. Finally, the warm-up method is applied to optimize
the learning rate in the training stage of the proposed method,
making it lightweight in the inference stage and thus avoiding
overfitting and accelerating the model’s convergence. The
proposed method is validated on the multimodal ground-
based cloud dataset (MGCD) and the ground-based remote
sensing cloud database (GRSCD) containing seven cloud cat-
egories, with the respective classification accuracy rate val-
ues of 98.15 % and 98.07 % outperforming those of the 10

most advanced methods used as the reference. The results
obtained are considered instrumental in ground-based cloud
image classification.

1 Introduction

In meteorology, cloud is an aerosol consisting of a visible
mass of water droplets, ice crystals, their aggregates, or other
particles suspended in the atmosphere. Clouds of different
types cover over 70 % of Earth’s surface (Qu et al., 2021;
Gyasi and Swarnalatha, 2023; Fabel et al., 2022). Cloud anal-
ysis plays a crucial role in meteorological observation be-
cause clouds can affect Earth’s water cycle, climate change,
and solar irradiance (Gorodetskaya et al., 2015; Goren et al.,
2018; Zheng et al., 2019). Cloud observation methods mainly
include satellite observation (Norris et al., 2016; Zhong et
al., 2017; Li et al., 2023) and ground observation (Calbó and
Sabburg, 2008; Nouri et al., 2019; Lin et al., 2023). Satellite
observation refers to the distribution, movement, and change
of clouds observed by high-resolution remote sensing satel-
lites from above. When observing local sky regions, satel-
lite observations have low performance and are unable to
obtain sufficient resolution to describe the characteristics of
different cloud layers in detail (Long et al., 2023; Sarukkai
et al., 2020). Compared with satellite observation, ground-
based observation opens up a new way to monitor and under-
stand regional sky conditions. Typical ground-based cloud
observation instruments include the All-Sky Imager (ASI)
(Shi et al., 2019; Cazorla et al., 2008) and the Total Sky Im-
ager (TSI) (Long et al., 2006; Tang et al., 2021). The rele-
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vant equipment and ground-based cloud images are shown
in Fig. 1.

Ground-based cloud observation can obtain more obvious
cloud characteristics by observing the information at the bot-
tom of the cloud, which is conducive to assisting the pre-
diction of local photovoltaic power generation. Clouds play
an important role in maintaining the atmospheric radiation
balance by absorbing short-wave and ground non-solar ra-
diation (Taravat et al., 2015). Photovoltaic (PV) power pre-
diction is affected by multiple factors such as cloud genus,
cloud cover change, solar irradiance, and solar cell perfor-
mance in local areas, among which cloud genus is an impor-
tant factor affecting PV power prediction (Zhu et al., 2022).
Therefore, it is of great significance to accurately obtain
sky cloud information through cloud observation and then
accurately classify clouds for accurate prediction of photo-
voltaic power generation (Alonso-Montesinos et al., 2016).
The traditional ground-based cloud observation method is
mainly visual observation, which relies heavily on the ex-
perience of observers and which cannot achieve standard-
ization. Therefore, ground-based cloud automatic observa-
tion has been widely studied by scholars. In recent years,
with the development of digital image acquisition devices,
many ground-based whole-sky cloud image acquisition de-
vices have emerged, providing massive data support for au-
tomatic ground-based cloud observation (Pfister et al., 2003).

Ground-based cloud image classification is an important
part of the foundation of automatic cloud observation and
is the key to climate change and photovoltaic power pre-
diction. The classification of ground-based cloud images
mainly classifies each cloud image taken from the ground
into the corresponding cloud genus by extracting cloud im-
age features, such as cirrus, cumulus, stratus, or nimbo-
stratus. According to different cloud image feature extrac-
tion methods, the ground-based cloud image classification
method is divided based on traditional machine-learning
methods and deep-learning methods (Simonyan and Zisser-
man, 2015; Krizhevsky et al., 2017; Hu et al., 2018). Most of
the ground-based cloud image classification methods based
on traditional machine learning classify cloud images by ar-
tificially designing cloud image features, while the ground-
based cloud image classification methods based on deep
learning mainly classify cloud images through self-learning
cloud image features of deep neural networks (DNNs) (Wu
et al., 2019).

Early ground-based cloud image classification studies re-
lied on manual classification methods, which focused on fea-
tures such as texture, structure, and color, combined with tra-
ditional machine-learning methods to classify ground-based
cloud images. These methods include a decision tree, K-
nearest neighbor (KNN) classifier, support vector machine
(SVM), etc. Singh and Glennen (2005) proposed a method
for automatically training the texture function of a cloud clas-
sifier. In this method, five feature extraction methods includ-
ing autocorrelation, co-occurrence matrix, edge frequency,

Laws texture analysis, and original length are used respec-
tively. Compared with other cloud classification methods,
this method has the advantages of high accuracy and fast
classification speed, but its classification ability for mixed
clouds is insufficient. Heinle et al. (2010) described cloud
images by using spectral features (mean value, standard de-
viation, skewness, and difference) and texture features (en-
ergy, entropy, contrast, homogeneity, and cloud cover), and
combined with a KNN classifier, divided ground cloud im-
ages into seven categories. In addition, Zhuo et al. (2014)
reported that the spatial distribution of contour lines could
represent the structural information of cloud shapes, used the
central description pyramid to simultaneously extract the tex-
ture and structural features of ground-based cloud images,
and used SVM and KNN to classify cloud images. It can
be seen that the traditional classification method of ground-
based cloud images based on machine learning mainly uses
hand-designed texture, structure, color, shape, and other fea-
tures to extract, and obtains high-dimensional feature expres-
sion of ground-based cloud images through single feature or
fusion feature. Traditional machine-learning methods mostly
describe the features from the perspective of digital signal
analysis and mathematical statistics, but ignore the represen-
tation and interpretation of the visual features of the cloud
image itself.

In recent years, against the background of cross-
integration of different disciplines and artificial intelligence,
the ground-based cloud image classification method based on
deep learning has become a research hotspot with its superior
classification performance. Aiming at the unique character-
istics of ground-based cloud images, Shi et al. (2017) pro-
posed deep convolutional activation-based features (DCAFs)
to classify ground-based cloud images, and the results are
better than the artificially designed cloud image features.
Alternatively, Ye et al. (2017) used CNNs to extract cloud
image features and proposed a local pattern-mining method
based on ground-based cloud images to optimize the local
features of cloud images and to improve the classification ac-
curacy of cloud images. J. Zhang et al. (2018) put the wake
cloud as a new genus of cloud into the ground-based cloud
image database for the first time, proposed a simple convolu-
tional neural network model called CloudNet, and applied
it to the ground-based cloud image classification task, ef-
fectively improving the accuracy of ground-based cloud im-
age classification. More recently, Wang et al. (2020) pro-
posed the CloudA network, an optimized iteration of the
AlexNet convolutional neural network, which reduces the
number of parameters through a simplified network architec-
ture. The classification accuracy in the Singapore Whole-Sky
Imaging Categories (SWIMCAT) ground-based cloud image
dataset exceeded the traditional ground-based cloud image
classification methods. Liu et al. (2020b) proposed multi-
evidence and multimodal fusion networks (MMFNs) by fus-
ing heterogeneous features, local visual features, and mul-
timodal information, which significantly improves the clas-
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Figure 1. Two kinds of ground-based cloud images and their observation equipment: (a) ASI ground-based cloud image and its observation
equipment (Cazorla et al., 2008; Shi et al., 2019); (b) TSI ground-based cloud image and its observation equipment (Long et al., 2006).

sification accuracy of cloud images. Aiming at the prob-
lem that a traditional neural network has insufficient abil-
ity to classify the ground-based cloud images within and
between genera, Zhu et al. (2022) proposed using an im-
proved combined convolutional neural network to classify
the cloud images, and the classification accuracy is greatly
improved compared with a traditional neural network. Alter-
natively, Yu et al. (2021) used two sub-convolutional neural
networks to extract features of ground-based cloud images
and used weighted sparse representation coding to classify
them, which solved the problem of occlusion in multimodal
ground-based cloud image data and greatly improved the ro-
bustness of cloud image classification. Liu et al. (2020a) in-
troduced a ground-based cloud image classification method
based on a graph convolution network (GCN). However, the
weight assigned by the GCN failed to accurately reflect the
importance of connection nodes, thus reducing the discrim-
ination of aggregated cloud image features. To make up for
this deficiency, Liu et al. (2022) proposed a context attention
network for ground-based cloud classification and publicly
released a new cloud classification dataset. In addition, Liu et
al. (2020c) further combined CNNs and GCNs to propose a
multimodal ground-based cloud image classification method
based on heterogeneous deep feature learning. Alternatively,
Wang et al. (2021) elaborated on a ground-based cloud im-
age classification method based on the Transfer Convolu-
tional Neural Network (TCNN) by combining deep learn-
ing and transfer learning. Li et al. (2022) further enhanced
the classification performance of ground-based cloud im-
ages based on the improved Vision Transformer combined
with the EfficientNet-CNN. The performance of the above-
mentioned ground-based cloud image classification methods
based on deep learning has significantly improved compared
to traditional machine-learning methods.

CNNs play an important role in the fields of target de-
tection, image classification, and image segmentation, es-
pecially in the tasks of power line fault detection (Zhao et
al., 2016), face recognition (Meng et al., 2021), and medi-
cal image segmentation (Zhang et al., 2021), and have been
widely used and have made great progress. Ground-based

cloud image classification is an emerging task in the field of
image classification and has achieved rapid and considerable
development based on the CNN method. However, it still
has some shortcomings, such as the shallow network level
of the ground-based cloud image classification method, lim-
ited ground-based cloud image classification performance,
and a small ground-based cloud image classification dataset,
which cannot verify the generalization ability of the large-
scale ground-based cloud image classification dataset.

To solve the above problems, the current study improved
the RepVGG (Ding et al., 2021) and used it as a basis for
elaborating on a new classification method for ground-based
cloud images called CloudRVE (Cloud Representative Vol-
ume Element) network. In this method, the ground-based
cloud image was incorporated into the CNN model, and its
image features were extracted. A multi-branch convolution
layer and a channel attention module were used to capture
local and global features of the cloud image simultaneously
to enhance the classification performance of ground-based
cloud images. The method was applied to the multimodal
ground-based cloud dataset (MGCD) (Liu et al., 2020a) and
the ground-based remote sensing cloud database (GRSCD)
(Liu et al., 2020b). The main contributions of this paper are
as follows.

1. This study elaborated on the improved RepVGG
ground-based cloud image classification method with
an attention convolution called CloudRVE. It broadened
the residual structure and comprehensively combined
the attention mechanism’s abilities to extract the cloud
image’s global features and describe in detail its local
features in the classification process.

2. In particular, the Efficient Channel Attention (ECA)
network was improved and incorporated into the fea-
ture extraction process of ground-based cloud im-
ages, whose optimization occurred through local cross-
channel interaction without dimensionality reduction.
In addition, structural re-parameterization at the infer-
ence stage was performed, reducing the model com-
plexity, improving the feature extraction performance,
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and enhancing the network’s learning ability of ground-
based cloud image features.

3. The comparative analysis of experimental results on the
ground-based cloud image classification dataset MGCD
proved that the proposed method outperformed 10 other
state-of-the-art methods in classification accuracy. Its
application to the GRSCD dataset further verified its
generalization ability. Finally, the proposed method’s
training process optimization and dynamical adjust-
ment of its learning rate were provided by the warm-
up method, and the respective recommendations were
drawn.

The rest of this paper is organized as follows. Section 2
elaborates on the structure and composition of the proposed
CloudRVE method for classifying ground cloud images. Sec-
tion 3 briefly introduces the ground cloud image classifi-
cation datasets used in this paper and the model evalua-
tion indices. Section 4 provides the experimental results and
discusses the feasibility and effectiveness of the proposed
method. Finally, Sect. 5 concludes the study and outlines fu-
ture research directions and practical applications of the re-
search results.

2 Methods

2.1 Overview of the methods

This section shows the overall architecture of the proposed
RepVGG-based improved classification method, as shown
in Fig. 2. In the CloudRVE training process, CloudRVE
Block with a multi-branch topology structure is used to
extract features of ground-based cloud images. The multi-
branch topology structure has rich gradient information and
a complex network structure, which can effectively im-
prove the characterization ability of local feature informa-
tion of ground-based cloud images. Feature maps extracted
by CloudRVE Block enter the New Efficient Channel At-
tention (NECA) network and learn the feature relationships
between sequences to obtain the global feature representa-
tion of an image. In addition, the warm-up method is in-
corporated into the CloudRVE training process to dynam-
ically optimize the learning rate and accelerate the model
parameter convergence to enhance the model training ef-
fect. The CloudRVE inference process uses the single-branch
topology structure of VGG-style (Simonyan and Zisserman,
2015), and through structural re-parameterization the multi-
branch convolutional layer and batch normalization (BN)
(Ioffe and Szegedy, 2015) are converted into a 3× 3 convo-
lutional layer, increasing its inference speed. The CloudRVE
training process and inference process use the linear classi-
fier to classify the ground-based cloud images to get the final
result. The specific framework parameter information of the
model is shown in Table 1, where a and b are magnification

Table 1. The details of the CloudRVE training architecture.

Stage Blocks of Output size Output channels
each stage

0 1 224× 224 Min (64, 64a)
1 2 112× 112 64a
2 4 56× 56 128a
3 14 28× 28 256a
4 1 14× 14 512b

factors used to control the network width. The specific con-
tents of each part are as follows.

2.2 Broadening the CloudRVE Block of the residual
structure

CNN is a deep-learning model including convolution cal-
culation and a feed-forward neural network, which has a
representation learning ability similar to an artificial neural
network multilayer perceptron (Shi et al., 2017). In 2014,
the most representative convolution neural network (VGG)
came out, which adopted a single-branch topology structure,
greatly improved the image processing effect and model in-
ference speed, and became a new direction for scholars to
learn and develop. With the in-depth study of the VGG, its
potential in image processing is close to saturation. Scholars
realize that the VGG has some shortcomings, such as a sim-
ple network structure, few network layers, and large parame-
ters, which makes it difficult to extract high-order features
of images and has limited image processing performance.
Therefore, improving network complexity and increasing the
number of network layers has become a new research direc-
tion. ResNet developed by He et al. (2016) differed from the
traditional neural network stacked by a convolution layer and
a pooling layer. The network was stacked by residual mod-
ules, which not only increased the complexity of the net-
work structure and reduced the number of network param-
eters, but also perfectly solved the problem of gradient dis-
appearance or gradient explosion caused by increasing the
number of network layers, which could extract abstract im-
age features with semantic information and effectively im-
prove the image processing performance. By improving the
complexity and depth of the network, ResNet could train the
CNN model with higher accuracy, but there were numerous
redundancies in its residual network, impeding the network
inference speed and reducing the accuracy of the image pro-
cessing results (Szegedy et al., 2015). Therefore, increasing
the complexity and depth of the network, weakening its in-
fluence on inference speed, and improving the classification
effect of ground-based cloud images become the key goals
of this study.

To improve the classification effect of the ground-based
cloud images, the CloudRVE training process is composed
of CloudRVE blocks that adopt the multi-branch topology.
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Figure 2. CloudRVE network framework. Ground-based cloud images come from the Kiel-F datasets (Kalisch and Macke, 2008).

CloudRVE Block contains four branches and the improved
channel attention module NECA. Its main branch contains a
convolutional layer with a convolution kernel size of 3× 3,
which can inspect the input images with a larger neigh-
borhood scope and extract global features easily. Ground-
based cloud images contain abundant cloud shape and cloud
amount information, while a large convolution kernel tends
to ignore cloud boundary features, resulting in inadequate
feature extraction from ground-based cloud images. There-
fore, the two bypass branches of CloudRVE Block adopt the
convolution layer with a convolution kernel size of 1× 1,
which can not only extract fine cloud boundary features and
abstract cloud cover features, but also keep the output di-
mension consistent with the input dimension, facilitating the
multi-branch ground-based cloud image feature fusion. The
third bypass branch of CloudRVE Block adopts the Identity
branch, whose purpose is to take the input as the output and
change the learning objective to the residual result approach-
ing 0 so that the accuracy does not decline with the deepen-
ing of the network. In addition, each branch is connected to
the BN layer, not only to avoid overfitting, but also to prevent
gradient disappearance or explosion. The specific structure of
CloudRVE Block is shown in Fig. 3. The input feature maps
pass through three branches with a convolutional layer and a
BN layer at the same time. The output obtained by the input
feature maps is summed with the Identity branch and input
into the NECA module to obtain the final output feature.

2.3 NECA module focusing on full image features

The attention mechanism lets the neural network have the in-
formation processing to distinguish between the key points

Figure 3. CloudRVE Block structure.

and to capture the connection between global information
and local information flexibly. Its purpose is to enable the
model to obtain the target region that needs to be focused on,
put more weight on this part, highlight significant useful fea-
tures, and suppress and ignore irrelevant features. NECA is
an implementation form of the channel attention mechanism,
which can strengthen channel features without changing the
size of the input feature maps. It adopts a local cross-channel
interaction strategy without dimensionality reduction, so that
the 1× 1 convolution layer can replace the full connection
layer to learn channel attention information, which can effec-
tively avoid the negative impact of dimensionality reduction
on channel attention learning. The network performance is
guaranteed, and the complexity of the model is significantly
reduced.

The ground-based cloud image samples in Fig. 2 were
taken by the all-sky imager and could cover the sky in this
area. However, the ground-based cloud images contain not
only the valid area of the whole sky, but also the black invalid
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Figure 4. NECA model structure.

area. Therefore, the NECA module abandons the traditional
global maximum pooling and adopts double global average
pooling. The global average pooling formulas are as follows:

γgap =
1
wh

w,h∑
i=1,j=1

Xij , X ∈ Rw×h×c, (1)

ηgap = σ
(
V

gap
k γgap

)
, V

gap
k ∈ Rc×c, (2)

where X and X′ represent the input and output feature maps,
respectively, whereas w, h, and c are the width, height, and
number of channels of the input feature map. The NECA
module adopts a double global average pool, which can ef-
fectively improve its noise suppression ability and enhance
its channel feature extraction ability, which can avoid the
black invalid part of the feature calculation. The NECA mod-
ule structure is shown in Fig. 4.

Here b and r are fixed values, and their values are set to
1 and 2, respectively, while k represents the convolution ker-
nel size and has a corresponding relationship with c. As the
network deepens, the number of channels c increases by a
power of 2. Therefore, k should not be a fixed value, but a
dynamic change and its relationship are as follows.

C = φ (k)= 2(γ×k−b) (3)

K = ψ (C)=

∣∣∣∣ log2(c)

r
−
b

r

∣∣∣∣
odd

(4)

2.4 Inference process from multiple branches to a
single branch

The residual module is crucial to the CloudRVE training
process. Its multi-branch topology can improve CloudRVE
Block’s ability to extract ground cloud image features and
solve optimization problems such as gradient disappear-
ance and gradient explosion caused by increasing network
depth. However, the multi-branch topology will occupy more
memory for the CloudRVE reasoning process, resulting in
insufficient utilization of hardware computing power and
slower reasoning speed. If the single-branch topology is
adopted, the computing load is reduced and the inference
time is saved, thus reducing memory consumption. There-
fore, the single-branch topology structure is adopted in the
CloudRVE inference stage, and the trained CloudRVE Block
needs to be transformed into a single-branch topology model

through structural re-parameterization. The conversion pro-
cess mainly includes the fusion of the convolutional layer and
the BN layer, the conversion of the BN layer into a convolu-
tional layer, and the fusion of the multi-branch convolutional
layer. We use W(3) ∈ R

C1×C2×3×3 as 3× 3 convolution lay-
ers; use C1 and C2 as input channels and output channels,
respectively; and use W(1) ∈ R

C1×C2×1×1 as 1× 1 convolu-
tion layers. In addition, we use µ(3), σ(3), γ(3), and β(3) to
represent the mean value, standard deviation, learning scal-
ing factor, and deviation of the BN layer of the main branch
and use µ(1), σ(1), γ(1), and β(1) to represent the parameters
of the BN layer of the bypass branch containing the 1× 1
convolution layer. We use µ(0), σ(0), γ(0), and β(0) to repre-
sent the parameters of the BN layer of the Identity branch
and useM(1) ∈ R

N×C1×H1×W1 andM(2) ∈ R
N×C2×H2×W2 to

represent the input and output. The CloudRVE Block struc-
ture re-parameterization calculation process is as follows.

M(2) = BN
(
M(1)∗W(3),µ(3),σ(3),γ(3),β(3)

)
+BN

(
M(1)∗W(1),µ(1),σ(1),γ(1),β(1)

)
+BN

(
M(1)∗W(1),µ(1),σ(1),γ(1),β(1)

)
+BN

(
M(1),µ(0),σ(0),γ(0),β(0)

)
(5)

The input feature map is input into the NECA module
through the 3× 3 convolution layer completed by fusion. The
process is shown in Fig. 5.

2.4.1 Fusion of the convolutional layer and the BN
layer

This section first describes the fusion of the main branch
3× 3 convolution layer with the BN layer and then describes
the transformation of the bypass branch 1× 1 convolution
layer into the 3× 3 convolution layer and fusion with the BN
layer. In the inference stage, the number of convolutional ker-
nel channels in the convolution layer is the same as the num-
ber of channels in the input feature map, and the number of
convolutional kernel channels in the output feature map is
the same. The main parameters of the BN layer include the
mean µ, variance σ 2, learning ratio factor γ , and deviation
β. Of these, µ and σ 2 are obtained statistically in the training
stage, while γ and β are obtained by learning in the training
stage. The calculation of the i channel of the input BN layer
is performed as follows:

yi =
xi − ui√
σ 2
i + ε

× γi +βi, (6)

where x is the input and ε is the constant approaching 0. The
calculation process of the i channel input BN in the feature
map can be expressed as follows:

bn(M,µ,σ,γ,β):,i,:,: =
(
M:,i,:,:−µi

) γi
σi
+βi

=
γi

σi
M:,i,:,:+βi −

γi

σi
µi, (7)
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Figure 5. Re-parameterization process of the CloudRVE Block structure.

where M is the output feature map obtained by weighted
summation of the convolution layer; input to the BN layer
and ignore x. Therefore, we can multiply γi/σi by the i con-
volution kernel of the 3× 3 convolution layer:

W ′i,:,:,: =
γi

σi
Wi,:,:,:, (8)

b′i = βi −
µiγi

σi
. (9)

The i convolution kernel weight of the fusion of the 3× 3
convolution layer and BN layer is obtained, and the specific
fusion process is shown in Figs. 6 and 7. The input channel
C1 and output channel C2 make two, and the stride is one. In
the convolution layer, the input feature map is calculated by
convolution to obtain the output feature map with the number
of channels two. Figure 8 shows that the number of channels
in the BN layer is two, and the output feature map of the
convolution layer is used as the input feature map of the BN
layer. The output feature map with the number of channels
two is obtained via Eq. (2).

In addition, to ensure that the size of the output feature
map is consistent with that of the input feature map, the input
feature map should be converted to 5× 5 size by a padding
operation. The concrete convolution is as follows.

o1
1 = x

1
1 · k

1
5 + x

1
2 · k

1
6 + x

1
4 · k

1
8 + x

1
5 · k

1
9 + x

2
1 · k

2
5

+ x2
2 · k

2
6 + x

2
4 · k

2
8 + x

2
5 · k

2
9 (10)

The specific calculation process of the input feature map
through the BN layer is

b1 =

(
x1

1 · k
1
5 + x

1
2 · k

1
6 + x

1
4 · k

1
8 + x

1
5 · k

1
9 + x

2
1 · k

2
5

+x2
2 · k

2
6 + x

2
4 · k

2
8 + x

2
5 · k

2
9
)
−µ1

√
σ 2+ ε

· γ1+β1. (11)

Re-arranging Eq. (7) yields

b1 =
(
x1

1 · k
1
5 + x

1
2 · k

1
6 + x

1
4 · k

1
8 + x

1
5 · k

1
9 + x

2
1 · k

2
5

+x2
2 · k

2
6 + x

2
4 · k

2
8 + x

2
5 · k

2
9

)
·

γ1
√
σ 2+ ε

+

(
β1−

µ1
√
σ 2+ ε

)
, (12)

c =
γ1

√
σ 2+ ε

, d = β1−
γ1 ·µ1
√
σ 2+ ε

. (13)

In Eq. (8), c and d are constants and are multiplied by the
first convolution kernel of the convolution layer to obtain the

parameters of the first convolution kernel after the convolu-
tion layer and BN layer are fused. Other fused convolution
kernel parameters are calculated similarly. The convolution
layer and BN layer are fused by the bypass branch contain-
ing a 1× 1 convolution layer. The convolution layer is first
converted to 3× 3 size by a padding operation and then fused
with the BN layer by repeating the above steps. The convo-
lution layer padding process is shown in Fig. 8.

2.4.2 Converting the BN layer to the convolution layer

The identity bypass branch only has a BN layer: its function
is to ensure the identity mapping of the input feature map
and the output feature map. To realize the identical mapping
between the input feature map and the output feature map in
the fusion process, a 3× 3 convolution layer with two con-
volution kernels and two convolution kernel channels needs
to be designed. Secondly, the input feature map needs to be
converted to a 5× 5 feature map by a padding operation. The
specific process is shown in Fig. 9. The output feature map is
obtained by convolution calculation of the input feature map,
and its parameters and sizes are consistent with those of the
input feature map. Finally, the fusion process of the 3× 3
convolution layer and the BN layer is repeated to obtain a
new 3× 3 convolution layer.

2.4.3 Multi-branch convolution layer fusion

The structure re-parameterization transforms each branch
into a 3× 3 convolution layer by construction and fusion,
which facilitates the fusion of multi-branch convolution lay-
ers into a single-branch 3× 3 convolution. We use I and O
to represent the input and output, respectively, while Ki and
Bi are the convolution kernel weight and bias of the i branch.
The multi-branch fusion calculation process is as follows.

O = (I ⊗K1+B1)+ (I ⊗K2+B2)+ (I ⊗K3+B3)

+ I ⊗ (K1+K2+K3)+ (B1+B2+B3) (14)

2.5 Warm-up method

In this paper, the warm-up method (He et al., 2019) is used
to optimize the learning rate in the model training process,
so that the learning rate varies in different training stages.
In the initial stage of model training, a small learning rate is
selected, which is due to the random initialization of model
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Figure 6. Input feature map through the convolution layer process. For visualization, we assume that C1 = C2 = 2.

Figure 7. Convolutional layer output feature map through the BN
layer process.

Figure 8. The 1× 1 convolution layer transformed into the 3× 3
convolution layer.

weights and no prior knowledge of ground-based cloud im-
age data, and the model will quickly adjust parameters ac-
cording to the input. If a high learning rate is adopted at this
time, the model will be overfitted and the prediction accu-
racy of the model will be affected. After training the model
for some time, the learning rate linearly increases to a preset
large value, and the model has some prior knowledge, which
can avoid overfitting and accelerate the convergence speed
of the model. Finally, the model distribution is relatively sta-
ble, so it is difficult to learn new features from ground-based
cloud image data, and the learning rate linearly approaches

zero, keeping the model stable and easily obtaining local op-
tima.

3 Dataset and experimental settings

This section introduces two kinds of ground-based cloud
image classification datasets, MGCD and GRSCD, and de-
scribes the relevant experimental settings. Section 3.1 de-
scribes MGCD and GRSCD in detail, and Sect. 3.2 details
the experimental setting parameters and model evaluation in-
dices.

3.1 Ground-based cloud image dataset

3.1.1 Introduction to the MGCD

The MGCD is the first ground-based cloud image classifi-
cation dataset composed of ground-based cloud images and
multimodal information and was collected by the School of
Electronics and Communication Engineering of Tianjin Nor-
mal University and the Meteorological Observation Center of
Beijing Meteorological Bureau of China from 2017 to 2018.
There are 8000 ground-based cloud images in the MGCD
and 4000 ground-based cloud images in the training set and
testing set, including altocumulus (Ac), cirrus (Ci), clear sky
(Cl), cumulonimbus (Cb), cumulus (Cu), stratocumulus (Sc),
and mix (Mx). In addition, cloud images with a cloud cover
of less than 10 % are classified as clear sky, and each sample
contains a captured ground cloud image and a set of mul-
timodal cloud information. Among them, the ground-based
cloud images are collected by an all-sky camera with a fish-
eye lens, and its data storage format is JPEG with a resolution
of 1024× 1024 pixels. Multimodal information is collected
by weather stations, including temperature, humidity, pres-
sure, and wind speed, and these four elements are stored in
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Figure 9. Identity branch mapping process.

Table 2. MGCD dataset-specific information.

No. Class Training Testing Total

1 Ac 365 366 731
2 Ci 662 661 1323
3 Cl 669 669 1338
4 Cb 593 594 1187
5 Cu 719 719 1438
6 Sc 482 481 963
7 Mx 510 510 1020

Total 4000 4000 8000

the same vector. Figure 10 is a partial sample of the MGCD
dataset, and the specific information is shown in Table 2.

3.1.2 Introduction to the GRSCD

The GRSCD is a ground-based cloud image classification
dataset composed of ground-based cloud images and mul-
timodal information. It was collected by the College of Elec-
tronic and Communication Engineering of Tianjin Normal
University and the Meteorological Observation Center of
Beijing Meteorological Administration of China from 2017
to 2018. The total number of ground-based cloud images in
the GRSCD are consistent with the MGCD, with a train-
ing set and a testing set each accounting for 50 %, includ-
ing seven types of clouds: Ac, Ci, Cl, Cb, Cu, Sc, and Mx.
Among them, the features of cumulonimbus and stratocumu-
lus in the MGCD are not distinct and are easy to confuse,
and the features of altostratus and cumulus in the GRSCD are
not distinct and are easy to confuse. In addition, each sample
contains a ground-based cloud image and a set of multimodal
cloud information, and cloud images with cloud cover not ex-
ceeding 10 % are classified as clear sky. Figure 11 depicts a

Table 3. GRSCD dataset-specific information.

No. Class Training Testing Total

1 Ac 400 331 731
2 Ci 650 673 1323
3 Cl 650 688 1338
4 Cb 600 587 1187
5 Cu 690 748 1438
6 Sc 500 463 963
7 Mx 510 510 1020

Total 4000 4000 8000

partial sample of the GRSCD dataset. The specific data are
listed in Table 3.

3.2 Experimental setting

3.2.1 Implementation details

All the experiments in this paper adopt the Python program-
ming language and run on an Intel(R) Core (TM) i9-12700K
CPU @ 3.60 GHz. The NVIDIA GeForce RTX 3090 24G
GPU platform uses Pytorch as a deep-learning framework.
The CNN experiment is trained on the ground-based cloud
image classification datasets MGCD and GRSCD, respec-
tively. The number of training data account for 50 %, the
initial learning rate is set to 0.0002, the batch size is set to
32, and the Adam optimizer (Kingma and Ba, 2015) is used
to optimize all the available parameters in the network. In
addition, to improve the generalization ability of the CNN
model and the convergence speed of the experiment, the
transfer learning method is adopted in the training stage, and
model parameters are obtained by training RepVGG with the
ground-based cloud image classification dataset created by
the team and used as the weight of pre-training. The CNN ex-
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Figure 10. Sample legend of the MGCD dataset (Liu et al., 2020a).

Figure 11. Sample legend of the GRSCD dataset (Liu et al., 2020b).

periment directly trains based on pre-training weight, which
can accelerate the model convergence speed and shorten the
training time, avoid the problem of parameter overfitting, and
promote the rapid gradient decline.

3.2.2 Evaluation index

To objectively evaluate the ground-based cloud image classi-
fication performance of CloudRVE and other CNN models,
the accuracy rate, recall rate, and average values of different
indices of seven types of clouds in the MGCD and GRSCD
datasets are calculated in the experiment and are used as eval-
uation indices of CNN models. The accuracy rate and aver-
age accuracy rate are derived based on positive and negative
samples, n represents the number of cloud types, and the cal-
culation process is as follows.

Accuracy(Acc)=
TP+TN

TP+TN+FP+FN
,

Accuracy
(
Acc

)
=

1
n

n∑
i=1

TPi +TNi
TPi +TNi +FPi +FNi

(15)

The TP (true positive) parameter is the number of correctly
classified samples for a specific genus, the TN (true nega-
tive) parameter is the number of correctly classified samples
for the remaining genus, and the FN (false negative) parame-
ter is the number of misclassified samples for a specific class
genus. The FP (false positive) parameter is the number of
misclassified samples for the remaining classes of genera.
The precision rate, average precision rate, recall rate, and av-
erage recall rate can be expressed as follows.
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Precison(Pr)=
TP

TP+FP

Precison
(
Pr
)
=

1
n

n∑
i=1

TPi
TPi +FPi

(16)

Recall(Re)=
TP

TP+FN

Recall
(
Re
)
=

1
n

n∑
i=1

TPi
TPi +FNi

(17)

In addition, the specificity, average specificity, F1_score, and
average F1_score are used as evaluation indices of the CNN
model in the experiment, and their expressions are shown as
follows.

Specificity(TNR)=
TN

FP+TN

Specificity
(
TNR

)
=

1
n

n∑
i=1

TNi
FPi +TNi

(18)

F1_score(F1)=
2×Pr×Re

Pr+Re

F1_score
(
F1
)
=

1
n

n∑
i=1

2×Pri ×Rei
Pri +Rei

(19)

4 Experimental results and discussion

4.1 Classification results of ground-based cloud images

Figure 12 shows the confusion matrix of the MGCD and
GRSCD datasets, showing CloudRVE prediction results on
the MGCD and GRSCD datasets. The horizontal axis rep-
resents the true cloud image classification, while the verti-
cal axis represents the predicted cloud image classification,
where the value of the diagonal element represents the cor-
rect number of cloud image classifications and the value of
the off-diagonal element represents the number of cloud im-
age classification errors. As can be seen from Fig. 12a, in the
MGCD dataset, the correct classification of Cu is the largest,
while the misclassification of the cloud images mainly comes
from Sc and Mx. The reason is that the cloud base of Sc is
blackened by illumination, making it easily confused with
Cb. In addition, the dynamic change in the cloud will lead
to a change in the viewpoint of the whole-sky camera, thus
increasing the difficulty of cloud genus identification. As can
be seen in Fig. 12b, in the GRSCD dataset, the correctly clas-
sified cloud images of the same Cu had the largest number,
while the incorrectly classified ones mainly came from Mx
and Sc. The Mx cloud is a hybrid cloud containing a variety
of different cloud genera, with large shares of Ac, Ci, and
Cu, which could be erroneously classified as Mx. Similarly,
Sc could be taken for Cb due to their similar features, imped-
ing correct identification.

Table 4. Classification results for the MGCD dataset.

Genus Acc Pr Re TNR F1
(%) (%) (%) (%) (%)

Cu 98.62 99.17 99.70 98.89
Ac 97.02 98.08 99.70 97.55
Ci 98.64 98.94 99.73 98.79
Cl 98.15 100.0 100.0 100.0 100.0
Sc 97.26 95.84 99.63 96.54
Cb 97.13 97.13 99.51 97.13
Mx 97.24 96.67 99.60 96.95

Table 5. Classification results for the GRSCD dataset.

Genus Acc Pr Re TNR F1
(%) (%) (%) (%) (%)

Cu 99.30 99.03 99.85 99.16
Ac 94.24 98.63 99.39 96.39
Ci 97.91 99.24 99.58 98.57
Cl 98.07 100.0 100.0 100.0 100.0
Sc 98.10 96.47 99.74 97.27
Cb 97.33 98.48 99.53 97.90
Mx 97.74 93.33 99.68 95.49

The overall classification accuracy of the CloudRVE
method proposed in this paper in the MGCD and GRSCD
datasets and the classification results of each cloud genus
are listed in Tables 4 and 5. It can be seen that the accuracy
of CloudRVE in the MGCD and GRSCD datasets reached
98.15 % and 98.07 %, respectively. The characteristics of the
Cl in the MGCD and GRSCD datasets were easy to identify,
resulting in the accuracy rate, recall rate, specificity, and F1
value reaching 100 %. In the MGCD dataset, the accuracy
rate, recall rate, and F1 value of the other six cloud genera
all exceeded 95.00 %, and the specificity was above 99.50 %.
The accuracy and specificity of the Ci were the highest,
reaching 98.64 % and 99.73 %, respectively. Cu had the high-
est recall rate and F1 value, reaching 99.17 % and 98.89 %,
respectively. In addition, the recall rate and F1 value of Sc
and Mx were about 2.00 % lower than other cloud genera.
Mainly, their characteristics in the MGCD dataset were simi-
lar to those of Cb and Ci, respectively, reducing CloudRVE’s
ability to classify them.

In the GRSCD dataset, the accuracy rate, recall rate, and
F1 value of the other six cloud genera exceeded 94.00 %, and
the specificity was over 99.30 %. Cu had the highest accu-
racy, specificity, and F1 value, reaching 99.30 %, 99.85 %,
and 99.16 %. The recall rate of Ci was the highest, reach-
ing 99.17 %. In addition, the Ac accuracy was only 94.24 %,
mainly because Ac contained a small amount of Sc, and
CloudRVE could easily misjudge Ac as Sc or Mx. Mx con-
tained a variety of other clouds, and the image composition
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Figure 12. Confusion matrix images. (a) MGCD confusion matrix image. (b) GRSCD confusion matrix image.

was complex. Cloud clusters of different genera varied in size
and shape, resulting in lower recall rate and F1 values.

4.2 Ablation experiment

In this section, the ablation experiment is used to compare
the original structure and different improvement stages of
the proposed method in the MGCD and GRSCD datasets, re-
spectively, and the results are shown in Table 6. RepVGG_M
is the main improved network, ECA is the attention mod-
ule, and CloudRVE is the combined improved network of
RepVGG_M and NECA and is the final version of the
method proposed in this paper. It can be seen from the data
in the table that the performance of each improvement stage
of the network model is improved compared to the previ-
ous stage, which not only verifies the feasibility of extracting
more cloud image detail features by adding 1× 1 convolu-
tional layer branches, but also verifies that NECA can effec-
tively improve the noise suppression ability and enhance the
channel feature extraction ability. Compared with the orig-
inal network structure, the accuracy of CloudRVE in the
MGCD dataset increased by 2.58 %, the average accuracy
rate increased by 2.68 %, the average recall rate increased
by 2.99 %, the average specificity increased by 0.42 %, and
the average F1 value increased by 2.69 %. In the GRSCD
dataset, the accuracy rate increased by 2.65 %, the average
accuracy rate increased by 2.81 %, the average specificity in-
creased by 0.44 %, and the average F1 value increased by
2.69 %. Therefore, it can be seen from the data display that
the method proposed in this paper has the best performance.

To visually compare the performance of the original struc-
ture and the method proposed in this paper in different im-
provement stages, we visualize the features by extracting the
feature map of the middle layer of the network and then ex-
plain the feature extraction ability of the original structure

and the method proposed in this paper in different improve-
ment stages, as shown in Figs. 13 and 14. The method gen-
erates a rough feature map to display the important region
of the predicted images through the parameter weights gen-
erated by network training, in which the brighter the region,
the higher its importance and the more darkly the region rep-
resents the sky or those that cannot be extracted. Figure 13
shows that CloudRVE has the best feature location and ex-
traction ability by showing the feature maps of three differ-
ent cloud images in the MGCD dataset. Figure 14 shows that
the three cloud images of the GRSCD dataset include not
only clouds and sky, but also strong sunlight, which affects
the classification accuracy of the model. However, it can be
seen from the feature maps that CloudRVE not only has the
best feature extraction ability, but also has a strong ability to
suppress noise such as sunlight.

4.3 Comparison of experimental results

To verify the feasibility of the proposed CloudRVE method,
we compared it with other advanced methods, including
CloudNet (J. Zhang et al., 2018), CloudA (Wang et al., 2020),
Eff-Swin-T (Li et al., 2022), and other ground-based cloud
image classification methods. These included such classic
CNN models as VGG16 (Szegedy et al., 2015), ResNet50
(He et al., 2016), ShuffleNet (X. Zhang et al., 2018) and
EfficientNet (Tan and Le, 2019). In addition, we compared
it with other Transformer-based classification models such
as ViT-L (Dosovitskiy et al., 2022) and Swin-T (Liu et al.,
2021). Figures 15 and 16 illustrate the performances of dif-
ferent methods by displaying the training accuracy and train-
ing loss curves of the MGCD and GRSCD datasets. Here the
black bold curve represents the CloudRVE method, which
has the largest accuracy value, the fastest convergence rate,
the smallest loss rate, and the fastest decline rate in the
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Table 6. Results of the ablation experiment. Bold is used to highlight the experimental methods and results in this article.

Dataset Model Acc Pr Re TNR F1
(%) (%) (%) (%) (%)

MGCD RepVGG 95.57 95.31 94.99 99.26 95.14
RepVGG_M 95.97 95.65 95.67 99.33 95.56
RepVGG_M+ECA 96.80 96.60 96.37 99.47 96.45
CloudRVE 98.15 97.99 97.98 99.68 97.83

GRSCD RepVGG 95.42 94.99 94.88 99.24 94.92
RepVGG_M 95.70 95.46 95.30 99.29 95.36
RepVGG_M+ECA 96.10 95.67 95.74 99.35 95.68
CloudRVE 98.07 97.80 97.88 99.68 97.82

Figure 13. Feature extraction of different models based on MGCD (Liu et al., 2020a).

training stage. This strongly indicates that the CloudRVE
method has the best classification performance of ground-
based cloud images.

The comparative analysis results of the above methods are
summarized in Table 7. It can be seen from the experimen-
tal results that RepVGG had the best performance among the
CNN-based methods. Among them, the accuracy rate has the
most significant improvement, and the precision and recall
rates also have good improvement. The accuracy rate, pre-
cision rate, and recall rate for the MGCD dataset reached
95.57, 95.31, and 94.99, respectively, while those for the
GRSCD dataset were 95.42, 94.99, and 94.88, respectively.
Ground-based cloud images have more texture features and
deep semantic features than other images, and more image
features need to be obtained to meet the classification re-
quirements of such images. In recent years, Transformer has
been widely used for image processing tasks due to its strong
feature extraction capability. Several scholars have improved

the Transformer derivative model through continuous explo-
ration. Among them, Eff-Swin-T was an improvement based
on Swin-T, and its performance on the MGCD and GRSCD
datasets was better than that of the classic CNN model. Its
accuracy rate, precision rate, and recall rate reached 96.93,
96.73, 96.44, 95.62, 95.41, and 95.11, respectively. Com-
pared with the Transformer and classical networks, the pro-
posed method had a much better classification performance
of ground-based cloud images. For different cloud image
classification datasets, it exhibited excellent generalization
ability and strong robustness, which is instrumental in pho-
tovoltaic power generation prediction.

The space complexities of CloudRVE and 10 alternative
methods are summarized and compared in Table 8. It can be
seen from the table that CloudRVE had a spatial complexity
of 105.17 MB, which is in line with the spatial complexity of
Swin-T and Eff-Swin-T and far less than the spatial complex-
ity of ViT-L. The spatial complexity of CloudRVE exceeded

https://doi.org/10.5194/amt-17-979-2024 Atmos. Meas. Tech., 17, 979–997, 2024



992 C. Shi et al.: Improved RepVGG ground-based cloud image classification with attention convolution

Figure 14. Feature extraction of different models based on GRSCD (Liu et al., 2020b).

Figure 15. Training accuracy (a) and training loss (b) curves of the MGCD dataset.

that of RepVGG by 3 times, achieving the best ground cloud
image classification performance. Thus, CloudRVE achieved
an excellent ground cloud image classification performance
at the expense of higher spatial complexity.

In order to provide a more intuitive display of the advan-
tages of CloudRVE over other advanced methods, we ex-
tracted the features of the intermediate layers of different
methods to generate the ground cloud feature maps for the
building foundation, demonstrating the strong feature extrac-
tion capabilities of CloudRVE and proving its superiority, as
shown in Figs. 17 and 18. Feature extraction was achieved by
generating rough feature maps through network training with
parameter weights to highlight the important regions of pre-

dicted images. The light-colored regions represent the impor-
tant features, while the dark-colored regions represent the sky
or unsuccessfully extracted features. Figure 17b–i show the
feature maps of different ground cloud classification methods
based on the MGCD dataset to demonstrate CloudRVE’s ca-
pability to extract more extensive and comprehensive cloud
features and suppress the black regions and sunlight, further
illustrating the best feature localization and extraction capa-
bility of CloudRVE. Figure 18b–i show the feature maps of
different ground cloud classification methods based on the
GRSCD dataset to demonstrate that the cloud feature ex-
tracted by CloudRVE covers the effective area in Fig. 18a
with the best coverage and the best suppression of the sun-
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Figure 16. Training accuracy (a) and training loss (b) curves of the GRSCD dataset.

Table 7. Comparison of the experimental results. Bold is used to highlight the experimental methods and results in this article.

Method MGCD GRSCD

Acc Pr Re TNR F1 Acc Pr Re TNR F1
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

VGG-16 78.25 77.04 75.52 96.36 75.55 73.50 73.88 70.29 95.53 70.87
ResNet-50 85.98 85.24 84.55 97.67 84.82 86.51 85.56 85.38 97.75 85.34
ShuffleNet 86.95 86.08 85.68 97.83 85.71 86.99 86.85 85.18 97.82 85.71
CloudNet 90.01 89.24 89.08 98.34 89.13 89.60 89.06 88.60 98.27 88.79
CloudA 89.62 88.78 88.50 98.28 88.61 90.03 89.54 88.71 98.34 89.03
EfficientNet 91.17 90.66 90.22 98.53 90.27 90.10 89.68 88.92 98.35 89.13
ViT-L 91.11 90.91 90.21 98.55 90.40 90.98 90.49 90.33 98.50 90.39
Swin-T 92.87 92.44 91.63 98.63 91.76 93.55 93.22 92.87 98.93 92.71
RepVGG 95.57 95.31 94.99 99.26 95.14 95.42 94.99 94.88 99.24 94.92
Eff-Swin-T 96.93 96.73 96.44 99.49 96.56 95.62 95.41 95.11 99.27 95.21
CloudRVE 98.15 97.99 97.98 99.68 97.83 98.07 97.80 97.88 99.68 97.82

light, further proving that CloudRVE has the best feature lo-
calization and extraction capabilities.

5 Conclusion

This study proposed a new classification method called
CloudRVE for ground-based cloud images based on the im-
proved RepVGG network. In particular, its training stage
structure was improved, the residual structure was broad-
ened, and 1× 1 convolutional layer branches were added to
each block, extending the gradient information of the topol-
ogy structure and enhancing the network’s ability to rep-
resent boundary features of cloud images. In addition, the
NECA module was embedded after multi-branch fusion to
learn the feature relationship between sequences, improve
the network cross-channel interaction ability, and extract the
best global features of cloud images. We validated the ex-

cellent performance of the proposed method on MGCD and
GRSCD ground-based cloud image datasets, achieving clas-
sification accuracy values of 98.15 % and 98.07 %, respec-
tively, which outperformed 10 other advanced methods. In
addition, the MGCD and GRSCD ground-based cloud im-
age datasets contain seven types of cloud categories, which
is more than the ground-based cloud image datasets used
in other papers. This further demonstrates the excellent per-
formance of the proposed method. The particular contribu-
tions of this paper were summarized in Sect. 1. However, this
study shares some limitations with other methods of classi-
fying ground-based cloud images via convolutional neural
networks, which have reached a bottleneck due to contin-
uous expansion of the capacity of ground-based cloud im-
age datasets. A lucrative alternative is Transformer, which
gained a high reputation of a powerful deep neural network
for processing sequences but has received little attention in
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Figure 17. Feature extraction of the different methods based on MGCD. (a) Original (Liu et al., 2020a); (b) VGG-16; (c) ResNet-50;
(d) ShuffleNet; (e) CloudNet; (f) CloudA; (g) EfficientNet; (h) ViT-L; (i) Swin-T; (j) RepVGG; (k) Eff-Swin-T; (l) CloudRVE.

Figure 18. Feature extraction of the different methods based on GRSCD. (a) Original (Liu et al., 2020b); (b) VGG-16; (c) ResNet-50;
(d) ShuffleNet; (e) CloudNet; (f) CloudA; (g) EfficientNet; (h) ViT-L; (i) Swin-T; (j) RepVGG; (k) Eff-Swin-T; (l) CloudRVE.

Table 8. Space complexity of the proposed and 10 alternative meth-
ods. Bold is used to highlight the experimental methods and results
in this article.

Method Space complexity
(MB)

VGG-16 512.28
ResNet-50 90.03
ShuffleNet 4.93
CloudNet 153.36
CloudA 87.57
EfficientNet 15.61
ViT-L 327.37
Swin-T 105.28
RepVGG 30.10
Eff-Swin-T 105.24
CloudRVE 105.17

ground-based cloud image classification. On the other hand,
cloud classification is only based on ground-based cloud im-
age features, while many physical features, such as height
or thickness, may also be used. Our follow-up study en-
visages combining the CNN and Transformer models and
using cloud height, cloud thickness, and other parameters
in ground-based cloud image classification to improve the
model’s performance.

Data availability. The MGCD dataset was accessed from
https://github.com/shuangliutjnu/Multimodal-Ground-based-
Cloud-Database (Liu, 2020a; Liu et al., 2020a). The GRSCD
dataset was accessed from https://github.com/shuangliutjnu/TJNU-
Ground-based-Remote-Sensing-Cloud-Database (Liu, 2020b; Liu
et al., 2020b).
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