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Abstract. Multi-layer aerosol optical depth (AOD) estima-
tion with sufficient spatial and temporal resolution is crucial
for effective aerosol monitoring, given the significant varia-
tions over time and space. While ground-based observations
provide detailed vertical profiles, satellite data are essential
for addressing the spatial and temporal gaps. This study uti-
lizes profiles from the Cloud-Aerosol Lidar with Orthogo-
nal Polarization (CALIOP) and data from the Spinning En-
hanced Visible and Infrared Imager (SEVIRI) to estimate
vertical AOD values at 1.5, 3, 5, and 10km layers. These
estimations are achieved with spatial and temporal resolu-
tions of 3km x 3km and 15 min, respectively, over the Eu-
ropean troposphere. We employed machine learning models
— XGBoost (XGB) and random forest (RF) — trained on SE-
VIRI data from 2017 to 2018 for the estimations. Validation
using CALIOP AQOD retrievals in 2019 confirmed the relia-
bility of our findings, emphasizing the importance of wind
speed (Ws) and wind direction (Wd) in improving AOD es-
timation accuracy. A comparison between seasonal and an-
nual models revealed slight variations in accuracy, leading
to the selection of annual models as the preferred approach
for estimating SEVIRI multi-layer AOD values. Among the
annual models, the XGB model demonstrated superior per-
formance over the RF model at all four layers, yielding more
reliable AOD estimations with R? values of 0.99, 0.97, 0.98,
and 0.98 for the four layers from low- to high-altitude lay-
ers. Further validation using data from European Aerosol Re-
search Lidar Network (EARLINET) stations across Europe
in 2020 indicated that the XGB model still achieved better
agreement with EARLINET AOD profiles, with R? values
of 0.86, 0.80, 0.75, and 0.59 and RMSE values of 0.022,
0.012, 0.015, and 0.005. We performed a qualitative valida-

tion of multi-layer AOD estimations by comparing spatial
trends with CALIOP AQOD retrievals for SEVIRI pixels on
four dates in 2019, showing strong agreement across varying
AOD levels. Additionally, the model successfully estimated
AOD at 15 min intervals for two real events — a Saharan dust
plume and the Mount Etna eruption — revealing consistent
physical characteristics, including long-range transport in the
upper layers and a gradual increase in AOD from lower to
higher tropospheric layers during volcanic events. The results
demonstrate that the proposed method facilitates comprehen-
sive monitoring of AOD behavior throughout the four verti-
cal layers of the troposphere, offering important insights into
the dynamics of aerosol occurrence.

1 Introduction

Aerosols are recognized as significant contributors to air pol-
lution, climate change, and the modification of solar and
thermal infrared radiation absorption and scattering (Hys-
lop, 2009; Pope et al., 2019; Li et al., 2022). Understand-
ing aerosol behavior in the troposphere is vital for enhanc-
ing atmospheric models and refining monitoring techniques.
Aerosol optical depth (AOD) is a critical parameter for quan-
titatively estimating aerosol concentration and its optical
properties. Recent research emphasizes the importance of
multi-layer retrieval of AOD in reducing uncertainties as-
sociated with aerosol characterization (Wang et al., 2018;
Rogozovsky et al., 2021; Gupta et al., 2021; Rogozovsky
et al., 2023). Additionally, an in-depth investigation of the
multi-layer distribution of aerosol properties within the tro-
posphere is essential for elucidating aerosol transport mech-
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anisms, facilitating source identification, and improving at-
mospheric dynamics models. This understanding ultimately
enhances the accuracy of simulations related to long-range
aerosol transport (Chen et al., 2023). Vertical AOD retrieval
can be conducted through ground-based observations or in-
ferred from remote sensing data. Ground-based lidar net-
works, like the European Aerosol Research Lidar Network
(EARLINET), provide detailed insights into aerosol char-
acteristics by offering vertical profiles of optical properties,
enabling high-resolution, multi-layer AOD retrieval through
precise quantification of aerosol loading across distinct at-
mospheric layers (Bosenberg et al., 2001, 2003). While these
observations offer detailed vertical information, their sparse
nature necessitates supplementation with satellite observa-
tions. Satellite lidar remote sensing emerges as the primary
method for capturing global temporal and spatial variations
in aerosol profiles. The Cloud-Aerosol Lidar with Orthogo-
nal Polarization (CALIOP), on board the Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation (CALIPSO)
satellite launched in 2006, offers distributions of aerosols
and clouds, along with their geometrical and optical prop-
erties. Multi-layer AOD values are retrieved using level 2
aerosol extinction profiles at both 532 and 1064 nm, where
the aerosol extinction profiles are determined from backscat-
ter measurements (Winker et al., 2004, 2006, 2007). How-
ever, the CALIOP sensor encounters challenges in achiev-
ing adequate spatial and temporal coverage, with limitations
in daily and global resolution (16 d temporal resolution and
5 km profile distance).

Recent advancements have sought to overcome these limi-
tations through the use of passive satellite sensors with vary-
ing temporal resolutions, such as the Tropospheric Moni-
toring Instrument (TROPOMI), which provides near-daily
global coverage with a spatial resolution of 3.5 x 7km (im-
proved to 3.5 x 5.5km in 2019) and was launched in 2017
on the Sentinel-5P satellite (Veefkind et al., 2012); the Earth
Polychromatic Imaging Camera (EPIC), offering a continu-
ous daytime view every 60 to 100 min with a spatial resolu-
tion of about 8 x 8 km since its launch on 11 February 2015,
on board the Deep Space Climate Observatory (DSCOVR)
satellite (Marshak and Knyazikhin, 2017); the Global Ozone
Monitoring Experiment-2 (GOME-2) on the Meteorological
Operational satellite program (MetOp-C), with a 3 d revisit
cycle and a spatial resolution of approximately 40 x 40 km
since 2018; and the Moderate Resolution Imaging Spectro-
radiometer (MODIS), on board Terra (launched in 1999) and
Aqua (launched in 2002), providing daily global coverage
with spatial resolutions ranging from 0.25 to 1 km (Lyapustin
etal., 2011).

Relevant research focuses on various methods specifically
aimed at retrieving aerosol layer height (ALH) rather than
AQD at different altitudes. One prominent method, oxygen
(O2) A- and B-band absorption spectroscopy, utilizes the dif-
ferential absorption of sunlight by O, molecules at different
altitudes (Zeng et al., 2018; Xu et al., 2017, 2019). Elevated

Atmos. Meas. Tech., 18, 1415-1439, 2025

aerosol layers scatter sunlight back to space, shortening the
atmospheric path length and decreasing O, absorption. By
analyzing spectral characteristics in the O» A and B bands,
researchers infer ALH. However, retrieval sensitivity is en-
hanced over darker surfaces and higher AOD, making it chal-
lenging over bright surfaces or under low aerosol loading.
For instance, Nanda et al. (2020) employed TROPOMI ob-
servations with an optimal estimation scheme in the O, A
band, assuming a uniformly distributed aerosol layer. Sim-
ilarly, the algorithm developed using EPIC/DSCOVR data
leverages atmospheric window bands and differential optical
absorption spectroscopy (DOAS) ratios, integrating MODIS
and GOME-2 surface reflectance data. For retrievals over
vegetated areas, the algorithm favors the O, B band due to
its lower surface reflectance (Xu et al., 2019). Another study
combined Oy A- and B-band data from the Scanning Imag-
ing Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY) and GOME-2 for enhanced ALH sensitiv-
ity, especially near boundary layers (Hollstein and Fischer,
2014).

An additional retrieval method, stereoscopic techniques
— employed by the Multi-angle Imaging SpectroRadiome-
ter (MISR), launched in 2000 — utilize multi-angle observa-
tions to geometrically determine plume heights. MISR of-
fers a spatial resolution of approximately 275 m and a tempo-
ral resolution of around once every 7 d, making it especially
useful over reflective surfaces, as it relies on geometric data
rather than surface reflectance (Muller et al., 2002; Zaksek et
al., 2013; Fisher et al., 2013; Val Martin et al., 2018).

Passive satellite-based ALH retrieval techniques, while of-
fering global coverage, often simplify the aerosol vertical
distribution by assuming a single homogeneous layer (Zeng
et al., 2018; Xu et al., 2017, 2019). This simplification can
lead to inaccurate representations of complex aerosol pro-
files, especially in cases of multi-layered events. In addition,
these passive satellite-based methods face further constraints
due to the low spatial resolution of instruments like EPIC and
GOME-2, as well as low temporal resolution of sensors such
as TROPOMI, GOME-2, and MISR. These constrains on res-
olution reduce the effectiveness of these retrievals in captur-
ing fine-scale, rapidly evolving aerosol distribution events,
such as smoke plumes from fires.

Other studies by Pashayi et al. (2023, 2024) have intro-
duced seasonal and seasonal-independent machine learning
models for AOD retrievals in multiple layers. These mod-
els seek to investigate the relationship between MODIS ob-
servations and CALIOP AOD for retrieval of multiple-layer
AOD values at a spatial-temporal resolution corresponding
to the MODIS AOD product. This analysis focuses specif-
ically on the Persian Gulf region. The researchers subse-
quently analyze their findings using CALIOP AOD retrievals
across multiple vertical layers. Although these studies have
advanced the retrieval of AOD across multiple layers, the
constraint of MODIS’s daily temporal resolution remains a
significant limitation (Wei et al., 2020).
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Geostationary satellites, such as Himawari-8 (launched in
2014), which is equipped with the Advanced Himawari Im-
ager (AHI; Da, 2015); the Geostationary Operational Envi-
ronmental Satellite (GOES; launched in 2016) equipped with
the Advanced Baseline Imager (ABI; Kalluri et al., 2015);
and the Meteosat geostationary satellites featuring the
Spinning Enhanced Visible and Infrared Imager (SEVIRI,;
launched in 2002; Pasternak et al., 1994), provide sub-
hourly, high-resolution observations that significantly en-
hance global aerosol monitoring capabilities across diverse
regions (Schmit et al., 2018; Zhang et al., 2019; Ge et
al., 2018; Tang et al., 2019; Zawadzka-Manko et al., 2020;
Witthuhn et al., 2020; Kocaman et al., 2022; Ceamanos et
al., 2023). Notably, SEVIRI offers high temporal and spa-
tial resolutions, presenting valuable opportunities to expand
aerosol datasets for Europe (Stebel et al., 2021; Ajtai et
al., 2021). Consequently, utilizing observations from these
satellites enables the multi-layer retrieval of AOD, effectively
addressing the limitations associated with temporal and spa-
tial resolution presented in previous studies.

The retrieval of multi-layer AOD values from passive
satellite observations typically entails two primary ap-
proaches: physically based (Seidel et al., 2012; Lipponen
et al., 2018; Amini et al., 2021; Mehta et al., 2022) and
data mining approaches (Radosavljevic et al., 2010; She et
al., 2020; Chen et al., 2022). The physically based approach
relies on established principles of aerosol behavior, utilizing
models derived from physical laws to retrieve AOD values.
This approach often involves simplifications and assump-
tions, such as treating the atmosphere as a single aerosol
layer in most of the passive satellite-based ALH retrieval
algorithms previously mentioned. While this assumption is
necessary for practical implementation, it can introduce un-
certainties and limit the accuracy of retrievals, particularly in
complex scenes. Additionally, physically based methods are
sensitive to surface reflectance. Over bright surfaces, the con-
tribution of surface reflection to top-of-atmosphere (TOA) ra-
diance can dominate, making it challenging to extract a clear
aerosol signal, especially for low aerosol loading. This lim-
itation underscores the need for accurate surface reflectance
characterization (Xu et al., 2017, 2019; Nanda et al., 2020).

In contrast, data mining approaches offer a promis-
ing alternative by harnessing large datasets and employ-
ing learning-based algorithms to discern patterns and rela-
tionships within complex aerosol systems. Machine learning
methods as a data mining approach have the potential to learn
complex relationships between AOD and other atmospheric
and surface variables. These methods can capture non-linear
dependencies and potentially handle multi-layer scenarios
more effectively than physical models. This advantage is par-
ticularly relevant for AOD retrieval in diverse and heteroge-
neous environments. Additionally, integrating data from mul-
tiple sources, such as meteorological, land cover, temporal,
and location data, can provide more comprehensive infor-
mation for a time- and location-based AOD retrieval, par-
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ticularly for multi-layer scenarios (Chen et al., 2020; Lee et
al., 2022; Berhane et al., 2024).

In this study, we introduce a model for sub-hourly
multi-layer AOD retrieval over the European continent tro-
posphere by integrating SEVIRI-based information with
CALIOP aerosol profile products. To achieve this, two well-
established machine learning models — XGBoost (XGB) and
random forest (RF) — were utilized for retrieving AOD values
in four distinct layers, approximately every 15 min, with a
spatial resolution of 3 km x 3 km. The four tropospheric lay-
ers analyzed in this study are 0-1.5, 1.5-3, 3-5, and 5-10 km,
denoted as AOD; 5, AOD3, AODs, and AOD g, respectively.
The selection of these layers for multi-layer AOD retrieval is
based on the distinct aerosol transport mechanisms observed
at these altitudes. The 0—1.5 km layer captures aerosols from
local sources transported upward by updrafts from the cloud
base, a process called pumping. The 1.5-3 km layer, where
thermal bubbles often initiate, allows for the examination
of aerosols, potentially from mid-range sources, which are
lifted into the cloud with the rising bubble. The 3-5 km layer
captures aerosols transported over longer distances that enter
the cloud through entrainment at the cloud edges as the bub-
ble ascends. The 5-10km layer is designed to capture the
influence of long-range-transported aerosols on cloud prop-
erties at higher altitudes. This multi-layer approach enables
analysis of how local to long-range aerosol transport con-
tributes to aerosol-cloud interactions (Zhang et al., 2021;
Lebo, 2014; Marinescu et al., 2017).

To train and validate two machine learning models, we
employed AOD data retrieved from the CALIOP aerosol
product and EARLINET stations distributed across Europe.
Model performance was qualitatively evaluated by analyzing
its response to two notable aerosol events: a significant dust
intrusion from 13 to 18 March 2022 and a volcanic eruption
on 14 August 2023. These events offered valuable case stud-
ies to assess the model’s capability in detecting and charac-
terizing distinct aerosol signatures across these four layers.
We organized the rest of the paper as follows: Sect. 2 pro-
vides a comprehensive overview of the dataset employed,
while Sect. 3 details the necessary preprocessing steps and
retrieval methodology. Subsequently, Sect. 4 delves into the
discussion of the vertically retrieved AOD results, followed
by conclusions outlined in Sect. 5.

2 Study area and data source
2.1 Study area

The study area encompasses a significant portion of the Eu-
ropean troposphere, spanning 35 to 71° N and 7° W to 70°E,
covering approximately 10.18 x 10°km?”. Despite its rela-
tively small land area, Europe exhibits a diverse geographical
landscape and complex atmospheric dynamics. Urban cen-
ters in Europe face persistent air pollution issues due to in-
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dustrial activities and vehicular emissions, compounded by
the effects of climate change. Various aerosol types, orig-
inating from industrial processes, transportation, biomass
burning, and natural events, significantly impact air quality,
weather patterns, and climate dynamics across the continent.
Long-range transport of aerosols, particularly from sources
in Africa, such as Saharan dust storms, underscores the in-
terconnectedness of atmospheric processes across continents
and emphasizes the necessity of international cooperation in
addressing air pollution and environmental challenges.

2.2 Data source
2.2.1 SEVIRI

Meteosat Second Generation (MSG) constitutes a series of
four satellites managed by the Exploitation of Meteoro-
logical Satellites (EUMETSAT) and has been operational
since 2004. Originally designated as MSG1 to MSG4, these
satellites were subsequently rebranded as Meteosat-8 to
Meteosat-11, respectively. The primary instrument on board
these satellites is the Spinning Enhanced Visible and Infrared
Imager (SEVIRI), a radiometer equipped with 11 spectral
channels spanning the visible to the infrared spectrum. These
include the visible (0.6 and 0.8 um) channels, as well as a
near-infrared (1.6 um) channel, and provides a spatial res-
olution of about 3km at the sub-satellite point and a high-
resolution visible (HRV) channel offering a finer spatial res-
olution of 1km at nadir. Strategically centered at various
wavelengths, the thermal channels of SEVIRI include 6.2
and 7.3 um (targeting strong water vapor absorption); 8.7,
10.8, and 12.0 um (window channels); and 9.7 um (for ozone
absorption) and 13.4um (for carbon dioxide absorption).
This operational system delivers full-disk Earth data, while
the rapid-scan service focuses on observing the upper part
of the Earth’s disk, covering Europe and North Africa, with
a repetition time of 15 min (Schmetz et al., 2002; Zawadzka
and Markowicz, 2014). In our study, we primarily utilize SE-
VIRI data from Meteosat-11, the fourth and final flight unit
of the MSG program, which was launched on 15 July 2015.
Meteosat-11 currently operates in geostationary orbit, po-
sitioned 36 000 km above the Equator. Its coverage extends
over Europe, Africa, and the Indian Ocean, spanning —81 to
81° longitude and —79 to 79° latitude. Figure 1 provides a vi-
sualization of the coverage area of SEVIRI (© EUMETSAT
2024).

2.2.2 CALIOP

The CALIOP instrument plays a pivotal role in the CALIPSO
satellite, launched in April 2006 with the primary objec-
tive of reliably delivering high-resolution vertical profiles
of global aerosol properties via an active sensing technique.
Functioning as a polarization-sensitive lidar, CALIOP mea-
sures the depolarization ratio, serving as a degree of par-
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Figure 1. The area covered by the SEVIRI instrument. Source:
© EUMETSAT 2024 (https://data.eumetsat.int/data/map/EO:EUM:
DAT:MSG:HRSEVIRI, last access: 20 January 2025).

ticle irregularity. CALIOP is specifically designed to ob-
serve aerosol optical properties during both the day and the
night, focusing on vertical layers at wavelengths of 532 and
1064 nm. Its level 2 algorithm not only provides information
on aerosol optical characteristics like the particle depolariza-
tion ratio and color ratio but also retrieves extinction coeffi-
cients. Notably, CALIOP data offer a temporal resolution of
approximately 16 d, capturing insights into aerosol dynamics
over time. Sampling occurs at intervals of 333 m along the
orbital track, maintaining a vertical resolution of 60 m from
altitudes of —0.5 to 20 km and 180 m from 20 to 30 km within
the vertical profile (Winker et al., 2004, 2006, 2007). For this
study, we employed CALIOP level 2 version 4.2 aerosol pro-
file products from 2017 to 2019 to estimate multi-layer AOD
values within the defined study region.

2.2.3 MODIS land cover data

In this research, we leveraged land cover (LC) data spanning
2017 to 2019, with a spatial resolution of 1 km, sourced from
the global MODIS products (MCD12Q1 V6) covering Eu-
rope. These data, derived from both Terra and Aqua satel-
lites, provide comprehensive land cover types annually from
2001. The dataset encompasses six classification schemes,
elucidated in the downloadable user guide available at https:
/Nladsweb.modaps.eosdis.nasa.gov/ (last access: 23 October
2023). Each MCD12Q1 version 6 hierarchical data format 4
(HDF4) file comprises layers for land cover types 1-5, land
cover properties 1-3, land cover property assessments 1—
3, land cover quality control (QC), and a land water mask
(Sulla-Menashe and Friedl, 2018). Our study specifically fo-
cuses on the first classification scheme, the Annual Interna-
tional Geosphere-Biosphere Program (IGBP) classification.
2.2.4 Meteorological data

Meteorological data were acquired from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) dataset,
accessible at https://cds.climate.copernicus.eu/ (last access:
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Figure 2. Map depicting the ECMWF stations for meteorological
data measurements.

24 October 2023). ECMWF has been actively operational in
real-time seasonal forecast systems since 1997, providing ac-
cess to standard meteorological data. This dataset comprises
two distinct sets of data (Copernicus Climate Change Ser-
vice Climate Data Store, 2021). Firstly, version 2 of the In-
tegrated Global Radiosonde Archive (IGRA) from 1978 in-
tegrates global radio sounding containing temperature, hu-
midity, and wind data from various sources. The dataset is
presented in the form of a global grid with a conventional
grid resolution of 0.25° x 0.25°. Compared with previous-
generation products, the temporal resolution has been in-
creased from 6 to 1 h, enabling the study of diurnal variations
in the troposphere. Secondly, the Radio Sounding HARMo-
nization (RHARM) homogenized dataset offers adjusted val-
ues for temperature, relative humidity, and wind. RHARM
effectively eliminates systematic effects, such as variations in
measurement sensors, biases induced by solar radiation, cal-
ibration drifts, station relocations, and other factors, across
700 IGRA radiosonde stations and ship-based radio sound-
ings. RHARM includes twice-daily (00:00 and 12:00 UTC)
radiosonde data at mandatory and standard levels, featuring
essential parameters like air temperature (7', K), air pressure
(P, Pa), wind speed (Ws, ms_l), and wind direction (Wd,
degrees from north). For this study, the global grid dataset is
utilized over the European continent from 2017 to 2019, as
depicted in Fig. 2.

2.2.5 EARLINET
EARLINET, established in the year 2000 (Bosenberg et
al., 2001, 2003), originated as a research project funded by

the European Commission within the framework of the Fifth
Framework Programme. The primary objective of EAR-
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Figure 3. Map depicting currently active EARLINET stations. The
red stars indicate the geographical distribution of EARLINET lidar
stations used in this study.

LINET is to generate profiles of aerosol optical properties,
thereby constructing an expansive, quantitative, and statis-
tically robust database for the continental-scale distribution
of aerosols. This initiative aims to enhance network opera-
tions, facilitate research on aerosol-related processes, vali-
date satellite sensor data, advance model development and
validation, integrate aerosol data into operational models,
and compile a comprehensive climatology of aerosol distri-
bution. Currently, the network comprises 30 active stations,
with the majority equipped with Raman lidar featuring de-
polarization channels. These Raman-lidar-operating EAR-
LINET stations typically provide profiles of aerosol extinc-
tion and backscatter coefficients without relying on signif-
icant assumptions. Figure 3 illustrates the distribution of
EARLINET stations over the study area.

3 Methodology

As noted, hyperspectral measurements in the oxygen bands
enable aerosol vertical distribution retrieval by analyzing
photon path length changes due to scattering at different al-
titudes. SEVIRI’s spectral bands, however, are primarily de-
signed for cloud and land surface observations and do not
specifically cover the oxygen bands. The SEVIRI bands clos-
est to the oxygen bands are By (635nm) and B> (810 nm),
which are in the visible spectrum and respond to scatter-
ing by vertically distributed aerosols. The near-infrared and
shortwave infrared (SWIR) bands (B3, B4, B7, Bg, and Bjg)
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are indirectly influenced by aerosol vertical distribution, as
the accuracy of AOD retrievals using these bands can be af-
fected by aerosol layering. While these bands may not di-
rectly provide vertical profile information, they could yield
complementary data that, when combined with other wave-
length retrievals, enhance the understanding of aerosol verti-
cal distribution (Wu et al., 2017; Li et al., 2020). Bs and Bg
offer insights into water vapor profiles, which can be incor-
porated into aerosol retrieval algorithms. By accounting for
water vapor influence, these bands indirectly improve the ac-
curacy of aerosol vertical distribution estimates. The ozone
band (Bg) contributes to atmospheric chemistry and aerosol
formation insights but does not directly reveal vertical distri-
bution, while Bj;’s lower scattering efficiency limits its sen-
sitivity to vertical variations in aerosols for direct retrieval.
As a result, SEVIRI’s bands provide a range of potential
avenues for studying aerosol vertical distribution, with both
direct and indirect contributions. Although SEVIRI’s bands
offer valuable data for meteorological observations, such as
cloud monitoring, surface temperature, and water vapor, its
spectral design is not optimized for detailed monitoring of air
quality or climate through atmospheric gases and aerosols,
similar to TROPOMI. Thus, physical approaches for detailed
multi-layer aerosol retrieval, especially for multi-layer AOD,
remain challenging with SEVIRI’s current spectral configu-
ration.

Meteorological data significantly influence the vertical
distribution of aerosols, with varying impacts depending on
aerosol type, transport dynamics, and atmospheric condi-
tions. Wind speed and direction drive both horizontal and
vertical aerosol transport, with higher wind speeds over
oceans enhancing sea salt aerosol concentrations (Kaufman
et al.,, 1997; Yu et al., 2006; Chin et al., 2007; Tesche
et al., 2009). Temperature and pressure also play critical
roles; temperature inversions inhibit vertical mixing, trap-
ping aerosols in distinct layers, while convective activity
from surface heating mixes aerosols in the boundary layer,
creating a more homogeneous distribution. Stable high-
pressure systems promote surface accumulation by limit-
ing mixing, whereas low-pressure systems enhance upward
transport, extending aerosol atmospheric lifetimes (Tesche
et al., 2009). The complexity of these interactions suggests
a significant challenge for multi-layer AOD retrieval using
physical approaches, as accurate modeling requires account-
ing for diverse meteorological influences and variations in
aerosol type, transport, and vertical distribution.

Geographical location, land cover, and temporal factors
significantly influence the vertical distribution of aerosols
across Europe. Coastal regions tend to have elevated sea
salt aerosols due to ocean surface wind activity, while con-
tinental areas, especially in winter, experience higher anthro-
pogenic aerosol concentrations from sources like fossil fuel
combustion and industrial emissions. Additionally, the lat-
itude and prevailing wind patterns, such as easterly winds,
play a role in the long-range transport of aerosols, affecting
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distribution both horizontally and vertically. Land cover also
contributes to these dynamics: forests emit biogenic volatile
organic compounds (VOCs), which can form secondary or-
ganic aerosols, while urban and agricultural areas introduce
anthropogenic aerosols from activities like traffic, industrial
emissions, and fertilizer use.

Temporal variations, including seasonal and diurnal
changes, further complicate aerosol distribution. For exam-
ple, during winter, stable high-pressure systems trap aerosols
in the planetary boundary layer (PBL), while in summer,
warmer temperatures enhance photochemical activity, lead-
ing to increased ozone and sulfate concentrations. Diurnal
fluctuations are also evident, particularly in urban areas,
where traffic and industrial activities create peaks in anthro-
pogenic emissions during the day.

These combined effects underscore the complexity of
aerosol behavior, emphasizing the necessity for an approach
that integrates all relevant variables and effectively cap-
tures their interactions and influence on vertical aerosol dis-
tribution and multi-layer AOD retrieval. Machine-learning-
based methodology, capable of managing large datasets and
discerning intricate relationships between these variables,
presents a promising solution for accurate multi-layer AOD
retrieval. Our proposed model framework for estimating
AOD at the mentioned four distinct layers over the European
continent troposphere encompasses several sequential steps
— data collection, preprocessing, partitioning, regression, and
analysis of the performance of each regression model — to as-
certain the most accurate one, as illustrated in Fig. 4.

The process commences with data collection, detailed in
the preceding section. Subsequently, preprocessing of both
input and output data becomes imperative to ensure their
suitability for subsequent analysis. The dataset is then par-
titioned into two subsets: training and testing, a pivotal step
in machine learning aimed at assessing model performance
and mitigating overfitting. Following data partitioning, vari-
ous model structures are proposed and developed to capture
the intricate relationships within the dataset. This phase en-
tails selecting appropriate algorithms and architectures tai-
lored to the specific task of multi-layer AOD estimation. Fi-
nally, the performance of each model is meticulously evalu-
ated using predefined metrics to pinpoint the most accurate
and reliable model for AOD estimation across the desired
vertical layers. In the subsequent sections, we delve into a
detailed examination of each step.

3.1 Preprocessing

To ensure a robust model for estimating AOD values at suit-
able 3D resolutions, this study integrates data from vari-
ous sources, including satellites and ground-based observa-
tions. To address spatial-temporal sampling disparities, we
employ a co-location approach where data from multiple
sources, such as satellites and ground-based observations,
are matched within a £30 min time frame and within a 3 km
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Figure 4. Research framework for developing machine learning
models to estimate SEVIRI multi-layer AOD values.

radius of the study area (Kittaka et al., 2011; Redemann et
al., 2012; Han et al., 2017; B. Liu et al., 2018). This method
harmonizes disparate datasets, enhancing the reliability and
comprehensiveness of our analysis. The subsequent prepro-
cessing stages necessary for data refinement and analysis are
elaborated upon in the following subsections.

3.1.1 SEVIRI

Utilizing SEVIRI data necessitates a critical preprocess-
ing step involving co-referencing and applying geomet-
ric corrections. The Data Tailor tool, accessible at https:/
www.eumetsat.int/data-tailor (last access: 28 October 2024),
serves as a valuable spatial resource introduced in recent
years. It simplifies the definition of coordinate systems, im-
age systems, cutting ranges, expected output types, and req-
uisite file extensions for the output data. Estimating AOD
values requires the conversion of radiance to reflectance for
the SEVIRI reflective bands (VIS06, VIS08, and NIR16) and
equivalent brightness temperature for the remaining eight
bands. To achieve this, we computed the bidirectional re-
flectance factor (BRF) for the SEVIRI warm channels using
Eq. (1) proposed by the European Organization for the Ex-
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Table 1. Values for the regression parameters.

Channel Channel Ve o B
no. ID [em™1] K]
4 IR 3.9 2567.330  0.9956 3.410
5 WV 6.2 1598103 09962 2.218
6 WV 73  1362.081 0.9991 0478
7 IR 8.7 1149.069 0.9996 0.179
8 IR 9.7 1034.343  0.9999  0.060
9 IR 10.8 930.647 0.9983  0.625
10 IR 12.0 839.660 0.9988  0.397
11 IR 13.4 752387 0.9981 0.578

ploitation of Meteorological Satellites (2012):

7Ry, -d%(t)
M= T
"I, -cos(0(t, x))

where i denotes the channel number (1, VIS06; 2, VISOS; 3,
NIR16; 4, HRV), r;, represents the bidirectional reflectance
factor (BRF) for channel 1;, R;, stands for the measured
radiance in mWm~2sr—! (cm™ )™, d(7) signifies the Sun—
Earth distance in astronomical unit (AU) at time ¢, I}, sig-
nifies the band solar irradiance for channel A; at 1 AU in
mWm~Zsr~! (em™1)~!, and 6(¢, x) denotes the solar zenith
angle in radians at time ¢ and location x. The equivalent
brightness temperature (7;,) of a satellite observation is de-
fined as the temperature of a black body emitting the same
amount of radiation. Therefore, the brightness temperature
follows the form of Eq. (2).

. Cave _é
alogCivl [R+1  «

ey

Ty 2)
Using the observed radiances R (in mW mZsr~ ! (em™H~h)
and radiation constants C; =2hc? and Cp = hc/k, where c,
h, and k represent the speed of light, Planck’s constant, and
the Boltzmann constant, respectively, the regression coeffi-
cients v, o, and § are determined through non-linear regres-
sion analysis. This analysis is conducted on a pre-calculated
lookup table generated for the various SEVIRI channels, as
delineated in Table 1 (Tjemkes et al., 2012).

To further enhance the preprocessing workflow, we ap-
plied the SEVIRI cloud mask product to the data. This prod-
uct categorizes pixels with values 00, 11, and 22, correspond-
ing to clear, partially cloudy, and cloudy conditions, respec-
tively. To integrate the cloud mask into the data, we utilized
the following transformation:

Adjusted bands =| Cloud mask value —2 | - B;. 3)

This ensures that data from cloudy or partially cloudy pix-
els are appropriately weighted or excluded, preserving the
accuracy of AOD retrieval for clear-sky conditions. By in-
corporating the cloud mask product, the preprocessing step
effectively eliminates biases introduced by cloud contamina-
tion, ensuring the reliability of subsequent AOD estimations.
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3.1.2 CALIOP

In this study, to mitigate the impact of cloud contamination
and retrieval errors on CALIOP AOD retrieval, our screening
methods closely follow the guidelines established by Winker
et al. (2013). We employ various quality filters to identify
and filter aerosol pixels, including cloud and aerosol dis-
crimination (CAD) scores, extinction QC flags, and uncer-
tainty values. Specifically, we utilize a CAD score range out-
side [—100, —20] to address uncertainties in cloud—aerosol
discrimination, ensuring the selection of cloud-free pixels
with high confidence. Additionally, we apply extinction qual-
ity control flags with values of 0 and 1 to filter extinction
retrievals with high confidence. This includes constrained
retrievals utilizing transmittance measurements and uncon-
strained retrievals where the initial lidar ratio remains un-
changed in iterations. Furthermore, we exclusively consider
daytime profiles in this study. Uncertainty flags associated
with extinction coefficients are employed for data screening.
Range bins with an uncertainty flag value of 99.9km~! are
excluded from the analysis, following the methodology out-
lined by Winker et al. (2013).

3.1.3 Land cover product

Considering that the original MCD12Q1 product is stored in
an HDF and utilizes the sinusoidal projection, several data
preprocessing steps are required. These steps encompass for-
mat conversion, reprojection, resampling, image mosaicking,
and sub-area masking. To execute these tasks, we employ
the pyModis free and open-source Python-based library. This
tool enables the conversion of MODIS HDF into GeoTIFF
format and facilitates the conversion of data projection from
SIN to WGS84/UTM. Additionally, it facilitates image mo-
saicking and subsetting. Moreover, to enable comparison be-
tween the MCD12Q1 and SEVIRI datasets, the spatial res-
olution of MCD12Q1 is resampled at 3 km using the near-
est neighbor resampling method. This method preserves the
gray values of the original image, unlike bilinear interpola-
tion or cubic convolution interpolation methods, which may
alter them.

3.2 Machine learning models and parameter tuning

In this study, our primary objective is to develop a machine
learning model to estimate SEVIRI AOD values at various al-
titudes — 1.5, 3, 5, and 10 km — using CALIOP’s vertical pro-
files across the European continent. We employ two distinct
machine learning algorithms, RF and XGB, to train layer-
ing models. Both RF and XGB adopt an ensemble approach,
which involves constructing and aggregating multiple deci-
sion trees (Breiman, 2001; Chen and Guestrin, 2016). In RF,
each tree is built using a bootstrap sample of the data, with
nodes determined by the best subset of randomly selected
predictors (Breiman, 2001). These trees are then averaged to
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Table 2. The control parameter for tuning the machine learning
models.

Model  Parameter Specific search Optimum
range value

n_estimators 50 to 150 150

RF max_{features [auto, sqrt, log2]  sqrt
max_depth [5, 10, 20] 20
bootstrap [true, false] false
n_estimators 50 to 500 100
max_depth [5, 10, 20] 20

XGB Min_sample split 0.1 to 1 0.3
Min_sample leaf 3 to 10 8

obtain a final ensemble prediction. Conversely, XGB imple-
ments the gradient boosting method, where trees are inter-
dependent, as newly trained trees are constructed based on
previous trees, incorporating their ability to predict the resid-
uals of prior trees (Chen and Guestrin, 2016). In both RF and
XGB, all trained trees are combined to make the final predic-
tion.

We systematically explored various parameter combina-
tions for each machine learning model. Parameters such
as the number of decision trees (N_estimators), the num-
ber of variables considered for splitting at each node
(max_features), and the maximum depth of each deci-
sion tree (max_depth) for RF, as well as parameters in-
cluding the number of gradient boosting rounds or deci-
sion trees (n_estimators), minimum sum of instance weight
(Min_sample split), maximum depth of each decision tree
(max_depth), and minimum number of samples required to
be at a leaf node (Min_sample leaf) for XGB, were optimized
using a grid search algorithm. This algorithm exhaustively
searches through a specified subset of the hyperparameter
space. We set up a grid of possible values for each hyper-
parameter to be tuned, as illustrated in the specific search
range column in Table 2. For each combination of hyperpa-
rameters in the grid, the algorithm trains the model using the
training data and evaluates its performance through cross-
validation. The performance of each hyperparameter combi-
nation is measured using several specified evaluation met-
rics. Finally, the combination of hyperparameters that results
in the best performance on the validation set is selected, as
shown in the optimum value column in Table 2. This optimal
set of parameters is then used to train the final model on the
entire training dataset. For a comprehensive overview of the
optimized parameters, refer to Table 2.

3.3 Model training and evaluation

Data partitioning is essential for training and evaluating ma-
chine learning models, especially when working with time-
series data where temporal autocorrelation might bias model
performance. In this study, the dataset was partitioned by
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year to ensure temporal independence between training and
testing data, addressing potential autocorrelation issues and
enabling robust model evaluation. Specifically, the data from
2017 to 2018 were used for model training, while the 2019
data were reserved exclusively for testing. This approach
was chosen following an analysis of the feature distribu-
tions of SEVIRI bands (B; to By1); P, T, LC, Ws, and Wd;
and multi-layer AOD values (AOD; 5, AOD3, AODs, and
AODyjg) over the different years, as shown in Fig. S1 in the
Supplement. The distribution represented in Fig. S1 reveals
consistent patterns between 2017-2018 and 2019, with mini-
mal variation in their shapes. This similarity confirms that the
temporal separation does not introduce significant distribu-
tional shifts that might impact model generalization. In other
words, the model’s performance on the 2019 data would pro-
vide an unbiased evaluation of its predictive ability. This sep-
aration minimizes temporal autocorrelation, ensuring robust
and unbiased model assessment.

During the training phase of our machine learning models,
we leveraged datasets spanning diverse temporal periods and
geographical regions where both SEVIRI and CALIOP data
were accessible. However, following this training phase, the
algorithms function autonomously, relying solely on SEVIRI
data as their input. This advancement enables us to estimate
AQOD values at four specified vertical layers within each pixel
of the SEVIRI dataset, based on a single SEVIRI observation
along with its associated meteorological data and land cover
data, covering the entire study area.

Evaluation of the multi-layer AOD-estimating models in-
volved statistical metrics such as the coefficient of determi-
nation (R?), Pearson correlation coefficient (R), root mean
square error (RMSE), and mean absolute error (MAE). The
selection of the optimal model was based on higher R? and
R values, along with lower RMSE and MAE scores. Ad-
ditionally, we conducted a validation analysis of estimated
multi-layer AOD values with EARLINET AOD profiles on a
continental scale to ascertain the model’s performance.

4 Results and discussion

In this paper, our primary aim is to develop a machine learn-
ing model capable of retrieving AOD across four distinct ver-
tical layers: 1.5, 3, 5, and 10 km. To accomplish this, we uti-
lized two well-established machine learning models, XGB
and RF, previously employed in related studies. These mod-
els were trained on SEVIRI data spanning the European con-
tinent from 2017 to 2019. Our objective was to estimate sub-
hourly AOD values, approximately every 15 min, at a spatial
resolution of 3 km x 3 km.

To explore the relationship between AOD and potential
predictor variables, we conducted a correlation analysis ex-
periment utilizing the Pearson correlation coefficient (PCC;
Benesty et al., 2009). Furthermore, we evaluated the influ-
ence of land cover and meteorological data as input vari-

https://doi.org/10.5194/amt-18-1415-2025

ables for the machine learning models on estimating multi-
layer AOD values from SEVIRI data, with a specific focus
on identifying the most optimal model. Moreover, we con-
ducted training and testing of the machine learning models
across various temporal scales, including annual and sea-
sonal analyses. Subsequently, we assessed the performance
of each model using independent satellite and ground-based
AOD profiles, employing evaluation metrics such as R?, R,
MAE, and RMSE. Finally, multi-layer AOD values for two
aerosol events — Saharan dust from 13 to 18 March 2022 and
a volcanic eruption on 14 August 2023 — are presented as
maps to evaluate the model’s ability to detect and character-
ize distinct aerosol signatures across these four layers. In the
subsequent sections, we provide a comprehensive review of
the results derived from the aforementioned assessments.

4.1 Validation of estimated AOD with
satellite-retrieved AOD

4.1.1 Feature importance

According to established radiative transfer theory (Tsang et
al., 1984; Zege et al., 1991), the spectral signal captured by
a satellite sensor at the top of the atmosphere is intricately
shaped by various factors, including the composition, size
distribution, and altitude of aerosols, as well as atmospheric
molecules such as water vapor. These factors have a direct
impact on the retrieval of AOD values. Consequently, SE-
VIRI reflectance and brightness temperature across bands 1
to 11 (B; to Byp) were identified as critical features for this
analysis. The relationship between AOD and all candidate
features — including spatial features such as latitude (lat) and
longitude (long); temporal features including year, month,
and day; meteorological data like P, T, Ws, and Wd; and
LC - was investigated through a correlation analysis. This
analysis, illustrated in Fig. 5, utilized the PCC as the chosen
filtering method. The findings underscored that the majority
of selected features in this study exhibited significance levels
exceeding 1 %.

As illustrated in the PCC results (Fig. 5), aerosol dynamics
in the 0—1.5 km layer of the study area are strongly influenced
by geographic and temporal factors, characteristic of surface-
dominated conditions. High correlations of AOD with long
(23.92 %) and lat (22.41 %) highlight the impact of location-
specific emissions and regional transport patterns, while sig-
nificant correlations with day (11.59 %) and month (6.19 %)
indicate the role of diurnal and seasonal cycles driven by
emissions, meteorological changes, and boundary layer dy-
namics. Thermal infrared sensitivity also plays a role, as
indicated by the strong correlations with B7 (3.73 %) and
Bg (3.07 %), the highest among SEVIRI bands. This sug-
gests a potential link between surface temperature variations
and AOD in the lower atmosphere. Moreover, the correlation
with B (3.06 %) points to aerosols interacting with visible
light, likely from urban/industrial emissions, biomass burn-
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Figure 5. The importance of input features in the retrieval of SEVIRI multi-layer AOD values, as determined by the PCC.

ing, and potentially dust. Meanwhile, meteorological fac-
tors such as Ws (1.31 %), Wd (1.22 %), T (1.16 %), and P
(1.1 %) are relatively weak compared to geographic and tem-
poral factors. Finally, LC (0.54 %) shows the weakest corre-
lation, suggesting a limited direct influence on AOD, poten-
tially masked by stronger influences from emissions, trans-
port, and meteorological factors.

In the 1.5-3 km layer of area of interest, aerosol dynam-
ics remain strongly correlated with long (23.15 %) and lat
(21.39 %), though they decrease slightly compared to the 0—
1.5 km layer. This suggests a transition toward atmospheric
stability and more synoptic-scale patterns. Day (11.29 %)
and month (5.86 %) still exhibit notable correlations, reflect-
ing the ongoing impact of diurnal and seasonal cycles on
AOQD, albeit slightly weaker than in the lower layer. The vis-
ible band Bj (3.86 %) shows the strongest correlation among
SEVIRI bands, potentially reflecting a change in aerosol
composition or properties compared to the lower layer.
This could be due to an increased influence of transported
aerosols, potentially with different spectral characteristics.
B7 (3.48 %) remains strongly correlated, suggesting contin-
ued sensitivity to thermal characteristics. Enhanced transport
influence is evident, as Wd (1.34 %) shows a stronger cor-
relation than Ws (1.29 %), emphasizing the role of transport
pathways in AOD distribution at this altitude. Additionally,
the correlation with P (1.3 %) points to an emerging link be-
tween atmospheric stability and aerosol accumulation in this
layer. This aligns with other studies’ discussion on PBLH
and its role in controlling pollutant dispersion, as PBLH is
influenced by factors like temperature and stability. LC cor-
relation increases slightly to 0.63 %, still remaining relatively
weak overall.

In the 3-5 km layer of the research area, correlations with
long (19.42 %) and lat (17.32 %) decrease further, indicat-
ing a reduced influence of local sources and an increased
dominance of long-range transport and large-scale atmo-
spheric circulation patterns. Correlations with day (9.87 %)
and month (6.1 %) also weaken, suggesting a shift from
surface-driven cycles to broader atmospheric processes. The

Atmos. Meas. Tech., 18, 1415-1439, 2025

high correlation with B; (5.38 %) points to a prominent pres-
ence of aerosols interacting with visible light. Strong corre-
lations with B7 (4.73 %) indicate the effect of thermal char-
acteristics on AOD at this level. Wd (1.18 %), Ws (1.1 %), T
(1.09 %), and P (0.99 %) correlations remain at similar levels
to those of the previous layer, suggesting continued influence
of transport and stability.

In the 5-10km layer of the target region, where free tro-
pospheric dynamics dominate aerosol behavior, geographic
correlations with long (22.92 %) and lat (21.46 %) show a
slight increase compared to the 3-5 km layer, potentially in-
dicating the influence of large-scale transport patterns in the
free troposphere. Day (8.59 %) and month (4.91 %) correla-
tions further weaken, reinforcing the diminishing impact of
surface-driven cycles. B; (5.25) still shows the highest corre-
lation, indicating aerosols that interact with visible light and
are likely transported from lower altitudes or distant sources.
B7 (4.6 %) also maintains a strong correlation, indicating
a potential sensitivity to upper-level atmospheric dynamics.
Notably, P (1.41 %) now shows the strongest correlation
among meteorological variables, surpassing Wd (1.13 %), T
(1.1 %), and Wd (0.84 %). This emphasizes the critical role
of atmospheric stability in controlling AOD distribution in
the free troposphere. Despite meteorological data showing
low statistical importance (below 2 %) in estimating AOD
across all altitude layers, they have significant physical rele-
vance in processes unique to each layer. LC (0.42 %) shows
the weakest correlation across all layers, further suggesting
its limited direct influence on AOD at this altitude.

4.1.2 Meteorological data and land cover feature
selection

As previously noted, LC, T, P, Ws, and Wd are key features
in AOD estimation. To further understand their impact on
machine learning model performance in SEVIRI multi-layer
AOD values, we conducted 16 cases of experiments with var-
ied meteorological and LC feature combinations, validated
using CALIOP AOD retrievals. Our analysis, depicted in
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Fig. 6 and Tables S1-S2 in the Supplement, is summarized
using statistical metrics like R%, R, RMSE, and MAE.

Our findings indicate that, for most cases across annual
and seasonal datasets, combining these features with B; has
a negligible impact on the 1.5 km layer. In contrast, integrat-
ing Ws and Wd with SEVIRI bands (case 5) consistently
yields the highest R? and lowest RMSE values across both
annual and seasonal datasets. Incorporating these features
significantly enhances R? values across models, with sub-
stantial increases ranging from 0.75 to 0.99 and 0.89 to 0.99
observed in R? and decreases ranging from 0.075 to 0.009
and 0.033 to 0.002 in RMSE, for both XGB and RF models
from case 1 to case 5 in the 10 km layer. These statistical val-
ues underscore the crucial role of Ws and Wd in influencing
the spatial and temporal properties of atmospheric aerosols,
particularly in the 10 km layer. Physically, Ws and Wd are
known to be primary drivers of aerosol transport across var-
ious spatial scales. High Ws can lift dust and other partic-
ulate matter into the atmosphere, while Wd affects the re-
gional and long-range advection of aerosols. This mechanism
is particularly impactful in the 5-10 km altitude range, where
aerosols experience less drags and can be transported over
long distances with minimal settling, especially in dry condi-
tions (Pérez et al., 2006a, b; Georgoulias et al., 2016; Nicolae
etal., 2019).

However, integrating T and P features, as seen in cases 3,
4, and 9, notably enhances AOD accuracy at 3, 5, and 10 km
altitudes. This improvement is attributed to P reflecting
changes in aerosol vertical layers, influencing aerosol dif-
fusion capacity, while T is closely linked to atmospheric
aerosol distribution by altering air movement dynamics. T
affects atmospheric stability by controlling the thermal strat-
ification of air masses; higher 7' can destabilize the atmo-
sphere, promoting vertical mixing and lifting of aerosols.
However, the impact of T on aerosol concentration dimin-
ishes with altitude, especially in stable layers where ther-
mal inversion limits upward transport (Pérez et al., 2006a, b;
Choobari et al., 2014; Xu et al., 2024). P, on the other hand,
can reflect shifts in the PBL height, which influences the
vertical distribution of aerosols. A higher PBL allows more
aerosols to disperse vertically, enhancing their presence in
layers such as AODs, while a lower PBL restricts aerosols
closer to the surface. Despite these influences, 7 and P are
generally less effective than wind-related factors (cases 6,
7, and 8), particularly in upper layers, because wind-driven
advection predominantly controls the lateral movement of
aerosols, especially during seasonal changes when wind dy-
namics vary substantially (Nicolae et al., 2019; Georgoulias
et al., 2016; Ortiz-Amezcua et al., 2017; Granados-Muifloz
et al., 2016). However, T and P impact PBL dynamics, but
these effects may be limited in certain seasons due to more
stable atmospheric conditions, where lower T and P fluc-
tuations are less conducive to vertical mixing. For example,
case 12 including 7 and P may show less impact on AODjs
and AODj layers in winter, when aerosols tend to stay close
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to the surface due to limited vertical convection. In contrast,
warmer seasons promote vertical convection, enhancing the
influence of T and P in predicting AOD values across alti-
tude layers. Additionally, the proposed learning models can
capture complex, non-linear relationships among features,
but they may not always prioritize individual variables un-
less they strongly affect the target variable. As a result, even
if T or P is expected to influence AOD, their impact may be
overshadowed by more influential Ws and Wd (cases 13, 14,
15, and 16).

Conversely, LC plays a more localized role in AOD esti-
mation, particularly in lower layers (AOD; s), as it impacts
the sources and types of aerosols present near the surface.
However, the effect of LC diminishes with altitude due to
decreased influence on vertical transport; aerosols released
from surface sources are progressively diluted as they dis-
perse upward. This observation is confirmed by our find-
ings that cases with LC (e.g., cases 2, 8, 13, 14, and 16) did
not consistently outperform those with purely meteorologi-
cal features, especially in higher layers (AODs and AODy).
Physically, this limitation arises from the fact that the verti-
cal distribution of aerosols across different atmospheric lay-
ers over the European troposphere is more heavily influenced
by continental and regional transport patterns, atmospheric
stability, and meteorological conditions than localized land
cover characteristics (Zhao et al., 2019).

In conclusion, the validation of our models using CALIOP
AOD retrievals highlights the robustness of our findings, par-
ticularly the critical role of Ws and Wd in enhancing AOD
estimation accuracy. The consistency of these findings across
the RF and XGB models, evaluated at different temporal
scales (annual and seasonal), highlights the critical role of
Ws and Wd in AOD estimation at both the 5 and the 10 km
layers. Consequently, we prioritize Ws and Wd, along with
B;, as the preferred input features for our models due to their
demonstrated impact on improving AOD estimation accu-
racy.

4.1.3 Validation of seasonal modeling

Considering the substantial seasonal variations in aerosol
distribution and meteorological conditions, we sought to
evaluate whether adapting our proposed modeling approach
to specific seasons could improve the accuracy of multi-
layer AOD retrievals. Following the methodology outlined in
Sect. 3, we partitioned the sample dataset, derived from 2017
to 2019 data, into four segments based on seasonal distinc-
tions: winter (January, February, and March), spring (April,
May, and June), summer (July, August, and September), and
autumn (October, November, and December), as detailed in
Table 3. Subsequently, we trained individual machine learn-
ing models on these seasonal and annual datasets spanning
2017 to 2018. For this analysis, we separately estimated SE-
VIRI multi-layer AOD values for the year 2019 using both
the seasonal and the annual models. Detailed seasonal vali-
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Figure 6. The impacts of input features on the retrieval of SEVIRI multi-layer AOD values, represented as R? metrics, for the RF and XGB
models. Each row displays the results for the annual period and the four seasons (winter, spring, summer, and autumn). The four colors in
each bar plot indicate the RZ values for AOD at 1.5, 3,5, and 10km layers.

dation findings, including R? and RMSE metrics, are delin-

eated as highlighted values in Tables S1 and S2. Table 3. Number of samples used to train machine learning models
The XGB model exhibited acceptable performance across in this study.

different seasons, with R? (RMSE) values for the 1.5km

layer as follows: 0.901 (0.0103) for spring, 0.889 (0.0347) Data Period Al Winier Spring Summer Auwmn

for summer, 0.966 (0.0265) for autumn, and 0.881 (0.0392) Train ~ 2017-2018 37325 6830 9038 12108 9349

for winter. In comparison, the RF model demonstrated im- Test 2019 18117 2548 4703 7560 3306
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provement, boasting R? values of 0.97, 0.927, 0.937, and
0.999, with corresponding RMSE values of 0.0211, 0.0278,
0.052, and 0.0023 for spring, summer, autumn, and winter,
respectively. Similarly, both the XGB and the RF models
demonstrated satisfactory performance across other layers,
with R? ranging from 0.81 to 0.95, 0.80 to 0.98, and 0.82
to 0.91 for the 3, 5, and 10km layers, respectively. Perfor-
mances of models generally tend to decrease in the upper
layers compared to the lower layers due to the prevalent
types and sizes of existing aerosols throughout most of the
year, with aerosol distribution in Europe predominantly con-
centrated within the 1.5 and 3 km atmospheric layers. Con-
sequently, R? and R metrics demonstrate higher values in
these layers compared to the 5 and 10 km layers. Conversely,
RMSE and MAE metrics are elevated at the 1.5 and 3 km
layers but lower at the 5 and 10 km layers. This pattern arises
from the typically higher aerosol concentrations occurring in
the lower atmospheric layers, juxtaposed with lower AOD
values observed in the 5 and 10 km layers.

However, the XGB annual model exhibited strong perfor-
mance, achieving RMSE values of 0.0091, 0.0134, 0.0066,
and 0.0059 and R? values of 0.993, 0.974, 0.985, and 0.981.
Similarly, the RF annual model produced notable results,
with R? values of 0.98, 0.962, 0.939, and 0.968, along with
RMSE values of 0.015,0.010, 0.0112, and 0.0066. In conclu-
sion, annual models demonstrate consistently high predictive
accuracy, with XGB showing slightly stronger performance
in terms of both R? and RMSE. The minimal RMSE and
high R? values indicate that both models effectively capture
the multi-layer AOD values across the altitude layers on an
annual basis. Compared to seasonal models, the annual mod-
els offer greater stability and reduced variability, as they are
less affected by seasonal meteorological changes that can al-
ter aerosol distribution, such as summer convection and win-
ter temperature inversions. This consistency in annual perfor-
mance provides a more reliable basis for long-term AOD re-
trieval, making annual models preferable for retrieving multi-
layer AOD values for SEVIRI data. Therefore, we regarded
the annual models as the desired models for retrieving multi-
layer AOD values of SEVIRI.

4.1.4 Comparison of the models

Figure 7 presents scatterplots illustrating multi-layer AOD
values estimated using the proposed annual XGB (Fig. 7a—
d) and RF (Fig. 7e-h) models compared with CALIOP-
retrieved AOD profiles over the European troposphere in
2019. Each subplot includes the number of points and men-
tioned metrics, i.e., R, R, RMSE, MAE, bias, and linear re-
gression equations, to facilitate clear and thorough analysis.

Both models exhibit a strong correlation between the es-
timated values and retrievals. However, the XGB model
demonstrates slightly superior performance, with R? (R) val-
ues of 0.993, 0.974, 0.985, and 0.981 (0.997, 0.989, 0.993,
and 0.991) for the 1.5, 3, 5, and 10km layers, respectively.

https://doi.org/10.5194/amt-18-1415-2025

In comparison, the RF model shows lower R? (R) values
of 0.980, 0.962, 0.939, and 0.968 (0.993, 0.984, 0.972, and
0.985) for the same layers. The XGB model consistently
outperforms in estimating AOD across all layers. However,
the RF model demonstrates relatively higher accuracy in the
1.5 km layer compared to other layers, highlighting a signif-
icant performance gap when compared to XGB. Overall, the
minimal variation in R2, R, RMSE, and MAE across the
models suggests comparable estimation capabilities. How-
ever, a detailed analysis reveals the superior accuracy of the
XGB model in capturing AOD values, as evidenced by the
slope values in Fig. 7a—d. In contrast, the slope values in
Fig. 7e-h indicate that the RF model tends to slightly un-
derestimate AOD values. In summary, while both models
demonstrate proficiency, the XGB model outperforms the RF
model, particularly in its accuracy for higher-altitude layers,
thereby providing more reliable AOD estimations.

4.2 Validation of estimated AOD with ground lidar
retrievals

To further validate our top-performing models, annual XGB
and RF, we conducted an extensive analysis using data from
eight EARLINET stations across Europe in 2020. We an-
alyzed pixels within a 3 km radius of each station to com-
pare and validate SEVIRI multi-layer AOD estimates against
EARLINET values. Figure 8 presents the comparison using
linear regression and validation metrics, with scatterplots for
AOQOD at four layers. The XGB model demonstrates stronger
agreement with EARLINET profiles, achieving R? values of
0.86, 0.79, 0.75, and 0.59 and RMSE values of 0.02, 0.01,
0.01, and 0.005. In contrast, the RF model shows weaker cor-
relations, with R? values of 0.83, 0.26, 0.52, and 0.16 and
RMSE values of 0.024, 0.022, 0.021, and 0.007. This can be
attributed to XGB’s ensemble nature and its ability to reduce
bias through boosting, enabling it to handle complex and di-
verse datasets more effectively (Ahmed et al., 2023).

When comparing the R? metrics of XGB AODs across dif-
ferent layers, it was found that XGB AODs exhibited lower
R? values with EARLINET at the 10km layer but showed
significant improvement at the 1.5, 3, and 5 km layers, with
R? values of 0.86, 0.79, and 0.75, respectively. This indi-
cates a stronger correlation between XGB AOD estimations
and EARLINET retrievals in these layers compared to the
10km layer, which had an R? value of 0.593. This trend is
consistent with other evaluation metrics. Closely scrutinizing
Fig. 8, it becomes apparent that there are specific points re-
vealing notable discrepancies between EARLINET and XGB
AOD values. To determine the root cause of these outliers,
the data were color-coded based on AOD values, revealing
that the majority of outliers occurred when EARLINET re-
trieved low AOD values in each layer. At these points, the
XGB model tends to overestimate. This tendency contributed
to a low R? value (0.593) in the linear regression for the
10km layer, as this layer contains small AOD values (0-
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Figure 7. Scatterplots comparing the estimated SEVIRI multi-layer AOD values derived from the proposed machine learning models with
the CALIOP AOD profiles for the year 2019. The red line represents the linear fit between the two datasets.

0.05). Furthermore, the slope of the regression line for the
XGB model ranges from 0.82 to 0.99, indicating that for ev-
ery unit increase in the estimated values, the corresponding
EARLINET AOD values increase by slightly less than one
unit. This suggests a tendency for the XGB model to overes-
timate EARLINET AOD across all layers.

The statistical analysis of EARLINET AQOD profiles at the
eight specified stations, alongside estimated AOD values, is
comprehensively presented in Table 4. The number of an-
alyzed pairs (N) varies across stations, ranging from 12 at
HPB to 387 at ATZ, providing robust validation of estimated
AQOD values with EARLINET AOD profiles. Metrics such

Atmos. Meas. Tech., 18, 1415-1439, 2025

as RMSE, MAE, and bias offer valuable insights into model
performance at each station. A detailed analysis of the data
reveals that the values of these metrics across the four layers
are not consistently identical.

Performance varies significantly across stations and lay-
ers, with notable discrepancies observed at ATZ (Greece),
particularly at the 1.5km layer, which exhibits the highest
RMSE of 3.1 x 1072, The substantial bias at this station in-
dicates that the model tends to consistently overestimate the
AOD at this altitude. Conversely, performance improves at 3
and 5km, with RMSE values of 1.5 x 1072 and 1.8 x 1072,
respectively. At this station, the model demonstrates the best

https://doi.org/10.5194/amt-18-1415-2025
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Figure 8. Scatterplots comparing the estimated SEVIRI multi-layer AOD values derived from the proposed machine learning models with
the EARLINET AOD profiles across eight specified stations in Europe for the year 2020. The red line represents the linear fit between the
two datasets. Note that the scales of the subplots vary due to the different ranges of AOD values at the various vertical layers (1.5, 3, 5, and

10 km).

performance at the 10 km layer, with an RMSE of 0.6 x 10’2,
compared to the other layers. These variations are likely due
to frequent forest fires in Greece, as most smoke from these
fires remains in the lower layers of the atmosphere (Nico-
lae et al., 2019). In contrast, the XGB model generally per-
forms well at the SAL, HPB, and LLE stations, where both
RMSE and bias are minimal. The RMSE at the 1.5 km layer,
ranging from 0.4 x 1072 to 2.2 x 1072 at the IPR, WAW,
INO, and THE stations, alongside the low RMSE and bias
values across other layers, demonstrates good overall model
performance at these stations. A closer examination reveals
that RMSE and bias metrics are often elevated at the 1.5 and
3 km layers but lower at the 5 and 10 km layers. This pattern
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arises from the typically higher aerosol concentrations in the
lower atmospheric layers compared with lower AOD values
retrieved in the 5 and 10 km layers.

The discrepancies between the estimated and retrieved
values could stem from the different measurement tech-
niques employed by satellite and ground-based systems.
EARLINET utilizes ground-based lidar systems to capture
backscattered light from aerosols within the atmosphere by
looking upward, whereas satellite measurements are per-
formed from above, looking down. In this configuration, the
lower atmospheric layers attenuate the lidar signal, resulting
in reduced power to penetrate the upper layers. This attenu-
ation can complicate the detection of aerosols in the upper

Atmos. Meas. Tech., 18, 1415-1439, 2025
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Table 4. Station-based statistical analysis of XGB-estimated SEVIRI vs. retrieved EARLINET AOD values. All metric values are scaled by
x1072,
ID Location N  Layer MAE RMSE Bias | ID Location N  Layer MAE RMSE Bias
AOD; 5 1.1 14 07 AOD; 5 1.1 1.7 09
. AQOD3 0.8 1.5 =03 AOD3 0.8 1.3 0.4
NG Romania 13 5y 1.01 22 og | THE  Greece 50 5p. 0.5 07 04
AODj 0.25 0.4 0.05 AOD 0.3 0.5 0.3
AOD; 5 1.5 22 1.0 AOD;5 03 04 03
AQOD;3 0.8 1.1 0.6 AOD; 0.06 0.1 0.06
PR ltaly 257 AODs 0.9 16 05 | VAW Poland 28 . 005 007 005
AODqg 0.3 0.5 0.2 AOD 0.05 0.05 0.05
AOD; 5 2.1 3.1 1.4 AOD;s  0.07 0.1 0.07
AOD;3 1 1.5 0.8 AODj3 0.04 0.05 0.04
ATZ - Greece 387 op, 1.03 18 o7 | HPB Germany 12, on 001 002 0.02
AODg 0.3 0.6 0.3 AODq 0.02 0.03 0.02
AOD;s 005 005 0.05 AOD;5s 02 026 0.16
AOD3 0.04 0.05 0.03 AODj3 0.08 0.1 0.08
SAL  Tialy 13 AoDs 0008 001 o008 | WLE Framee 39 uopc 003 003 002
AOD 0.04 0.04 0.04 AOD 0.03 0.03 0.02

layers (Grigas et al., 2015; Nicolae et al., 2019). Further-
more, these limitations may be attributed to the constraints
associated with the utilization of CALIOP AODs, partic-
ularly their reduced precision in low-aerosol-concentration
scenarios. This reduced precision arises from the low signal-
to-noise ratio under clean weather conditions, which is of-
ten insufficient to accurately detect weak aerosol layers on
the aerosol extinction vertical profile. Because both trans-
mitted and scattered light must traverse this portion of the
atmosphere, highly diffuse and/or tenuous scattering aerosol
layers below the CALIOP detection threshold are ignored in
CALIOP’s estimates of column AOD. Consequently, weak
aerosol layers that are not detected would not be retrieved,
leading to decreased retrieved AODs under clean weather
conditions (B. Liu et al., 2018; C. Liu et al., 2018).

Finally, the efficacy of the XGB model is clearly demon-
strated by its ability to reliably estimate multi-layer AOD val-
ues compared to EARLINET-retrieved AOD profiles across
various European regions.

4.3 Qualitative validation

For qualitative validation of the estimated multi-layer AOD
values, two distinct approaches were utilized. The first ap-
proach involved a visual comparison of the spatial trends
of the estimated AOD values with CALIOP AOD retrievals
for 4 specific days across various seasons in 2019: 3 March
(11:57UTC), 30 April (12:42UTC), 13 June (10:57 UTC),
and 31 October (12:27 UTC). The second approach concen-
trated on two noteworthy aerosol events: a significant dust in-
trusion that occurred over Europe from 13 to 18 March 2022
and a volcanic eruption at Mount Etna in Italy on 14 Au-
gust 2023. For these events, the estimation model generated

Atmos. Meas. Tech., 18, 1415-1439, 2025

multi-layer AOD values at 15 min intervals. This high tem-
poral resolution enabled detailed analysis of aerosol behavior
within each layer during these events.

Conducting the qualitative validation for an entire scene
within the first approach is challenging due to the spatial and
temporal resolution constraints of CALIOP. To address this
limitation, SEVIRI scene pixels corresponding to CALIOP
overpasses with temporal differences of less than 4 min were
compared on the specified days. The results, illustrated in
Fig. 9, indicate that the spatial trends of the estimations gen-
erally align well with the trends of CALIOP AQOD retrievals
in regions with both high and low AOD values across the four
seasons. This alignment highlights the model’s ability to pro-
vide reliable AOD estimates with enhanced temporal resolu-
tion, effectively complementing CALIOP AOD retrievals.

The subsequent approach for qualitative validation of the
model on a regional scale involved analyzing two aerosol
events. The first event examined was a substantial Saharan
dust plume that traversed western and central Europe be-
tween 13 and 18 March 2022. SEVIRI scenes captured dur-
ing this event, illustrated in Fig. 10, were visualized at spe-
cific hours to assess how well the aerosol vertical disper-
sion behavior aligned with the dynamic characteristics of the
event.

On 13 March, at 13:42 UTC, the event is characterized by
concentrated aerosol presence at 1.5km over southern Eu-
rope, particularly Spain, Italy, and the Mediterranean, with
progressive dispersion at higher altitudes reaching central
Europe. By 14 March at 14:42 UTC, the dust plume expands
further into central and northern Europe at 1.5km, while
mid-altitudes (AOD3 and AOD5) show notable aerosol pres-
ence over the Iberian Peninsula and central Europe, reflecting
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Figure 9. Spatial distributions and trends of SEVIRI-retrieved multi-layer AOD values compared to CALIOP retrievals for 4 specific days
on 3 March (11:57 UTC), 30 April (12:42 UTC), 13 June (10:57 UTC), and 31 October (12:27 UTC) across various seasons in 2019.

https://doi.org/10.5194/amt-18-1415-2025

Atmos. Meas. Tech., 18, 1415-1439, 2025



1432

AOD; 5 (20220313 13:42)

M. Pashayi et al.: Multi-layer retrieval of AOD in the troposphere using SEVIRI data

AOD; (20220313 13:42)

AODs (20220313 13:42)

AOD, (20220313 13:42)

0N . = 1e SON . 1e SN B 14 SN - "
s 12 gy 12 gy, 12 apy 12
10 10 10 10
son son s s
08 08 08 08
asn asn asn asn
06 06 06 06
o 04 s 04 s 04 aon 04
02 02 02 02
3N 3N N B
00 00 00 00
WW SW OE SE 10 15F 20 25°F WW W 0E SE 10 15°E 20 25°E WW SW O SE 10 15 20 25°€ WW SW O SE 10 15 20 25°E
AOD; 5 (20220314 14:42) AOD; (20220314 14:42) AODs (20220314 14:42) AOD1o (20220314 14:42)
0N . 3 - 14 SON . - 1e SN B 1e SN . "
s 12 gy T I— - I— 12
10 10 10 10
son son son son
08 08 08 08
asn asn asn s
06 06 06 06
on 04 s 04 aow 04 aon 04
02 02 02 02
35N 3N N N
00 00 00 00
WW SW 0E SE 10E 15°F 20 25°F WW W OE SE 10 15°E 20 25°E WW SW O SE 10 15 20 25°E WW SW O SE 10 15°E 20 25°E
AOD; 5 (20220315 10:12) AOD; (20220315 10:12) AODs (20220315 10:12) AOD1o (20220315 10:12)
o' B - 14 SON B - - 1e SN B 14 SN - 1
s 12 g LR 12 ey 12
10 10 10 10
s soN s s
08 08 08 08
asn asn asn asn
06 06 06 06
aon 04 o 04 e 04 s 04
02 02 02 02
3N 3N £ N
00 00 00 00
WW SW OE SE 10 15E 20 25°F WW W OE SE 10 15E 20 25°E WW SW O SE 10 15 20 25°E WW SW O SE 10 15°E 20 25°€
AOD; 5 (20220316 09:57) AOD; (20220316 09:57) AODs (20220316 09:57) AOD; (20220316 09:57)
o . . 14 SON . - 14 SN B 14 SN . "
s I~ R ER— 12
10 10 10 10
son son s s
08 08 o8 08
asn asn asn asn
06 06 06 06
N 04 aorn 04 o 04 aon s
02 02 02 02
B 3N N N
00 00 00 00
0W SW OE SE 10 15°F 20 25°F W SW OE SE 10 15°E 20 25°E WW SW O SE 10 15 20 25°€ WW SW O SE 10 15°F 20 25°E
AOD; 5 (20220317 08:27) AOD; (20220317 08:27) AODs (20220317 08:27) AODy (20220317 08:27)
0N . B 1e SN . 14 SN . "
sson 12 gy 12 gy 12
10 10 10
son s s
08 o8 08
5N s s
06 06 06
N 04 aon 04 son 04
02 02 02
3N N X
00 00 00
0W SW OE SE 10 15°E 20°F 25°F W SW OE SE 10 15°E 20 25°€ WW SW O SE 10 15°F 20 25°€ 0W SW O SE 10 15°F 20 25°E
AOD; 5 (20220317 14:42) AOD; (20220317 14:42) AODs (20220317 14:42) AOD; (20220317 14:42)
s , - Le SN B - 14 SN . -
s 12 gy 12 gy 12
10 10 10
s s son
08 08 08
s asn N
06 06 06
N 04 a0 04 aon 04
02 02 02
3N ) N
00 00 00

10°W W 0E SE 10°F 1S 20 25°E

10°W W 0E SE 10°F 15 20 25°E

10W W OF SE 10°F 15 20 25°F

10W W OF SE 10F 15 20 25°F

Figure 10. Spatial distributions of SEVIRI-estimated multi-layer AOD values during the Saharan dust event from 13 to 18 March 2022, at
selected times.
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the dust’s horizontal transport. At 10km, concentrations re-
main low, indicating limited vertical penetration. Comparing
these 2d reveals a clear intensification and northward pro-
gression of the plume. On 15 March, at 10:12 UTC, AOD; 5
shows sustained high concentrations over southern Europe,
with increased impact in southeastern Europe, including the
Balkans. At mid-levels, the plume spreads further into cen-
tral and eastern Europe, reaching countries like Germany and
Poland, while at 10 km, faint concentrations persist over parts
of southern and central Europe. By 16 March at 09:57 UTC,
the plume shows signs of dissipation, with reduced inten-
sity at 1.5km across Spain, Greece, and the Mediterranean
and weaker signals at mid-altitudes over central Europe. On
17 March at 08:27 UTC, the dust plume is confined mainly
to southern Europe at lower altitudes, while mid-altitudes ex-
hibit limited spread and intensity, and 10 km shows negligi-
ble influence.

Finally, the spatial distributions on 18 March at
14:42 UTC, as shown in the figure, reveal a significant re-
duction in aerosol concentrations at all altitudes. At 1.5 km,
the AOD values remain notable over southern Spain and the
western Mediterranean but are much weaker compared to
earlier days. At 3 km, the dust plume is localized over the
Iberian Peninsula, with faint traces extending toward south-
eastern Europe. Higher altitudes, represented by AODs and
AODyjg, exhibit very low concentrations, indicating mini-
mal vertical transport of the dust on the final day of the
event. This vertical behavior, compared to earlier days, re-
flects the dissipation phase of the Saharan dust plume, as
atmospheric processes like mixing, dilution, and deposition
progressively weaken its intensity. Additionally, during the
Saharan dust event, sub-hourly estimated multi-layer AOD
values for the European continent (from 07:12 to 16:12 UTC
daily on 18 March 2022) were compiled into an animation
that includes 37 SEVIRI scenes over Europe, as shown in
Pashayi et al. (2025a) (https://doi.org/10.5446/69730).

The other event in this approach is the Mount Etna erup-
tion, located on the eastern coast of Sicily, Italy, one of
the most active volcanoes in the world and a prominent
feature in the Mediterranean region. On 14 August 2023,
Mount Etna erupted in a significant volcanic event that re-
leased vast quantities of ash and aerosols into the atmo-
sphere. This eruption produced an ash plume reaching up
to 8200m above the crater and spreading southward over
the Mediterranean. The event provided another opportunity
to visualize the aerosol vertical dispersion behavior aligned
with the dynamic characteristics of the event. The AOD spa-
tial distribution maps in Fig. 11 revealed distinct layers of
aerosol, with a clear upward transport of particles, especially
in the lower- to mid-level layers (1.5 to 3km) at 07:27 UTC,
suggesting strong vertical convective activity driven by the
eruption’s intensity. As time progressed, the AOD values
in the upper layers increased, particularly at the 5Skm alti-
tude around 08:27 UTC, signalling a greater vertical trans-
port of aerosols. This upward transport continued through-
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out the day, with the highest values observed at 10 km by
09:57 UTC, suggesting the plume had reached greater alti-
tudes. By 13:42UTC, the AOD values in the 10km layer
were at their peak, reflecting the maximum extent of verti-
cal transport before the aerosols began to disperse more hor-
izontally. After this point, the plume’s vertical extent started
to decrease (15:57UTC), likely due to the long-distance
transport of the aerosols across the Mediterranean region.
This multi-layer analysis highlights the dynamic behavior of
volcanic aerosols, providing valuable insight into their dis-
persal patterns. An animation of sub-hourly SEVIRI multi-
layer AOD estimations during the eruption (from 07:27 to
15:57UTC) was also generated, represented as a video in
Pashayi et al. (2025b) (https://doi.org/10.5446/69731), pro-
viding a detailed view of the plume’s evolution over time.

5 Conclusion

This study proposes a model that integrates satellite TOA re-
flectance data from the SEVIRI sensor, meteorological data,
and land cover to estimate AOD across distinct altitude layers
at 1.5, 3, 5, and 10 km. Using CALIOP AOD profiles as ref-
erence data, RF and XGB models were trained on a dataset
spanning 2017 to 2018. The trained models were then used
to estimate SEVIRI-based multi-layer AOD values over Eu-
rope for 2019 and 2020. The 2019 estimates were compared
with CALIOP AOD retrievals, while the 2020 estimates were
evaluated against EARLINET AOD retrievals, yielding the
following insights.

Both RF and XGB models demonstrate high accuracy
in estimating sub-hourly SEVIRI multi-layer AOD values
at approximately 15 min intervals. The XGB model shows
slightly superior performance, achieving R? values ranging
from 0.97 to 0.99 across different layers when compared to
CALIOP and from 0.59 to 0.87 when evaluated against EAR-
LINET retrievals. Incorporating meteorological data such as
T, P, Ws, and Wd, along with LC data, during model train-
ing significantly enhances the performance of the proposed
frameworks. These additional features, often excluded in tra-
ditional physical AOD retrieval methods that rely solely on
atmospheric radiative transfer models, greatly improve the
accuracy of SEVIRI multi-layer AOD estimations. Among
the meteorological variables, Ws and Wd are the most influ-
ential, resulting in higher R? values and lower RMSE across
all estimated layers.

A qualitative validation was conducted by comparing the
spatial trends of the estimated AOD values with CALIOP
AOD retrievals. The analysis focused on SEVIRI pixels cor-
responding to CALIOP overpasses on 3 March, 30 April,
13 June, and 31 October 2019, with temporal differences of
less than 4 min. The results demonstrate strong agreement
between SEVIRI estimates and CALIOP retrievals across
varying AOD levels, highlighting the model’s capability to
provide reliable high-resolution AOD estimates that effec-
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Figure 11. Spatial distributions of estimated multi-layer AOD values during the volcanic eruption on 14 August 2023, at selected times.
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tively complement CALIOP data. Additionally, the study
successfully estimated multi-layer AOD at 15 min intervals
for two real events — a Saharan dust plume that swept across
western and central Europe between 13 and 18 March 2022
and the Mount Etna eruption on 14 August 2023. The results
are consistent with the physical characteristics of these phe-
nomena, such as Saharan dust long-range transport in the up-
per layers of the atmosphere and a gradual increase in AOD
values over time from the lower to higher tropospheric lay-
ers during volcanic events. This approach enables detailed
monitoring of aerosol behavior across vertical layers of the
troposphere, providing valuable insights into the dynamics
of such events. In conclusion, the XGB model can estimate
detailed sub-hourly 3 x 3 km? multi-layer AOD values, pro-
viding valuable insights into aerosol properties.

Our research, centered on the troposphere over Europe
and validated with ground- and satellite-lidar-based AOD re-
trievals, provides a foundation for future studies to develop
a more comprehensive approach for multi-layer AOD re-
trievals by incorporating an ensemble of geostationary me-
teorological satellites. Moreover, the current framework uti-
lizes a limited range of input features, omitting important
variables such as precipitation, NDVI, and land use, which
significantly affect AOD dynamics. Future efforts will fo-
cus on improving model accuracy by including these addi-
tional factors and exploring the potential applications of the
model’s outputs in areas like aerosol transport analysis, air
quality assessment, and climate studies to enhance its practi-
cal relevance.
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