Supplement of Atmos. Meas. Tech., 18, 17–35, 2025 https://doi.org/10.5194/amt-18-17-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Deployment and evaluation of an $\mathrm{NH_4^+/H_3O^+}$ reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds

Cort L. Zang and Megan D. Willis

Correspondence to: Megan D. Willis (megan.willis@colostate.edu)

The copyright of individual parts of the supplement might differ from the article licence.

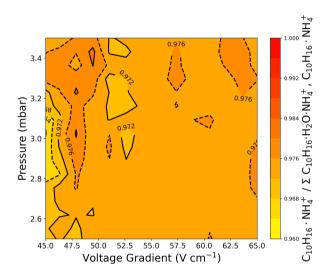


Figure S1. Contribution of the α -pinene water cluster $(C_{10}H_{16} \cdot H_2O \cdot NH_4^+)$ to the sum of the water cluster and molecular ion with NH_4^+ .

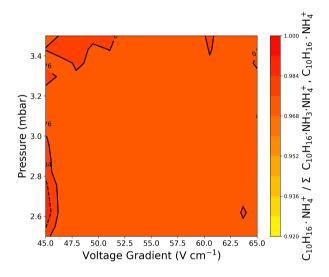


Figure S2. Contribution of the α -pinene ammonia cluster ($C_{10}H_{16} \cdot NH_3 \cdot NH_4^+$) to the sum of the ammonia cluster and molecular ion with NH_4^+ .

Table S1. Table of instrument voltage settings for different experiments.

Voltage Name	NH ₄ ⁺	$\mathrm{H_{3}O^{+}}$	NH_4^+	H ₃ O ⁺
Sections	2.2, 2.4, 2.5	2.2, 2.4, 2.5	2.3, 2.6	2.3, 2.6
fIMR Pressure	3.1 mbar	2.5 mbar	3.1 mbar	2.2 mbar
fIMR Temperature	60.0 C	60.0 C	60.0 C	60.0 C
fIMR Front	650.0	650.0	600.0	675.0
fIMR Back	0.0	30.0	0.0	50.0
fIMR Amplitude	450.0	450.0	500.0	500.0
fIMR Frequency	1.3 MHz	1.3 MHz	1.6 MHz	1.6 MHz
Skimmer 1	-4.9	-4.7	-6.0	-5.9
BSQ Front	-10.2	-10.2	-10.7	-9.7
BSQ Back	-11.4	-12.7	-11.9	-13.9
BSQ Amplitude	250.0	350.0	250.0	270.0
BSQ Frequency	2.2 MHz	2.2 MHz	$2.2~\mathrm{MHz}$	2.2 MHz
Skimmer 2	See Trans A/B	See Trans A/B	See Trans A/B	See Trans A/B
Trans A	-10.8	-11.0	-10.8	-11.0
Trans B	-13.0	-13.0	-13.0	-13.0
Ion Lens 2	-74.3	-62.6	-71.8	-69.8
Deflector Flange	-93.1	-95.9	-97.9	-93.7
Deflector	-103.2	-107.3	-106.4	-103.9
Reference	-140.0	-110.1	-148.0	-136.0

Values in table are reported in volts unless otherwise noted.

Table S2. Standardized gas cylinders and the composition.

Tank 1 Component	Conc. (ppb)	Tank 2 Component	Conc. (ppb)	Tank 3 Component	Conc. (ppb)
Methane thiol	986	Acetonitrile	1012	Acetaldehyde	1003
Isoprene	1005	Dimethyl sulfide	998	Acetone	1058
Hydroxyacetone	984	Methyl Vinyl Ketone	1046	Methyl Ethyl Ketone	1050
Dimethyl sulfoxide	992	Benzene	1023	Toluene	1009
trans-2-hexenal	967	1-Methoxy-2-propanol	1090	trans-3-hexenol	990
Phenol	471	3-Hexanone	980	2-Octanone	975
1,3,5-Trimethylbenzene	991	Limonene	981	Camphor	980
beta-Cylcocitral	916	beta-Ionone	327	D5-Siloxane	937

Table S3. Table of NH_4^+ and H^+ affinities obtained from the NIST Chemistry WebBook (Edward P. Hunter and Sharon G. Lias; Michael M. Meot-Ner (Mautner) and Sharon G. Lias).

Compound	NH ₄ ⁺ Affinity	H ⁺ Affinity
	$[kJ \text{ mol}^{-1}]$	$[\mathrm{kJ} \ \mathrm{mol}^{-1}]$
Ethylene	42	681
Acetone	118	812
Methylal	122	no data
2-Methyl-propene	146	802
1,2-Dimethoxy-ethane	160	858
Benzene	81	750
Cyclohexane	40	687
1,3,5-Trimethylbenzene	91	836
Hydrogen sulfide	48	705
Water	86	691
Ammonia	107	854
	:	

Table S4. Vapor pressure estimates of certified gas standard analytes at 25° C.

Analyte	Formula	Vapor Pressure $\mu \mathrm{g \ m}^{-3}$	Vapor Pressure Pa	Method
dimethyl sulfide	C_2H_6S	1.60E+9	6.38E+4	Mean VP of Antoine & Grain methods
methane thiol	CH ₄ S	3.92E+9	2.02E+5	Mean VP of Antoine & Grain methods
dimethyl sulfoxide	C_2H_6SO	2.61E+6	82.9	Mean VP of Antoine & Grain methods
benzene	C_6H_6	3.66E+8	1.16E+4	Mean VP of Antoine & Grain methods
toluene	C_7H_8	1.17E+8	3.16E+3	Mean VP of Antoine & Grain methods
1,3,5-trimethylbenzene	C_9H_{12}	1.30E+7	268	Mean VP of Antoine & Grain methods
phenol	C_6H_6O	1.63E+6	43	Modified Grain method
isoprene	C_5H_8	2.02E+9	7.35E+4	Mean VP of Antoine & Grain methods
limonene	$C_{10}H_{16}$	1.06E+7	193	Mean VP of Antoine & Grain methods
acetone	C_3H_6O	7.78E+8	3.32E+4	Mean VP of Antoine & Grain methods
hydroxyacetone	$C_3H_6O_2$	6.93E+6	232	Mean VP of Antoine & Grain methods
methyl ethyl ketone	C_4H_8O	3.81E+8	1.31E+4	Mean VP of Antoine & Grain methods
methyl vinyl ketone	C_4H_6O	3.45E+8	1.22E+4	Mean VP of Antoine & Grain methods
3-hexanone	$C_6H_{12}O$	8.73E+7	2.16E+3	Mean VP of Antoine & Grain methods
2-octanone	$C_8H_{16}O$	1.27E+7	246	Mean VP of Antoine & Grain methods
camphor	$C_{10}H_{16}O$	8.72E+4	1.42	Modified Grain method
acetaldehyde	C_2H_4O	2.15E+9	1.21E+5	Mean VP of Antoine & Grain methods
trans-2-hexenal	$C_6H_{10}O$	2.49E+7	629	Mean VP of Antoine & Grain methods
beta-cyclocitral	$C_{10}H_{16}O$	1.48E+6	24.1	Mean VP of Antoine & Grain methods
trans-3-hexenol	$C_6H_{12}O$	5.05E+6	125	Mean VP of Antoine & Grain methods
acetonitrile	C_2H_3N	4.42E+8	2.67E+4	Mean VP of Antoine & Grain methods
1-methoxy-2-propanol	$C_4H_{10}O_2$	3.58E+7	984	Mean VP of Antoine & Grain methods
D5-Siloxane	$C_{10}H_{30}O_5Si_5$	4.35E+6	29.1	Mean VP of Antoine & Grain methods

 $^{^{}a}$ Estimated using EPI Suite (US EPA).

Table S5. Comparison of sensitivities with NH_4^+ ionization calculated in this study with those reported by Xu et al. (2022).

Analyte	This Study counts $s^{-1} ppt_v^{-1}$	Xu et al. (2022) counts s ⁻¹ ppt _v ⁻¹	
	Tr.0	TI'0	
Acetonitrile	0.85	0.55	
Acetaldehyde	< 0.1	0.021	
Acetone	0.98	1.2	
Isoprene	< 0.1	0.028	
Methyl vinyl ketone	1.5	1.5	
Methyl ethyl ketone	1.3	1.6	
Hydroxyacetone	1.6	2.1	
Benzene	< 0.1	< 0.001	
Phenol	< 0.1	0.19	
$Hexanone^b$	3.4	3.8	
Trimethylbenzene	< 0.1	< 0.001	

 $[^]a$ We are using a Vocus-S and Xu et al. (2022) report using a Vocus-2R which have different time-of-flight region lengths. The instruments also differ in extraction frequency (i.e., 25 kHz here, and 17.5 kHz for Xu et al. (2022)).

 $^{^{\}it b}$ This study used 3-Hexanone and Xu et al. (2022) used 2-Hexanone.

 $\textbf{Table S6.} \ Fractional \ signal \ contributions \ for \ Fig. \ 3 \ with \ H_3O^+ \ in \ the \ top \ half \ and \ NH_4^+ \ in \ the \ bottom \ half.$

H ₃ O ⁺ ionization	2-hexanone	trans-2-hexen-1-ol	2-methyl-3-butene-2-ol	trans-2-hexenal	beta-cyclocitral
$A \cdot H^+$	0.67	0.00	0.19	0.44	0.58
$A \cdot H^+$ - H_2O	0.13	0.78	0.77	0.47	n.o.
$A \cdot H^+$ - H_2O , H_2	n.o.	0.09	0.03	n.o.	n.o.
$A \cdot H^+$ - H_2O , CH_4	n.o.	0.06	n.o.	n.o.	n.o.
$A \cdot H^+$ - H_2	n.o.	0.06	n.o.	n.o.	n.o.
$A \cdot H^+$ - H_2CO	n.o.	n.o.	n.o.	0.09	0.12
$A \cdot H^+$ - $C_x H_{2x} O$	n.o.	n.o.	n.o.	n.o.	0.29
$A\cdot H^+\cdot H_2O$	0.20	n.o.	n.o.	n.o.	n.o.
NH ₄ ⁺ ionization	-	-	-	-	-
$A \cdot NH_4^+$	0.95	0.66	0.31	0.95	0.94
$A \cdot NH_4^+$ - H_2O	n.o.	0.08	0.68	n.o.	n.o.
$A \cdot NH_4^+$ - H_2	n.o.	0.21	0.03	n.o.	n.o.
$A \cdot NH_4^+$ - H_2CO	n.o.	n.o.	n.o.	n.o.	0.01
$A \cdot NH_4^+$ - CH_4	n.o.	0.02	n.o.	n.o.	n.o.
$A\cdot H^+$	n.o.	n.o.	n.o.	n.o.	0.02
$A\cdot NH_4^+\cdot NH_3$	0.02	0.01	0.00	0.02	0.01
$A \cdot NH_4^+ \cdot H_2O$	0.03	0.02	0.01	0.03	0.01

Values in the table are the fractional contributions of various fragments, clusters, or the molecular ions. If a fragment or cluster is not observed for an analyte is it noted as *n.o.* (not observed).

Table S7. Vapor pressure estimates of potential biogenic ROC analytes at 25° C.

Analyte MCM name	Formula	Vapor Pressure $\mu \mathrm{g \ m^{-3}}$	Vapor Pressure Pa	Method
LIMCOOH	C ₁₀ H ₁₈ O ₃	4.40E+2	0.00586	Modified Grain method
LIMAOH	$C_{10}H_{18}O_2$	3.55E+3	0.0517	Modified Grain method
LIMBCO	$C_{10}H_{16}O_2$	7.47E+3	0.11	Modified Grain method
LIMONONIC	$C_{10}H_{16}O_3$	8.77E+3	0.118	Modified Grain method
APINBCO	$C_{10}H_{16}O_{2}$	1.76E+4	0.26	Modified Grain method
PINAL	$C_{10}H_{16}O_2$	3.62E+5	5.34	Modified Grain method
PINONIC	$C_{10}H_{16}O_3$	6.15E+3	0.0828	Modified Grain method
C109OH	$C_{10}H_{16}O_3$	4.66E+2	0.00627	Modified Grain method
C107OH	$C_{10}H_{16}O_3$	1.99E+3	0.0268	Modified Grain method
HCOC5	$C_5H_8O_2$	2.07E+6	51.2	Mean VP of Antoine & Grain methods
LIMALNO3	$C_{10}H_{17}NO_6$	1.16E+1	0.000116	Modified Grain method
NLIMALOH	$C_{10}H_{17}NO_6$	2.32E+1	0.000233	Modified Grain method
MBOANO3	$C_5H_{11}NO_5$	7.79E+3	0.117	Modified Grain method

 $^{^{}a}$ Estimated using EPI Suite (US EPA).

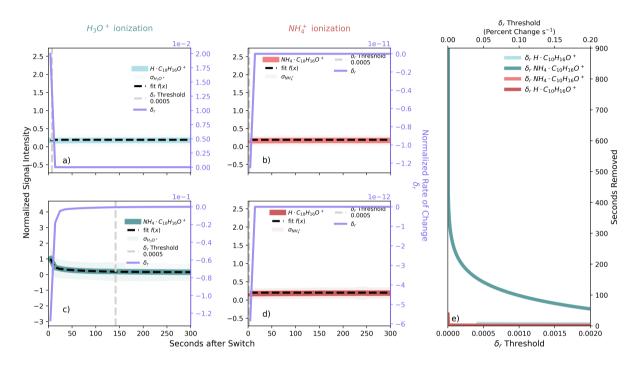
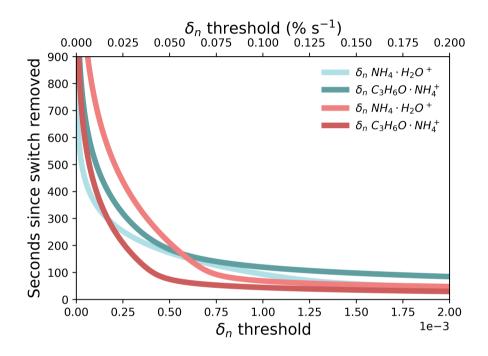



Figure S3. Ion signal after a reagent-ion switch for H_3O^+ (a & c) and NH_4^+ (b & d) to the $C_{10}H_{16}O \cdot H^+$ (a & d) and $C_{10}H_{16}O \cdot NH_4^+$ (b & c), in the MEFO observations. We grouped ion signals by the time after a switch and normalized the mean of each group by the maximum, and normalized means were fit with a bi-exponential function. The derivative of the fit (δ_n) is displayed on the right axes for (a-d) and used as a metric to filter reagent-ion hysteresis. (e) The number of seconds removed after a switch as a function of δ_n threshold for various ions.

Figure S4. The number of seconds removed after a switch as a function of δ_n threshold for various ions, in the MEFO observations.

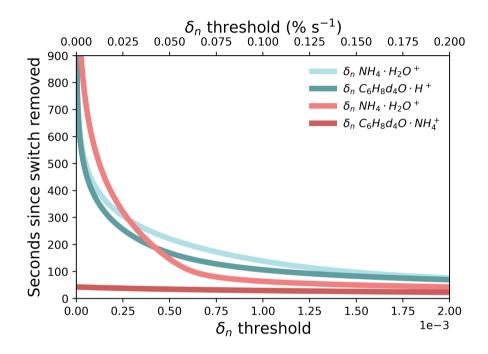
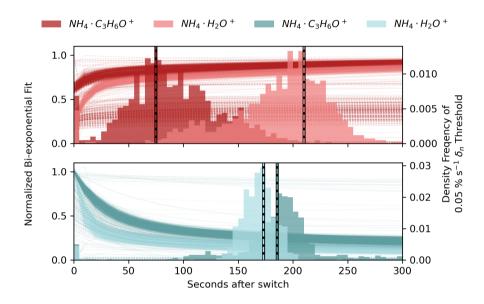
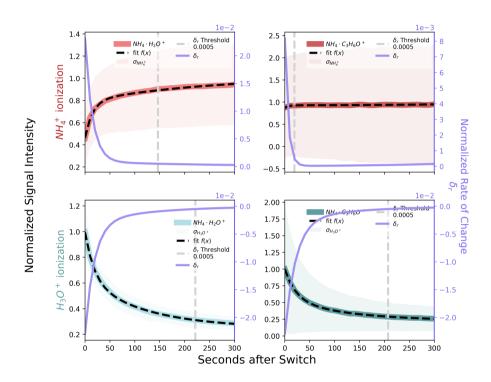
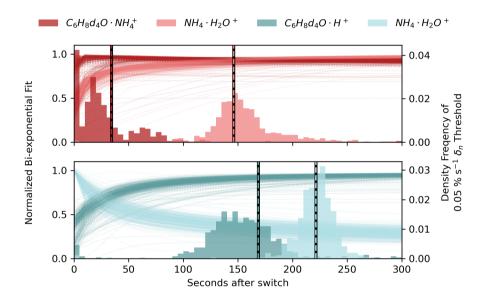
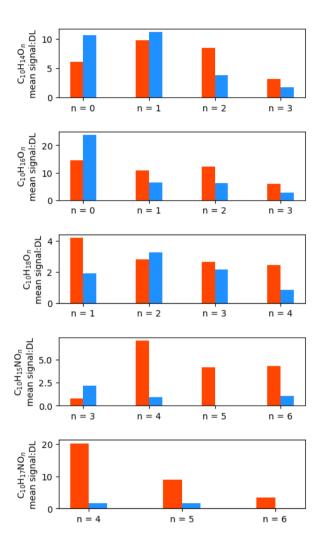



Figure S5. The number of seconds removed after a switch as a function of δ_n threshold for various ions, in the ARTofMELT observations.

Figure S6. Traces of bi-exponential fit for individual switches with NH_4^+ ionization (top) and H_3O^+ ionization (bottom) as well as a histogram of the time at which a 0.05 % s⁻¹ change threshold is reached across individual switches. Dashed lines with black background show the cutoff from the average analysis used in Sect. 3.4. Data is from the MEFO.

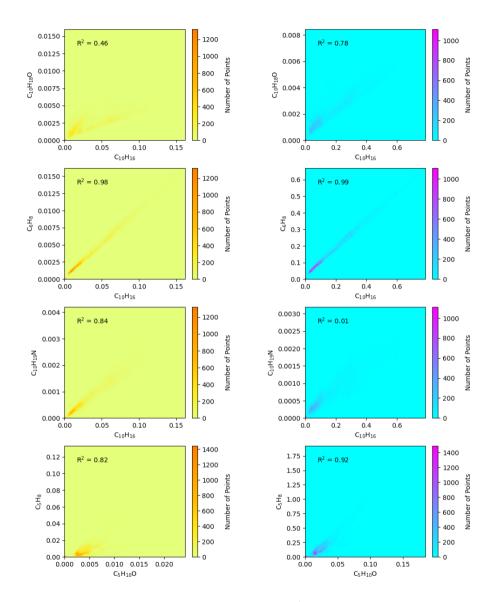

Figure S7. Ion signal after a reagent-ion switch for NH_4^+ (top, orange) and H_3O^+ (bottom, blue) in the ARTofMELT data, showing $NH_4 \cdot H_2O^+$ ions (left) and $C_3H_6O \cdot NH_4^+$ (right) ambient analyte ions. We grouped ion signals by the time after a switch and normalized the mean of each group by the maximum, and normalized means were fit with a bi-exponential function. The derivative of the fit (δ_n) is displayed on the right axes (purple traces) and is used as a metric to filter reagent-ion hysteresis.

Figure S8. Traces of bi-exponential fit for individual switches with NH_4^+ ionization (top) and H_3O^+ ionization (bottom) as well as a histogram of the time at which a 0.05 % s⁻¹ change threshold is reached across individual switches. Dashed lines with black background show the cutoff from the average analysis used in Sect. 3.4. Data is from a 2-week period of the ARTofMELT expedition.

Figure S9. Bar chart comparison of the signal-to-DL ratio for various selected ions from Fig. 7 of the main text. Ions detected with NH_4^+ are displayed as orange, and ions detected with H_3O^+ are displayed as blue.

Figure S10. 2D-histograms of ion signals for a selection of ions detected by NH_4^+ (orange/yellow, left) and H_3O^+ (blue/purple, right). Color bars show frequency per bin for the 100 x100 bin grid. Signals for the ions are in counts extraction⁻¹ at 25 kHz extraction frequency.

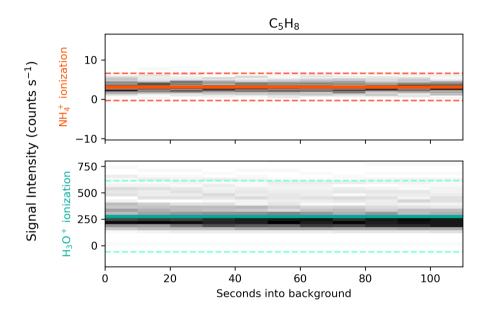


Figure S11. 2D-histograms of campaign zero periods for the C_5H_8 ion detected with NH_4^+ (orange, top) and H_3O^+ (blue, bottom). Solid horizontal lines represent mean signal during zero periods and dashed lines represent 3 σ deviation from the mean.

Table S8. Potential structures and literature precedent for organic nitrate peaks.

Chemical Formula	Name in MCM ^a	Reported in Fry et al. (2013)?	Potential Assignment
$C_5H_9NO_5$	NMBOBCO	no	232-MBO nitrate/ Isoprene nitrate
	C4MCONO3OH		
$C_5H_{11}NO_5$	MBOANO3	no	232-MBO nitrate
$\mathrm{C}_{10}\mathrm{H}_{15}\mathrm{NO}_3$		no	Dehydration fragment of $C_{10}H_{17}NO_4$
$\mathrm{C}_{10}\mathrm{H}_{15}\mathrm{NO}_4$	NC101CO	yes (night)	Terpene nitrate (carbonyl)
	NC91CHO		
$C_{10}H_{15}NO_{5}$	PINALNO3	no	Fragment from LIMALNO3?
			Faxon et al. (2018) speculate that is could be a fragment of dimers.
			Oxidation of primary emissions of terpenoid oxygenates.
$C_{10}H_{15}NO_{6}$	C10PAN2	no	Terpene nitrate (PAN/carbonyl nitrate)
	C923PAN		
	C918PAN		
	C108NO3		
$C_{10}H_{17}NO_4$	APINCNO3	yes (day and night)	Terpene nitrate (alcohol)
	BPINBNO3		
	LIMANO3		
	LIMCNO3		
	APINANO3		
	BPINANO3		
$\mathrm{C}_{10}\mathrm{H}_{17}\mathrm{NO}_{5}$	NBPINAOOH	yes (night)	Terpene nitrate (hydroperoxy)
	NAPINBOOH		
	NLIMOOH		
$C_{10}H_{17}NO_{6}$	LIMALNO3	no	Limonene nitrate
	NLIMALOH		
$C_{10}H_{16}N_2O_6$		no	Proposed as α -pinene oxidation product (Bates et al., 2022)

 $[^]a$ Exploration of the MCM is non-exhaustive (Saunders et al., 2003; Jenkin et al., 2015).

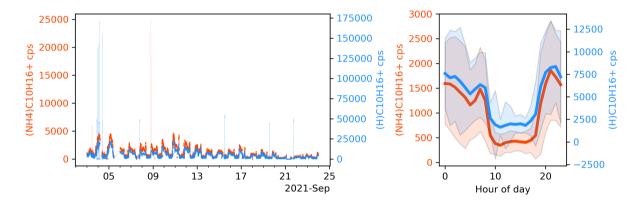


Figure S12. Time-series of ion signals of $NH_4^+ \cdot C_{10}H_{16}$ detected by NH_4^+ (orange) and $H^+ \cdot C_{10}H_{16}$ H_3O^+ (blue). Diurnal averages are included in the right plot.

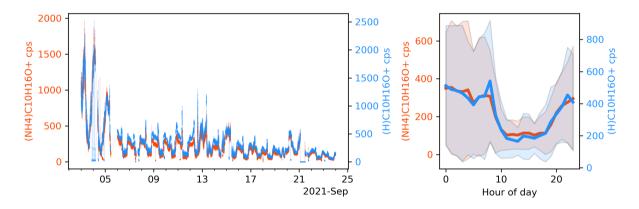


Figure S13. Time-series of ion signals of $NH_4^+ \cdot C_{10}H_{16}O$ detected by NH_4^+ (orange) and $H^+ \cdot C_{10}H_{16}O$ H_3O^+ (blue). Diurnal averages are included in the right plot.

References

10

- Bates, K. H., Burke, G. J. P., Cope, J. D., and Nguyen, T. B.: Secondary organic aerosol and organic nitrogen yields from the nitrate radical (NO3) oxidation of alpha-pinene from various RO2 fates, Atmospheric Chemistry and Physics, 22, 1467–1482, https://doi.org/10.5194/acp-22-1467-2022, 2022.
- 5 Edward P. Hunter and Sharon G. Lias: Proton Affinity Evaluation, in: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institude of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/https://doi.org/10.18434/T4D303.
 - Faxon, C., Hammes, J., Le Breton, M., Pathak, R. K., and Hallquist, M.: Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry, Atmospheric Chemistry and Physics. 18, 5467–5481, https://doi.org/10.5194/acp-18-5467-2018, 2018.
 - Fry, J. L., Draper, D. C., Zarzana, K. J., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Brown, S. S., Cohen, R. C., Kaser, L., Hansel, A., Cappellin, L., Karl, T., Hodzic Roux, A., Turnipseed, A., Cantrell, C., Lefer, B. L., and Grossberg, N.: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011, Atmospheric Chemistry and Physics, 13, 8585–8605, https://doi.org/10.5194/acp-13-8585-2013, 2013.
- 15 Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmospheric Chemistry and Physics, 15, 11 433–11 459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
 - Michael M. Meot-Ner (Mautner) and Sharon G. Lias: Binding Energies Between Ions and Molecules, and The Thermochemistry of Cluster Ions, in: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institude of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/https://doi.org/10.18434/T4D303.
- 20 Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
 - US EPA: Estimations Programs Interface Suite for Microsoft Windows, https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface.
- 25 Xu, L., Coggon, M. M., Stockwell, C. E., Gilman, J. B., Robinson, M. A., Breitenlechner, M., Lamplugh, A., Crounse, J. D., Wennberg, P. O., Neuman, J. A., Novak, G. A., Veres, P. R., Brown, S. S., and Warneke, C.: Chemical ionization mass spectrometry utilizing ammonium ions (NH 4 + CIMS) for measurements of organic compounds in the atmosphere, Atmospheric Measurement Techniques, 15, 7353–7373, https://doi.org/10.5194/amt-15-7353-2022, 2022.