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Abstract. The retrieval of methane from satellite measure-
ments is sensitive to the reflectance of the surface, and in
many regions, especially those with agriculture, surface re-
flectance depends on the season. Existing corrections for
this effect do not take into account a changing relation-
ship between reflectance and the methane correction value
over time. It is an important issue to consider, as agricul-
tural emissions of methane are significant and other sources,
like oil and gas production, are also often located in agri-
cultural lands. In this work, we use a set of 12 monthly
machine learning models to generate a seasonally resolved
surface albedo correction for TROPOspheric Monitoring
Instrument (TROPOMI) methane data across the Denver–
Julesburg basin. We found that land cover is important in the
correction, specifically the type of crops grown in an area,
with drought-resistant-crop-covered areas requiring a correc-
tion of 5–6 ppb larger than areas covered in water-intensive
crops in the summer. Additionally, the correction over dif-
ferent land covers changes significantly over the seasonally
resolved timescale, with corrections over drought-resistant
crops being up to 10 ppb larger in the summer than in the
winter. This correction will allow for more accurate determi-
nation of methane emissions by removing the effect of agri-
cultural and other seasonal effects on the albedo correction.
The correction may also allow for the deconvolution of agri-
cultural methane emissions, which are seasonally dependent,
from oil and gas emissions, which are more constant in time.

1 Introduction

The second most significant anthropogenic greenhouse gas
(GHG), methane, has important climate implications. Pro-
viding 27 times the warming potential of carbon dioxide on
a 100-year timescale, but with a much shorter lifetime of less
than 10 years, a reduction in methane emissions could ease
global warming and potentially help achieve 1.5 or 2° goals
(Boucher et al., 2009; Collins et al., 2018). Agriculture is the
largest contributor to global anthropogenic methane emis-
sions (41.0 %), followed by the energy sector (38.4 %) (IEA,
2023). Methane emissions from the energy sector are domi-
nated by oil and gas operations which, in the United States,
are still expanding following phase-out trends in coal-fired
power production (U.S. Energy Information Administration
(EIA), 2024). From natural gas production sites, methane
emission rates are estimated to be 830 Mg h−1, with a high
fraction from super-emitting sites (Omara et al., 2018).

Climate policy solutions generally rely on bottom-up in-
ventories, which are derived from known emission rates
for individual processes at a source. Bottom-up inventories
are often at odds with top-down measurement techniques,
which rely on measurements of atmospheric concentrations,
and some have tried to reconcile these differences (Allen,
2014; Etiope and Schwietzke, 2019). Atmospheric measure-
ments have expanded in both number and choice of platform
with the advances of satellite monitoring systems (de Gouw
et al., 2020; Jacob et al., 2016). Due to the prevalence of
super-emitters skewing averages, both bottom-up and top-
down methods have large and difficult-to-quantify uncertain-
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ties (sometimes well over 100 %; Riddick et al., 2024), espe-
cially when diverse sources of methane overlap (Allen, 2016,
2014). Bottom-up inventories rely on accurate reporting of
emissions and emissions factors from private companies and
are extremely sensitive to super-emitting events that make up
a minority of events but a majority of the emissions (Allen,
2014; Riddick et al., 2024). Top-down methane emissions
measurements rely on the accuracy of the instrumentation
aboard the satellite, the retrieval method, and the methods
used to calculate emissions from the column densities, such
as a Bayesian inversion or a flux divergence method (Liu et
al., 2021; Zhang et al., 2020). Improved methane inventories
are invaluable to regulators and policymakers. Understand-
ing the extent of methane emissions would help climate pol-
icymakers set more accurate and achievable goals and would
allow regulators to effectively monitor those goals.

The accuracy of the inventory depends quite significantly
on the accuracy of the measurements. The TROPOspheric
Monitoring Instrument (TROPOMI), an imaging spectrom-
eter aboard the Sentinel-5 Precursor satellite, is known to
have significant biases in the operational methane retrievals
related to surface albedo (Lorente et al., 2021). There have
been several recent updates to the dataset to mitigate this
albedo effect using TROPOMI retrieval data over areas with-
out emissions, as well as by comparison with proxy retrievals
from the Greenhouse Gases Observing Satellite (GOSAT),
which are much less affected by surface albedo (Balasus et
al., 2023; Lorente et al., 2021). When applied to methane re-
trievals on a seasonal basis, we show here that some residual
albedo effects are still apparent and may thus bias seasonal
data. This study attempts to develop a seasonal albedo cor-
rection for the area of the Denver–Julesburg (DJ) basin in
Colorado to account for these effects.

Colorado ranks in the top 10 US states in total energy pro-
duction (U.S. EIA, 2020). The state produced nearly 5 times
more crude oil in 2022 than in 2010 largely due to the expan-
sion of horizontal drilling and hydraulic fracturing (Cook et
al., 2018; Annual Energy Outlook 2023, 2025), and produc-
tion of natural gas has more than doubled since the year 2000
(Annual Energy Outlook 2023, 2025). The majority of crude
oil produced in Colorado comes from the Niobrara shale for-
mation, located mostly within Weld County, while the whole
basin stretches from southern Colorado to Wyoming and
from the front range uplift into Nebraska and Kansas (Pétron
et al., 2014; U.S. EIA, 2023). Weld County is also one of
the richest agricultural counties east of the Rocky Mountains,
producing over 27 % of the entire state’s agricultural sales. A
total of 80 % of the land area in Weld County is used for agri-
culture, with 44 % of that land used for cropland and 53 %
used for pastureland (United States Department of Agri-
culture (USDA), 2017). Agriculture complicates the mea-
surement and attribution of methane emissions data in two
major ways: (1) cropland seasonal albedo shifts are under-
compensated for in current albedo corrections due to a vari-
able relationship between albedo and correction over time

and (2) unreported methane emissions from animal feedlots
like Concentrated Animal Feeding Operations (CAFOs) oc-
cur in close proximity to oil and gas production. A season-
ally resolved albedo correction would assist with both of the
issues by (1) correcting the seasonal shifts in albedo while
accounting for the changing relationship between albedo and
correction value and (2) allowing for more accurate top-down
seasonal methane emissions quantification, which may al-
low deconvolution of consistent O&G emissions from sea-
sonal agricultural emissions. Co-location of large oil and gas
production with massive agricultural operations makes the
DJ basin and Weld County in particular a prime target for a
machine-learning-based seasonal albedo correction.

Machine learning is a branch of artificial intelligence
where computers are trained to recognize patterns and make
decisions based on data, similar to how humans learn from
experience. Some machine learning models are considered
a “black box” because it can be difficult to understand how
they make decisions. To address this, tools like SHapely Ad-
ditive exPlanations (SHAP) help provide insights into how
machine learning models arrive at their predictions (Lund-
berg and Lee, 2017; Rudin, 2019). Neural networks, a type of
machine learning model, are inspired by the way the human
brain processes information. They consist of layers of “neu-
rons” that work together to identify patterns in data (Abadi et
al., 2015).

Albedo corrections for the TROPOMI methane data have
been described in the literature, with the most prominent be-
ing from Lorente et al. (2021) which is now incorporated into
the TROPOMI retrieval algorithm. Another effective albedo
correction is from Balasus et al. (2023), who also utilize ma-
chine learning. Lorente et al. (2021) used a B-spline interpo-
lation of albedo dependence calculated over 2 years of data,
while Balasus et al. (2023) trained a machine learning model
on global data over a multi-year timescale, using the Univer-
sity of Leicester (UoL) Greenhouse Gases Observing Satel-
lite (GOSAT) proxy retrievals as the target data (Balasus et
al., 2023; Lorente et al., 2021) (hereafter referred to as simply
Balasus et al. and Lorente et al. when referring to the correc-
tions they designed). In this work we demonstrate that sea-
sonal or monthly averaged methane retrievals over Colorado
continue to be biased by albedo effects after the implementa-
tion of these correction algorithms. A major reason for using
a seasonal- or finer-time-resolution average is for deconvo-
lution of agricultural emissions. Presently, oil and gas oper-
ations are required to report on their emissions, but the ac-
curacy is disputed (Zavala-Araiza et al., 2015). Meanwhile,
agricultural operations are largely exempted from emissions
reporting. The difficulty arises when agricultural and oil and
gas operations are near to each other or co-located. Satel-
lite methods for measuring emissions from oil and gas op-
erations can be biased by the unaccounted-for agricultural
operations. Deconvolution of oil and gas emissions, which
largely remain constant through the seasons, and agricultural
operations, which cycle through the seasons, could be made
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more accurate if the measurements could be seasonally re-
solved. A seasonal albedo correction, as presented here, is a
step towards making a seasonal measurement more accurate
for better determination of emissions.

2 Methods

The two satellites used in this study, TROPOMI and GOSAT,
have different spatial resolutions both in a latitude–longitude
grid but also vertically, with different numbers of verti-
cal retrieval pressure levels, known as averaging kernels.
Because of this, as well as other instrument sensitivities,
we do not expect TROPOMI and GOSAT to measure the
same concentrations over the same places at the same time.
1(TROPOMI−GOSAT) is an adjustment made here to
place TROPOMI and GOSAT data onto common averag-
ing kernel sensitivities and vertical profiles and determine
the difference between the measurements on the same spatial
scale. The calculation of this value is described in Balasus et
al. and involves interpolating GOSAT vertical pressure lev-
els to TROPOMI’s vertical pressure grid in order to calculate
what GOSAT would have retrieved with TROPOMI’s verti-
cal sensitivity (Balasus et al., 2023). This value is used as the
target of the machine learning (ML) model training.

2.1 Satellite data

2.1.1 TROPOMI

TROPOMI is the push-broom imaging spectrometer aboard
the European Copernicus Sentinel-5 Precursor (S5P) satel-
lite, capable of measuring methane among other chemicals.
It has been described in detail previously (Levelt et al., 2022;
Veefkind et al., 2012). In this work, TROPOMI orbit files
from April 2018–December 2022 were downloaded from the
ESA Copernicus open-access hub. We used level 2 repro-
cessed and offline version 2.4 methane column data, XCH4,
with internal TROPOMI-defined QA values of≥ 0.5, indicat-
ing good-quality retrievals and better, including good-quality
snow-covered scenes, and the shortwave infrared (SWIR)
surface albedo as co-retrieved with XCH4. The bounding
box for machine learning training data used was latitude 34
to 42° N, longitude 106 to 95° W, which encompasses the
largest production regions of the Denver–Julesburg basin and
extends into the surrounding states that also contain parts of
the basin: Wyoming, Nebraska, and a small part of Kansas.

A well-known artifact in methane retrievals from
TROPOMI is striping caused by small differences between
across-track pixels, which can be mitigated by performing a
stripe correction (Liu et al., 2021). This work utilizes an in-
herent stripe correction instead of a separate explicit stripe
correction.

2.1.2 GOSAT

The University of Leicester Full-Physics dataset (UoL-FP)
proxy retrieval scheme was used (Parker and Boesch, 2020).
The proxy retrieval involves retrieving the CO2 column to
act as a proxy for aerosol scattering effects (Schepers et
al., 2012). This dataset has been used extensively before as a
measurement that is less affected by changing surface albedo
(Balasus et al., 2023; Lorente et al., 2021). The data were
downloaded from the Center for Environmental Data Analy-
sis for the years 2018–2020 on a global scale, and the code
calculating the co-location of TROPOMI and GOSAT data to
calculate TROPOMI-GOSAT pairs was based on that of Bal-
asus et al., where pairs are calculated as pixel centers< 5 km
apart in space and < 1 h apart in time (Balasus et al., 2023).
As our method requires a large number of data and the region
is much smaller, we loosened the criteria to any pixel overlap
in space and < 2 h apart in time.

2.2 Machine learning methods

A neural network machine learning algorithm was trained
on a large subset of co-located TROPOMI and GOSAT data
gridded to a 0.1°× 0.1° latitude–longitude square grid, total-
ing 17 634 points with 31 variables, described in Table S1
in the Supplement, each to develop a hybrid TROPOMI–
GOSAT dataset, which combines the measurement accuracy
and lack of albedo effect of the GOSAT proxy retrieval with
the data coverage of TROPOMI. The variables were selected
based on previous ML work on this topic with a few changes
(Balasus et al., 2023). We chose to incorporate the retrieved
and corrected XCH4, which is corrected based on the on-
board albedo correction from Lorente et al. We also chose to
remove the surface classification variable because our rela-
tively smaller area of study has relatively few bodies of wa-
ter. Furthermore, we chose to remove wind speed variables so
that we would not introduce a bias or double counting if this
model were to be used with the flux divergence method of
quantifying methane emissions, which requires wind speed
and direction (Beirle et al., 2021). The predictor variables
were normalized using z-score normalization to ensure the
predictor values are on the same scale for training purposes.
A neural network can be described as “deep” if it has 3 or
more “hidden layers” or levels in the network. Hidden lay-
ers are the strata of neurons which receive input from above
and output to below and are “hidden” because the only layers
the user interacts with are the top-level input and the bottom-
level output, while there may be hundreds or even thousands
of layers sandwiched between. The term “transfer learning”
is used to describe a model that has been trained previously
and is subsequently trained again starting from the previous
training endpoint. A deep transfer learning (DTL) method
was used where an annual base model was trained on 80 % of
the total points, randomly sampled. These same points were
then separated by the month of their collection and used to
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train 12 separate monthly models, starting from the annual
base model; a schematic representing this training process
is presented in Fig. 1. The remaining 20 % of the data were
used to calculate final fit statistics for each monthly model.
There is an unequal distribution of points across the months,
which introduces some seasonal bias to the annual model.
This bias is subsequently removed when the monthly models
are trained. DTL is especially suited to this type of learn-
ing because (1) the initial learning phase trained on all train-
ing data helps the lower levels of the model learn to general-
ize the task and (2) the subsequent training occurs on much
smaller monthly training datasets that help train higher, more
specific levels of the model. Various hyperparameters were
tuned using Optuna, a hyperparameter tuning package for
Python (Takuya et al., 2023). To monitor against overfitting,
training and validation loss for the training period of each
model were calculated and are presented in Fig. S3.

2.3 Python

All of the computations were completed using Python, a
general-use, interpreted, object-oriented programming lan-
guage ideal for building and implementing machine learn-
ing models and algorithms. A number of third-party pack-
ages were useful in the computations completed in this work:
Matplotlib for figure generation (Hunter, 2007); the machine
learning packages TensorFlow (Abadi et al., 2015), Keras
(Chollet et al., 2015), Pandas and GeoPandas for tabular and
geospatial data organization (Jordahl et al., 2020; The pandas
development team, 2024); Optuna and Fast and Lightweight
AutoML Library (FLAML) for tuning ML models hyperpa-
rameters (Takuya et al., 2023); SciPy for scientific and statis-
tical functions (Virtanen et al., 2020); Shapely for manipu-
lation of geometric objects (Gillies et al., 2007); NumPy for
array manipulation (Harris et al., 2020); netcdf4 for open-
ing and reading satellite data (Whitaker, 2008); Rasterio for
raster manipulation (Gillies et al., 2013); and tqdm to visual-
ize data processing progress (da Costa-Luis, 2019). Figure 1
was created using the Google Drawings suite, Fig. 2 was cre-
ated using Python Matplotlib, and Figs. 3–7 were created in
Igor Pro 8.04.

2.4 Other geospatial data

River paths and extent data for the South Platte River and
North Platte River were downloaded from NOAA (National
Weather Service, 2024). Crop data were downloaded from
CropScape, a geospatial thematic agricultural mapping soft-
ware (Han et al., 2014). Cartographic shapefiles containing
state, county, and urbanized area boundary lines were down-
loaded from the US Census Bureau (2024). Finally, data
visualizations were made to be color-accessible by Fabio
Crameri’s scientific color maps (Crameri et al., 2020).

3 Results and discussion

The seasonal biases of the current TROPOMI operational
product, which includes the albedo correction from Lorente
et al., are studied in Fig. 2 for the area of interest. Figure 2
shows the ratio between co-located GOSAT and TROPOMI
methane retrievals as a function of surface albedo in the
shortwave infrared. In the ideal case, these ratios are equal
to 1 and there is no correlation between this ratio and sur-
face albedo (R= 0). When all data are used (Fig. 2a) the
Pearson correlation is indeed calculated to be low, i.e., be-
low a threshold of 0.1, which we chose here as a target value
for minimal correlation between SWIR surface albedo and
the albedo corrected methane retrieval. Though the signif-
icance of Pearson coefficients is up to interpretation, most
would agree that a value of< 0.1 signifies negligible correla-
tion (Akoglu, 2018; Schober et al., 2018). When the data are
shown by season, this is no longer true – Pearson correlations
with an absolute value greater than 0.1 indicate that there ex-
ists some correlation between the SWIR surface albedo and
the albedo corrected methane retrieval. The Lorente et al.
correction algorithm does account for some seasonality be-
cause the TROPOMI-retrieved variables include the surface
albedo SWIR which is used to calculate a correction value.
However, the seasonal correlation reappears after the Lorente
et al. correction because this correction assumes that the rela-
tionship between surface albedo SWIR and correction value
is static over time. Figure 2b and c demonstrate the change
in surface albedo as a function of season, with the density
of counts shifting from the left side of the plot, indicating
smaller albedos, to the center of the plot, indicating higher
albedos on average from summer to winter. The different sea-
sons also have different directions of change, with summers
having an inverse correlation and winters having a positive
correlation. The QA value used in processing the TROPOMI
retrieval data retained high-quality snow-covered scenes, so
some of this shift could be attributed to the SWIR reflectance
of snow over bare soil. Regardless of the reason, the shifting
albedo and seasonally variable albedo effect biases methane
retrieval data from TROPOMI at finer timescales. In order
to correct for this bias we employed a DTL neural network
machine learning algorithm.

3.1 Model evaluation

The DTL neural network models were trained and evaluated
as described in Sect. 2.2 and compared against the uncor-
rected methane retrieval, the Lorente et al. corrected methane
retrieval, and the blended TROPOMI–GOSAT product pro-
duced by Balasus et al., commonly referred to as the “Har-
vard dataset”, for their effectiveness in methane correction.
To evaluate against the other models, Pearson correlations
were calculated and presented in Fig. 3a, where different
constructions of Pearson values have been unified according
to Table S2. Pearson correlations have been calculated the
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Figure 1. Schematic representation of the data training process. Blue represents the annualized, long-term model, while orange represents
the short-term monthly seasonal model and data. Transfer learning, the process by which a pre-trained model is trained again, usually on
more specific data, was utilized here to generate 12 monthly models with the deeper understanding that comes from larger data quantities in
the annualized model combined with the better specialization of the monthly seasonal training data, represented by the orange circles with
the blue center.

same ways as in Fig. 2 with the correlation between GOSAT–
TROPOMI and surface albedo. To reiterate, a Pearson corre-
lation of 0 is the preferred value, as the difference between
the two datasets does not depend on surface albedo. The sur-
face albedo is the SWIR albedo as retrieved by TROPOMI.
Figure 3b depicts the 95 % confidence intervals about the
mean of the 12 months of the Pearson values and is help-
ful in determining the most effective model. Dashed lines in
both figures represent the ideal values indicating no corre-
lation (Kuckartz et al., 2013), with values in Fig. 3a being
between the dashed lines at−0.1 and 0.1 Pearson correlation
values and Fig. 3b being the average and center of the 95 %
confidence margin of error on the line at 0 Pearson correla-
tion value.

Only the models devised by this work entirely remove the
seasonality described by the uncorrected data. Additionally,
the Pearson values remain within our goal Pearson correla-
tion value of 0.1 for each month. As expected, the uncor-
rected data reach the farthest outside of this range and re-
main outside for the greatest number of points. The Lorente
et al. correction, which handles seasonality with a temporally
static correction based on SWIR surface albedo, significantly
improves upon the uncorrected data but preserves the sea-
sonal trend in the data, demonstrating larger, positive corre-
lations in the winter months and cycling through the seasons.
The Balasus et al. blended dataset improves this further by
reducing the seasonality of the correlation, but this dataset
still displays correlations outside the 0.1 correlation thresh-
old desired. Finally, this work’s devised monthly models al-
ways fall between the ideal −0.1 and 0.1 Pearson values. In

comparing the mean and 95 % confidence intervals, we ob-
serve the steady improvement in the progression of models,
with this work’s monthly models providing for the Pearson
value closest to 0 and with the smallest 95 % confidence in-
terval. All this demonstrates that the use of the monthly mod-
els provides a small but measurable improvement over previ-
ously designed models for albedo correction in this specific
region around the Denver–Julesburg basin.

3.2 Model results

The Python library SHapely Additive exPlanations (SHAP)
was used to determine the relative importances of the dif-
ferent variables incorporated into the model (Lundberg and
Lee, 2017). The importance of a variable indicates how much
each variable contributes to the difference between the actual
model output and the average model output. The importances
of the variables were calculated on a monthly basis to show
how the importances change over time, and 2 representative
months, 1 month for winter and 1 month for summer, are
shown in Fig. 4. Figure 4a depicts the model outputs for the
month of January in a decision plot. Decision plots are gener-
ally used to show how models make their determinations and
what variables are affecting their decisions the most. Here the
decision plot is showing that the range of correction values
stretches from approximately −40 to 40 ppb, indicating sig-
nificant changes in the total methane concentrations (∼ 2 %–
4 %). This change is larger than the mission specifications of
bias less than 1.5 % and much larger than the measured mean
bias of the corrected TROPOMI XCH4 data of 0.2 % (Apit-
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Figure 2. Albedo effect on methane retrievals on seasonally aver-
aged TROPOMI data. TROPOMI bias-corrected methane level 2
retrieval data averaged from April 2018 to December 2022 (a) All
months, (b) summer months (July–September), and (c) winter
months (January–March). The TROPOMI data are co-located in
space and time with UoL GOSAT proxy retrievals treated as ground
truth. The dashed line represents perfect overlap and no corre-
lation. Pearson R values represent the correlation between sur-
face albedo and XCH4 retrievals. Our target Pearson R values are
−0.1<R value< 0.1.

uley et al., 2022; Landgraf et al., 2023). That the corrections
are larger than the biases suggests that the corrections are
significant and important. Contrasting the general shapes of
the decision plots, Fig. 4a appears to be more cone shaped,
having a much starker taper in the less important variables,
while Fig. 4b appears more cylindrical, sporting a milder ta-
per. This indicates that the relative importance of predictor
variables changes between seasons. A single model would
miss this detail entirely, but the set of 12 monthly models
allows for this change to occur. Additionally, the final model
output value for Fig. 4b remains in the same range of approx-
imately −40 to 40 ppb. Together, this indicates that while
outputs remain in the same range, the difference in the im-
portance of the variables changes the method that the models

Figure 3. (a) Comparison of the model developed in this work
with Lorente et al. and Balasus et al. corrections and uncor-
rected TROPOMI retrieval data. Pearson value describes the Pear-
son correlation value of (sensitivity-corrected GOSAT /measured
or calculated TROPOMI value) and surface albedo SWIR for the
ML model-predicted data, the Pearson correlation value of (raw
GOSAT / calculated value) and surface albedo SWIR for scalar cor-
rections, and the Pearson correlation value of (raw GOSAT / raw
TROPOMI value) and surface albedo SWIR for the uncorrected
data. (b) Points represent the average, and error bars describe 95 %
confidence intervals of the 12 months.

use to predict the outcome. This difference of importance is
indicative that the relationship between variables and the cor-
rection value is changing over time.

While the training process attempted to minimize the dif-
ferences between TROPOMI and GOSAT data, thus effec-
tively reducing the dependence on SWIR surface albedo,
not all training iterations were successful in this due to the
multitude of features to incorporate. As part of our model
validation, we only considered those that reduced the cor-
relation between XCH4 and surface albedo SWIR as viable
models. Due to this validation method, we call our machine
learning product an “albedo correction”. Figure 4 shows
that other features may be more important than the surface
albedo SWIR in the actual model calculation. “Importance”
in a ML model is the magnitude of effect that variable has
on the final output value of the model. The variables that
appear higher on the y axis than “surface albedo SWIR”
tended to be more important and should be analyzed as well.
Some of these variables have clear reasonings as to why they
are more important: XCH4 a priori, XCH4 corrected, and
XCH4 are all the measurements of methane mixing ratio that
were either priors for the TROPOMI measurement (XCH4
a priori) or direct measurements of the methane mixing ra-
tio by TROPOMI (XCH4 and XCH4 corrected). XCH4 and
XCH4 corrected directly measure methane mixing ratios via
TROPOMI, serving as primary data sources for our predic-
tive models. The reasoning for other important variables (sur-
face albedo SWIR precision and chi square SWIR) is not so
clear. The precision of the surface albedo SWIR measure-
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Figure 4. Decision plots depicting relative importances of predictor variables on a seasonal basis. SHAP importances were calculated for
(a) January and (b) July, and the contributions from each predictor variable are shown. Variables are ordered from top to bottom by importance
in January. Color scale indicates the final model output value, which is the 1(TROPOMI−GOSAT) value. Expected value is the average
prediction made by the model across all possible combinations of features and is thus the same value for all trials using the same model.

ment being important was not expected but may be the result
of a well-trained model successfully making the association
between the SWIR albedo measurement and its precision. A
less precise measurement would be less heavily relied upon
for the model’s predictions, so the importance may come
from the association between the precision measurement and
how much a particular measurement affected the model dur-
ing training. Similarly, the chi square SWIR is a goodness-
of-fit check that ensures that the SWIR measurements by the
instrument fall within an appropriate distribution. Poor good-
ness of fit could allow the model to rely less heavily on that
particular training data point in making future predictions.
Additionally, there were some factors that appear lower on
the y axis that are somewhat unexpected, such as aerosol
optical thickness SWIR and solar zenith angle. Aerosol op-
tical thickness SWIR describes the atmospheric density of
aerosols that reflect in the SWIR band, which could be ex-
pected to be important for this prediction due to the impor-
tance of the other factors affecting the SWIR band that ap-
pear towards the top of the axis. Solar zenith angle is a fun-
damental factor in the calculation of the methane mixing ra-
tio because it describes the angle of incident light, which is
integral to remote sensing by satellites. That this factor is
relatively unimportant suggests that this information is well

incorporated in the retrieval. The importances of variables
here differ from the importances determined in Balasus et
al. likely due to extent. This work’s much smaller area fo-
cused on the Denver–Julesburg basin, which has a very lim-
ited range of surface albedo SWIR values, whereas the Bal-
asus et al. global extent sees a range of 0.01–0.6 in some
regions. The much smaller range of SWIR surface albedo
here likely contributes to the lower overall importance. The
extent likely also affects the importance of aerosol-related
variables, which Balasus et al. also found to be significantly
more important – our extent focused on the oil and gas basin
with significant agricultural influence, which are two impor-
tant sources of aerosols, but our proximity to sources may
limit the range of aerosol-related values, making this term
less important here than on a global extent as well.

This study utilized an implicit stripe correction instead of
an explicit one. The UoL target data are not subjected to a
striping effect, so the use of the target data and the use of
the ground pixel index as a variable in the model allowed
for a stripe-corrected dataset to be output from the input of
non-stripe-corrected data. This process relies heavily on the
ground pixel variable which finds middling importance in
Fig. 4, indicating that while the stripe correction is impor-
tant, other factors affect the overall output more. Other in-
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formation describing the training and validation process is
available in the Supplement.

3.3 Model corrections in practice

The trained models were then used to predict corrected
XCH4 values on a monthly basis on data from April 2018
to December 2022, the correction values for which are de-
picted in Fig. S1 in the Supplement. The months of Jan-
uary and July, representing winter and summer data, respec-
tively, are presented in Fig. 5. The model-predicted posi-
tive and negative correction values for these data appear to
be seasonally dependent, with more positive corrections be-
ing made in colder months and negative corrections being
made in warmer months, appearing as blue colors in the sum-
mer (Fig. 5a) and red colors in the winter (Fig. 5b). The
correction values also show a specific geographic distribu-
tion: two curved lines, one curving upwards from Denver
and the other curving down through Nebraska, appear to fol-
low the South Platte River and North Platte River, respec-
tively (dashed white lines in Fig. 5a). As Colorado has been
described in the past as part of the Great American Desert,
water sources like these two eventual tributaries to the Mis-
souri River dictate where larger water-intensive agricultural
operations exist. As such, larger densities of water-intensive
crop farms are co-located with these rivers, bringing their
albedo-influencing crops and plant life, and thus requiring an
albedo correction which is not necessarily reflected in mag-
nitude by the surrounding scrubland. It has been shown that
water-intensive crops, like corn, sugar beets, and alfalfa, and
drought-resistant crops, like winter wheat, millet, and dry
beans, reflect SWIR light differently, allowing for identifi-
cation of crops from space with the SWIR reflectance vari-
able along with other variables (Chen et al., 2005). This ef-
fect is possibly due to water content or leaf size of the veg-
etable matter. The spatial extent of the water-intensive crops
is much wider than the riverbed; the North Platte River and
South Platte River are extremely small (average discharges
of 38 and 5 m3 s−1 respectively; the Mississippi River is
16 800 m3 s−1) and are far less in extent than one satellite
pixel, making the flagging or removing of these data due to
water content unnecessary. In his book Roughing It, Mark
Twain describes the South Platte River in 1870 as “shallow,
yellow, muddy. . . and only saved from being impossible to
find with the naked eye by its sentinel rank of scattering trees
standing on either bank” (Twain, 1891).

Particularly prominent in Fig. 5a is a darker swath south of
the upward bend in the South Platte River. This area also has
many farms, but these farms are more likely to grow drought-
resistant crops. Additionally, many more of these fields lie
fallow in a given year than the ones irrigated by river wa-
ter. Another area of agricultural significance is around Gree-
ley, Colorado (white triangle). Greeley is also visible in the
colder months maps, giving further indication that cropland
is associated with albedo effects, but with magnitude or di-

rection differing based on crop types and growing seasons.
Greeley and the surrounding farms make up a large portion
of the crop farming capacity within Weld County.

Figure 5c depicts the agricultural land use in the area of in-
terest where visual comparison of the water-intensive crops
and the bright-line regions of the summer seasonal albedo
correction plots can be made. The numerical comparison
agrees with visual inspections, as Fig. 5d depicts average
albedo correction values over each kind of land cover. Over-
arching seasonal trends appear, with corrections over all land
covers appearing closer to 0 in the winter and fall and in-
creasingly negative through the spring and summer. Addi-
tionally, seasonal effects over individual types of land cover
are measurable. During the winter and fall, many of the land
cover types appear very similar, while diverging from each
other in the spring and summer, when vegetation in Col-
orado becomes increasingly stressed for water. That the ur-
ban points also follow the general seasonal trend is impor-
tant and indicates that a driving factor in the seasonal albedo
change is the relationship between surface albedo SWIR and
other variables with the correction value and how that rela-
tionship changes seasonally.
T tests were performed between categories to determine

the significance of the differences between the different land
uses and presented in Fig. 6. T tests for each month of data on
a small subset of 500 points for each land use demonstrate,
for example, that drought-resistant crops and other agricul-
ture types are not statistically significant. P values for the
T tests between other land uses tend to increase and indicate
no statistical significance in the winter and late fall, while in-
dicating statistically high significance throughout the spring
and summer for most land use pairs for most months. This
indicates that in general the different land uses require dif-
ferent correction values, and this is related to the kinds of
agriculture utilized. Water-intensive agriculture is likely ir-
rigated, and soil moisture and vegetable water content can
play a significant role in surface albedo SWIR, such that
measurements of the like have been used to measure ex-
tents of irrigated agricultural land uses (Chen et al., 2005).
This demonstrates that a seasonally resolved albedo correc-
tion, one that takes into account the changing relationship
between the surface albedo SWIR and the correction value
over time, is important and may be different in different
parts of the world over different land cover types. Similarities
between water-intensive and non-agricultural and drought-
resistant and non-agricultural in the winter and fall indicate
that non-agricultural land may not be as affected by the sea-
sonal bias.

The corrected XCH4 data were calculated and averaged
across the summer and winter months to demonstrate the dif-
ference the models developed here make in their corrections.
Visually apparent in the uncorrected data and the Lorente et
al. corrections in Fig. 7a, b, e, and f are structural features that
are similar to features shown in the surface albedo SWIR re-
trieval (Fig. 7d and h). The corrected dataset devised here has
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Figure 5. Average XCH4 correction values for water-intensive vs. drought-resistant crops. XCH4 correction value maps with dashed white
lines representing the North Platte River and South Platte River for July (a) and January (b) representing data for the summer and winter,
respectively. Locations of crop types (c) around the DJ basin. Water-intensive crops include corn, alfalfa, and sugar beets; drought-resistant
crops include winter wheat, millet, and dry beans. Crops with both traits, fallow land, and other agricultural types are described as other
agriculture. Grassland and other non-agricultural types, except urban areas, are described as non-agricultural. Developed land includes parts
of the cities of Denver, Greeley (marked with the white square and triangle, respectively), Cheyenne, and other smaller communities. Average
CH4 correction values for the crop types (d) and drought-resistant crops require larger corrections throughout the summer months, while
water-intensive crops are more similar to, though not the same as, the surrounding grasslands. No error bars are shown due to the large number
of points making both standard error and 95 % confidence interval values too small to see. Crop data are from 2021 only and calculated using
the April 2018–December 2022 correction data.

Figure 6. Significance tests demonstrating the statistical significance between paired datasets. All values that are not the darkest blue (equal to
0.05 or greater) are significantly different in a p critical (equal to 0.05) environment. All values that are pink (equal to 0.001 or less) indicate
very significant differences. More blue early in the year and later in the year indicates that albedo corrections are more similar between
different land cover types, and more pink in the summer months indicates that albedo corrections are more different between different land
cover types in this time period.
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Figure 7. Result of the methane albedo correction devised in this work. The uncorrected XCH4 data retrieved by TROPOMI (a) and the
Lorente et al. correction in the summer (b) are compared against the correction devised by this work (c) and the average surface albedo SWIR
retrieval map for this time period (d). This is repeated for the winter months on the right with the uncorrected retrieval (e). Lorente et al.
correction (f), this work’s correction (g), and the winter average surface albedo SWIR (h).

an average mixing ratio 6.9 ppb smaller than the Lorente et
al. corrected data in the summer and 0.4 ppb smaller in win-
ter, appearing slightly darker in color than the Lorente cor-
rected data. This reduction is likely due to the new correction
algorithm’s dependence on the UoL GOSAT proxy retrieval
target data, which on a global average measures 9.2 ppb less
XCH4 than TROPOMI (Balasus et al., 2023). Notably, the
Denver metropolitan area has lower average methane con-
centrations in our model output data than in the original
TROPOMI Lorente et al. corrected data (6.4 ppb less in sum-
mer and 4.9 ppb less in winter). Figure 7 cannot be evaluated
as before with a Pearson correlation because the correlation
requires GOSAT–TROPOMI data to be used to account for
natural correlation between surface albedo SWIR and XCH4.
There is not sufficient GOSAT data over this extent and time
period to calculate such a Pearson correlation. Instead we as-
sume that the tested model output correlations hold for these

data, making the correlations between GOSAT–TROPOMI
and the surface albedo SWIR −0.03± 0.04 and 0.01± 0.08
for winter and summer, respectively, for the models devel-
oped in this work and 0.25± 0.03 and −0.1± 0.1 for the
Lorente et al. correction values; error values are 1σ . Over-
all it appears that the correction is effective in removing the
albedo effect over seasonal time resolutions. This is impor-
tant, as emissions calculation methods generally rely on local
gradients. Fewer features in the methane distributions should
coincide with lower emissions estimates.

4 Conclusions

A small but significant seasonal dependence on surface
albedo biases was found in TROPOMI XCH4 retrievals over
Colorado even after the application of the current state-of-
the-art albedo corrections. A series of deep learning ensem-
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ble models specifically designed to reduce differences be-
tween TROPOMI and GOSAT while also reducing depen-
dency on surface albedo in the SWIR have been developed
to improve upon previous corrections. The output of the
trained models removes the lasting seasonal dependence on
surface albedo and demonstrates the fewest exceedances of
a −0.1<R< 0.1 Pearson correlation with surface albedo in
the TROPOMI dataset. Application of the albedo correction
to the Denver–Julesburg basin reveals albedo correction de-
pendencies on land cover, requiring larger-in-magnitude cor-
rections in the summer months over drier, drought-resistant
crops than irrigated water-intensive crops, with differences
that also fluctuate seasonally. The 12 monthly models’ sea-
sonal albedo correction appears to resolve previously under-
studied issues surrounding long-term albedo corrections over
seasonally changing areas, like cropland, making this a valu-
able tool for developing more accurate methane emissions
inventories and models, as well as potentially deconvoluting
relatively constant oil and gas emissions from seasonally de-
pendent agricultural emissions. Methane measurements cor-
rected utilizing this albedo correction method will be quanti-
fied in a forthcoming publication.
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