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Abstract. This paper introduces a machine-learning-driven
approach for automated nocturnal low-level jet (NLLJ) iden-
tification using observations of wind profiles from a radar
wind profiler (RWP). The work discussed here is an ef-
fort to lay the groundwork for a systematic study of the
mid-Atlantic NLLJ’s formation mechanisms and their in-
fluence on nocturnal and diurnal air quality in major ur-
ban regions by establishing a general framework of NLLJ
features and characteristics with an identification algorithm.
Leveraging a comprehensive wind profile dataset maintained
by the Maryland Department of the Environment’s RWP
network, our methodology employs supervised-machine-
learning techniques to isolate the features of the southwest-
erly NLLJ because of its association with pollution transport
in the mid-Atlantic states. This methodology was developed
to illuminate spatiotemporal patterns and physical character-
istics of NLLJ events to study their role in planetary bound-
ary layer evolution and composition. This paper discusses
the construction of this methodology, its performance against
known NLLJs in the current literature, intended usage, and a
preliminary statistical analysis. The results from this analysis
have yielded a total of 90 southwesterly NLLJs from May–
September of 2017–2021, as captured by the RWP stationed
in Beltsville, MD (39.05° N, 76.87° W; 135 m a.s.l.). A com-
posite analysis of 90 jets reveals that the mid-Atlantic NLLJ
is characterized by a core wind speed exceeding 10 m s−1 at
altitudes typically between 300–500 m above ground level,
with maximum wind speeds occurring between 3–6 h af-
ter sunset. The jets show consistent wind direction from
the southwest but transition from more southerly- to more

westerly-dominated with increasing altitude and time after
sunset. We hope our study equips researchers and policy-
makers with further means to monitor, predict, and address
these nocturnal dynamics phenomena that frequently influ-
ence boundary layer composition and air quality in the US
mid-Atlantic and northeastern regions.

1 Introduction

Low-level jets (LLJs) are broadly defined as localized wind
speed maxima that occur within the lower troposphere ac-
companied by decreasing wind speed above the maximum
(Stensrud, 1996). LLJs have been reported all over the world
under a wide range of formation mechanisms with vary-
ing characteristics and subsequently different impacts on the
lower troposphere (De Jong et al., 2024; Ortiz-Amezcua et
al., 2022; Lima et al., 2019, 2018; Tuononen et al., 2017;
Ranjha et al., 2015; Karipot et al., 2009; Baas et al., 2009;
Zhang et al., 2006; Corsmeier et al., 1997; Blackadar, 1957).
In this study, we focus on long-lived nocturnal LLJs (NLLJs)
to better understand their impacts on boundary layer chem-
istry. These NLLJs are important in moisture transport and
air pollutant transport (Wei et al., 2023; Roots et al., 2023;
Sullivan, 2017; Delgado et al., 2015; Weldegaber, 2009;
Tollerud et al., 2008; Weaver and Nigam, 2008; Ryan, 2004;
Corsmeier et al., 1997; Stensrud, 1996). We focus on further-
ing the study of the NLLJs reported by researchers in the east
coast mid-Atlantic region of the United States. We do this by
developing a framework for our future work in developing a
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climatology and systematic study of LLJs by characterizing
their “critical characteristics” (maximum wind speed, height
of maximum, duration, wind direction, etc.) and formation
mechanisms (synoptic influence, temperature gradients, in-
ertial oscillation, diurnal cycle, etc.). Herein we describe
an algorithm developed to isolate southwesterly NLLJs in
the study area of Maryland (MD) in the United States us-
ing the Maryland Department of the Environment’s (MDE)
915 MHz DeTect RAPTOR DBS-BL/LAP-3000 radar wind
profiler (RWP) stationed in Beltsville, MD. We use these sys-
tems because we hope to adapt our methods to the network
of wind profilers in the area, and our region lacks sufficient
decadal measurements of wind profilers from other, more
commonly used systems like Doppler wind lidar.

The mid-Atlantic NLLJ, similar to the southern Great
Plains (SGP) NLLJ, arises from the cooling of the low-level
air mass relative to the air above it, resulting in a strat-
ified nocturnal boundary layer and subsequent decoupling
(Rabenhorst et al., 2014; Zhang et al., 2006). This decoupling
facilitates the development of a low-friction residual layer
where a super-geostrophic wind maximum emerges near the
surface due to inertial oscillation, as described by Black-
adar (1957) and later refined by Holton (1967). The genesis
of NLLJs is influenced by a confluence of geography-specific
atmospheric dynamics, including the formation of a pro-
nounced temperature inversion within the stratified nocturnal
boundary layer, diurnal pressure shifts, and the influence of
terrain (Shapiro and Fedorovich, 2010; Holton, 1967; Black-
adar, 1957). These jets typically exhibit wind speed max-
ima at altitudes between 200 and 800 m above ground level
(a.g.l.), with directional variability governed by geograph-
ical and meteorological conditions, though they generally
flow northward as per Blackadar’s theory. The unique synop-
tic and diurnal physical conditions that define NLLJs make
them more prevalent during spring and summer, when forma-
tion conditions are more favorable (Bonner, 1968; Shapiro
et al., 2016; Shapiro and Fedorovich, 2010; Zhang et al.,
2006). The implications of NLLJs extend significantly into
weather, climate, and air quality, as they play a crucial role in
the transport and mixing of atmospheric constituents such as
pollutants, moisture, and heat, thereby influencing air qual-
ity and promoting cloud formation (Baas et al., 2009; Banta,
2008; Mahrt, 1998). NLLJs have been extensively docu-
mented in the Great Plains since the 1950s, where they con-
tribute to moisture transport and regional weather, including
convective storm development (Banta et al., 2003; Carroll et
al., 2019, 2021; Lundquist, 2003; Stensrud, 1996; Tollerud
et al., 2008; Whiteman et al., 1997). The mid-Atlantic NLLJ,
though similar to the SGP NLLJ in its reliance on inertial
oscillation theory and temperature gradients shaped by local
topography, exhibits consistently lower wind speed maxima.
It is influenced by a variety of terrain types, including moun-
tainous regions, major bodies of water, and transitional land-
scapes.

We define the mid-Atlantic NLLJ closely following the
results found by Zhang et al. (2006) and Ryan (2004) in
their Fort Meade, MD, RWP (decommissioned in 2006) ob-
servations. These studies provide detailed observations and
analysis of NLLJ events, mainly focusing on their occur-
rence, structure, and dynamics within the mid-Atlantic re-
gion of the United States. According to Zhang et al. (2006)
and Ryan (2004), the mid-Atlantic NLLJ is characterized
by a robust and low-level wind speed maximum that typi-
cally occurs during the nighttime hours. These jets are pre-
dominantly observed during the warm season (late spring
through early fall). The studies noted that winds from the
south and southwest directions dominate most of the mid-
Atlantic NLLJs. Figure 1 provides an illustrative example of
the spatial and temporal extent of the mid-Atlantic noctur-
nal low-level jet (NLLJ) as depicted by an event reported on
20 May 2021, by Roots et al. (2023): panel A displays the
European Centre for Medium-Range Weather Forecasts Re-
analysis v5 (ERA5; Hersbach et al., 2020) reanalysis data at
0.25° spatial and hourly temporal resolution, showing hori-
zontal wind speeds at 975 mbar (chosen to be near the core
of the NLLJ in both the model and observations) and high-
lighting the spatial distribution of the NLLJ across the re-
gion. Panel B presents the vertical evolution of the hori-
zontal wind speed along a vertical slice (indicated by the
black square in panel A), capturing the temporal progression
of the jet’s strength and altitude through the night. Panel C
demonstrates the horizontal wind speed profile observed at
our site (black circle), capturing a well-defined NLLJ core
with wind speeds exceeding 15 m s−1 centered at 500 m a.g.l.
between 04:00–08:00 UTC. In contrast, the ERA5 reanalysis
data shown in panel B fail to resolve the NLLJ, displaying
significantly weaker wind speeds, with a maximum of around
7 m s−1, and lacking in pronounced vertical structure evident
in the observations. This comparison highlights the value of
high-resolution wind observations for accurately character-
izing the jet’s core height, intensity, and temporal evolution.
Such deficiencies underscore its limitations for studying phe-
nomena like the NLLJ that play a critical role in boundary
layer dynamics and chemistry. The impact of NLLJs on air
pollution in the mid-Atlantic is particularly significant dur-
ing warm seasons, as these jets contribute to the transport
of pollutants across the east coast, elevating surface ozone
and particulate matter concentrations (Delgado et al., 2015;
Roots et al., 2023; Sullivan, 2017; Weldegaber, 2009; Ryan,
2004). Zhang et al. (2006) reported that approximately 60 %
of the mid-Atlantic NLLJs observed during their study period
(warm seasons in 2001 and 2002) exhibited this southerly
and southwesterly wind direction. Ryan (2004) contributed
to our definition by providing insights into the frequency and
timing of NLLJ occurrences, noting that these events were
common during the study period from 1998 to 2002, iden-
tifying 80 warm-season cases in total. Together, the work of
Zhang et al. (2006) and Ryan (2004) defines the mid-Atlantic
NLLJ as a nocturnal atmospheric phenomenon characterized
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Figure 1. Example depiction of the nocturnal low-level jet in the mid-Atlantic US on 20 May 2021: (a) ERA5 horizontal wind speed at
975 mbar, (b) the vertical profile evolution of the horizontal wind speed taken from a vertical slice (black square; “x” denotes 975 mbar at
04:00 UTC), (c) the radar wind profiler observations of horizontal wind speed from the location denoted by the black circle in panel (a).
Dashed vertical lines indicate the sunset and sunrise times, respectively.

by a significant increase in wind speed (∼ 15 m s−1) at low
altitudes (400–600 m a.g.l.), typically showing a preferential
direction from the south or southwest.

This work presents the culmination of an investigation into
the NLLJ phenomena within the mid-Atlantic region, lever-
aging a supervised-machine-learning model tested against a
comprehensive dataset including previously reported NLLJ
events. The model, designed with a focus on advancing our
capability to detect and analyze NLLJs, was evaluated using
cases from notable studies by Sullivan et al. (2017), Delgado
et al. (2015), and Weldegaber (2009) based on data from
the RWP stationed in Beltsville, Maryland, US (39.05° N,
76.87° W; 135 m a.s.l.). Without established benchmarks for
NLLJ detection accuracy, our analysis adopts a qualita-
tive approach, emphasizing visual inspection to assess the
model’s performance in accurately capturing NLLJ charac-
teristics, particularly wind speed and direction. The primary
objective of this research is to transition from episodic, qual-
itative analyses to a systematic, quantitative understanding of
NLLJ physics and its impacts, utilizing observational data to
explore the temporal distribution, morphology, and statistical
properties of mid-Atlantic NLLJs. Furthermore, developing
a generalized representation of mid-Atlantic NLLJs based on
observational data marks a significant step forward in our
ability to identify and analyze these phenomena.

The rest of the paper is structured as follows: Sect. 2 out-
lines the dataset and study area. Section 3 describes the meth-
ods, alongside the development and application of machine
learning algorithms for detecting NLLJ features. Section 4
evaluates the performance of these algorithms in isolating
NLLJ characteristics within the wind profile data, address-
ing the efficacy and limitations encountered. Section 4 also

presents a brief analysis of the NLLJs identified by the RWP
from May to September 2017 to 2021, revealing insights into
their morphological characteristics. Finally, Sect. 5 synthe-
sizes the study’s key findings and discusses their implications
for the understanding of the mid-Atlantic NLLJ and similar
atmospheric phenomena, proposing directions for future re-
search to enhance model accuracy and expand the scope of
study within the field of atmospheric science.

2 Observations

This study uses the dataset of continuous daily wind pro-
files from the Howard University Beltsville Campus (HUBC)
RWP, located in Beltsville, MD (instrument named BELT;
see Fig. 1b for location, marked by the black circle). The
HUBC site lies between the US Appalachian Mountains to
the west and the Chesapeake Bay and Atlantic Ocean to
the east. The Appalachian Mountains, located approximately
200 km to the west, with peaks reaching around 2 km a.s.l.,
exert a distinct orographic influence. HUBC resides in the
Piedmont region, a transitional zone between the mountains
and the coastal plains, which creates boundaries for a latitu-
dinal flow regime shaped by both orographic effects to the
west and thermal influences to the east.

The dataset from HUBC is depicted in Fig. 2, with an
event plot showing the temporal distribution of data avail-
ability. Gray lines indicate times when daily files were avail-
able from the MDE record, while red lines denote peri-
ods of unavailability due to instrument failure or sched-
uled maintenance. Only 25 files were missing during the
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Figure 2. Occurrences of NLLJs (black lines) identified by the algorithm from the Beltsville, MD, RWP data. Red lines indicate periods with
missing data, while gray lines represent available data used in this study. The green box highlights the year from which the training dataset
was derived.

May–September period of 2017–2021, providing an optimal
dataset for analyzing the summertime mid-Atlantic NLLJ.

The RWP instrument measures radial wind velocity using
one zenith and four azimuthal beams at 915 MHz, providing
horizontal wind speed and direction with sub-100 m verti-
cal resolution (100–3000 m a.g.l.) at a temporal resolution of
less than 30 min. This resolution is sufficient to capture the
temporal and vertical extent of NLLJ events at the HUBC
site. The selection of this training period ensures that the
model is exposed to a broad range of conditions typical of
the NLLJ season, improving its ability to generalize and ac-
curately detect NLLJs. However, data gaps, indicated by the
vertical red bars, may present challenges, as they could coin-
cide with NLLJ events, potentially limiting the capture of all
occurrences.

3 Nocturnal low-level jet isolation

Several previous works have been published regarding the
identification of low-level jets in wind profiles. These meth-
ods have employed peak detection of wind speed maximums
in single profiles with threshold criteria on coherent height,
speed, direction, and duration. These methods are robust in
their objective of identifying continuous low-level wind max-
ima (De Jong et al., 2024; Tuononen et al., 2017; Baas et
al., 2009). Our overall goal is to complete a fully automated
system to be used on the network of wind profiles that is
adept at identifying, classifying, and characterizing low-level
wind maxima, and thus we report our exploration of super-
vised machine learning for this task. The conceptual model of
the detection method presented here relies only on the wind

speed (SPD), wind direction (DIR), radial velocity (RAD 1–
5), and signal-to-noise ratio (SNR 1–5) at each altitude and
time step of the dataset.

3.1 Training dataset

The training dataset for this experiment was sampled from
NLLJ events during 2021, while the validation dataset was
selected from previously reported events, as depicted by
Sullivan et al. (2017), Delgado et al. (2015), and Welde-
gaber (2009), all captured using the same instrument and
station (i.e., HUBC-RWP). To gather a suitable dataset for
machine learning, we have compiled scenarios expected in
operation (e.g., incomplete daily files, missing data, large-
scale weather systems, etc.). A manual and rudimentary iso-
lation method was applied using gradient detection solely on
the southerly winds (180–270° from the north) with maxi-
mums greater than 5 m s−1 in both time and altitude to cap-
ture the evolution and vertical extent of the NLLJ. This ap-
proach is demonstrated in Fig. 3, where panel A depicts the
final isolated NLLJ events from the speed and direction pro-
file (panels C and D), and panel B represents the visual repre-
sentation of the gradient detection in the temporal evolution.
This method takes the wind speed evolution averaged from
0–2000 m and then interpolated and smoothed. The resulting
time series is then used to find the first positive gradient and
the last negative gradient, which are taken as the start and
end of the NLLJ event. This process is then repeated for the
vertical extent using each profile to find the top and bottom at
each time step. We found that the manual tuning needed for
thresholds on time constraint, continuity, and direction evolu-
tion was important for isolating NLLJs but required attention
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Figure 3. Sample of training dataset creation using masking and gradient peak detection in the time and altitude dimensions: (a) isolated
NLLJ, (b) gradient peak detection on the time axis with only southerly winds, full profile of (c) wind speed and (d) direction. Vertical dashed
black lines denote sunrise and sunset.

in many different cases, and thus we used the well-isolated
cases from this method as a training set for the supervised-
machine-learning ensemble. The training set is comprised of
50 NLLJ events that were sufficiently isolated and 50 events
that contain low-level wind maxima that we do not consider
to be LLJ-relevant in this study for reasons of direction or
evolution.

3.2 Algorithm development

The flowchart schema shown in Fig. 4 illustrates the process
used to execute (green) and train (orange) the supervised-
machine-learning algorithm for detecting NLLJ events in
vertically resolved wind profiles. The process begins with
data pre-processing, where daily files from the RWP instru-
ment are submitted and then standardized in both height and
vertical resolution to ensure the uniformity of profiles. This
was accomplished by re-gridding for time and altitude, cou-
pled with the strategic filling of missing data points with
“not-a-number” (NaN) placeholders, thereby ensuring that
the dataset maintained uniform dimensions across all the
datasets. Following this, feature extraction is performed, ex-
tracting the critical variables (i.e., wind speed, wind direc-
tion, radial velocities, the averaged signal-to-noise ratios,
height, and time). These parameters (or features) are then
transformed into a single matrix where the columns indicate
the features, and rows indicate the indexes of each variable at
a given time and height, in turn creating a structured dataset
ready for input into the machine learning model. The output

of the model is then matched to the input matrix as predicted
labels, which then undergo the reverse matrix transform from
the data pre-processing, and an image segmentation process
is applied to return the largest cluster of identified points as
an NLLJ event. The image segmentation process will not be
employed in the results of this work to show its importance
and demonstrate the shortcomings of this approach and how
it can propagate through to the analysis.

Central to the detection process (execution loop) is
the ensemble model, which integrates multiple supervised-
machine-learning algorithms, specifically the support vec-
tor machine (SVM), k-nearest neighbors (KNNs), and ran-
dom forest (RF), all of which are available and open-source
in Python with the scikit-learn package (Pedregosa et al.,
2011). Each model in this ensemble contributes uniquely to
the overall predictive capability by leveraging different math-
ematical principles. The SVM works by identifying a hyper-
plane in high-dimensional space that best separates the data
points of different classes to maximize the distance between
the hyperplane and the nearest data points from each class,
known as support vectors (Cortes and Vapnik, 1995). The
KNN approach operates on a different principle, classifying a
data point based on the majority class among the “k”-nearest
neighbors in the feature space, with the Euclidean distance
used as the metric for determining proximity, where the algo-
rithm then assigns the class most common among the nearest
neighbors (Cover and Hart, 1967). The RF model is itself an
ensemble of decision trees, each trained on a randomly se-
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Figure 4. Schematic of the supervised-machine-learning algorithm execution (top: green) and training (bottom: orange).

lected subset of the dataset, in terms of samples and features.
Each decision tree in the random forest individually classifies
the data by making splits based on criteria such as informa-
tion gain, entropy, and minimization of Gini impurity. The
final classification by the RF is determined by the majority
vote of the decision trees, ensuring that the model captures a
broad array of patterns in the data (Breiman, 2001). By inte-
grating the insights gained from each model’s approach into
a two-thirds-majority voting system we have found that this
approach yields a suitable method of isolating NLLJ features
in wind profiles.

4 Results and discussion

As shown in Fig. 2, we have identified 90 warm-season
(May–September) NLLJ events using the Beltsville, MD,
RWP dataset from 2017 to 2021. This builds on the work
of Zhang et al. (2006) and Ryan (2004), who established
much of the mid-Atlantic NLLJ frequency analysis based
on wind profile observations from an earlier version of the
RWP instrument, stationed at Fort Meade, MD (∼ 10 km
from Beltsville, MD). Their statistics defined the south-
westerly mid-Atlantic NLLJ as a predominantly summer-
time nocturnal-boundary-layer phenomenon. Ryan (2004)
reported 80 summer season events over a 5-year period
(1998–2002), compared to the 90 events identified in our
analysis. The algorithm used to identify these events and the
subsequent analysis of the NLLJ characteristics are discussed
below.

4.1 Algorithm evaluation

The process of evaluating the performance of the algorithm
is complex due to the absence of an absolute ground truth for
NLLJ detection. The training dataset, or truth labels, repre-
sents our best attempt at programmatically isolating NLLJs,

yet this process is challenging because it lacks a definitive
standard for what constitutes true NLLJ activity located at
every measurement point of the wind profile datasets. To ad-
dress this complexity, the evaluation approach involves two
critical stages following the training phase. The first stage
entails comparing the algorithm’s results against the gradient
method (see Sect. 3.1), which serves as a quantitative bench-
mark. The second stage involves a qualitative visual inspec-
tion by a trained observer, providing an additional layer of
evaluation that helps mitigate the challenges posed by the
absence of a standardized metric for NLLJ detection. The
flowchart from Fig. 4 (orange) provides a visual representa-
tion of the training process, beginning with the selection of
the best estimators. This selection process involves a search
routine for hyperparameters that score the highest in each
model; see Fig. 5 for the results of the best estimators. Once
the best estimators are identified, they are combined into an
ensemble model, which is then fully trained on the remaining
unseen portion of the training dataset and evaluated against
the supplied truth labels. The final stage involves applying
this trained model to previously reported and depicted NLLJs
from previous research studies such as those conducted by
Sullivan et al. (2017), Delgado et al. (2015), and Welde-
gaber (2009), all of which used the same instrumentation in
the same study area.

Figure 5 illustrates a comparison of confusion matrices
from training the machine learning algorithms, where the
individual algorithm matrices show results from ∼ 16 daily
files from the training dataset, and the ensemble matrix
shows results from ∼ 64 daily files. Each confusion ma-
trix provides a breakdown of the model’s performance by
showing the counts of true negatives (bottom right quadrant,
green), true positives (top left quadrant, green), false posi-
tives (bottom left quadrant, orange), and false negatives (top
right quadrant, orange). Overall, each shows a strong abil-
ity to correctly determine non-NLLJ activity, exhibits rela-
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Figure 5. Model training confusion matrices: green shows points correctly labeled by the algorithms, while orange shows incorrectly labeled
points. The top left indicates true-positive labels, the bottom right indicates true-negative labels, the bottom left indicates false-positive labels,
and the top right indicates false-negative labels.

tively balanced performance in the case of false negatives and
false positives, and is able to correctly predict true positives
relatively consistently. We attribute these results to the im-
plementation of rigorous cross-validation and tuning of hy-
perparameters in a two-stage process (see Fig. 4 individual
and ensemble model training). This was done to address the
sparseness of NLLJ features in the training dataset. Note that
these scores are based on the truth labels supplied, which
themselves are imperfect isolations of NLLJ features (see
Fig. 2). With this in mind, we reserved our final judgment for
visual inspection of performance with mid-Atlantic NLLJs
depicted in previous literature for validation of testing re-
sults.

Figure 6 illustrates the results of this inspection from the
observations of BELT on 12 June 2015 (Sullivan et al., 2017),
3 August 2007, and 12 June 2008 (Delgado et al., 2015;
Weldegaber, 2009). The figure is organized into three key
panels for each event: isolated NLLJ activity (panels A1, B1,
C1), horizontal wind speed (panels A2, B2, C2), and wind
direction (panels A3, B3, C3). These panels plot the data
against altitude and time, with sunrise and sunset times in-
dicated by dashed vertical lines. In panels A1, B1, and C1,
the algorithm effectively demonstrates its capability to detect
the characteristic wind speed maximums and corresponding
wind direction shifts indicative of NLLJ events. These panels
highlight the algorithm’s proficiency in identifying the verti-
cal structure and temporal evolution of these jets, capturing
key phases such as the onset, peak, and dissipation of the
NLLJ events. However as noted by the outliers and dashed
boxes in Fig. 6, the algorithm does have certain limitations.

On 12 June 2015, the wind speed shows a well-defined
NLLJ structure, with wind speeds peaking in the early morn-
ing. The corresponding wind direction data for the same date
transitions from southerly in the early hours to westerly later
in the day, a directional shift that the model effectively cap-
tures. The capability of the model to detect these patterns is
crucial. It suggests that the model can identify the presence
of an NLLJ and its evolution over time. On 14 June 2008, the

initial wind speed data might suggest that the NLLJ event
concluded by 15:00 UTC; however, the wind direction gra-
dients reveal the transition to a westerly-dominated regime,
thus indicating the end of the NLLJ event at 12:00 UTC. The
wind direction data from this date indicate a significant shift,
with winds starting from a southerly direction and transition-
ing to a westerly direction as the day progresses. This shift to
westerly-dominated high wind speeds indicates the kind of
directional change the model can discern, echoing the find-
ings of Rabenhorst et al. (2014) regarding the transitional
phases of Appalachian downslope winds.

The circles indicate instances where the algorithm may
have falsely identified NLLJ activity, suggesting potential
issues of overestimation. This overestimation could be at-
tributed to imperfections in the training dataset, which may
cause the model to be overly sensitive to features that do not
necessarily correspond to genuine NLLJ events. On the other
hand, the dashed boxes highlight regions where the algorithm
struggles to accurately identify NLLJ activity. For example,
in the events observed on 12 June 2015 and 3 August 2007,
the algorithm appears to have difficulty accurately represent-
ing the lower boundary of the NLLJ. This difficulty is likely
due to a less pronounced NLLJ signal in the vertical pro-
file, making it challenging for the model to distinguish the
NLLJ from surrounding atmospheric conditions. The con-
sistent issue of missed lower-level structures across different
test cases suggests that modifications to the training set could
significantly enhance the model’s performance. The presence
of outlier points in the visualized data further underscores
the necessity for additional post-processing steps, such as
image segmentation (Fig. 4), to refine the model output and
reduce the occurrence of false positives. The dashed box in
the 14 June 2008 observation marks an area where the core
of the NLLJ was not identified by the algorithm. This over-
sight seems to result from a sharp increase in wind speed cou-
pled with only a slight directional shift, leading to a case of
false negatives. That withstanding, the isolated NLLJ activity
aligns well with the analysis discussions from the literature,
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validating the potential for supervised machine learning to be
proficient in this task of discerning NLLJs from the broader
atmospheric flow. The level of accuracy achieved is sufficient
to support robust long-term statistical analysis, which is crit-
ical for advancing our understanding of NLLJs and their im-
pact on regional atmospheric composition.

4.2 Statistical analysis

To investigate the critical characteristics of the mid-Atlantic
southwesterly NLLJ, we performed a preliminary statistical
analysis of the 90 NLLJ events we have identified. The his-
tograms, shown in Fig. 7, provide a statistical representation
of maximum wind speeds, core heights, and core time for
each NLLJ event, as derived from the dataset of 90 NLLJ
events shown in Fig. 7. Figure 7a shows the distribution of
maximum wind speed of each jet event, spanning 5 m s−1

to nearly 30 m s−1. The wind speed maximum probability
density curve (orange) suggests that the most probable core
speeds are between 10 and 15 m s−1, with decreasing proba-
bility between 15 and 20 m s−1 and the least probable being
between 20 and 30 m s−1. This would suggest that a similar
formation mechanism exists in the most probable range.

The core height (Fig. 7b) illustrates the height at which the
maximum wind speed was measured for each NLLJ event
captured. We notice that most of the maximum wind speeds
occur around 500 m a.g.l., showing a sharp peak at this alti-
tude range, which can be interpreted as the typical altitude
for the core. The narrowness of this peak in the probability
density curve implies a strong consensus for this character-
istic height, aligning with the notion that the jets are con-
fined to the edge of the stable nocturnal boundary layer. Note
the low probability and frequency of core height being above
1000 m a.g.l.; we attribute the presence of these altitudes to
removable noise from the isolation due to the imperfect na-
ture of our training dataset (see Sect. 3.1).

When considering the histogram for the duration of the
NLLJ (Fig. 7c), we encounter a more complex distribution.
The duration of the NLLJ event is calculated by finding the
elapsed time from each jet’s core height. The histogram and
probability distribution suggest a multi-modal distribution,
with two apparent peaks around 8 and 12 h. This multi-modal
nature may hint at additional influencing factors, such as the
baroclinicity of the region, which could induce variations in
the timing of the jet’s maximum wind speeds.

4.3 Mid-Atlantic NLLJ morphology

As a result of this isolation of NLLJ occurrence in wind pro-
files, we have created a general representation of the mid-
Atlantic NLLJ using observations. Figure 8 shows a com-
posite plot of the NLLJ structure using the median of the
90 NLLJ datasets to visualize the temporal evolution as seen
from the observations at Beltsville, MD. This offers a basis
for future identification and analysis of the general south-

westerly NLLJ. The region enclosed by the black line indi-
cates the region in which more than 50 % of the cases were
present (see Fig. 8c), thus serving as the general structure
of the mid-Atlantic NLLJ. Outside the enclosed region is the
variability in NLLJs found in our 90-event datasets. Figure 8a
describes the horizontal wind speed, which exhibits a shallow
layer of high wind speed (∼ 15 m s−1) concentrated around
500 m a.g.l.; this is noted as the NLLJ’s core. This general
NLLJ structure lasts from just after sunset (0 h) to almost
11 h after sunset. The vertical extent is shown to be persis-
tent around 1500 m a.g.l. until the arrival of the horizontal
wind speed maximum (NLLJ core) around 4 h after sunset,
at which point the vertical structure of the NLLJ begins to
decay.

Panel B of Fig. 8, which illustrates wind direction, shows
a clear transition between the dominance of the meridional
(south to north, southerly) and zonal (west to east, west-
erly) winds and is indicative of the dynamic atmospheric pro-
cesses that govern the behavior of the mid-Atlantic NLLJ.
The progression to more westerly winds across the night re-
flects the diurnal wind shift and underscores the influence
of large-scale atmospheric circulation patterns on the NLLJ.
This shift in wind direction is often related to the Coriolis
force acting on the regional air mass over the night. As the
land cools after sunset, the pressure gradients adjust, and the
NLLJ develops, initially following the temperature gradient.
As the night progresses, the Coriolis force begins to turn the
flow toward the right in the Northern Hemisphere, resulting
in the NLLJ acquiring a more westerly component.

The vertical dependence of the oscillation between wind
vectors, as observed in panel B of Fig. 8, indeed under-
scores the manifestation of inertial oscillation theory in the
behavior of the mid-Atlantic NLLJ. This oscillation between
wind vectors at different altitudes signifies the vertical shear,
which is characteristic of the NLLJ structure. The presence of
wind shear is significant for various atmospheric processes,
such as the development of turbulence, the dispersion of
aerosols, and the vertical transport of momentum and heat
within the atmosphere; notably, strong wind shear associated
with NLLJs can induce turbulent downbursts, thereby affect-
ing aviation safety, efficiency of wind energy generation, and
surface-level air quality. The works of Roots et al. (2023)
and Sullivan et al. (2017) both noted the increase in surface-
level ozone from a polluted ozone reservoir in the residual
layer during the arrival of the NLLJ core, which, as shown
in Fig. 8, is the maximum point of the horizontal speed and
balance between the zonal and meridional wind vectors.

Collectively, these panels deliver a cohesive understanding
of the NLLJ’s vertical and temporal structure. They demon-
strate a pronounced nocturnal intensification in wind speed
at low-level altitudes, accompanied by a veering wind direc-
tion, which indicates the inertial oscillation’s influence on
the jet’s formation. Furthermore, the event count substanti-
ates the observed morphology, confirming that the algorithm
effectively captures the climatological presence of the NLLJ
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Figure 6. Evaluation of NLLJ isolation algorithm with reference events from the literature illustrating the evolution of the NLLJ events
reported on (a) 12 June 2015 (Sullivan et al., 2017) and on 3 August 2007 and 12 June 2008 (Delgado et al., 2015; Weldegaber, 2009), where
panels (a1), (b1), and (c1) show the isolated NLLJ; panels (a2), (b2), and (c2) show the horizontal wind speed; and panels (a3), (b3), and
(c3) show the wind direction.
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Figure 7. Histogram of NLLJ characteristics from the 90 events noted in Fig. 2, where (a) is the distribution of maximum wind speeds, (b) is
the height of the wind speed maximum, and (c) is the duration of the event at the core height.

in the dataset. The variability outside the core zone may be
attributed to synoptic-scale influences that modulate NLLJ
behavior. Understanding this variability is essential for im-
proving weather prediction models, particularly for events
sensitive to low-level jet dynamics.

5 Conclusions

This study successfully applied machine learning (ML) al-
gorithms to detect and characterize nocturnal low-level jets
(NLLJs) using radar wind profiler (RWP) data.

The research explored the use of supervised ML for de-
tecting NLLJ events in the mid-Atlantic region, offering
both quantitative and qualitative evaluations that highlight
the method’s potential for atmospheric analysis.

Statistical analysis of 90 NLLJ events revealed key pat-
terns in wind speed, core height, and event duration, which
align with existing literature on NLLJ theory and case studies
in the region.

The morphology composite (Fig. 8) provides a clear visu-
alization of the vertical and temporal structure of NLLJs, of-

fering a useful reference for understanding their typical char-
acteristics and evolution.

Using data from the Beltsville, MD, RWP, we provide a
general representation and preliminary analysis of morphol-
ogy and statistical characteristics of the mid-Atlantic NLLJ,
which will serve as a foundation for future research. The
morphological analysis, based on composite plots in Fig. 7,
reveals a general structure for the mid-Atlantic NLLJ, show-
ing nocturnal wind speed intensification and a distinct oscil-
lation pattern in wind direction. Variability outside the core
zone highlights the influence of larger-scale atmospheric pro-
cesses, emphasizing the need for further exploration of these
external factors. Our analysis highlights both the strengths
and limitations of the algorithm. While it is effective in de-
tecting southwesterly NLLJ events, the model struggles to
capture the full structural details of these features. This un-
derscores the need for future refinements, particularly in opti-
mizing the training set and incorporating image segmentation
techniques to improve model representation.

The seasonal and daily data gaps highlight the inherent
limitations of observational datasets. Future work should
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Figure 8. Composite vertical profiles of nocturnal low-level jet (NLLJ) characteristics: (a) average wind speed, (b) average wind direction,
and (c) event count. The solid black line represents the region where over 50 % of events are present.

consider incorporating additional datasets and utilizing data
synergy techniques to fill these gaps, providing a more con-
tinuous and comprehensive view of NLLJ occurrences. This
could include data from other instruments, such as aerosol
and ozone lidars, sondes, ground-based spectrometers, and
radiometers. Algorithms could also be trained to predict
NLLJ events during missing data periods, enhancing their
predictive capabilities and advancing atmospheric research.
Addressing data gaps through data synergy techniques is cru-
cial for future studies to create a more complete understand-
ing of NLLJ occurrences. As shown in Fig. 7, our statisti-
cal analysis provides a quantitative representation of the key
characteristics of the mid-Atlantic NLLJ. The distribution of
maximum wind speeds and core heights suggests a common
atmospheric mechanism driving these jets, with most NLLJ
cores around 500 m a.g.l. The bi-modal distribution of core
timing points to the influence of regional baroclinicity, which
may cause deviations from classical inertial oscillation pre-
dictions. These findings are critical for improving the repre-
sentation of NLLJ behavior in atmospheric models.

Further research is necessary to investigate whether the
observed interannual variability, with some years showing
more frequent events, indicates a connection between NLLJ

occurrences and broader synoptic patterns that influence re-
gional dynamics. Identifying these patterns is crucial for fu-
ture NLLJ studies and will require extended analysis over
a longer time frame and across a broader observational net-
work. Such research would enhance our understanding of the
atmospheric forces driving NLLJ formation and improve the
accuracy of atmospheric models.

Continued research into these low-level wind phenomena
is essential for improving weather predictions and air qual-
ity management and particularly for understanding pollu-
tant transport and dispersion in the mid-Atlantic region. This
study lays the groundwork for future investigations into the
complex dynamics of low-level mesoscale phenomena and
their broader climatic and environmental implications. Accu-
rately identifying and characterizing NLLJs is crucial for re-
fining regional climate models and enhancing predictive ca-
pabilities for future climate scenarios. This work contributes
significantly to boundary layer studies, providing valuable
insights into NLLJ phenomena and advancing our under-
standing of atmospheric dynamics.

The integration of machine learning into atmospheric sci-
ence, as demonstrated in this study, represents a promising
advancement in meteorological analysis and climate predic-
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tion. Future research should build on these techniques to bet-
ter understand the genesis of low-level wind phenomena, im-
proving our understanding of regional pollutant distribution
and the mesoscale transport of moisture, momentum, and
mass. There is also potential to expand this research to other
geographic regions and atmospheric phenomena, testing the
adaptability and versatility of the methodology across differ-
ent contexts.
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