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Abstract. Site-level measurements of methane emissions are
used by operators for reconciliation with bottom-up emis-
sion inventories with the aim to improve accuracy, thorough-
ness, and confidence in reported emissions. In that context
it is of critical importance to avoid measurement errors and
to understand the measurement uncertainty. Remotely pi-
loted aircraft systems (commonly referred to as “drones”)
can play a pivotal role in the quantification of site-level
methane emissions. Typical implementations use the “mass
balance method” to quantify emissions, with a high-precision
methane sensor mounted on a quadcopter drone flying in a
vertical curtain pattern; the total mass emission rate can then
be computed post hoc from the measured methane concen-
tration data and simultaneous wind data. Controlled-release
tests have shown that errors with the mass balance method
can be considerable. For example, Liu et al. (2024) report
absolute errors for more than 100 % for the two drone solu-
tions tested; on the other hand, errors can be much smaller,
of the order of 16 % root-mean-square errors in Corbett and
Smith (2022), if additional constraints are placed on the data,
restricting the analysis to cases where the wind field was
steady. In this paper we present a systematic error analysis of
physical phenomena affecting the error in the mass balance
method for parameters related to the acquisition of methane
concentration data and to postprocessing. The sources of er-
ror are analyzed individually, and it must be realized that
individual errors can accumulate in practice, and they can
also be augmented by other sources that are not included in
the present work. Examples of these sources include the un-

certainty in methane concentration measurements by a sen-
sor with finite precision or the method used to measure the
unperturbed wind velocity at the position of the drone. We
find that the most important source of error considered is the
horizontal and vertical spacings in the data acquisition, as a
coarse spacing can result in missing a methane plume. The
potential error can be as high as 100 % in situations where
the wind speed is steady and the methane plume has a co-
herent shape, contradicting the intuition of some operators
in the industry. The likelihood of the extent of this error can
be expressed in terms of a dimensionless number defined by
the spatial resolution of the methane concentration measure-
ments and the downwind distance from the main emission
sources. What is learned from our theoretical error analysis
is then applied to a number of historical measurements in
a controlled-release setting. We show how what is learned
about the main sources of error can be used to eliminate po-
tential errors during the postprocessing of flight data. Second,
we evaluate an aggregated data set of 1001 historical drone
flights; our analysis shows that the potential errors in the
mass balance method can be of the order of 100 % on occa-
sion, even though the individual errors can be much smaller
in the vast majority of the flights. The Discussion section pro-
vides some guidelines for industry on how to avoid or min-
imize potential errors in drone measurements for methane
emission quantification.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1302 T. H. Mohammadloo et al.: Uncertainty estimate in drone-based methane measurements

1 Introduction

Methane is a much more potent greenhouse gas than carbon
dioxide when comparing global warming potential (GWP).
Methane has a GWP of 86 over the first 20 years after its at-
mospheric injection and a GWP of 28 over a 100-year time
frame (IPCC, 2014). Since the lifetime of methane in the at-
mosphere is just over 12 years (relatively short compared
to CO2’s lifetime of hundreds of years), reducing methane
emissions now offers great potential for delivering substan-
tial reductions in global warming on a timescale compati-
ble with the 2015 Paris Agreement goals. The average back-
ground level of methane in the atmosphere is about 1.9 ppm
globally, increasing at about 0.01 ppm yr−1 due to human
activity (Nisbet et al., 2019). According to bottom-up esti-
mates over the period 2008–2017 by Saunois et al. (2020),
about half of the total methane emission sources are anthro-
pogenic (366 Tg yr−1 out of 737 Tg yr−1), predominantly
from agriculture and waste (206 Tg yr−1); oil and gas pro-
duction accounts for 22 % of total anthropogenic emissions
(80 Tg yr−1). Although all these numbers are subject to high
uncertainty, the estimates do show that reducing methane
emissions from the oil and gas industry can have a significant
effect on limiting climate change in the coming decades.

Best practices for the reporting of methane emissions are
proposed in the OGMP2.0 reporting framework (United Na-
tions Environment Programme, 2020) – a voluntary, compre-
hensive, measurement-based reporting framework for the oil
and gas industry. At the highest reporting level OGMP2.0
recommends building a measurement-based source-level in-
ventory of emissions and performing an independent site-
level emission measurement – as well as a reconciliation of
the two. The aim of reconciliation is to help improve accu-
racy in reported emissions as well as identifying emission
reduction opportunities. In this context it is important for op-
erators to understand sources of error and uncertainty ranges
in measurement techniques used. Sources of measurement
errors should be avoided where possible and practical, and
remaining uncertainties should be understood and correctly
estimated. Site-level quantification is typically done with air-
borne methane measurements (e.g., on remotely piloted air-
craft systems or on crewed aircraft). Liu et al. (2024) note
that the errors in quantification can be considerable: although
many systems can quantify within an order of magnitude of
the controlled-release rate, the absolute errors reported varied
between 19 % and 239 %. The two remotely piloted aircraft
systems (drones) tested even reported results with errors of
140 % and 239 %. Corbett and Smith (2022) present the re-
sults from another controlled-release campaign: they report
errors in the methane emission rate up to 115 %, but they also
show that the errors can be much reduced, to about 16 %, by
considering only measurements during the time that the wind
conditions were favorable. Still, Corbett and Smith (2022) do
not give a systematic analysis of the causes as to why some
measurements are more successful than others.

The present paper provides a framework that allows the
quantitative assessment of errors in methane emission rate
measurements using the mass balance method. We present
a theoretical framework that provides an explanation for the
various sources of uncertainty considered and that highlights
which of these effects have a particularly large impact on un-
certainty – and thus are those effects that should be managed
most carefully when setting up a drone survey campaign. The
focus will be on the uncertainty related to the flight path and
the variability in the wind; we do not take into account addi-
tional uncertainty associated with the limited precision of the
methane concentration sensor and the method used to deter-
mine the wind vector at the position of the drone (including
anemometer precision).

The second part of this paper illustrates the various
sources of uncertainty with real-life examples. Data from a
controlled-release experiment acquired by Scientific Avia-
tion are analyzed to illustrate potential uncertainties and sub-
tleties associated with the data analysis process. In addition,
a data set of 1001 historic flights acquired by SeekOps is an-
alyzed with regards to the variations in the wind speed and
direction during the survey time, as well as the potential ef-
fect of the choices for the drone’s flight path on the quality
of the results.

This paper intends to provide guidelines to prevent avoid-
able errors in data collection and data analysis of drone-based
measurements of methane emissions from industrial facili-
ties. Although a number of obvious sources of potential error
have been included in our analysis, it must be recognized
that other errors may also occur in practice. This means that
the actual uncertainty in measurement results will always de-
pend on the particular deployment of a solution at a given
site on a certain day. Examples of these additional sources
of error are a reduced performance of the sensor(s) due to
weather conditions or external damage, complications asso-
ciated with turbulent air flow around buildings and pieces of
equipment, and the method used to measure the unperturbed
wind velocity at the position of the drone.

2 Methods

2.1 Coordinate system definition

Before describing the methods that are used for the quantifi-
cation of methane emissions, we first introduce the coordi-
nate systems that will be used in the remainder of this paper.

The first coordinate system is the local geodetic coordinate
system (XYZ), with the X axis pointing to the east direction
and the Y axis pointing to the north direction. The Z axis
is defined such that a right-handed coordinate system is ob-
tained.

The second coordinate system is aligned with the wind di-
rection and referred to as ξηz. This means that the horizontal
direction of the wind field is aligned with the ξ axis, the di-
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rection perpendicular to it is given by the η axis. The z axis
is defined such that a right-handed system is obtained. The
coordinate system is defined such that the emission source is
located at ξ = 0, η = 0, and z=H , with H being the height
of the source from the ground level (z= 0) (see Fig. C2 in
Appendix C).

The third coordinate system is defined to represent the
drone measurements and is a 2-dimensional coordinate sys-
tem that captures the trajectory flown by the drone. In the
case of a “curtain” flight path (a vertical plane), each coordi-
nate on the curtain is expressed in the Pz coordinate system,
with the P axis parallel to the ground and the z axis in the
vertical direction. In the case of cylindrical flight paths, po-
lar coordinates θz are used, with z the vertical direction and
θ the angular position in radians which can be converted to
distance using the radius of the cylinder.

2.2 Mass balance method for methane emission
quantification

The mass conservation equation for the methane mass con-
centration c (mass of methane per volume air) is (Stockie,
2011)

∂c

∂t
+∇ · (cu)=∇ · (K∇c)+

Nsources∑
i

ṁiδ(x− xs,i), (1)

where u is the wind field vector and K is the molecular dif-
fusivity of scalar c. The mass emission rate of point source i
located at xs,i = [xs,i,ys,i,zs,i] is denoted by ṁi ; δ denotes
the Dirac delta function. The first term on the left-hand side
denotes the change in concentration in time, whereas the sec-
ond term denotes the change due to advection; the first term
on the right-hand side indicates molecular diffusion, and the
second term accounts for the presence of point sources.

The methane mass concentration c is related to the molar
volume of methane in air, c′ [ppmv], through

c =
c′

106 ×
MCH4

Mair
× ρair, (2)

whereMCH4 is the molar mass of methane (16.04 kg kmol−1)
and Mair is the molar mass of dry air (typically about
28.95 kg kmol−1). The mass density of air, ρair, will change
with differences in ambient temperature and pressure (i.e.,
ρair(T ,P )).

We can obtain the mass balance equation for a volume by
integrating:∫
V

∂c

∂t
dV +

∫
V

∇ · (cu)dV =
∫
V

∇ · (K∇c)dV+

∫
V

Nsources∑
i

ṁiδ(x− xs,i)dV, (3)

where the integrals on both sides have units of kilograms per
second. The total methane emission from all sources inside

the volume combined can be estimated by applying the di-
vergence theorem (Katz, 1979):

ṁ=

Nsources∑
i

ṁi =

∫
V

∂c

∂t
dV +

∮
∂V

cu ·ndS−
∮
∂V

Kn ·∇cdS. (4)

Usually, the situation is considered where the main con-
tribution on the right-hand side comes from the advection
term (i.e., the wind vector is aligned with the normal vec-
tor n at the surface where the concentration flows out and
|cu ·n| � |Kn ·∇c| so that the diffusion term can be ne-
glected; Conley et al., 2017). When the process is assumed to
be statistically stationary (i.e., the statistical properties of the
process do not change with time, ∂c

∂t
), it is possible to derive

the mass balance equation (Conley et al., 2017) for the total
methane emission rate:

ṁ≈

∮
∂V

cu ·ndS = 10−6MCH4

Mair

∮
∂V

c′ρairu ·ndS, (5)

where the latter part is obtained by substituting Eq. (2).
We observe some inconsistencies in the presentation of

the mass balance calculation in the existing literature, for
instance with regards to the molar mass used (Corbett and
Smith, 2022) or the distinction between concentrations by
weight and by volume (Gorchov Negron et al., 2020). We
hope to avoid further ambiguities through the full derivation
of the mass balance method, leading up to Eq. (5).

2.3 Drone-based methane measurements

The relationship in Eq. (5) does not require that dispersion
happens in a particular way (e.g., a Gaussian plume) or that
there is only one source within the volume. To apply this
form of the mass concentration equation to real problems, a
flight path needs to be defined that approximates the bound-
ary integral. In a common scenario, the measurements are
taken downwind of an equipment area under the assump-
tion that everything entering the upstream volume (behind
the source) is atmospheric background, c0. In some deploy-
ments, a cylindrical flight pattern is followed that circum-
scribes the facility of interest (Corbett and Smith, 2022).

The atmospheric background c0 can be calculated statisti-
cally (e.g., some low percentile of the concentration measure-
ments; McKain et al., 2015; Plant et al., 2022) or spatially
(e.g., from grid cells at the edges of the plane; Mays et al.,
2009; Conley et al., 2017). We use the former approach in
this paper.

The terms inside the integral of Eq. (5) must generally be
approximated, owing to the discrete nature of real concentra-
tion and wind measurements. We assume that the bounding
surface (e.g., a cylinder or box around a region of interest or
a plane downwind of a point of interest) can be partitioned
into a 2-dimensional regular grid in the horizontal and verti-
cal directions with equal spacings: δP and δz, respectively.
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The exact details of this grid will depend on the flight tra-
jectory under consideration. Approximating Eq. (5) directly
gives

ṁ≈

nz∑
k=1

nP∑
j=1
(cj,k − c0)[uj,k ·nj,k]δP δz, (6)

where cj,k denotes the methane mass concentration and the
wind field interpolated onto the grid at location xj,k (either
measured directly or interpolated onto a grid) and uj,k de-
notes the wind field at the same location. nj,k is the normal
vector at the surface at location xj,k . nz and np are the num-
ber of cells in the P and z directions, respectively. For molar
concentration measurements, the calculation should be mod-
ified to take account of the density of methane, as in Eq. (5):

ṁ≈ 10−6MCH4

Mair

nz∑
k=1

nP∑
j=1
(c′j,k − c

′

0)ρair,j,k
[
uj,k ·nj,k

]
δP δz, (7)

where ρair,j,k represents the air density at the location xj,k ,
which may be estimated using the local temperature and
pressure.

Equations (6) and (7) describe the calculation procedure
in the mass balance method for one single flight spanning
the vertical plane of interest. If a similar trajectory along the
vertical plane is flown multiple times, then the mass emission
rate can be obtained by averaging. The exact choice of aver-
aging procedure is important for the final result. Two com-
mon choices are as follows:

1. Find ṁ` for each curtain ` separately using Eq. (7), and
then take the average of these values following

ṁav,1 =
1

Ncurtain

Ncurtain∑
`=1

ṁ`. (8)

2. First compute the horizontal flux per altitude, φk ,
i.e., φk = 10−6MCH4

Mair

∑ny
j=1(c

′

j,k − c
′

0)ρair,j,k[uj,k ·

nj,k]δP δz. If multiple horizontal fluxes are available
per an altitude, the median is taken (φ̃k =median(φk)).
With median horizontal flux, the emission rate is
calculated as

ṁ=

nz∑
k=1

φ̃kδz. (9)

The two methods are equivalent when the exact same tra-
jectory is flown for each curtain. If there are gaps in the data
in the vertical direction, however, the two methods may result
in different calculated methane emission rates.

Usually, a drone flies at a speed between 1 and 5 m s−1 to
acquire data and methane concentration measurements with a
frequency between 1 and 10 Hz. The average horizontal spa-
tial resolution is roughly v

f
, where v is the flight speed of

the drone and f is the measurement frequency. Addition-
ally, drones typically have their own lidar (light detection
and ranging) sensor to measure altitude above ground level, a
GPS sensor, and a telemetry relay. The maximum flight time
of a drone is typically limited to about 40 min. More detail
on the hardware is given in the appendix.

The mass balance method equation, Eq. (5), is based on
simultaneous information on both the methane concentration
and the wind velocity vector in the flux plane. Hence, it is
the best practice to measure the wind velocity at the posi-
tion of the drone. The company Scientific Aviation derives
the wind speed at the location of the drone from the drone’s
GPS data, the rotor thrust data, and the drone’s orientation
at any moment in time. The company SeekOps has recently
adopted a similar strategy, but in the historic data discussed
in this paper the wind measurements were taken by a station-
ary, on-site anemometer at approximately 2 m height above
the ground surface; the wind speed at the drone altitude is
derived by applying a wind profile model that has been op-
timized for the local surface roughness and drone-derived
aerodynamic wind speed.

2.4 Numerical simulations

Numerical simulations will be used for a systematic analysis
of physical phenomena affecting the error in the mass bal-
ance method. This section describes the methods employed
in the numerical simulations.

The coordinate of the drone at each time stamp is sim-
ulated based on a curtain or cylindrical flight pattern. The
horizontal spacing between two consecutive measurements
is determined by the speed of the drone, frequency of the
measurements, and the battery life. In the simulation, for the
sake of simplicity this coupling has not been taken into con-
sideration. This means that we simply assume the frequency
of 10 Hz.

The methane mass concentration above the background
(in kg m−3) at each location x is simulated from the Gaus-
sian plume model (Stockie, 2011). In the simulations, either
a constant or a time-varying but spatially uniform wind field
will be assumed. Using the ξηz coordinate frame, the con-
centration profile downwind of the source (ξ ) is then given
by

c (ξ,η,z)=
ṁ

π |u|σhσv
exp

(
−
η2

2σ 2
h

)
[

exp
(
−
(z−H)2

2σ 2
v

)
+exp

(
−
(z+H)2

2σ 2
v

)]
, (10)

where |u| denotes the absolute value of the wind speed.
The first exponent in Eq. (10) expresses the Gaussian cross-
sectional shape at fixed height. The second exponent illus-
trates the Gaussian vertical shape at a given ξ , which is mod-
ified by the third exponent (the ground reflection term). The
concentration field is assumed to change immediately with a
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change in wind. The parameters σh and σv denote the stan-
dard deviation of the plume in horizontal and vertical direc-
tions, respectively. Stockie (2011) explains that these param-
eters can be tuned to fit a certain situation of atmospheric
dispersion. In our present model, we assume that the standard
deviations are proportional to the distance from the source in
the direction of the wind:

σh = ξ tan(ωh), (11a)
σv = ξ tan(ωv). (11b)

The angles ωh and ωv denote the opening angles of the plume
in horizontal and vertical directions, respectively.

To compute the emission rate using the mass balance
(Eq. 6), a grid is defined with horizontal spacing δP and
vertical spacing δz (equidistant spacing between consecutive
points in both directions). The normal to the grid, nj,k at each
point xj,k , is obtained by considering the normal vector to
the tangent to the grid at each point (n⊥j,k). To calculate the
tangent to the grid at each point, the edges of each cell in the
grid are considered and the first and last edges are calculated
separately based on the type of the grid. The normal vector
is then obtained from

〈nj,k,n
⊥

j,k〉 = 0. (12)

The measured wind field is interpolated onto this grid us-
ing the nearest-neighbor method and referred to as uj,k (Sib-
son, 1981). Interpolating the concentration on the plane (re-
ferred to as cj,k) can be achieved using different approaches
depending on the spatial distribution of the drone measure-
ments: for drone measurements with equidistant spacings in
horizontal and vertical directions and lying on a plane, the
nearest-neighbor interpolation method can be used. How-
ever, for non-equidistant distributed drone measurements in
a semi-random flight pattern, a more advanced interpolation
technique is preferred, as the nearest neighbor might give a
concentration that is too large or too small depending on the
location of the point in question and the drone measurement
– as an example a Gaussian smoother or Gaussian process
(Price, 2012; Rasmussen and Williams, 2005). The emission
rate is then obtained by substituting these interpolated val-
ues in Eq. (6). It should be highlighted that if the plume is
missed, the emission rate will be underestimated irrespective
of the interpolation technique.

We modeled the time-varying wind direction and wind
speeds using the Ornstein–Uhlenbeck process (Eq.13). This
is a random diffusion process that is stationary Gaussian and
Markovian (van Kampen, 2007), where the incremental evo-
lution of any random variable χ is then given by

dχ =−
(χ −µχ )

τ
dt +

√
2σ 2
χ

τ
dW, (13)

where µχ is the mean value of χ and σχ is the standard de-
viation of the probability distribution of χ . The parameter

dW is an increment of the Wiener process (e.g., Brownian
motion), and dt is the time increment; the current notation
is used because the time derivative of the Wiener process,
dW/dt , is not defined (van Kampen, 2007). The physical
meaning of Eq. (13) is that the Wiener process provides a
forcing to the random walk process away from the mean,
whereas the first term brings the process back to the mean
with a timescale τ . The advantage of using an Ornstein–
Uhlenbeck process for our simulations is that, in the limit
of infinitely many Markov steps, the long-term probability
distribution of the variable χ is a stationary Gaussian distri-
bution with mean µχ and a variance σ 2

χ that is an indepen-
dent parameter of the problem. The uncertainty in the mass
balance calculations can thus be determined as a function of
the variability in the wind field.

3 Simulation results

In this section, results from the simulation of the 2-
dimensional curtain drone flight for different scenarios are
presented (similar simulations for cylindrical flight patterns
are contained in the appendix). The objective is to assess the
importance of various sources of uncertainty in the calcu-
lated emission rate. The following sources of uncertainty are
considered: (a) the choice of data density, i.e., horizontal and
vertical spacing between coordinates (Sect. 3.2); (b) the an-
gle of the flight lines with respect to the main wind direction
(Sect. 3.3); and (c) the variation in wind (Sect. 3.4). In prac-
tice, errors often compound, and there may be a combined
effect of multiple errors. However, testing out all permuta-
tions and interactions would lead to an intractable number of
permutations of parameter settings. It would also complicate
the evaluation of which effects have the largest impact on
the overall uncertainty, which is the goal of our simulations.
Therefore, we limit the analysis to the uncertainty sources
presented above.

It is assumed that the concentration field is stationary dur-
ing the time of the measurements. This might correspond to
a constant Gaussian plume traveling horizontally in a time-
averaged horizontal wind field with speeds that can vary as
a function of the vertical coordinate. The plume opening an-
gle and the wind field used in the simulation are chosen such
that they reflect a situation encountered in practice. A source
at location xj,k with the emission rate of ṁtrue = 5 kg h−1

is considered. For the true emission rate ṁtrue and the cal-
culated emission rate ṁ, the relative error in the calculated
emission rate is defined as ε = ṁ

ṁtrue
− 1.

3.1 Ideal case

We will first demonstrate that it is possible to recover the
mass emission rate of a source with high accuracy using
Eq. (6) in an idealized situation. To this end, we consider
an ideal case with the following parameters: (a) constant
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Figure 1. The 3-dimensional normalized methane concentration
above the background on a curtain flight located 5 m downwind of
the source (black circle). The wind velocity is shown with a red
vector. The Gaussian plume is assumed to have 5° horizontal and
vertical opening angles. There is a horizontal spacing of 0.09 m be-
tween the measurement points and a vertical spacing of 0.3 m verti-
cal flight lines.

wind field with westerly wind at a speed of 5 m s−1; (b) one
flight line passing through the center of the plume; (c) the 2-
dimensional curtain located at a downwind distance of 5 m;
(d) horizontal and vertical opening angles of 5°; (e) equidis-
tant measurements in the horizontal and vertical directions,
i.e., 1P = const and 1z= const; (f) flight curtain perpen-
dicular to the wind direction; and (g) no measurement error
in the simulated concentration, the wind field, or the location
of the drone.

Figure 1 shows the methane concentration as measured
during the simulated flat 2-dimensional curtain flight. The
vertical and horizontal spacings of 0.3 and 0.09 m are cho-
sen such that a dense grid in both directions is obtained. In
practice, it is easier to control flight velocity rather than grid
spacing.

Figure 2 illustrates the concentration measurements in the
Pz plane along with the calculated emission rate for the
source considered in Fig. 1 for coarse and fine vertical spac-
ing. The quality of the emission rate estimate degrades with
the increasing coarseness of the flight lines in the vertical
direction, resulting in a deviation of 0.229 kg h−1 (4.6 % rel-
ative error) for a vertical spacing of 1 m.

3.2 Horizontal and vertical spacings of the curtain
drone measurements

3.2.1 Non-equidistant vertical spacing

In Sect. 3.1, the horizontal and vertical spacings between the
flight coordinates are assumed to be constant. In practice,
however, the assumption of equidistant spacing is easily vi-
olated. Here we assess the effect of varying spacing in the
vertical direction on the emission rate error. For L number of
flight lines, L random samples from a Gaussian distribution

Figure 2. A 2D illustration (Pz plane) of the normalized methane
concentration above the background simulated using a Gaussian
plume for a 2-dimensional curtain flight 5 m downwind from the
source, with a horizontal spacing of 0.09 m between the coordinates
and vertical spacing of (a) 0.3 m with the calculated emission rate
equaling 5 kg h−1 and (b) 1.0 m with the calculated emission rate
equaling 5.229 kg h−1.

with zero mean and a standard deviation σl are drawn as

li ∼N (0,σ 2
l ), i = 1,2, . . .,L, (14)

where σ 2
l equals a percentage (ranging from 1 % to 100 %)

of the vertical spacing. For a flight line i, li is added to the
simulated vertical coordinates of the drone measurements
(z). This means the drone measurements on the flight line
i, i = 1,2, . . .,L are all shifted equally. For each simulation
scenario (i.e., each standard deviation) 300 independent runs
are considered.

Figure 3 shows the box–whisker plot for the emission rate
percentage error for non-equidistant vertical spacing. There
is no bias in the calculated emission rate with increasing
variation in the vertical spacing, but individual measurement
cases can have errors of up to almost 40 % if the standard
deviation in the vertical spacing is equal to the nominal ver-
tical spacing. Non-equidistant vertical flight lines introduce
the possibility of missing the plume. Having a larger per-
centage of the vertical spacing as the standard deviation of
the Gaussian distribution means that the non-homogeneity
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Figure 3. Box–whisker plots for the calculated emission rate error
for increasing standard deviation of the vertical spacing between
flight lines. Here and henceforth, the gray bars denote the 25 %
(Q1)–75 % (Q3) quantile range; the lower and upper whiskers show
theQ1–1.5 IQR andQ3+1.5 IQR, with IQR being the interquartile
range of the values simulated.

between the vertical flight lines becomes more pronounced.
This means that one might miss the plume by a larger extent.

3.2.2 Missing the plume center in relation to horizontal
and vertical spacings

In Sect. 3.1, it is assumed that one flight line passes through
the center of the plume in the vertical direction and a con-
centration point exists on this flight line corresponding to the
maximum concentration of the plume on the 2-dimensional
curtain. In practice, these assumptions are easily violated as
the location of the source is not exactly known. Therefore,
here we will assess the potential uncertainty induced by miss-
ing the maximum concentration of the plume for different
horizontal and vertical spacings of the drone measurements.
The resulting error is a function of the horizontal and vertical
spacings as the drone is more likely to miss the highest con-
centration of a plume if the horizontal and/or vertical spac-
ing is large. To assess the effect of missing the plume, for
each horizontal (1P ) and vertical (1z) spacing of the drone
measurements, 15 different shift values relative to the plume
center (projected on the curtain) ranging from −1P2 to +1P2
in the horizontal direction and from −1z2 to +1z2 in the ver-
tical direction are considered. For each shifted location, the
emission rate error is calculated, i.e., 225 (15×15) instances
of calculated emission rate errors. For all the locations ex-
cept the one where one flight line passes the center of the
plume, the maximum concentration is missed. Therefore, the
emission rate is usually underestimated, and the maximum
error representing the worst situation is considered for each
combination of horizontal and vertical spacings.

Figure 4. Maximum emission rate error in percentage (over 225
experiments corresponding to missing the plume by different per-
centages of the horizontal and vertical spacing) for varying dimen-
sionless horizontal and vertical spacings. Shown with red are the
error contours.

For a plume with a known opening angle in the horizontal
and vertical directions (ωh and ωv), the calculated emission
rate remains unchanged for a varying downwind distance d
if the horizontal and vertical spacings are scaled according
to the opening angle of the plume. In order to have a generic
representation of the maximum error for different horizontal
and vertical spacings and a downwind distance d , the hori-
zontal (1P ) and vertical (1z) spacings can be expressed as
factors of the plume horizontal and vertical standard devia-
tions, σh and σv in Eq. (11b), respectively, as the following
dimensionless quantities:

1P ′ =
1P

σh
=

1P

dtanωh
, (15a)

1z′ =
1z

σv
=

1z

dtanωz
. (15b)

Shown in Fig. 4 is the maximum error in the calculated
emission rate for different dimensionless horizontal and ver-
tical spacings for a curtain flight located 5 m downwind of a
source with the emission rate ṁ= 5 kg h−1. As seen, the es-
timated emission rate error decreases with higher frequency
(i.e., smaller horizontal spacing) and smaller vertical spac-
ing. It should be highlighted that even with a high-frequency
drone flying with a small vertical spacing, the error will not
reach zero due to the existence of other error contributors.

3.3 Angle between flight lines and wind direction

In the ideal situations described in Sect. 3.1, the drone flies
in a direction perpendicular to the wind field. However, in
real-world scenarios such a flight design might be impracti-
cal due to the existence of buildings and obstacles or safety
requirements. It is thus relevant to assess how the deviation
of the flight curtain from the direction perpendicular to the
wind field affects the calculated the emission rate. Figure 5
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Figure 5. The emission rate error percentage as a function of devia-
tion of the 2-dimensional curtain from the direction perpendicular to
the wind velocity obtained from the simulation. Results are shown
for three different opening angles of the Gaussian plume: 2.5, 5,
and 10°.

shows the result as a function of the angle of the curtain with
respect to the wind direction for three different values of the
plume opening angle. As seen, the error is negligible for sit-
uations in which the deviation of the 2-dimensional curtain
from the direction perpendicular to the wind field is less than
45°. If the flight pattern is not perfectly perpendicular to the
wind direction, an error term emerges due to the effect of
diffusion (see first term on the right-hand side of Eq. 4). In
the mass balance equation, Eq. (5), the diffusion term is dis-
carded and only the advection term is considered. For the
non-perpendicular flight patterns, however, the term n · ey

dc
dy

in Eq. (4) is not exactly equal to zero (here, ey denotes the
unit vector pointing in the y direction). For a westerly wind
field, the deviation in the northern part of the plume may,
to first order, be compensated by opposite deviations in the
southern part of the plume, but the deviations can become
considerable at large measurement angles. The actual con-
tribution of the error from this source is proportional to the
value of the diffusion coefficient K , and it leads to a slight
overestimate of the mass emission rate that increases with
the opening angle of the plume (usually the opening angle is
proportional to K). If the flight trajectory deviates from the
direction perpendicular to the wind by more than ≈ 70°, un-
derestimation occurs and the magnitude of underestimation
increases with the deviation angle. The main cause for this
error is that part of the diverging plume will never be cap-
tured by the vertical curtain; if the opening angle is larger, a
larger percentage of the plume will be missed in this way and
the error thus increases.

3.4 Time variations in wind speed and/or wind
direction

Another assumption considered in Sect. 3.1 was that the wind
field is time-invariant; however, in practice this assumption

is rarely true. To take this issue into account, we consider
a large number of simulations in which a Gaussian plume
changes randomly according to the Ornstein–Uhlenbeck pro-
cess described in Sect. 2.4. The factor τ is chosen to be equal
to 30 s in all simulations. Each simulation starts with a west-
erly wind of 5 m s−1, but it gradually evolves into a fluctu-
ating wind field with a statistical standard deviation in the
wind speed and/or in the wind direction in accordance with a
pre-defined factor σχ (see Eq. 13). For each standard devia-
tion, 300 independent simulation runs are performed, and the
results are shown for time-varying wind direction (panel a),
time-varying wind speed (panel b), and their combination
(panel c) in Fig. 6.

Figure 6a shows that the percentage error increases with
increasing wind direction variability. The plumes do not stay
in the same location during the simulation as the direction of
its center-line changes according to the Ornstein–Uhlenbeck
process, and this can lead to an underestimate or an overes-
timate of the spatial extent of plumes or other plumes being
measured multiple times. In any case, the error increases as
a result of increased variability in wind direction. The per-
centage error grows with the wind variability until the wind
direction variability reaches a value of approximately 8°. For
larger variations, the error does not increase much further.
This can be explained from the timescale τ in the Ornstein–
Uhlenbeck process that does not allow variations that are too
rapid. Hence, the variations in wind direction may be larger
over the entire simulation, but during the time of one single
horizontal flight line, the variation seen by the drone will be
similar. Note that we only model horizontal meandering of
the plume; vertical meandering would have a similar effect,
as long as source locations are far above the ground and mea-
surements take place at high altitude as well.

Figure 6b shows what happens when we vary the wind
speed. Our first observation is that the percentage error is
generally much lower than in Fig. 6a. This can be directly
explained from Eq. (10): the concentration level is inversely
proportional to the wind velocity. As long as a fraction of the
methane plume is captured, the product of cu ·n in Eq. (3)
will be approximately constant even if the wind is varying.
The total mass balance equation will thus be unaffected. This
holds for small variations in wind speed.

If there are very large variations in the wind speed (over
about 50 % on average), it may happen that the random fluc-
tuations may approach 100 % on occasion. If that is the case,
the wind speed becomes close to 0 m s−1 or the wind may
even inverse the direction, which means that parts of the
plume are missed. This effect can be seen as a spurious arti-
fact of the simulation, but it bears some resemblance to what
can happen in actual drone-based methane measurements in
low-wind conditions: if the wind speed drops to zero, then
it can become practically difficult to see any signal from the
methane plume in the vertical curtain chosen.

Figure 6c applies to the situation with both time-varying
wind speed and wind direction variability. Apparently, the
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Figure 6. Box–whisker plots for the calculated emission rate error
for increasing standard deviation of (a) time-varying wind direction,
(b) time-varying speed, and (c) time-varying wind velocity (both
direction and speed at the same time). The 2-dimensional curtain is
located 5 m s−1 downwind from the source.

dominant source of error at moderate variations is the wind
direction. This is in line with the results in Fig. 6a and b,
which showed markedly higher uncertainties for the wind di-
rection variations.

3.5 Other potential sources of error

There are other potential sources of error and uncertainty,
such as the precision of the methane concentration sensor,
uncertainty of GPS measurements, and the uncertainty of
wind velocity in the turbulent atmospheric boundary layer

between the source and the vertical measurement curtain dur-
ing the entire time required to complete the data acquisition.
The detailed properties of the emission source, such as the
temperature of the emitted gas and its buoyancy, can also
play a role in how a methane plume moves through the at-
mosphere. Finally, time variation in mass emission rates from
sources are not considered in this paper, but they may well be
a source of uncertainty in practice in site-level measurements
under the OGMP2.0 framework.

4 Real-life examples

4.1 Historic controlled-release data from Scientific
Aviation

Nine controlled-release experiments from Scientific Aviation
were analyzed to gain a better understanding of the empirical
uncertainty about the mass balance method, as well as a more
detailed appreciation of the underlying assumptions that go
into the computation of the methane emission rate. The ex-
periments were carried out near the Scientific Aviation office
in Boulder, Colorado, in 2019 and 2020.

Figure 7a shows the flight path of measurement “A”, done
on 13 November 2019. The dots, which indicate the flight tra-
jectory, are colored by the methane concentration measured.
Figure 7b shows the altitude of the drone in the course of
time during measurement A. Apparently, multiple transects
of the methane plume were attempted at different altitudes.
Figure 7c shows a time series of the methane concentration
measurements.

Although the objective was to fly a vertical curtain pattern,
comparing the left graph of Fig. 7 to Fig. 1 highlights the dif-
ference between the simulated drone measurements and the
actual drone measurement by a pilot. Some of the assump-
tions considered in Sect. 3.1 are likely violated: there is no
guarantee that there will be one flight line passing the center
of the plume or that the horizontal and vertical spacings be-
tween adjacent concentration will be nearly equidistant. The
time series of concentration measurements and altitude indi-
cates that there are upward (solid red) or downward (dashed
black) curtains where the plume is missed. It is thus impor-
tant to assess how the emission rate calculated from the mass
balance method is affected by irregularities in the measure-
ments taken by the drone.

As an illustration, we will consider the data from flight A
in more detail. We use a nearest-neighbor algorithm with the
Euclidean distance metric to project the concentration mea-
surements onto a vertical plane. This is only one choice for
the data interpolation; other distance metrics like Chebyshev
and Minkowski distances can also be used in the nearest-
neighbor algorithm; other interpolation techniques such as
a Gaussian smoother can also be used as an alternative to
the nearest-neighbor process. Since Scientific Aviation uses
the nearest neighbor for the projection of the concentration
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Figure 7. (a) Methane concentration data plotted against the loca-
tion of measurements in a 3-dimensional space. The average wind
direction is shown with the red arrow. (b) Time series of the drone
altitude, with the first upward transect denoted by “1” (solid red),
the first downward transect denoted by “2” (dashed black), the sec-
ond downward transect denoted by “3” (solid red), and the second
upward transect denoted by “4” (dashed black). (c) Concentration
time series for the controlled-release data A acquired on 11 Novem-
ber 2019.

measurements on the vertical curtain plane in all their data
analysis, we use the same interpolation technique to generate
the results in this section. Appendix D shows that the Gaus-
sian smoother as the interpolation technique for this data set
results in similar emission rates. Using the interpolated con-
centration values on the plane, we can then compute the total
emission rate with the mass balance method using Eq. (8),
where the total mass emission rate is the average of multi-
ple individual curtain patterns. The atmospheric background,
c0 in Eq. (6), is estimated from the 10th percentile of all the
concentration measurements.

If we take into account all the concentration measure-
ments (except those corresponding to the drone flying from
the landing pad towards the curtain of interest), the aver-
age atmospheric background concentration has been deter-
mined as 2.198 ppm. The calculated emission rate using all
the concentration measurements, without any postprocess-
ing, is 55.7 g h−1. This result is 80 % higher than the true
release rate of 30.8 g h−1.

If, on the other hand, we choose a different postprocessing
method to calculate the emission rate, the results can be very
different. For example, we can subdivide the flight trajectory
in measurement A into two upward curtains, indicated as 1
and 4 with red rectangles in Fig. 7b, and two downward cur-
tains, indicated as 2 and 3 with black rectangles. Shown in
Fig. 8 are the 3-dimensional concentration measurements for
each of these curtains. The curtains have been chosen such
that they fully cover the plume. This means that three cur-
tains at the second half of the data are discarded, resulting in

the exclusion of 40 % of the data for this flight, as they do
not fully cover the plume (although they have a higher con-
centration than the background, they only partially cover the
plume), and including them in the estimate will result in an
underestimation of the emission rate. It should be noted that
for this postprocessing method, the atmospheric background
is calculated for each curtain separately as the 10th percentile
of the concentration measurements within each curtain. The
uncertainty in the estimate of the background between the
four curtains is 5 ppb, whereas the maximum concentration
enhancements between the curtains are well above 500 ppb,
implying that the uncertainty in the atmospheric background
has a negligible effect on the emission rate estimate. Pre-
sented in Table 1 is the calculated atmospheric background,
c0, and emission rate for each individual upward and down-
ward curtain using Eq. (8), along with the average emission
rate from the curtains selected. The result is an emission esti-
mate of 28.26 g h−1, which is only 8.2% lower than the true
emission rate. This shows that the postprocessing method can
potentially decrease the error in the calculated emission rate
considerably and is a more robust alternative to using all the
concentration measurements without any postprocessing.

If we employ Eq. (9) for the computation of the methane
emission rate, then the result is 34 g h−1, which is about 10 %
higher than the true answer of 30.8 g h−1. The difference be-
tween the two calculation methods is due to a different inter-
polation methodology and postprocessing technique. Since
the curtains are not equal in this case (some curtains span a
larger range of altitudes than others), the latter method (us-
ing Eq. 9) gives a different result than the average of the mass
emission rates computed per curtain (using Eq. 8).

Shown in Table 2 is the calculated emission rate from
Eqs. (8) and (9) along with the true release rate for nine
different controlled-release experiments. The last column of
Table 2 shows the dimensionless vertical spacing 1z′, com-
puted from the flight data for each controlled-release survey
using Eq. (15b). For want of detailed long-term wind data
in this case, we assumed the plume opening angle ωz to be
equal to 5° in all cases. The values in the last column show
that the dimensionless vertical spacing 1z′ was smaller than
1 in most cases and never exceeded 1.4; looking back at the
contour plot in Fig. 4, it is clear that the potential avoidable
error due to the choice of vertical spacing was relatively low
in all cases. Although, as noted earlier, this does not mean
that there could not have been other sources of error, at least
these are promising measurements with a small overall error
if an appropriate postprocessing method is selected to pro-
cess the measured concentration and wind data.

The results in Table 2 illustrate that indeed there is, in
general, reasonable agreement between the calculated mass
emission rates and the true methane emission rates. The root-
mean square of the error percentage is 31.0 % when using
Eq. (8), and it is 28.9 % when using Eq. (9). On individual
cases, however, there can be a considerable difference be-
tween the two methods: see for example case C (62.54 %
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Figure 8. The 3-dimensional concentration measurements for (a) upward curtain “1”, (b) downward curtain “ 2”, (c) downward curtain “3”,
and (d) upward curtain “4”. The gray dots in the figure indicate the concentration measurements projected onto the NZ and EZ plane to
provide a better visualization of the 3-dimensional structure of the point cloud. The red arrow indicates the average wind direction.

Table 1. Atmospheric background c0 and the emission rates calculated per curtain and the average emission rate between upward and
downward curtains for measurement A, which was carried out on 13 November 2019. The emission rates in the table are calculated using
Eq. (8). The true emission rate was 30.8 g h−1.

c0 Emission Average Emission
Curtain [ppm] rate [g h−1] of U and D rate error [%]

Upward (U) 1 2.204 14.48
13.39 −56

Downward (D) 2 2.198 12.30
Downward (D) 3 2.197 46.73

43.14 43
Upward (U) 4 2.209 40.10

Average from the
four selected curtains 2.202 28.26 −8.2

Average from all curtains 2.198 55.7 +80

error versus −13 %) or case H (6.63 % error versus 29 %).
There does not appear to be a systematic bias that favors one
method or the other in all the cases.

A tentative conclusion from the controlled-release data is
that the “best” data analytic method depends primarily on
how the data were collected. For instance, Eq. (8) appears
to work best in cases where the data are collected in one
full curtain with sufficiently small and constant vertical and
horizontal spacings and with a fairly constant wind direction
during the flight. In a second or third flight, the same curtain
pattern may be flown, with again enough data for a reliable
mass balance calculation per flight. In that case, Eq. (8) is
probably more appropriate because it uses the full mass bal-
ance method based on a direct discretization of the boundary

integral (Eq. 5). We can see from Table 2 that this approach
seems to work well for cylinder-shaped flight patterns in par-
ticular. On the other hand, if the data acquisition shows mul-
tiple curtains with a small number of data points per curtain
(like the flight pattern from measurement A in Fig. 8, for in-
stance), then it is wise to group the measurements together
in bins per altitude in order to collect sufficient statistics to
base the mass balance calculation on using Eq. (9). If Eq. (8)
is used, it may be necessary to manually select useful data
from less useful data – as was illustrated earlier in Table 1
for flight A.
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Table 2. Calculated emission rate and the error percentage for the controlled-release experiments carried out by Scientific Aviation. Mass
emission rates are computed from the data using Eqs. (8) and (9), described in Sect. 2.3. The value of the dimensionless vertical spacing1z′

is shown in the right-most column.

ṁtrue ṁ from ṁ from
Name Flight type [g h−1] Eq. (8) [g h−1] [ε%] Eq. (9) [g h−1] (ε%) 1z′

A Curtain 30.8 28.26 (−8.24 %) 34 (10 %) 0.57
B Curtain 31.2 28.65 (−8.17 %) 39 (25 %) 0.91
C Curtain 20.8 33.81 (62.54 %) 18 (−13 %) 0.43
D Cylinder 20.04 20.06 (0.1 %) 19 (−5 %) 1.2
E Curtain 10.02 3.56 (−64.47 %) 3 (−70 %) 0.7
F Cylinder 10.15 9.64 (−5.02 %) 7.9 (−22 %) 1.07
G Cylinder 30.45 34.78 (14.22 %) 32.5 (7 %) 0.97
H Cylinder 14.46 15.42 (6.63 %) 18.6 (29 %) 1.4
I Cylinder 12.35 10.7 (−13.36 %) 10 (19 %) 1.2

RMS percentage error 31.0 % 28.9 %

4.2 Historic measurements from SeekOps

To understand how the uncertainty in methane emission rate
quantification translates into potential errors in practice, a
total number of 1001 historical drone flights from SeekOps
were analyzed (all the data were anonymized with regards to
the geographical location and the paying customer). The data
from the flights contained the position of the drone and the
concentration measured at that moment in time; in addition,
simultaneous data from the ground-based anemometer (at an
altitude of approximately 2 m) were provided, which were
extrapolated to the altitude of the drone using a predefined
velocity profile from turbulent flow theory. This extrapola-
tion itself can be a significant source of uncertainty in prac-
tice because the actual wind velocity at the position of the
drone can be very different from the wind velocity measured
close to the ground. Despite this caveat, we use the data from
the anemometer to obtain a first estimate of the variability in
the wind conditions. In summary, the following parameters
were calculated from the data collected during each flight:
(a) from the anemometer data – the wind average speed, wind
standard deviation in north–south and east–west directions;
(b) from the flight pattern – the average horizontal and verti-
cal spacing in methane concentration measurements, as well
as standard deviations of these quantities; and (c) from site
layout – the downward distance from the source, estimated
from the source location in an equipment area. In order to al-
low the uncertainty analysis as explained in Sect. 3, the raw
wind data need to be converted into an absolute wind speed
and their root-mean-square fluctuation, as well as a plume
opening angle. The conversion process is described in the
appendix.

With these parameters calculated, the potential errors were
calculated for each of the 1001 historic flights by SeekOps.
Based on the available information, the errors in the emission
rate calculation due to the following sources are calculated

for each flight: (a) not passing the center of the plume due
to large vertical spacing between the flight lines, (b) non-
equidistant vertical spacing, (c) time-varying wind speed,
and (d) time-varying wind direction.

We will report the potential errors due to these parameters
for flights in four categories, based on the plume opening
angle at the time of measurement. The vertical plume open-
ing angle in all 1001 flights analyzed covers the full range
of angles from 0 to 90°. For visualization purposes, we will
report the potential errors in four groups of the plume open-
ing angles: between 0 and 22.5° (with an average opening
angle of 10.7° for measurements with a plume opening angle
in this category), between 21.4 and 45° (with an average of
30.5°), between 45 and 67.5° (with an average of 50.8°), and
between 67.5 and 90° (with an average of 71.1°).

Not passing the center of the plume

The results for the effect of non-zero horizontal and verti-
cal spacings in the methane concentration measurements are
shown in Fig. 9. Figure 9a shows the results for the category
of flights where the plume opening angle was relatively nar-
row. Color shades from blue to yellow indicate the increase in
the errors in the calculated emission rate. The dimensionless
horizontal (1P ′) and vertical (1z′) spacings are determined
from the flight data provided by SeekOps; these coordinates
are then plotted as orange crosses onto the contour plot that
was determined for a plume with an opening angle of 10.7°.
Most orange crosses are located close to the origin of the
graph. This area corresponds to low potential errors due to
the choices of dimensionless spacings. There are also flights,
however, where the dimensionless spacing was larger than 1
(in horizontal and/or in vertical direction), and for those cases
the errors become potentially very large: more than 100% of
the measured value. The reason why there is a significant
number of data points in this region may actually be due to
unexpectedly coherent wind situations: if the wind is steady
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and turbulent fluctuations are low, then the plume opening
angle is small, and the dimensionless horizontal and vertical
spacings can become large since the opening angle is in the
denominator of Eq. (15b) (through Eq. 11b). There is thus the
risk that the plume passes through the flight lines, meaning
that the drone misses the plume altogether.

The results for the wide plume opening angles are shown
in the other panels of Fig. 9. In these cases, we see that most
data points from SeekOps flights are located near the origin
in regions where the expected error is relatively low.

Non-equidistant vertical spacing

Now we analyze the errors that can potentially occur due
to the standard deviation of vertical spacings. The result is
shown in Fig. 10, for each of the four categories of plume
opening angles. The box–whisker plot is generated from the
numerical simulations described in Sect. 3 using the average
horizontal and vertical spacings, vertical opening angles, and
downwind distance over 300 runs. For each run, the flight co-
ordinates are generated by varying the flight lines randomly
using a Gaussian distribution. The green bars are a histogram
of the incidence rate in the 1001 flights of the ratio between
the vertical standard deviation and the vertical spacing. Fig-
ure 10a shows the results for the category of flights where
the plume opening angle was relatively narrow. The results
for the wide plume opening angles are shown in the other
graphs of Fig. 10. For most flights, the variation in the verti-
cal spacing is less than 10 % of the vertical spacing. There-
fore, this effect is not expected to be a major source of error
or uncertainty in the measurement.

Time variation in wind speed and/or wind direction

We will now look at the errors that can potentially occur
due to time-varying wind direction and wind speed, shown
in Figs. 11 and 12, respectively. For each flight, the loca-
tion on the horizonal axis is calculated using the wind speed
and wind direction, as well as their corresponding standard
deviation. The errors bars are calculated from the numerical
simulations described in Sect. 3 from the average over 300
independent runs per flight. For each run, the wind speed and
wind directions are generated from the Ornstein–Uhlenbeck
process. The box–whisker plot is generated using the average
wind speed, wind direction, and their corresponding varia-
tions and vertical opening angles.

Figure 11a shows the results for time-varying wind direc-
tions for the category of flights where the plume opening
angle was relatively narrow. The results for the wide plume
opening angles are shown in the other graphs of Fig. 11. Most
flights have a wind direction variability of less than 40°, and
for increasing wind direction variability, the absolute error
increases linearly. It can also be seen across all graphs in
Fig. 11 that the higher opening angles typically correspond

to higher variation in the wind direction (see, e.g., the hori-
zontal axes in Fig. 11c and d).

Figure 12a shows the results for time-varying wind speed
and for the category of flights where the plume opening an-
gle was relatively narrow. As the plume opening angle gets
wider and the variation in the wind speed increases, the error
percentage in the calculated emission rate increases.

By means of summary, Fig. 13 shows the cumulative
statistics over all 1001 flights with regards to the theoretical
error percentage in the emission rate for each of the differ-
ent sources of errors discussed above. Not passing the center
of the plume has the largest contribution, as was already ob-
served in Fig. 9a. About 55 % of the flights could have an
emission rate percentage theoretical error of more than 10 %
because of missing the center of the plume. The other sources
of error usually have a smaller impact. For instance, all the
measurements have less than a 10 % theoretical error due to
non-equidistant vertical flight lines. For the contribution of
the time-varying wind speed, around 55 % of the flights have
less than a 10 % error in the calculated emission rate; the ef-
fect of time-varying wind direction is expected to be larger
than 10 % only in 20 % of the cases. Around 70 % of the
flights have the emission rate error of less than 50 % due to
not passing the center of the plume. Between 97 % and 100 %
of the flights have less than a 50 % theoretical error in the cal-
culated emission rate due to time-varying wind direction and
speed and non-equidistant vertical flight lines.

5 Discussion

The theoretical framework presented above allows for a
post hoc analysis of methane emission quantification sur-
veys. With this, a number of potential errors and uncertainties
in the measurements can be identified.

The analysis of historic flight data from Scientific Avia-
tion in controlled-release experiments, reported in Sect. 4.1,
shows that there can be a wide range of outcomes in the
mass balance method for different curtain flights – even dur-
ing the same controlled-release event. For the best result, the
data analysis procedure must be adapted to the measurements
taken.

The theoretical analysis can also be used to evaluate the
quality of a historical data set of a large number of surveys.
From the analysis reported in Sect. 4.2, it seems that the
largest risk of uncertainty is caused by a vertical spacing of
the flight lines that is too large in combination with a rela-
tively short downwind distance from the source. The uncer-
tainty is highest in cases when the wind field is steady and the
plume opening angle is small – contradicting some “conven-
tional wisdom” in the industry that the uncertainty is always
lowest when the wind field is steady. What we find is that
this assumption is only true if the measurements are taken at
a sufficient distance downwind of a source with a sufficiently
small vertical spacing between flight lines.
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Figure 9. Contours indicate maximum calculated emission rate error (over 225 calculations corresponding to missing the plume by different
percentages of the horizontal and vertical spacings) for varying dimensionless horizontal and vertical spacings for four different groups of
plume opening angles: (a) plume opening angle of 10.7°, (b) plume opening angle of 30.5°, (c) plume opening angle of 50.8°, and (d) plume
opening angle of 71.1°. The orange dots indicate the horizontal and vertical spacings for four different groups of plume opening angles:
(a) between 0 and 22.5°, (b) between 21.4 and 45°, (c) between 45 and 67.5°, and (d) between 67.5 and 90°. Shown with red are the error
contours.

In addition to this risk of missing the methane plume in the
case of steady winds, it becomes also clear from our analy-
sis (Fig. 11c and d, in particular) that large fluctuations in
the wind direction can result in a significant error. Such a sit-
uation typically occurs when the atmosphere is unstable or
when the average wind speed is very low. In these cases, the
fast diffusion of the methane plume can easily result in parts
of the plume being missed; indeed, Fig. 11c and d show that
the methane emission is usually underestimated by the mass
balance method in these cases.

Our observations can also provide guidelines for future
campaigns. The two main recommendations based on the
present work are as follows. (a) For each individual quan-
tification survey, fly multiple curtain patterns and choose the
appropriate data analysis method to avoid excessive influ-
ence of unrepresentative data (outliers) on the result. (b) Take
measurements with a sufficiently small vertical spacing and
at a sufficiently large distance downwind of the source for
the wind conditions on the day. In particular, the dimension-
less horizontal and vertical spacings 1P ′ and 1z′ have to
be smaller than 1 for the best result (see Eq. 15b for the full
expression).

On the other hand, however, the downwind distance should
not be so large that methane plumes from the facility of in-

terest are missed. Measurements very far downwind are also
unfavorable because of the lower methane concentrations ex-
pected, which will lead to a lower signal-to-noise ratio. We
recommend to use values of 1P ′ and 1z′ between 0.1 and
1.0 in practical applications. To make this guideline more
practical, if we assume that most opening angles are larger
than 5°, which is the case in about 98% of the 1001 onshore
drone flights considered in this paper, then the guidance is
that the vertical and horizontal spacings have to be smaller
than 1/10 of the downwind distance to the source; in off-
shore measurements, this guidance may have to be adapted
to address the different atmospheric stability over open water.

As a final reflection, we would like to emphasize that we
have not focused in this paper on the measurement uncer-
tainty of the sensors. This means that we do not account for
possible deviations due to finite precision in the methane con-
centration measurements, nor do we assume any error in the
wind measurement. In addition, our analyses are based on the
assumption that the wind vector at the position of the drone
is determined perfectly. In reality, of course, this is never the
case, and there are various methods deployed by different
service providers to measure the wind. We only observe here
that any error in the wind measurement is likely to propa-
gate in the computations in the mass balance method as per
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Figure 10. Theoretical box–whisker plots due to non-equidistant vertical spacing for four different groups of plume opening angles: (a) plume
opening angle of 10.7°, (b) plume opening angle of 30.5°, (c) plume opening angle of 50.8°, and (d) plume opening angle of 71.1°. The
green bars show the histogram of the actual flight data as a function of the vertical standard deviation divided by the vertical spacing for four
different groups of plume opening angles: (a) between 0 and 22.5°, (b) between 21.4 and 45°, (c) between 45 and 67.5°, and (d) between
67.5 and 90°.

Eq. (6). It is not wise to assume that any error in wind mea-
surement will somehow be compensated for by other errors.
Notwithstanding other sources of error, we believe that this
paper provides some guidelines to minimize avoidable errors
that can result from choices in the data acquisition process
and in the methodology used for postprocessing.

6 Conclusions

Site-level measurements of methane emissions are often used
by operators for reconciliation with bottom-up emission in-
ventories with the aim of improving accuracy, thorough-
ness, and confidence in reported methane emissions. In that
context it is of critical importance to minimize measure-
ment errors and to understand the associated uncertainty.
This paper describes a systematic analysis of potential er-
rors in methane emission quantification surveys using the
mass balance method for parameters related to the acquisi-
tion of concentration data and the method of postprocessing.
The analysis is applied to a quadcopter drone with a high-
precision methane sensor flying in a vertical curtain pattern;
the total mass emission rate can then be computed post hoc
from the measured methane concentration data and simulta-

neously measured wind data. We find that the most important
source of potential error can be expressed as a dimensionless
number with the spatial resolution of the methane concentra-
tion measurements and the downwind distance from the main
emission sources. The potential error is largest (and, indeed,
can be as high as 100 %) in situations where the wind speed
is steady and the methane plume has a coherent shape – con-
tradicting the intuition of some operators in the industry.

What has been learned from our theoretical error analysis
has been applied to a number of historical measurements in
a controlled-release setting. We show how what is learned
about the main sources of error can be used to eliminate
potential errors during the postprocessing of flight data; we
show that the reported results can be very close to the ac-
tual methane emission rates if the appropriate data analysis
method is selected. Second, we have evaluated an aggregated
data set of 1001 historical drone flights. Our analysis shows
that the potential errors in the mass balance method can be of
the order of 100 % on occasions, even though the theoretical
error from the identified error sources was relatively small in
the majority of the flights considered.

The Discussion section provides some guidelines on how
to avoid or minimize potential errors in drone measurements
for methane emission quantification. The two main recom-

https://doi.org/10.5194/amt-18-1301-2025 Atmos. Meas. Tech., 18, 1301–1324, 2025



1316 T. H. Mohammadloo et al.: Uncertainty estimate in drone-based methane measurements

Figure 11. Potential box–whisker plots to time-varying wind direction. (a) Plume opening angle of 10.7°, (b) plume opening angle of 30.5°,
(c) plume opening angle of 50.8°, and (d) plume opening angle of 71.1°. The green bars show the histogram of the actual flight data as a
function of the vertical standard deviation divided by the vertical spacing for four different groups of plume opening angles: (a) between 0
and 22.5°, (b) between 21.4 and 45°, (c) between 45 and 67.5°, and (d) between 67.5 and 90°.

Figure 12. Potential box–whisker plots due to time-varying wind speed. (a) Plume opening angle of 10.7°, (b) plume opening angle of 30.5°,
(c) plume opening angle of 50.8°, and (d) plume opening angle of 71.1°. The green bars show the histogram of the actual flight data as a
function of the vertical standard deviation divided by the vertical spacing for four different groups of plume opening angles: (a) between 0
and 22.5°, (b) between 21.4 and 45°, (c) between 45 and 67.5°, and (d) between 67.5 and 90°.
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Figure 13. Cumulative distribution of flights (totaling 1001) as
a function of theoretically calculated maximum error for poten-
tial avoidable error percentage due to not passing the plume
center (solid black), non-equidistant vertical flight lines (dashed
green), time-varying wind directions (dotted–dashed blue), and
time-varying wind speed (dotted pink). Vertical dashed red lines in-
dicate 10% and 50% error in the estimated emission rate.

mendations are (1) to fly multiple curtain patterns in each
individual survey in combination with an appropriate data
analysis method to avoid excessive influence of unrepresen-
tative data (outliers) on the result and (2) to take measure-
ments with a sufficiently small vertical spacing and at a suf-
ficiently large distance downstream of the source for the wind
conditions on the day, with the dimensionless horizontal and
vertical spacings 1P ′ and 1z′ both smaller than 1. There
is an optimum though: downwind distance should not be so
large that methane plumes from the facility of interest are
missed, and measurements very far downwind are also unfa-
vorable because of the lower signal-to-noise ratio. It appears
to us that values of 1P ′ and 1z′ between 0.1 and 1.0 are
optimal.

Appendix A: Sensor description

The main paper describes two historic data sets of methane
emission measurements: one set from Scientific Aviation and
one set from SeekOps. Both data sets contain concentra-
tion measurements taken by a high-precision methane sensor
mounted on a quadcopter drone. The present section presents
background on the type of sensor that has been used in these
deployments. The text below is applicable to the sensor de-
veloped and used by SeekOps; Scientific Aviation use a com-
mercial off-the-shelf sensor that has similar characteristics.

The SeekIR sensor used by SeekOps is the culmination
of years of research and commercial development, initially
at the United States National Aeronautics and Space Ad-
ministration (NASA) Jet Propulsion Laboratory (JPL). The
technology was originally developed for the Mars Curiosity
Rover to look for evidence of microbial life and was thus

Figure A1. Simplified drawing of the implementation of wave-
length modulation spectroscopy (WMS) using a tunable diode laser
(TDL) for gas sample diagnostics.

developed to be extremely sensitive to methane enhance-
ments above background levels (Webster, 2005). In 2017,
the technology was spun out of JPL and commercialized
for the broader energy industry, including traditional oil and
gas, biogas/landfill gas, and renewable natural gas (NASA,
2019). It was subsequently validated by blind controlled-
release tests performed at the Methane Emissions Technol-
ogy Evaluation Center (METEC) in Colorado, where the sen-
sor was described as being the most successful in detecting
and quantifying leaks, with no false positive and no false neg-
atives (Ravikumar et al., 2019).

The sensor operates on the principle of absorption spec-
troscopy, using a tunable diode laser (TDL) within an open
cavity bounded by two mirrors that give a suitable path length
for the laser to ensure high sensitivity to the absorption in
the presence of methane molecules. This physical process
is described by the Beer–Lambert law, which describes how
the spectral intensity measured at a specific wavelength after
passing through a sample can be used to characterize physi-
cal parameters based on an initial spectral intensity and ab-
sorption path length (Hanson et al., 2016). When parameters
such as pressure, temperature, wavelength, and path length
are measured or known, the concentration of the species
of interest can be calculated by this change in spectral in-
tensity. In the system described, the initial spectral inten-
sity source is a TDL and the sensor measuring the change
in spectral intensity is a photo-voltaic detector sensitive at
the same spectral region as the laser light source. The de-
tector measures the remaining photons that were not ab-
sorbed by the methane molecule(s) as part of the absorp-
tion process. A spectroscopic approach, wavelength modula-
tion spectroscopy (WMS), is further employed by modulat-
ing the laser intensity and wavelength at a known frequency.
WMS ensures the optimal signal-to-noise ratio (SNR) and
a “calibration-free” method of laser diagnostics, allowing
for calibration factors that persist for the life of the instru-
ment that are determined at the time of manufacture. With
appropriate filters for elevated frequencies, the detected re-
sponse can be demodulated to determine the concentration
of methane that has been sampled within the open cavity
(Fig. A1).
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Figure A2. Drawing of the sensor operating principle of laser ab-
sorption spectrometry to determine methane concentration.

Figure A3. Methane sensor showing location of integrated GPS and
lidar attached to the quadcopter drone.

The SeekOps instrument used in this study additionally
utilizes a multi-pass optical cell design, known as a Herriott
cell, that increases the laser path length, further increasing its
sensitivity to changes in concentration, temperature, or pres-
sure, depicted in Fig. A2. The Herriott cell design is com-
prised of two concave mirrors with a high reflectivity and
matched to reflect the proper wavelength of light, allowing
the beam to bounce multiple times inside the cavity to help
to increase the SNR and further reduce measurement uncer-
tainty.

Finally, great efforts have been taken to make the optical
sensor robust for operations in the oil and gas sector. To this
end, the sensor is mounted in a strong housing that has un-
dergone strenuous shock and vibration testing, indicative of
its operational environment when deployed on a quadcopter
drone and transported to and from a facility of interest. Mod-
ern drones have multiple anti-collision sensors that can en-
able the sensor to be flown as close as necessary to the equip-
ment without compromising any ongoing operations.

A picture of the SeekOps sensor is shown in Fig. A3. The
sensor is mounted on an approximately 1 m long extended
steel branch attached to the drone, which makes the sensor

easily accessible in the case of maintenance requirements.
Data acquisition takes place with the branch pointing into the
wind, which allows the collection of pristine samples of air,
uncontaminated by any prop wash (i.e., the airflow generated
by the drone’s own propellers). Methane concentration data
from the sensor are streamed and displayed in real time to
a ground control system (GCS). This allows for on-demand
viewing of plume methane enhancements by the drone pilot
so that dynamic adjustments to the survey geometry, like the
horizontal and vertical spacing between concentration mea-
surements, can be made if needed.

Appendix B: Cylindrical flight pattern

In this section, the results from the simulation of a drone fly-
ing in a cylindrical pattern are presented – similar to Sect. 3
for 2-dimensional curtain flight path. We simulated the drone
flight for different scenarios with the objective of assessing
the importance of various sources of uncertainty including
the following:

– the position of the emission source relative to the center
of the cylindrical flight paths

– the existence of multiple sources within the cylinder

– horizontal and vertical spacing in the methane concen-
tration measurements.

Again, it is assumed that the concentration field is station-
ary during the time of the measurements. This can relate to
a constant Gaussian plume traveling horizontally in a time-
averaged horizontal wind field whose speed can vary as a
function of the vertical coordinate.

B1 Ideal case

The ideal simulation case is considered in the following, sim-
ilar to the ideal case considered for the 2-dimensional curtain
flight (Sect. 3.1):

– constant wind field with westerly wind at a speed of
5 m s−1

– one circular flight path passing through the center of the
plume

– equidistant drone measurements in the horizontal and
vertical directions

– no measurement error in simulated concentration, wind
field, and drone measurement locations.

The radius of the cylinder, opening angles, and wind field
are chosen such that they reflect a situation encountered in
practice. The source with the emission rate 5 kg h−1 is con-
sidered. The cylindrical flight pattern is often used for off-
shore applications where the horizontal and vertical opening
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Figure B1. The 3-dimensional normalized methane concentration
above the background on a cylinder with a radius of 10 m for a
source located at the center of the cylinder (shown by black). The
wind velocity is shown with a red vector. The Gaussian plume is
assumed to have 5° horizontal and vertical opening angles. There is
an angular spacing of 0.5° between the measurement points and a
vertical spacing of 0.3 m.

angles of the plume are smaller than those encountered in
onshore applications, and thus the opening angle of 2.5° is
chosen as a realistic value for the “ideal case” (base case).
Figure B1 shows the 3-dimensional concentration plot due to
this source on a cylinder with a radius of 10 m.

Note that this radius is much smaller than the ≈ 300 m
that Flylogix/SeekOps normally uses in surveys of offshore
platforms. This should not affect the main results because
the radius will appear as the length scale when considering
the spacing. With a radius of 10 m, it is reasonable to as-
sume that the methane plume is stable, as the methane in the
plume only takes a few seconds to go from source to sensor.
At longer distances of ≈ 300 m, the transit time is of the or-
der of ≈ 1 min and the wind direction can vary considerably
during that time.

B2 The importance of turbulent diffusion on mass
emission calculation

For a cylindrical flight pattern, the true emission rate can-
not be exactly retrieved. In Fig. B1, there is an error of
0.006 kg h−1 (equal to a percentage of 0.12 %) even for a
very fine spacing in the horizontal and vertical directions.
This error does not exist for the 2-dimensional curtain sit-
uation as the true emission rate is retrieved from the mass
balance equation. The emerged error term is due to the ef-
fect of diffusion (see the third term on the right-hand side of
Eq. 4). If the flight path is cylindrical, the direction of the unit
vector n varies along the flight path, and the contribution of
n ·∇c does not vanish along the integral. Since this term is

Figure B2. Calculated emission rate error percentage for shifted
source in X and Y directions from the center of the cylinder as a
percentage of the cylinder’s radius. The wind direction is shown
with the green vector, and the center is indicated by the red circle.

Figure B3. Box–whisker plot for the calculated emission rate per-
centage error for non-equidistant vertical spacing between the flight
coordinates for the cylindrical flight paths.

not normally included in the mass balance equation, Eq. (6),
this results in an underestimate as n ·∇c is typically larger
than 0 in the case where a source is located in the center
of the cylinder. This error cannot be eliminated, even in the
limit of perfectly accurate vertical and horizontal measure-
ments; to first order, the error is proportional to the diffusion
coefficient K .

B3 Position of the emission source relative to the center
of the cylinder

In Sect. B1, we assumed that the source is located at the cen-
ter of the cylinder; however, in practice this might not hold. It
is thus beneficial to assess the impact of such an assumption
on the calculated emission rate. Shown in Fig. B2 is the error
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Figure B4. Maximum calculated emission estimate error for vary-
ing factors of horizontal and vertical spacings expressed as degrees
and a dimensionless parameter for a plume with a vertical and hor-
izontal turbulence of 2.5°. For each horizontal and vertical spac-
ing, the maximum value over 225 calculations corresponding to dif-
ferent locations of the flight lines relative to the source is shown.
Shown with red are the error contours.

percentage for varying shifts in the source from the center as
a percentage of the radius of the cylinder. The wind direction
is also shown with a green vector. For the situation where
the source gets very close to the cylinder on the right-hand
side, the term dc

dy increases (as the concentration increases).
One should bear in mind that the neglect of diffusion for the
cylindrical flight pattern typically results in a small contribu-
tion to the error compared to the other sources considered.

Figure B2 can also be used to calculate the total error in the
calculated emission rate in the case of there being multiple
sources within the cylinder. We will illustrate this with an
example: assume two sources A and B with true emission
rates of ṁA and ṁB , respectively. The calculated emission
rate error percentage for each source, referred to as εA and
εB , can be obtained from Fig. B2 using their position relative
to the center of the cylinder as a percentage of the radius of
the cylinder. Using these calculated emission rates, the total
error in the situation where multiple sources exist within the
cylinder can be obtained as εA+B = εAṁA+εB ṁB

ṁA+ṁB
.

B4 Horizontal and vertical spacings of cylindrically
shaped drone measurements

B4.1 Non-equidistant vertical spacing

Similar to the 2-dimensional curtain scenario, we assessed
the effect of non-equidistant vertical spacing between the
flight coordinates in the vertical direction (see Sect. 3.2 for
the 2-dimensional curtain). Similar to Sect. 3.2.1, L random
samples from a Gaussian distribution with zero mean and
a standard deviation σl are drawn (see Eq. 14). For each

Figure B5. Box–whisker plot for the calculated emission rate error
for increasing standard deviation of (a) time-varying wind direction
and (b) time-varying wind velocity (both direction and speed at the
same time). The cylindrical flight pattern with a radius of 10 m for
a source located at the center of the cylinder is considered.

simulation scenario (i.e., each standard deviation) 300 in-
dependent runs are considered. Figure B3 shows the box–
whisker plots for the emission rate percentage error for
non-equidistant vertical spacing. Similar to Fig. 10, no bias
emerges in the emission rate estimates with increasing vari-
ation in the vertical spacing. However, individual measure-
ments can have errors of up to almost 15 % if the standard
deviation in the vertical spacing is equal to the nominal ver-
tical spacing.

B4.2 Missing the plume center in relation to horizontal
and vertical spacings

In Sect. B1, it is assumed that one circular flight path passes
through the center of the plume in the vertical direction and
that concentration points exist on this circle corresponding
to the maximum concentration of the plume on the cylinder
pattern. As discussed in Sect. 3.2.2, these assumptions are
easily violated as the location of the source is not exactly
known. Therefore, here we will assess the potential uncer-
tainty induced by missing the maximum concentration of the
plume for different horizontal and vertical spacings of the
drone measurements. The resulting error is a function of the
horizontal and vertical spacings as the drone is more likely
to miss the highest concentration of a plume if the horizontal
and vertical spacings are large. For the cylindrically shaped
drone measurements the angular spacing 1θ can be con-
verted to the horizontal spacing in meters using the radius
of the cylinder (r) as r1θ . To assess the effect of missing the
plume, for each angular (1θ ) and vertical (1z) spacing of the
drone measurements, 15 different shift values relative to the
plume center (projected on the cylinder) ranging from −1θ2
to +1θ2 in the horizontal direction and from −1z2 to +1z2 in
the vertical direction are considered. For each shifted loca-
tion, the emission rate error is calculated, i.e., 225 (15× 15)
instances of calculated emission rate errors. For all the loca-
tions except the one where one flight line passes the center of
the plume, the maximum concentration is missed. Therefore,
the emission rate is always underestimated (except for one
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case) and the maximum error representing the worst situa-
tion is considered for each horizontal and vertical spacings.
Figure B4 shows the maximum error percentages for a cylin-
drical flight pattern for the horizontal and vertical opening
angles of the Gaussian plume equaling 2.5° (corresponding
to a realistic scenario offshore).

Similar to the generic case presented for the 2-dimensional
curtain, Fig. 4, the vertical spacing is presented as dimension-
less parameter 1z′. For the horizontal spacing, we use the
angular spacing in degrees, which makes it invariant of the
radius of the cylinder. Increasing both the vertical and hori-
zontal spacings between the coordinates leads to an increase
in the calculated emission rate error. For the wider plume, the
errors are smaller as more concentration points exist within
the plume for calculating the mass balance equation.

B5 Time variations in wind speed and/or direction

In Sect. B1, it is assumed that the wind velocity field is time-
invariant; however, in practice this assumption is rarely true
– i.e., instantaneous changes in the wind velocity can oc-
cur. Similar to Sect. 3.4, random samples are drawn from
the Ornstein–Uhlenbeck process with a pre-defined standard
deviation for the wind speed and the wind direction. For each
standard deviation, 300 independent runs are considered, and
the corresponding box–whisker plot for increasing standard
deviation are shown in Fig. B5. The results are very similar,
both qualitatively and quantitatively, to the results obtained
for the 2-dimensional curtain pattern (Fig. 6).

B6 Other potential sources of error

There are other potential sources of error and uncertainty oc-
curring in measurements from drones flying in a cylindrical
flight pattern. Many of these sources of uncertainty will be
the same as for the 2-dimensional curtain pattern. One no-
table source of uncertainty that is specific to cylindrical flight
patterns is the long time that it takes to make relevant con-
centration measurements. In comparison with 2-dimensional
patterns, the cylindrical flight pattern requires a relatively
long flight time to come back to regions where concentration
peaks are located. There is therefore an increased likelihood
that wind directions will vary during these measurements,
resulting in more uncertainty in plume locations and the risk
of missing concentration plumes or of measuring the same
plume during multiple transects.

Appendix C: Wind data calculation

In order to allow the uncertainty analysis as explained in
Sect. 3 for 2-dimensional curtain flights, the raw wind data
need to be converted into an absolute wind speed and their
root-mean-square fluctuation, as well as a plume opening
angle. The conversion process is graphically illustrated in
Fig. C1. The absolute wind speed |u| is determined from the

Figure C1. Graphical illustration of the conversion of perpendicular
wind data (average wind vectors U and V , with root-mean-square
fluctuations u′ and v′) into an average absolute wind speed |u|, root-
mean-square fluctuation in the direction of the plume 8′, and the
plume opening angle: tan−1 8′

|u|
.

Figure C2. Graphical illustration of the local geodetic coordinate
system (XYZ) and wind-direction-aligned coordinate system (ξηz).

perpendicular components of the average wind vector, U and
V , as follows: |u| =

√
U2+V 2. The average wind direction

from the east (in radians) is then computed from θ = tan−1 U
V

.
The root-mean-square fluctuations in the direction of the
plume, ψ ′ in meters per second, can be computed from the
fluctuations in the east–west and north–south directions de-
noted, respectively, by u′ and v′: ψ ′ = u′ cosθ +v′ sinθ . The
dimensionless fluctuations divided by the wind speed are
given by ψ ′

|u|
. The root-mean-square fluctuations perpendic-

ular to the plume, 8′ (also in m s−1), are then given by
8′ =−u′ sinθ + v′ cosθ . Finally, the approximate opening
angle of the plume in radians is given by tan−1 8′

|u|
.

Appendix D: A note on the interpolation of the
concentration measurement

As mentioned in the main body, different approaches can be
used to interpolate the concentration measurements on the
plane. In Sect. 4.1, the nearest-neighbor method was used
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Table D1. Emission rates calculated per curtain using nearest-neighbor and Gaussian smoother interpolation techniques and the average
emission rate between upward and downward curtains for measurement A, which was carried out on 13 November 2019. The emission rates
in the table are calculated using Eq. (8). The true emission rate was 30.8 g h−1.

Method Nearest neighbor Gaussian smoother

ṁ from Average of ṁ from Average of
Curtain Eq. (8) [g h−1] U and D Eq. (8) [g h−1] U and D

Upward (U) 1 14.48
13.39

12.11
10.19

Downward (D) 2 12.30 8.28
Downward (D) 3 46.73

43.14
42.41

45.46
Downward (U) 4 40.10 48.50

Average from the
four selected curtains 28.26 27.82

Figure D1. The 3-dimensional interpolated concentration values
for upward curtain “1” (Fig. 8a) using (a) nearest-neighbor and
(b) Gaussian smoother interpolation techniques. The red arrow in-
dicates the average wind direction.

Figure D2. The 3-dimensional interpolated concentration values
for downward curtain “2” (Fig. 8a) using (a) nearest-neighbor and
(b) Gaussian smoother interpolation techniques. The red arrow in-
dicates the average wind direction.

based on the fact that Scientific Aviation uses this interpola-
tion technique. However, to assess the impact of the interpo-
lation technique on the estimated emission rate, we compare
here the results obtained from the nearest-neighbor method
to those of the Gaussian smoother method. We follow the in-
terpolation technique like a Gaussian smoothing function, as
in Price (2012).

Shown in Figs. D1, D2, D3, and D4 are the interpolated
methane measurements on the plane for upward curtain “1”
(Fig. 8a), downward curtain “2” (Fig. 8b), downward curtain
“3” (Fig. 8c), and upward curtain “4” (Fig. 8d), respectively,
using (panel a) the nearest-neighbor and (panel b) the Gaus-
sian smoother interpolation techniques. As seen the Gaussian
smoother provides a smooth transition between high and low

Figure D3. The 3-dimensional interpolated concentration values
for downward curtain “3” (Fig. 8b) using (a) nearest-neighbor and
(b) Gaussian smoother interpolation techniques. The red arrow in-
dicates the average wind direction.

Figure D4. The 3-dimensional interpolated concentration values
for upward curtain “4” (Fig. 8c) using (a) nearest-neighbor and
(b) Gaussian smoother interpolation techniques. The red arrow in-
dicates the average wind direction.

concentration values due to its nature. However, if the plume
is missed, the Gaussian smoother cannot recover the missing
high concentrations, as apparent in the bottom of the plane in
Fig. D1 and the top of the plane in Fig. D2.

Presented in Table D1 are the emission rates calculated per
curtain using the nearest neighbor and Gaussian smoother
and the average emission rate between upward and down-
ward curtains. The maximum difference between the emis-
sion rates estimated for the four curtains using the two inter-
polation methods is 8.40 g h−1, and the impact of the average
emission rate is 0.44 g h−1 (1.4 % of the total emission rate
of 30.8 g h−1).

Our tentative conclusion from the analysis presented in
this section is that the choice of the interpolation method
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has a relatively small impact on the mass emission estimate.
Moreover, some sources of error cannot be compensated for
by a different choice of interpolation method: if the highest-
concentration enhancements are not measured because of a
large vertical spacing between flight lines, then the resulting
estimate for the mass emission rate will underestimate the
true mass emission rate – regardless of the mapping tech-
nique employed.
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