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Abstract. The growing fleet of Earth observation (EO) satel-
lites is capturing unprecedented quantities of information
about the concentration and distribution of trace gases in the
Earth’s atmosphere. Depending on the instrument and algo-
rithm, the yield of good remote soundings can be a few per-
cent owing to interferences such as clouds, non-linearities
in the retrieval algorithm, and systematic errors in the radia-
tive transfer algorithm, leading to inefficient use of computa-
tional resources. In this study, we investigate machine learn-
ing (ML) techniques to predict failures in the trace gas re-
trieval process based upon the input satellite radiances alone,
allowing for efficient production of good-quality data. We
apply this technique to ozone and other retrievals using mea-
surements from multiple satellites: the Suomi National Polar-
orbiting Partnership Cross-Track Infrared Sounder (Suomi
NPP CrIS) and joint retrievals from the Atmospheric In-
frared Sounder (AIRS) Ozone Monitoring Instrument (OMI).
Retrievals are performed using the MUlti-SpEctra, MUlti-
SpEcies, Multi-SEnsors (MUSES) algorithm. With this tool,
we can identify 80 % of ozone retrieval failures using the
MUSES algorithm at a cost of 20 % false positives from
CrIS. For AIRS-OMI, 98 % of ozone retrieval failures are
identified at a cost of 2 % false positives. The ML tool is
simple to generate and takes < 0.1 s to assess each measured
spectrum. The results suggest that this tool can be applied to

data from many EO satellites and can reduce the processing
load for current and future instruments.

1 Introduction

The advent of geostationary Earth observation (EO) satellites
designed to provide hourly estimates of trace gas concen-
trations is a significant step forward in understanding global
problems such as climate change and air pollution (NASES,
2018; Szopa et al., 2021). These satellites, such as Sentinel-4
on MetOp (Ingmann et al., 2012); Tropospheric Emissions:
Monitoring of Pollution (TEMPO) (Zoogman et al., 2017);
the Geostationary Environmental Monitoring Spectrometer
(GEMS) (Nicks et al., 2018), the Geostationary Carbon Cy-
cle Observatory (GeoCarb) (Moore III et al., 2018); AIM-
North (Nassar et al., 2019), and Geostationary Extended Or-
bits (GeoXO; NOAA, 2025), are expected to capture huge
quantities of measurements over many years. In addition, low
Earth-orbiting satellites, such as the Suomi National Polar-
orbiting Partnership Cross-Track Infrared Sounder (Suomi
NPP CrIS), capture millions of measurements daily. This re-
sults in a significant challenge, i.e. the timeliness of generat-
ing trace gas concentrations. The optimal estimation retrieval
algorithms used to convert measured spectra into trace gas
concentrations (Rodgers, 2000; Worden et al., 2007) are re-
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source intensive, typically requiring several minutes to gen-
erate a single estimate. Therefore, one of the key challenges
in exploiting the capabilities of the geostationary EO satel-
lites is not in making the measurements but rather in the abil-
ity to process, store, and interpret the satellite measurements
in a timely manner. This is recognised in the satellite retrieval
community, with the TROPOMI total column ozone retrieval
algorithm consisting of two aspects, a near-real-time (NRT)
version and an offline version, where the NRT version sacri-
fices accuracy for speed (Garane et al., 2019).

There has been significant effort dedicated to improving
the speed of retrieval algorithms (Hedelt et al., 2019; Noël
et al., 2022). The largest bottleneck is found in the radiative
transfer models (RTMs), e.g. Vector LInearized Discrete Or-
dinate Radiative Transfer (VLIDORT; Spurr, 2006). RTMs
simulate the transfer of radiation through the atmosphere
and are fundamental components of any physics-based re-
trieval algorithm (Rodgers, 2000). Typical speed-up methods
include replacing the whole or part of the RTM with an ap-
proximation such as an emulator and/or neural network (NN)
(e.g. Rivera et al., 2015; Brence et al., 2023; Brodrick et al.,
2021; Efremenko et al., 2014; Himes et al., 2020; Pal et al.,
2019) or a look-up table (Loyola et al., 2020). Other methods
include simplifying the input and output of the RTM using
techniques such as principal component analysis (PCA) (Jin-
dal et al., 2016) or reducing the number of monochromatic
calculations (Liu et al., 2020; Mauceri et al., 2022; Natraj
et al., 2005, 2010; Somkuti et al., 2017).

However, a significant drain on resources while processing
large quantities of spectra still remains, namely the fact that
the retrieval process frequently yields poor-quality results,
where the output data must be discarded. These retrieval fail-
ures can occur for a variety of reasons, for example, excessive
cloud in the light path, a low signal-to-noise ratio (SNR), or a
poor-quality fit, depending on the algorithm in question (Ku-
lawik et al., 2021). These failed retrievals require the same
processing resources as good-quality retrievals; if those spec-
tra that yield failed retrievals could be screened and removed
from the processing chain then significant processing over-
head could be saved.

In this study, we investigate machine learning (ML) meth-
ods for predicting failed trace gas retrievals using measured
satellite spectra prior to full retrieval. Some research has
been conducted on the pre-selection or filtering of trace gas
retrievals using ML methods based on genetic algorithms
(Mandrake et al., 2013). In addition, other examples exist
where NNs are used to improve the throughput from retrieval
algorithms (Mendonca et al., 2021). However, in the case of
Mendonca et al. (2021), the method is applied purely over
northern latitudes for a specific solution not applicable to
most satellite instruments, while the solution presented in
this paper will be applicable to any satellite instrument on
a global basis.

The primary source of data for this study is spectra from
the satellite instruments Suomi NPP CrIS (Han et al., 2013),

the Atmospheric Infrared Sounder (AIRS) on the Aqua satel-
lite (Aumann et al., 2003), and the Ozone Monitoring In-
strument (OMI) on Aura. Trace gas retrievals and their as-
sociated quality statistics are generated using the MUlti-
SpEctra, MUlti-SpEcies, Multi-SEnsors (MUSES) retrieval
algorithm (Worden et al., 2007; Luo et al., 2013; Fu et al.,
2013, 2016, 2018; Malina et al., 2024), which is a core part
of the TRopospheric Ozone and its Precursors from Earth
System Sounding (TROPESS) project. TROPESS produces
long-term Earth science data records with uncertainties and
observation operators, which are freely available (https://tes.
jpl.nasa.gov/tropess/get-data/products/, last access: 8 April
2025). The MUSES algorithm has considerable heritage for
instruments sensitive to a wide range of spectral regions,
from ultra violet (UV) to thermal infrared (TIR) (Bowman
et al., 2002; Kulawik et al., 2006, 2021; Malina et al., 2024;
Worden et al., 2007; Natraj et al., 2011, 2022; Luo et al.,
2013; Fu et al., 2013, 2018). The CrIS instrument was chosen
for this analysis due to the high data volume and wide spec-
tral range (allowing for multiple different products). CrIS
products are currently a key component of TROPESS, where,
for example, CrIS ozone retrievals have been used with re-
analysis models to understand tropospheric ozone during
COVID-19 lockdowns (Miyazaki et al., 2021). In addition,
TROPESS–CrIS carbon monoxide products have been used
to understand the impact of wildfires in Australia (Byrne
et al., 2021). The joint spectral products of TROPESS from
AIRS-OMI (Fu et al., 2013) were also chosen for this study
due to the inclusion of the OMI UV sensitivity, which con-
trasts to the TIR of CrIS.

Different trace gas (e.g. ozone or carbon monoxide) re-
trievals use absorption in different spectral windows, mean-
ing that each gas retrieval has different characteristics and
will not fail in the same way. Therefore, we focus on three
different MUSES CrIS and AIRS-OMI products in this study,
namely ozone (O3), carbon monoxide (CO), and the tempera-
ture profile (TATM) to explore these differences. These prod-
ucts were chosen for their sensitivities in different regions of
the CrIS spectral range. Further, although this study is fo-
cused on the MUSES algorithm and data from the CrIS and
AIRS-OMI instruments, the methods are readily applicable
to any retrieval algorithm or satellite instrument.

This paper is structured as follows: Sect. 2 describes the
satellite data and atmospheric retrieval methods used in this
study. Section 3 identifies the training datasets that form the
core of the study, as well as the ML tools that use them. Sec-
tion 4 shows the performance of the ML models, and Sect. 5
applies the ML models to a dataset not seen during training.
The discussion and conclusion are presented in Sects. 6 and
7.
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2 Instruments and tools

2.1 Suomi NPP CrIS

CrIS is a nadir-viewing Fourier transform spectrometer
(FTS) that measures TIR radiances in three spectral bands
identified in Table 1 (Han et al., 2013). Located on the Suomi
NPP satellite (operational since 28 October 2011) in a near-
polar, sun-synchronous, 828 km altitude orbit with a 13:30
ascending-node crossing time, CrIS provides daily global
measurements, with a width of 2300 km, sampled at 30 cross-
track positions, where each position consists of a 3× 3 array
of 14 km diameter fields of view. The wide spectral range and
high spatial sampling allow CrIS to retrieve a range of atmo-
spheric products, including trace gas products such as ozone
and carbon monoxide (Fu et al., 2018; Kulawik et al., 2021;
Malina et al., 2024). With the wide spectral range, multiple
trace gas products from the MUSES CrIS algorithm are reg-
ularly generated as part of the TROPESS project (https://tes.
jpl.nasa.gov/tropess/get-data/products/, last access: 8 April
2025, TROPESS, 2025), offering an opportunity to test the
retrieval failure tool on multiple spectral windows from the
same instrument.

2.2 AIRS-OMI

AIRS is a grating spectrometer on board the Aqua satellite
that measures TIR emissions in the 650–2665 cm−1 spec-
tral range, similarly to CrIS (Aumann et al., 2003). AIRS is
a cross-track scanning instrument that provides daily global
coverage of multiple species, with a footprint of ∼ 13.5 km.

OMI is a nadir-viewing push broom ultraviolet–visible
(UV–VIS) grating spectrometer on the AURA satellite that
measures solar backscattered radiance. OMI measures in
the 270–500 nm wavelength range (Levelt et al., 2006). The
ground pixel size of OMI at nadir is ∼ 13× 24 km when us-
ing the 310–330 nm spectral range.

TROPESS provides a joint spectral AIRS-OMI ozone
product (Fu et al., 2018), combining information from both
the TIR and UV ranges. The AIRS-OMI retrieval has been
extensively validated and has been used as a key component
for chemical re-analysis datasets (Miyazaki et al., 2020b, a).
The characteristics of AIRS and OMI are identified in Ta-
ble 2.

2.3 TROPESS and MUSES

2.3.1 Algorithm description

The MUSES algorithm has a long heritage in retrieving at-
mospheric parameters and is designed to be flexible, such
that multiple trace gas retrievals from multiple instrument
types are possible, including CrIS (CrIS is also on NOAA’s
Joint Polar Satellite System (JPSS) NOAA-20), AIRS on
Aqua, the Tropospheric Emissions Spectrometer (TES), OMI
on the AURA satellite, and the TROPOspheric Monitoring

Instrument on Sentinel-5P. The description and application
of MUSES to these instruments can be found elsewhere (Ku-
lawik et al., 2006; Fu et al., 2013, 2018; Kulawik et al.,
2021; Bowman et al., 2006; Worden, 2004; Worden et al.,
2007, 2012, 2019; Malina et al., 2024). However, to sum-
marise, MUSES is a non-linear retrieval algorithm based
on the well-established optimal estimation method (OEM)
(Rodgers, 2000). To determine trace gas concentrations,
MUSES optimally fits the simulated radiance output from an
RTM in predetermined spectral windows to radiance mea-
surements. The MUSES CrIS retrieval provides the follow-
ing retrieval quantities: O3, CO, TATM, H2O, HDO, methane
(CH4), ammonia (NH3), peroxyacetyl nitrate (PAN), and
methanol (CH3OH). A retrieval pipeline is implemented to
refine atmospheric parameters prior to the retrieval of these
trace gases.

2.3.2 Brief description of computational setup

The TROPESS project has access to computational facili-
ties that include 100 s of individual cores. This processing
facility typically allows for the completion of trace gas re-
trievals in several minutes, with multiple retrievals occur-
ring in parallel. The time for a retrieval depends on the in-
strument, with AIRS-OMI taking longer than CrIS. Based
on the computational facilities available and the processing
times for retrievals, typically, a test dataset of around 8000
retrievals takes roughly 2 d to create. This time period gives
a reference with regard to how much speed-up the TROPESS
project can expect by removing retrievals from the pipeline.
However, we do not refer directly to how this tool will speed
up processing as this will differ depending on the processing
facilities available to other institutes. The key points are how
many failed retrievals are removed from the pipeline.

3 ML tools and datasets

Predicting retrieval failure is a binary classification task,
where the input – in this case, an L1B spectrum – contains
many continuous parameters (radiances), and the output is
a single binary value, indicating a good- or bad-quality re-
trieval. We consider an example to be positive if its retrieval
failed.

3.1 Training datasets

Two training datasets for CrIS and AIRS-OMI are employed,
each made up of approximately 40 000 individual retrievals
obtained over 5 d (each day contains roughly 8000 points) in
the year 2020, with each day taken from a different month
to capture different seasonal effects. We train a separate ML
model for each MUSES product determined from each in-
strument: ozone, carbon monoxide, and TATM.

For CrIS training, the first vector to be passed into the
ML model is one of two options: the measured spectral data
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Table 1. Characteristics of the Suomi NPP CrIS bands.

Spectral Spatial
Spectral resolution resolution

Band (name) range (cm−1) (cm−1) (km2)

Band 1 (Longwave (LW)) 648.75–1096.25 0.625 14 (°)
Band 2 (Mid-wave (MW)) 1208.75–1751.25 0.625 14 (°)
Band 3 (Shortwave (SW)) 2153.75–2551.25 0.625 14 (°)

Table 2. Characteristics of the Aqua AIRS and AURA OMI bands.

Spectral Spectral Spatial
range resolution resolution

Band (name) (nm) (nm) (km2)

AIRS (LW) 8.8–15.4 λ/1λ 1200 13 (°)
AIRS (MW) 6.20–8.22 λ/1λ 1200 13 (°)
AIRS (SW) 3.74–4.61 λ/1λ 1200 13 (°)
OMI (UV1) 270–314 1.0–0.45 nm 13× 24
OMI (UV2) 306–380 1.0–0.45 nm 13–24

for one of the specified trace gas quantities (i.e. in the spec-
tral windows defined in Tables A1, A3, and A4 in the Ap-
pendix) or the whole CrIS spectral range. The spectroscopic
effects immediately outside the spectral windows can impact
the spectral windows of the target gases. We therefore assess
the impact of the whole CrIS spectral range on predicting
retrieval failures.

For AIRS-OMI training, only the spectral windows were
used as defined in Tables A1, A2, A3, and A4. The whole
spectral range was found not to have a significant impact.

The second vector input for training purposes is the qual-
ity statistics associated with the L1B spectra. Following the
completion of a retrieval, the MUSES algorithm undertakes
an assessment of the quality through the flagging of specific
metrics. The quality flags for MUSES CrIS, AIRS, and/or
AIRS-OMI ozone, carbon monoxide, and TATM retrievals
are indicated in Table 4. These values are based on a statisti-
cal analysis of the retrieval data indicating the typical ranges.
If any of these values are flagged for falling outside of the
accepted range then the retrieval is determined to be of poor
quality, tripping a master quality flag. Unique quality values
are generated for each target gas and are identical for train-
ing purposes regardless of whether the spectral window or
full band is used.

For training purposes, there are six distinct training
datasets for CrIS, with each of these training datasets be-
ing drawn from the same L1B spectra but with the differ-
ences being in the spectral windows. Therefore, there are two
datasets for each of the target MUSES products (ozone, car-
bon monoxide, and TATM), with one using the spectral win-
dows defined in Tables A1 or A3, or A4 and with one using

the full available CrIS spectral range. These are defined in
Table 3 and Fig. 1.

For AIRS-OMI, there are three training sets based on the
spectral windows of the products (ozone, carbon monoxide,
and TATM). Note that only AIRS retrieves carbon monoxide
and TATM, while the joint AIRS-OMI retrievals are used for
ozone.

The spectral windows defined in Table 3 for each trace gas
are shown in contrast to the available CrIS spectral range in
Fig. 1. Both the TATM and ozone spectral regions are largely
found in the longwave (LW) and mid-wave (MW) spectral
regions, with some overlap between them. Carbon monoxide
is only found in a very narrow range in the shortwave (SW)
spectral region.

Note that numerous gaps are shown in Fig 1 for the OMI
radiance values, which are due to poor-quality spectral pixels
being removed from the analysis.

The values shown in Table 4 indicate similar pass thresh-
olds for all of the flags indicated, with some exceptions. For
all three targets, the K ·1L flag generally causes the highest
failure rates. Here, K is the retrieval Jacobian matrix, i.e. a
description of the sensitivity of the forward model to changes
in the state vector. 1L is the residual radiance after the re-
trieval, i.e. the difference between the measured instrument
radiance and the final simulated RTM radiance. Low values
of K ·1L indicate that little information remains in the sig-
nal, which will occur in challenging retrieval conditions (e.g.
high latitudes). TATM retrievals show lower pass rates for
cloud optical depth variability compared to other cloud fac-
tors. For ozone only, the lowest pass rate flags are the tro-
pospheric consistency and, most significantly, the cloud frac-
tion, which is a factor that is important only in the UV spec-
tral region. The addition of ozone-specific flags indicates that
ozone is a highly challenging gas to retrieve, especially in the
troposphere where the dynamics of ozone are still poorly un-
derstood (Szopa et al., 2021).

Higher failure rates for ozone and TATM for CrIS, as
shown in Table 3, compared to carbon monoxide can be at-
tributed to the additional flags shown in Table. 4, except in
the case of AIRS-OMI ozone, where the majority of failures
are due to the cloud fraction flag. The targets described in
this paper are retrieved in serial steps using the same spec-
trum. However, a poor-quality retrieval from one target will
not necessarily impact the other targets.
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Table 3. Description of input training datasets.

Training- Spectral Total
dataset dimen- failed

Instrument number Target window sions retrievals

CrIS 1 Ozone (window only) 216 25 %
CrIS 2 Ozone (full band) 2223 25 %
CrIS 3 Carbon monoxide (window only) 31 1.7 %
CrIS 4 Carbon monoxide (full band) 2223 1.7 %
CrIS 5 Temperature profile (window only) 475 27 %
CrIS 6 Temperature profile (full band) 2223 27 %
AIRS-OMI 7 Ozone (window only) 369 70.6 %
AIRS 8 Carbon monoxide (window only) 21 42.1 %
AIRS 9 TATM (window only) 442 16.6 %

Figure 1. Example spectral windows. Panel (a) shows windows for ozone, CO, and TATM with respect to CrIS radiance. Panel (b) shows
the same as the left-hand panel but for AIRS radiance. Panel (c) shows the ozone spectral windows in the OMI radiance as a part of the
AIRS-OMI retrieval.

3.1.1 Training data resampling and dimensionality
reduction

We split the dataset, composed of 40 000 individual re-
trievals, into a training set, which contains 80 % of samples,
and a test set, containing the remaining 20 %. In order to
avoid biases relating to specific days, we combined the data
from all 5 d and ensured even distributions in the training and
test sets.

The data are moderately imbalanced since, for example, in
the case of CrIS, only approximately 25 % of ozone examples
represent failures, while the opposite is true for AIRS-OMI.
An uneven representation of classes often poses problems
for classification algorithms. A common approach to deal-
ing with unbalanced datasets is to resample the training data
so as to simulate a balanced dataset. The simplest methods of
balancing the dataset are random undersampling, where we
randomly drop a portion of negative (majority class) exam-
ples, and random oversampling, where we duplicate a num-
ber of copies of positive (minority class) examples so that

the portion of positive examples is close to 50 %. We have
also considered the more advanced oversampling method,
the synthetic minority oversampling technique (SMOTE),
where synthetic examples are created as a convex combina-
tion of a random positive example and one of its k nearest
neighbours (Chawla et al., 2002). Finally, we also consid-
ered a combination of oversampling and undersampling, as
implemented in SMOTE.

The inputs for classification are spectral data with variable
resolutions. We use principal component analysis (PCA) to
evaluate whether or not reduced dimensionality of the in-
put spectral data improves the ML pipeline. PCA is a lin-
ear method of dimensionality reduction that finds a lower-
dimensional representation of the data so that the explained
variance is maximised.

3.1.2 The ML model

No single machine learning method is the best choice for
every task. Furthermore, different data pre-processing ap-
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Table 4. List of quality flags in MUSES for CrIS and AIRS-OMI ozone, carbon monoxide, and temperature profile retrievals; all retrieval
values that fall outside the specified range are flagged as bad quality. The pass rate for each instrument for 8000 retrievals on the example
day of 15 June 2020 is shown. Note: n/a – not applicable.

Pass rate – CrIS
Criteria |AIRS-OMI Target Description

Normalised residual-radiance RMSE 88 % | 79 % O3 Normalised residual-radiance RMSE
91.9 % | 71 % CO

Absolute residual-radiance mean 91 % | 90 % O3 Absolute residual-radiance mean
92 % | n/a CO

Absolute value of K ·1L 84 % | n/a O3 Dot product of Jacobian and
92 % | 89 % CO residual radiance
89 % | 95 % TATM

Absolute value of L ·1L 91 % | n/a O3 Dot product of radiance and residual radiance
91 % | 95 % CO

Surface temperature – a priori value 99 % | 99 % O3 Difference between retrieved surface temperature
and initial a priori

Cloud top pressure 91 % | 96 % O3 Ensures cloud top pressure is within
91 % | 96 % CO the specified range
91 % | 98 % TATM

Mean cloud optical depth 91 % | 95 % O3 Ensures cloud optical depth falls within
92 % | 96 % CO the specified range
92 % | 92 % TATM

Cloud optical depth variability 91 % | 96 % O3 Cloud optical depth variation between retrieval
windows

91 % | 77 % CO
69 % | 85 % TATM

Mean emissivity 92 % | n/a O3 Difference between the retrieved emissivity and
the a priori emissivity

92 % | n/a CO

Ozone continuum curve 90 % | 93 % O3 Checks ozone slope in the troposphere

Ozone tropospheric consistency 86 % | 79 % O3 Compares the initial guess for the tropospheric-
ozone column and the retrieved column

Ozone column error 86 % | 96 % O3 Checks the retrieval error on the ozone column

Cloud Fraction n/a | 31 % O3 Removes cloudy scenes from retrieval, UV only

proaches can have a large impact on the ability of models to
learn from the data. We refer to a sequence of pre-processing
steps and ML models as an ML pipeline.

In order to identify the most appropriate ML pipeline
for predicting retrieval failure, we employed the tree-based
pipeline optimisation tool (TPOT). TPOT is an automated
ML method that optimises ML pipelines using genetic pro-
gramming (Olson et al., 2016). TPOT makes use of the
Python scikit-learn library (Pedregosa et al., 2011) and con-
structs pipelines composed of the numerous ML tools avail-
able (e.g. neural networks, Gaussian processes). For each
pipeline, TPOT optimises the hyper-parameters of all of its
components. TPOT uses internal cross-validation to optimise

hyper-parameters and to evaluate the performance of each
pipeline. We choose the pipeline with the best performance
in terms of internal cross-validation as the best pipeline for
our task and evaluate its generalisation performance based on
the so-far untouched test set.

The best pipeline for the task of predicting retrieval fail-
ures as identified by TPOT was composed of only one el-
ement: extremely randomised trees. We added three pre-
processing steps to form the pipeline, as shown in Fig. 2.

– 1. Standard scaling. We apply the transformation
Xi−µxi
σXi

, where i denotes the ith input dimension (wave-
length), and µ and σ represent the mean and standard
deviation, respectively.
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– 2. PCA. We perform PCA to reduce the number of di-
mensions to 30 or to the dimensionality of the dataset,
whichever is lower. A total of 30 principal components
account for 98.9 %–99.6 % of the explained variance for
the full spectrum and 99.99 % of the explained variance
for the fitting spectral regions. However, note that we
have found mixed results when using the PCA transfor-
mation. Sometimes the application of PCA improves the
predictive performance of the models, and sometimes
reduced performance is observed. Therefore, in Sect. 4,
we provide results for when PCA has been applied and
for when it has not.

– 3. Random undersampling. Since the failed retrievals
are underrepresented in the data, we balance the dataset
by randomly subsampling the majority class. Under-
sampling is used only during training and is skipped
during model evaluation and operational use.

– 4. Extremely randomised trees (Geurts et al., 2006).
We employ an ensemble learning technique that con-
structs a large number of decision tree classifiers, i.e.
tree-structured models with class labels in leaves and
descriptive features in branches. At each branch of a
tree, only a restricted subset of features is considered.
Both the subset of features and the cut point choice for
each feature are randomised. Samples are classified by
a majority vote among the classifications of individual
trees. The relative importance of each feature can be es-
timated based on its total contribution to the decrease in
class impurity in the nodes of each tree, averaged over
the ensemble. In our experiments, we used the scikit-
learn implementation of extremely randomised trees,
with 100 trees in the ensemble; no depth limitation; and
Gini impurity as the measure of split quality, requiring
at least two samples to split a node and at least one sam-
ple in leaf nodes. The rest of the hyperparameters were
left at their default values.

The model takes an L1B spectrum as input and predicts
the probability that the trace gas retrieval for that spectrum
will result in failure. A discriminatory threshold can then be
applied to this output probability in order to make a definitive
statement on whether or not a pass or fail is predicted. The
assumed threshold is 50 % but can easily be changed in the
model depending on the requirements of the user.

4 ML performance assessment

An example of how passed and failed retrievals are dis-
tributed globally is shown in Fig. 4. We note a number of
regions for both TATM and ozone where failure is common,
including northern and southern Africa, as well as parts of
China. This figure is for reference; as stated previously, the
training and validation datasets are drawn from all 5 d to
avoid bias on a particular day.

4.1 Receiver operator characteristics (ROCs)

For binary classification tasks, common forms of model as-
sessment are receiver operator characteristic (ROC) curves
(Fawcett, 2006). ROC curves compare how many correct
positive results are predicted amongst all of the positive sam-
ples available (in this case, failed retrievals) against how
many incorrect positive results occur amongst all the neg-
ative samples (passed retrievals). ROC curves demonstrate
the ability of a binary classifier model as its discrimination
threshold is varied (as described in Sect. 3.1.2). ROC curves
for each of the nine training datasets described in Table 3 are
shown to assess the effectiveness of the ML model in each
case. The horizontal axis of each graph represents the false-
positive rate (FPR) FPR= FP

N
, where FP is the number of

false-positive predictions, and N is the number of all neg-
ative examples in the test set. The vertical axis shows the
true-positive rate (TPR), with TPR= TP

N
, where TP is the

number of true-positive predictions, and N is the number of
all positive examples in the test set. A perfect model, when
represented by an ROC curve, would show all FPR values
equal to a TPR of 1.0. The overall performance of the models
can be quantitatively described using the area-under-ROC-
curve metric (AUC; Flach et al., 2011). AUC is calculated
through numerical integration of the ROC curve and is an
effective measure of the probability that a failure will be cor-
rectly predicted against the probability that a passed retrieval
will be classified as a failure without committing to a specific
discrimination threshold. An AUC value of 0.5 indicates an
uninformed model, with any value above 0.5 showing some
benefit to the trained model.

Figure 5 focuses on the results obtained when using PCA
in the ML pipeline. The top row of Fig. 5 indicates the clear
positive benefit of the models when using only the spectral
windows of the relevant trace gases. Both ozone and TATM
show superior performance over CO, most likely because of
the short spectral window of CO. Both ozone and TATM sug-
gest that the benefit will come from a low threshold value
since a high TPR can be achieved with a low FPR; for ex-
ample, for ozone in panel a, a TPR of 0.5 equals an FPR
of 0.1, while a TPR of 0.8 equals an FPR of 0.3. The sec-
ond row of Fig. 5 indicates the performance of the models
when trained on the whole CrIS spectral range. In the case
of ozone and TATM, it is not beneficial to use the entirety
of the CrIS spectral range, as indicated by the AUC scores
in Fig. 5. However, CO shows an 18 % increase in the AUC
score when the entire CrIS spectral range is used, most likely
due to the short CO spectral window. The use of PCA in the
ML pipeline is identified in Fig. 6. The whole CrIS spectral
range yields the best AUC scores for each of the trace gas
cases.

The AUC scores for all PCA and non-PCA cases are
shown in Table 5 for comparison purposes. Table 5 shows
that the best results for ozone and TATM are obtained when
training is performed only on the relevant spectral windows
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Figure 2. Flow chart describing the ML pipeline for the failure prediction model.

Figure 3. Block diagram describing the processing pipeline (the
grey boxes) used in the ML model employed in this study and the
ML model chosen by TPOT (the blue box). This figure is an in-
depth view of the failure prediction model shown in Fig. 2.

Table 5. AUC values for the training datasets.

Training- AUC –
dataset Target AUC – no
number window PCA PCA

1 CrIS ozone (window only) 0.812 0.746
2 CrIS ozone (full band) 0.788 0.786
3 CrIS carbon monoxide (window only) 0.726 0.724
4 CrIS carbon monoxide (full band) 0.785 0.827
5 CrIS temperature profile (window only) 0.835 0.817
6 CrIS temperature profile (full band) 0.799 0.822
7 AIRS-OMI ozone (window only) 0.846 0.846
8 AIRS CO (window only) 0.851 0.837
9 AIRS TATM (window only) 0.869 0.888

when PCA is included in the ML pipeline. For CO, the best
results are for the ML pipeline without PCA and when the
ML model is trained on the whole CrIS spectral band. The
results show that there is no “one solution” for the best ML
pipeline for trace gas retrieval failure prediction. This is high-
lighted by the differences in performance between PCA and
non-PCA, with window-only ozone showing an 8.5 % AUC
score difference, while the equivalent case for TATM only
shows a 2 % AUC difference.

Figure 7 shows the impact of different instruments and
wavelengths on the ML models. The AUC values indicate
a substantial improvement in comparison to the CrIS results.
For example, the results of the equivalent ozone spectral win-
dow show a 4 % difference. In particular, the CO windows

show improvement despite the use of the same spectral win-
dow in both instruments. The use of the PCA or non-PCA
case has a limited impact on the AUC scores, suggesting that
the use of PCA in the ML pipeline is not important for AIRS-
OMI.

4.2 Feature importance

Section 4.1 shows that spectral data outside of the CrIS spec-
tral windows indicated in Tables A1, A3, and A4 have an in-
fluence on the performance of the failure prediction models,
especially when PCA is not used. Here, we investigate if it is
possible to determine which wavelengths have a significant
influence on the failure prediction models. The extremely
random tree classifier easily provides estimations of the rel-
ative importance of features, a measure of the likelihood of
misclassification caused by that feature (Geurts et al., 2006;
Petković et al., 2020). For cases where PCA is used, the input
into the classifier is features transformed by PCA, meaning
that we multiply each feature importance by its PCA load-
ing coefficient and sum over all the principal components in
order to get a feature importance estimate for features in the
space of wavelengths. Given the possible impact of the PCA
on the performance of the ML models, feature importance
was calculated for both PCA and non-PCA cases. The esti-
mates of the importance of the features are shown in Fig. 8.
Given that the AIRS-OMI analysis is based on the spectral
windows only, AIRS-OMI is not assessed in this section.

The results shown in Fig. 8 indicate limited differences
between the target ML models in the PCA cases, suggesting
that the PCAs of each of the ML models focus on similar fre-
quencies. The feature importance for the PCA cases shows
that spectral regions far outside of the highlighted spectral
windows have a significant impact on the ML model perfor-
mance. For example, in the case of both ozone and TATM,
features more than 2 times larger in magnitude are appar-
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Figure 4. Global distributions of failed retrievals on 15 January 2020 for MUSES CrIS carbon monoxide (a), temperature (b), and ozone
(c) profile retrievals. Green markers indicate passed retrievals, and red markers show failed retrievals.

ent in the SW region of the CrIS spectrum, while neither
ozone nor TATM has spectral windows in this region. Note
that there are other regions of significant importance out-
side of the defined spectral windows: below 750 cm−1 (for
ozone and CO) and between 1500–1750 cm−1. Considering
the non-PCA cases, larger deviations between feature impor-
tance in the ML models are apparent. For example, the CO
case shows significant importance in the SW band, far in ex-

cess of the CO spectral window, which is not apparent in the
PCA case. However, the TATM case generally shows impor-
tance in the same spectral region as the TATM spectral win-
dows while also exhibiting some importance outside of the
fit windows. Note that there remain similarities between the
PCA and non-PCA cases, for example, < 750 cm−1. These
results suggest the necessity of further investigation into non-
fitted elements in the retrieval process as these may be having
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Figure 5. ROC curves for training scenarios 1–6, with the target quantities of ozone, carbon monoxide, and TATM (from left to right) from
CrIS input into the ML model having been passed through a PCA. Panels (a)–(c) show ROC curves when the ML tool is trained only on the
spectral windows identified in Tables A1, A3, and A4. Panels (d)–(f) present ROC curves for when the ML tool is trained on the full CrIS
spectral range. The blue lines represent the ROC curve for a specific model, while the black 1 : 1 line represents an uninformed classifier
model. The title for each panel indicates the target trace gas, as well as the AUC score for the target and/or window case.

an impact on the overall quality of retrievals and could poten-
tially hint at some of the underlying reasons behind retrieval
failure.

4.3 Multiple-flag performance

The results indicated thus far give clear quantitative evidence
that predicting poor-quality retrievals with CrIS and AIRS-
OMI is feasible. However, these results are based on training
on a single master quality flag, which is based on numerous
different factors. Some of these factors may have more in-
fluence over the master quality flag than others. This means
that, even with the feature importance identified in Fig. 8, it
is challenging to determine the causes of the failures. There-
fore, it is important to identify whether similar results can be
obtained by training on the individual quality flags identified
in Table 4 and if the influence of these flags can be traced
to a specific spectral region. Some of the constituent parts of
the master flag may not contribute significantly, and, there-
fore, training on the individual flags could result in improved
performance. Therefore, we performed the same analysis as
described previously based on each of the relevant flags.

The difference between the retrieved surface temperature
and the initial a priori surface temperature was not found to
be a useful predictor and, therefore, was not included in this
analysis.

For CrIS AUC values, the results shown in Table 6 show
a pattern similar to those shown in Table 5; that is, typically,
the model trained on the spectral window using PCAs yields
the best results. There are some exceptions to this; notably,
the ML model trained with the full band without PCA has
the best performance in the cloud top pressure case for ozone
and CO. As with the master quality flag, the training methods
(e.g. PCA or non-PCA) have different impacts depending on
the quality flag. For example, the ozone tropospheric consis-
tency flag shows a 15 % difference in AUC value between
PCA and non-PCA cases (when only using the spectral win-
dow). On the other hand, the ozone column error flag shows
only a maximum 0.7 % difference between PCA and non-
PCA cases. This is also true between targets for the same
failure flag – for example, mean cloud optical depth: when
ozone is the target, there is a 5.5 % difference between train-
ing methods, while, for TATM, there is a 12.5 % difference.
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Figure 6. As in Fig. 5 but showing results for the ML model without PCA.

This is less surprising given the differences in the quality
range for this flag, as identified in Table 4.

In general, training on the individual quality flags yields
improved results compared to training on the master qual-
ity flags, with the cloud top pressure and ozone column er-
ror yielding AUC scores of nearly 1 for the window PCA
case. Therefore, this suggests that the ML models can ac-
curately predict failures in those cases. However, there are
some cases where the ML models do not perform as well as
the master quality flags, for example, for the absolute value
of L ·1L. There are multiple reasons for this poorer perfor-
mance, for example, L ·1L and K ·1L may be challenging
for the ML models to effectively learn, or the quality ranges
defined in Table 4 could be insufficient, requiring further tun-
ing. We note that K·1L has the largest failure rate in Table 4,
which, logically, would mean that the ML model should have
more information about these flag failures as opposed to oth-
ers, yet the AUC scores suggest otherwise. However, we note
that other flags (e.g. ozone column error) also have high fail-
ure rates but better ML model performance, meaning that
failure rates are unlikely to be influencing the ML model
performance. In the case of CO, the ML models are chal-
lenged by normalised residual-radiance RMSE and the abso-
lute residual-radiance mean, most likely due to the extremely
short CO spectral window (Table A3).

Figure 8 showed the importance of different spectral re-
gions in relation to the master quality flags for CrIS re-
trievals, and Fig. 9 shows the same analysis for each of the
individual quality flags. In this case, we are not investigat-
ing the PCA-based ML model results since these show the
same patterns as Fig. 8, i.e. importance at the same spectral
locations, independent of the flag. It is important to identify
that, for most cases, the best ML model results are achieved
by a combination of PCA in the ML pipeline and training
on the spectral window only (at least in the case of ozone).
However, in the following analysis, we aim to identify any
potential influence of spectral regions outside of the immedi-
ate spectral windows. Such information may influence future
spectral-window choices and may indicate how the whole
measurement may affect retrieval failures.

The residual-radiance RMS flag feature importance results
are shown in row 1 of Fig. 9; there is a clear dependence
on the CrIS SW for all three targets, with the spectral win-
dows for all three targets appearing to be relatively unim-
portant. Similarly to the master quality flag, failures due to
RMS residual radiance could be caused by a number of fac-
tors, e.g. clouds in the light path or poor estimation of scat-
tering. This means that attributing RMS failures to specific
causes will be difficult. The CrIS retrieval pipeline includes
the retrieval of cloud top pressure and extinction, including
spectral windows in the SW, meaning that it may be possi-
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Figure 7. ROC curves for training scenarios 7–8; all figure aspects are as in Fig. 5 but showing AIRS-OMI ML results for both the PCA and
non-PCA cases.

ble to attribute this sensitivity to cloud-related failures. Note
that the feature importance plots for cloud top pressure (row
5) and average cloud optical depth show similar behaviours
in the SW. Focusing on mean residual radiance in row 2, for
ozone and TATM, importance features are evident in the LW,
matching some of the spectral windows of TATM, implying
that the mean residual radiance for ozone is dependent on
TATM. Conversely, in the SW, CO and TATM show similar
features, suggesting a CO dependence on TATM in the SW.
The feature importance for K ·1L (row 3) in the case of CO
and TATM is very similar to the equivalent plots for mean
residual radiance. Indeed, the AUC values in Table 6 are very
similar for CO, implying that these quality flags draw infor-
mation from the same spectral regions. However, there is less
similarity in ozone, where far more importance is attributed
to the micro-windows in the LW and MW. However, signif-
icant importance is still apparent in the SW, again suggest-
ing that ozone absorption outside of the CrIS MUSES micro-
windows can impact the quality criteria. The importance of
features with the L ·1L flag is shown in row 4, with only
ozone and CO using this flag. The ozone micro-windows
do not show significant features and are similar to the re-
sults shown for the mean residual radiance, implying that the
whole CrIS spectral range contributes to this failure flag. This
is contrasted by the feature importance for CO, where the LW

and MW have lower levels of importance when compared to
the SW.

The cloud top pressure flag in row 5 shows similar features
for all three targets, with notable features at 750, 1000, 1500,
2100, and 2400 cm−1. Cloud top pressure is one of the few
flags that shows the best performance when trained on the
whole spectral range, which is highlighted by the fact that
the feature importance plots are almost identical across the
targets. Note that the allowable range for Cloud top pressure
is identical for all three targets. Row 6 shows the features for
average cloud optical depth; again, there are similarities be-
tween the CO and TATM features, with the maximum impor-
tance toward the shorter end of the SW. Ozone, while having
similar features compared to CO and TATM in the LW and
MW, shows unique characteristics in the SW. Here, both CO
and TATM have identical quality criteria for average cloud
optical depth, while ozone has a much more stringent re-
quirement. Note that the ozone windows in the LW indicate
significant importance, which is supported by the AUC val-
ues in Table 6, where there is limited difference in the AUC
values despite the learning method, implying that cloud opti-
cal depth is best described by the ozone windows in the LW.
Row 7 shows the feature importance of cloud variability; in
this example, each of the targets exhibits very different be-
haviour. For ozone, the feature importance is largely equiva-
lent across the whole spectrum, suggesting that no informa-
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Figure 8. Feature importance of the CrIS full-band models. Panels (a), (c), and (e) show results for the models including PCA(top to bottom:
ozone, CO, and TATM). Panels (b), (d), and (f) show the results for the models without PCA, with the same target ordering in rows. The red
dots indicate the spectral windows of the retrievals depending on the trace gas, and the black dots indicate wavelengths outside of the spectral
windows.

tion is gained outside of the ozone spectral window, which is
supported by the AUC values. For CO, there is significant im-
portance shown in the short end of the SW, similarly to cloud
top pressure. The AUC values in Table 6 for CO suggest that
there is improved ML model performance when using the
whole available spectral band, suggesting that additional CO
windows not used in the MUSES retrievals are possible. For
TATM, there is little variation between the bands, and the
AUC values do not indicate significant differences between
the learning methods, thus implying that there is nothing to
learn from the wider spectral bands. The final three flags in
rows 8, 9, and 10 are only relevant to ozone. For ozone con-
tinuum curvature, the feature importance is similar to that of
CO with cloud variability. In general, there is low feature im-
portance; however, the SW which has no ozone windows in-
dicates two spectral regions where importance is larger than
any other feature. The MW channel generally shows no im-
portance, except where the ozone micro-windows are found,
while the LW channel shows importance across the whole
band. For the ozone tropospheric consistency flag in row 9,

limited importance is attached to the ozone micro-windows,
with the largest features occurring toward the shorter end of
the MW and the longer end of the LW. Finally, the ozone
column error is investigated in row 10; note that, as shown
in Table 6, the AUC values for each learning method are
very similar, suggesting that the importance is largely con-
fined to the ozone micro-windows. The feature importance
plot largely supports this result, with the majority of the fea-
tures being confined to the ozone micro-windows or the sur-
rounding spectral regions.

As with the feature importance plots for the master quality
flags shown in Fig. 8, it is not possible to identify one spectral
region as the cause of flag failures. However, in some cases,
it is more obvious than in others; for example, flags such as
RMS residual radiance are dependent on numerous effects,
while ozone column error is restrained to certain spectral re-
gions. There is some indication in these results that this type
of feature analysis could be used to further refine spectral
windows for trace gas retrievals. Further, the SW CrIS band,
despite having limited use in the MUSES CrIS retrievals (CO
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Figure 9. Feature importance for each of the individual quality flags based on an ML model not including PCA, trained on the full CrIS
band. The left-hand column shows results for ozone, the middle column shows results for CO, and the right-hand column shows results for
TATM. Each row refers to a different flag, as identified in the panel title. Gaps in the panels indicate where a flag is not used for the relevant
target. The spectral window of the target is highlighted in red in each panel.
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Table 6. AUC values for each of the quality flags identified in Table 4. Training procedure is the same as identified in Figs. 2 and 3. AUC
values are shown with PCA both applied and not applied for both the CrIS and AIRS-OMI cases.

Window PCA Window no PCA Full-band Full-band
Flag Target CrIS |AIRS-OMI CrIS |AIRS-OMI PCA CrIS no-PCA CrIS

Normalised O3 0.956 | 0.801 0.876 | 0.842 0.918 0.909
residual-radiance CO 0.623 | 0.897 0.718 | 0.773 0.697 0.718
RMSE

Absolute residual- O3 0.808 | 0.803 0.745 | 0.785 0.783 0.773
radiance mean CO 0.704 | 0.835 0.656 | 0.799 0.794 0.782

Absolute value of O3 0.772 | 0.781 0.716 | 0.831 0.760 0.753
K ·1L CO 0.715 | 0.592 0.673 | 0.637 0.780 0.782

TATM 0.773 | 0.837 0.739 | 0.844 0.746 0.758

Absolute value of O3 0.709 | 0.854 0.652 | 0.865 0.702 0.678
L ·1L CO 0.809 | 0.674 0.750 | 0.648 0.852 0.746

Cloud top pressure O3 0.964 | 0.939 0.937 | 0.950 0.966 0.972
CO 0.916 | 0.937 0.903 | 0.894 0.965 0.969
TATM 0.968 | 0.924 0.969 | 0.944 0.957 0.963

Mean cloud optical depth O3 0.898 | 0.939 0.850 | 0.950 0.868 0.875
CO 0.788 | 0.927 0.722 | 0.925 0.789 0.797
TATM 0.841 | 0.985 0.742 | 0.977 0.818 0.792

Cloud optical depth variability O3 0.888 | 0.758 0.824 | 0.821 0.763 0.752
CO 0.885 | 0.884 0.887 | 0.860 0.871 0.919
TATM 0.855 | 0.885 0.836 | 0.895 0.822 0.840

Ozone continuum curve O3 0.941 | 0.722 0.885 | 0.768 0.923 0.904

Ozone tropospheric consistency O3 0.844 | 0.685 0.720 | 0.746 0.821 0.802

Ozone column error O3 0.962 | 0.732 0.955 | 0.782 0.962 0.963

Cloud fraction O3 n/a | 0.873 n/a | 0.926 n/a n/a

and a cloud micro-window), seems to have significant impor-
tance across most of the failure flags. Further investigation
into why this is the case is required.

5 Statistical analysis using independent dataset

The previous subsections have quantified the performance of
the ML models; however, in practice, a threshold value must
be chosen in order to apply the ML models. Here, we anal-
yse the statistical significance of the ML model predictions
by relating the binary predictions to the true-failure flags out-
put from the MUSES algorithm using independent CrIS and
AIRS-OMI datasets not used to train the ML models, in this
case, roughly 40 000 retrievals from 12 August 2020. Fig-
ures 10 and 11 compare MUSES failure flags with the per-
centage probability of failure predicted by the ML model
trained using PCA based on the spectral windows alone.

What is clear from the analysis of CrIS and AIRS-OMI
data in Figs. 10 and 11 is that the ML models are capable of
predicting the actual failures. However, in the locations sur-

rounding the failure positions, the ML models often predict
a high probability of failure, reducing the performance of the
model, meaning that the choice of the threshold will have a
significant impact on the use of the ML models.

To assess the importance of this threshold, we use
Cramér’s V metric to assess how strongly two categorical
variables (in this case, the reported MUSES failure flag and
the ML-model-predicted failures) are associated. With this
analysis, we can understand if there is any statistical signif-
icance between what the ML models predict as failures and
the truth. Cramér’s V metric is defined as follows:

V =

√
χ2

n

DOF
, (1)

where χ is the chi-square statistic, n is the total sample size,
and DOF is the degrees of freedom of the signal of the
dataset. A value of 0 for V means that there is no associ-
ation, and 1 means perfect association; however, the inter-
pretation of the degree of association depends on the DOF,
which, in this study, are equal to 1. In this case, we assume
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Figure 10. Quality flags from MUSES CrIS retrievals of CO, TATM, and O3 on 12 August 2020, where the left-hand column (green)
indicates triggering of the good-quality flag, and the middle column (red) indicates the triggering of bad-quality flags. Predicted probability
of failure [0–1] from ML models for CO, TATM, and O3 (the rows) on the same day can be seen in the right-hand column

Figure 11. As in Fig. 10 but for AIRS-OMI retrievals.
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that a small association is 0.1≤V < 0.3, a medium associa-
tion is 0.3≤V < 0.5, and a large association is V ≥ 0.5.

Figure 12 indicates the Cramér’s V metric for the CrIS
dataset for each quality flag for the three target quantities
for a range of ML model thresholds. Both ozone and CO
show peak importance at the threshold value of 0.6 while also
showing a steady increase in importance between thresholds
of 0.1 to 0.6. The reasons why ozone and CO have a maxi-
mum association at 0.6 while the TATM association is at 0.4
are unclear, but this is most likely due to the different qual-
ity criteria. Note that each quality flag for CO shows sim-
ilar importance values at each threshold, while TATM and
ozone show more variation. For example, the master quality
flag and ozone column error show the strongest associations,
even at high thresholds, unlike any of the remaining quality
flags. This is an interesting result, given that Table 6 shows
numerous ozone quality flags as having AUC values similar
to the ozone column error.

Figure 13 displays the Cramér’s V metric for the AIRS-
OMI dataset for each quality flag for the three target quanti-
ties for a range of ML model thresholds. Both TATM and CO
show slightly higher importance for the quality flag above
other flags, with medium associations at 0.2–0.3. For CO,
peak importance is achieved at a threshold of 0.8, and that
for TATM remains relatively constant in terms of the thresh-
old but with a peak at 0.9. All other flags for CO reach
peak importance at a threshold of 0.5. For TATM, associa-
tions are small, ranging from 0.1 to 0.3, and show no clear
pattern between flags or thresholds. The only exception is
CloudVariability_QA, which has a higher importance at low
thresholds. Ozone flags show the strongest associations com-
pared to TATM and CO. In particular, the Quality_Flag, Ra-
dianceResidualRMS, and OMI_CloudFraction flags display
the strongest associations above 0.5. In the case of the lat-
ter flag, importance is constant in terms of the threshold (al-
ways greater than 0.6), indicating that cloud fraction is a crit-
ical quality flag despite the prediction threshold. All other
flags show decreasing importance with increasing thresholds,
starting with relatively high associations at 0.5.

Figure 14 shows the result of applying the ML filter-
ing technique using threshold values of 0.5 and 0.2 to
the MUSES CrIS retrieval pipeline for ozone. The CrIS-
retrieved ozone concentrations are at an exemplar pressure
level (681 hPa) and are split into daytime and nighttime. The
top panels show the retrievals without quality-controlling or
ML filtering to act as a baseline, where a total of 39 892 re-
trievals are available. The middle panels show the CrIS re-
trievals with MUSES quality-controlling applied, where a
pass rate of 73 % is found. The panels second from the bot-
tom indicate MUSES retrievals with ML filtering at a thresh-
old 0.5 and with quality-controlling applied, where, after fil-
tering, 28 085 retrievals are available, with a pass rate of
85 %. The bottom panels indicate a filtering threshold of 0.2
(i.e. retrievals with a probability of failure of 0.8 or above are
removed). In this case, 37 683 retrievals are available, with

a pass rate of 77 %. Once adjusted for quality, the non-ML
case has 29 121 good-quality retrievals, the case with an ML
threshold of 0.5 has 23 872, and the case with a threshold of
0.2 has 29 015. These results show a clear indication of the
impact of the ML model. For the 0.5 threshold case, the ML
model removes 35 % of the retrievals in the standard pipeline.
In the case with a threshold of 0.2, 6 % of the retrievals are
removed whilst retaining a similar number of good-quality
retrievals compared to the non-ML case.

In the case with a threshold of 0.5, the removal of 35 % of
the retrievals is a huge gain; however, there is a cost, namely
a 20 % loss in good-quality retrievals. This loss is obvious in
Fig. 14, with clear patterns in terms of the filtered retrievals.
The majority are removed from the Sahara Desert, the Ara-
bian Peninsula, central Asia, and the western United States.
The retrievals that have been removed are typically on the
extreme end of magnitude, especially over central Asia. We
note that, when quality-controlling is applied to the CrIS re-
trievals, it is largely the high-concentration values that are re-
moved, implying that high-ozone-concentration retrievals in
the troposphere are more likely to be of poor quality, and this
is likely the reason why the ML model classifies high ozone
concentrations as more likely to fail. The mean ozone con-
centration for the non-quality-controlled case is 47 ppb, that
for the quality-controlled case is 46 ppb, and that for the case
with a threshold of 0.6 is 45 ppb. For the case with a threshold
of 0.2, using the TROPESS processing system, roughly 3 h
of processing were saved, which will vary depending on the
processing system. However, over larger time periods, such
time saving will mount up quickly.

This challenge of failures over desert regions requires ad-
ditional analysis; it is possible that more effective results will
be obtained by training an ML model with only data obtained
over deserts, suggesting that regional ML models may be
more effective than global models.

Figure 15 presents the results of applying an ML-filtering
technique using threshold values of 0.5 and 0.2 to the
MUSES AIRS-OMI retrieval pipeline, as with the CrIS case
for ozone. The top-left panel shows the retrievals with-
out quality-controlling or ML filtering to act as a baseline,
where a total of 24 382 retrievals are available. The top-right
panel shows the AIRS-OMI retrievals with MUSES quality-
controlling applied, where 8026 good-quality retrievals are
available, indicating a pass rate of 33 %. The bottom-left
panel indicates MUSES retrievals with ML filtering at a
threshold 0.5 and with quality-controlling applied, where
6386 good-quality retrievals are available, meaning that the
ML filtering captures 80 % of the good-quality retrievals. The
bottom-right panel indicates a filtering threshold of 0.2. In
this case, 7850 good-quality retrievals are available, mean-
ing that the ML filtering captures 98 % of the good-quality
retrievals. These results show a clear indication of the impact
of the ML model. For the case with a threshold of 0.5, the ML
model removes 74 % of the retrievals in the standard pipeline.
In the case with a threshold of 0.2, 68 % of the retrievals are
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Figure 12. Cramér’s V statistics for the CrIS dataset between quality flags and the independent predicted dataset for varying thresholds of
pass of failure, ranging from 0.1 to 0.9, for the three gases: CO, TATM, and O3. A small association is defined by values of 0.1–0.3, a medium
association is defined by values of 0.3–0.5, and a large association is defined by values of > 0.5.

removed. Unlike in the CrIS case, for AIRS-OMI, Fig. 15
shows that the ML filtering does not target and remove spe-
cific geographical regions, indicating that the cloud filtering
works very well.

6 Discussion

One of the primary metrics used in this paper, AUC, is an ef-
ficient way to assess model performance. However, a choice
must be made when implementing a failure prediction model
in a retrieval pipeline. For example, models should be em-
ployed carefully, i.e. setting the failure threshold value high
and only removing retrievals that have a very high probability
of failure, but a significant percentage of retrievals that will
fail through the pipeline should be allowed. Alternatively,
should no caution be used, the failure threshold should be set
low, with the removal of almost all of the failed retrievals but
also with the removal of large volumes of good-quality re-

trievals. There are arguments to be made for both positions;
however, currently, it is not practically possible to process
the millions of satellite measurements and convert them into
L2 trace gas concentrations in real time. Therefore, if having
as much real-time data as possible is desired, the most logi-
cal solution will be to use a low threshold, therefore remov-
ing most of the available data from the retrieval pipeline but
guaranteeing a high likelihood that all processed retrievals
will be of good quality.

The threshold values lead to a further point of contention:
the MUSES CrIS and AIRS-OMI retrieval pipelines simulta-
neously retrieve CO and ozone, as well as several other trace
gases. There will be cases where the ozone retrieval will fail
while other products may not or vice versa. In this case, a de-
cision must be made as to whether or not to ignore all trace
gas retrievals from a particular spectrum or to keep those that
do pass the initial failure check.
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Figure 13. Cramér’s V statistics for the AIRS-OMI dataset between quality flags and the independent predicted dataset for varying thresholds
of pass or failure, ranging from 0.1 to 0.9, for the three gases: CO, TATM, and O3. A small association is defined by values of 0.1–0.3, a
medium association is defined by values of 0.3–0.5, and a large association is defined by values of > 0.5.

There is a significant cost–benefit aspect to the ML model,
where significant processing speed-ups can be achieved
while potentially valuable information may be lost. At this
time, the ML models are sufficiently developed to be de-
ployed in an operational sense, especially with a low thresh-
old value, which incurs minimal risk of the loss of valuable
retrievals. However, there are clearly more improvements
that could be made; for example, the cost–benefit might be
improved with a greater amount of and/or more sophisticated
training of the ML model, potentially to the point where
there is very little cost in applying the ML model, which is a
topic for further work and exploitation. For example, training
could be undertaken per region rather than globally, which
may yield improved results. Further, more work can be per-
formed on the quality-assured (QA) values that the ML mod-
els are trained on. These are currently applied globally, but
there could be some value in deriving QA values for distinct
regions and training the ML model on these regions.

As an alternative to regional models, the training data
could be carefully constructed to ensure a similar frequency
of retrieval failures geographically. Variations across time
(night and day, different seasons, cloud coverage, etc.) could
be balanced in a similar fashion. In terms of ML, the clas-
sification performance may be improved by considering
more classification methods and, particularly, more elaborate
methods of dimensionality reduction that might be more suit-
able for spectral data.

In general, training is key to the effectiveness of ML
models. Numerous training datasets were applied, includ-
ing much denser sampling of CrIS retrievals, yielding dataset
sizes of 100 000 or more retrievals. However, in general, we
found minimal impact with regard to both AUC scores and
experiments, similarly to Fig. 14. This highlights a challenge
given the difficulty experienced by the ozone ML model over
desert regions, indicating that blindly training with larger
datasets will not solve the problem. Some ways to address
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Figure 14. Impact of applying the ML filter to MUSES ozone retrievals. The top panels show CrIS daytime and nighttime retrievals at
the 681 hPa pressure level using the standard MUSES processing with no quality-controlling. The middle panels are as above, but standard
quality-controlling flags are applied. The bottom panels show the same data when the ML filter is applied with a threshold of 0.5 and 0.2,
with the remaining data having been quality-controlled.
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Figure 15. Impact of applying the ML filter to MUSES ozone retrievals for AIRS-OMI. Daytime retrievals at 681 hPa pressure level using
the standard MUSES processing with no quality-controlling (a) and with standard quality-controlling flags applied (b). The ML filter is
applied with thresholds of 0.5 (c) and 0.2 (d), with the remaining data having been quality-controlled.

this would be taking into account the fail rate of different
regions when preparing the training dataset or taking into ac-
count geographical location when performing over- or under-
sampling.

As satellite instruments age, the quality of the spectral ra-
diances can degrade. For example, in the case of OMI, the
quality of some OMI pixels has limited the latitudinal range
of the instrument (Levelt et al., 2018), while, in the case of
the Suomi NPP CrIS, failures in the longwave channels of
the “side-2” electronics suite in May 2021 forced a switch
to “side-1” electronics in order to retain the use of the LW
channels (Iturbide-Sanchez et al., 2021). The implication is
that, as instruments age and decay, the ML models will need
to be re-trained to account for any degradation.

One of the implications of this paper is that ML models
can differentiate different atmospheric conditions from mea-
sured spectra. This implies that an appropriately trained ML
model may be able to infer trace gas concentrations directly
from measured spectra as opposed to using the OEM or other
retrieval methods, similarly to the work conducted by Van
Damme et al. (2017) and Loyola et al. (2020). While this
makes for interesting future work, the risks of all ML meth-
ods, such as appropriate training sets and unintended biases,
would apply, which would add uncertainties to any retrievals
derived from this method.

Finally, as with all ML approaches, there are challenges
that could cause some problems with the results. For exam-

ple, are the training datasets representative or are biases in-
troduced during training (amongst many other common is-
sues not directly identified here)? It is likely that some is-
sues are present in the current form of the ML model pre-
sented in this paper (for example, biases). However, in or-
der to increase confidence in the results, we evaluated the
performance of our ML model in two stages: first, using
cross-validation (a standard and rigorous evaluation proce-
dure in ML) and, later, using a completely new, so-far-unused
dataset. The relatively high predictive ability of our models
indicates that they are capturing meaningful information and
are effective. Therefore, although the performance of the ML
models can, most likely, be improved, we are confident that
they are effective.

7 Conclusions

The ability of retrieval algorithms to convert satellite spectra
into trace gas quantities in a timely manner is a key chal-
lenge in the future of EO. Tens of millions of measurements
will be generated per day, representing a significant chal-
lenge to processing all of these measurements in real time.
A significant drain on the processing of these millions of
retrievals is the fact that failed retrievals require the same
amount of resources as good-quality retrievals, wasting huge
amounts of computational effort. In this paper, we provide an
ML method for reducing the processing overhead of retrieval
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algorithms by predicting whether or not a retrieval will fail
based on the characteristics of an instrument-measured spec-
trum prior to performing a full retrieval. This was achieved
by training an extremely-randomised-tree ML model on the
Suomi NPP CrIS and AIRS-OMI spectra and quality flags
from the TROPESS–MUSES algorithm for ozone, carbon
monoxide, and temperature profile retrievals. We show a test
case focusing on ozone, where, from a pipeline of 37 683
CrIS retrieval targets, applying the ML filter prior to full re-
trieval removes 13 811 targets. Of the 13 811 targets, ∼ 20 %
were misclassified, which could be reduced given more tar-
geted training regimes. On the other hand, in the case of
AIRS-OMI, from a pipeline of 24 382 retrieval targets, the
ML filter removes 16 532 targets. Of the 16 532 targets,
∼ 2 % were misclassified, showing a high-quality tool.

The retrieval algorithm quality flags used in this assess-
ment are based on numerous individual flags, designed to
catch errors. We show that, in some cases, specific spectral
regions can be identified as influencing these flag failures.
Focusing on these spectral regions could help identify why
retrieval failures occur.

The ML models identified in this paper are based on open-
source Python packages which are simple to train and apply,
given sufficient training data. This failure prediction model
represents a significant contribution toward reducing the pro-
cessing overheads of current and future EO satellites.
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Appendix A: Retrieval windows

The spectral windows for the targets covered in this study
for AIRS and CrIS are highlighted in Table A1 for ozone,
Table A3 for carbon monoxide, and Table A4 for tempera-
ture profile. For the OMI ozone window, these can be seen in
Table A2. These are graphically represented in Fig. 1.

Table A1. MUSES micro-windows used for CrIS and AIRS ozone retrievals.

CrIS or AIRS Window Window
band start (cm−1) stop (cm−1) Species

Band 1 (LW) 950.00 1031.25 H2O, HDO, NH3, O3, CO2
Band 1 (LW) 1043.125 1048.75 H2O, HDO, NH3, O3, CO2
Band 1 (LW) 1068.75 1088.75 H2O, HDO, NH3, O3, CO2, CH4, CFC11, CFC12
Band 1 (LW) 1094.375 1095.00 H2O, CH3OH, HDO, NH3, O3, CO2, CH4, CFC11, CFC12
Band 2 (MW) 1211.25 1215.00 H2O, HDO, O3, CO2, CH4, N2O
Band 2 (MW) 1223.75 1227.50 H2O, HDO, O3, CO2, CH4, N2O
Band 2 (MW) 1258.75 1261.25 H2O, HDO, O3, CO2, CH4, N2O
Band 2 (MW) 1265.00 1267.50 H2O, HDO, O3, CO2, CH4, N2O
Band 2 (MW) 1268.75 1271.25 H2O, HDO, O3, CO2, CH4, N2O
Band 2 (MW) 1311.25 1317.50 H2O, HDO, O3, CO2, CH4, N2O

Table A2. MUSES micro-windows used for OMI ozone retrievals.

OMI Window Window
band start (cm−1) stop (nm) Species

UV1 270.00 305.00 O3
UV2 312.00 329.50 O3

Table A3. MUSES micro-windows used for CrIS or AIRS carbon monoxide retrievals.

CrIS or AIRS Window Window
band start (cm−1) stop (cm−1) Species

Band 3 (SW) 2181.25 2200.00 H2O, O3,
CO2, N2O, CO

Table A4. MUSES micro-windows used for CrIS or AIRS temperature profile retrievals.

Window Window
CrIS or AIRS band start (cm−1) stop (cm−1) Species

Band 1 (LW) 671.25 728.75 H2O, CO2, O3, N2O, HNO3, CFC11, CFC12, CCL4, CFC22, NH3
Band 1 (LW) 732.50 780.00 H2O, CO2, O3, HNO3, CFC11, CFC12, CCL4, CFC22, NH3
Band 1 (LW) 810.00 901.875 H2O, CO2, O3, HNO3, CFC11, CFC12, CCL4, CFC22, NH3
Band 2 (MW) 1210.00 1250.00 H2O, CO2, O3, N2O, CH4, HDO, HNO3, CFC12
Band 2 (MW) 1252.50 1264.375 H2O, CO2, O3, N2O, CH4, HDO, HNO3, CFC12
Band 2 (MW) 1266.25 1300.0 H2O, CO2, O3, N2O, CH4, HDO, HNO3, CFC12
Band 2 (MW) 1307.50 1317.50 H2O, CO2, O3, N2O, CH4, HDO, HNO3, CFC12
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