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Abstract. Reliable estimation of precipitation fields at high
resolution is a key issue for snow cover modelling in moun-
tainous areas, where the density of precipitation networks is
far too low to capture the complex variability of these fields
with topography. Adequate quantification of the remaining
uncertainty in precipitation estimates is also necessary for
further assimilation of complementary snow observations in
snow models. Radar observations provide spatialised esti-
mates of precipitation with high spatial and temporal reso-
lution and are often combined with rain gauge observations
to improve the accuracy of the estimate. However, radar mea-
surements suffer from significant shortcomings in mountain-
ous areas (in particular, unrealistic spatial patterns due to
ground clutter, leading to local systematic biases). Precipi-
tation fields simulated by high-resolution numerical weather
prediction (NWP) models provide an alternative estimate but
suffer from widespread systematic biases and positioning er-
rors. Even though these uncertainties can be partially de-
scribed by ensemble NWP systems and systematic errors can
be reduced by statistical post-processing, NWP precipitation
estimates are still not reliable enough for the requirements of
high-resolution snow cover modelling.

In this study, better precipitation estimates are obtained
through a specific analysis based on a combination of all
these available products. First, a pre-processing step is pro-
posed to mitigate the main deficiencies of precipitation esti-
mates by radar and gauges, focusing on reducing unrealistic
spatial patterns. This method also provides a spatialised esti-
mate of the associated error in mountainous areas, based on
a climatological analysis of both radar and NWP-estimated
precipitation. Three ensemble daily precipitation analysis

methods are then proposed, first using only the modified pre-
cipitation estimates and associated errors, then combining
them with ensemble NWP simulations based on the parti-
cle filter and ensemble Kalman filter data assimilation algo-
rithms. The performance of the different precipitation anal-
ysis methods is evaluated at a local scale using independent
ski-resort precipitation observations. The evaluation of the
pre-processing step shows its ability to remove the main spa-
tial artefacts coming from the radar measurements and to im-
prove the precipitation estimates at the local scale. The local-
scale evaluations of the ensemble analyses do not demon-
strate an additional benefit of ensemble NWP forecasts, but
their contrasted spatial patterns are challenging to evaluate
with the available data.

1 Introduction

Monitoring snow cover in mountainous areas is essential for
a wide range of practical applications and scientific applica-
tions (IPCC, 2022). The complex topography of these areas
leads to a very high spatial variability of meteorological and
snow conditions (e.g. Clark et al., 2011), which is not fully
sampled by any existing in situ observing network, especially
at high altitudes (Thornton et al., 2022). Operational applica-
tions such as water resource management or avalanche fore-
casting, which require detailed monitoring of meteorologi-
cal conditions and snow cover over large mountainous areas,
suffer from this lack of observational information. The use
of numerical snow models provides more continuous spatial
and temporal coverage than observations. The complexity of

Published by Copernicus Publications on behalf of the European Geosciences Union.



1732 M. Vernay et al.: Ensemble precipitation analysis over the French Alps

such models varies widely depending on their application
(Krinner et al., 2018). However, all seasonal snow modelling
systems are affected by the strong dependence of the snow
cover state at any time on its past evolution since the first
snowfall. This long-term dependence means that any simula-
tion error at any time can affect all subsequent simulations,
resulting in an accumulation of errors throughout the winter.

Satellite observations of some snow properties provide a
great opportunity to identify and reduce these errors (Awasthi
and Varade, 2021; Largeron et al., 2020). Methods based
on ensemble data assimilation algorithms have been devel-
oped to process these observations (Magnusson et al., 2017;
Cluzet et al., 2021). According to Cluzet et al. (2022) and
Deschamps-Berger et al. (2022), these methods primarily
use snow observations to compensate for errors in the pre-
cipitation forcing of the snow cover model. Quantifying the
uncertainties in the precipitation fields is therefore essential
to fully benefit from the assimilation of snow observations.
However, all the papers cited above rely only on stochastic
perturbations of the precipitation dataset, obtained with ho-
mogeneous and rather arbitrary error estimates in the absence
of more advanced quantification of precipitation uncertainty.

Existing snow cover modelling systems mostly use pre-
cipitation inputs provided by numerical weather prediction
(NWP) output, surface observations, or a combination of
these two sources of information (Morin et al., 2020). Sur-
face observations provide reliable local estimates of precipi-
tation but are affected by systematic undercatch in the case of
solid precipitation or in windy conditions (Rasmussen et al.,
2012; Kochendorfer et al., 2020). In addition, the under-
sampling of higher elevations (Thornton et al., 2022) means
that there is a lack of information on the spatial distribution
of elevation-dependent variables, such as precipitation (Mott
et al., 2023). On the contrary, high-resolution NWP models
produce spatialised estimates of precipitation fields at differ-
ent spatio-temporal resolutions. Lundquist et al. (2019) argue
that such models can simulate annual precipitation accumu-
lation in mountainous areas better than estimates from gauge-
or radar-based observations. However, they suffer from bi-
ases and positioning errors in individual events and in sea-
sonal accumulations. These errors are problematic for snow
cover modelling (Vionnet et al., 2016, 2019; Haddjeri et al.,
2023). A combination of surface observations and NWP out-
put is used in some operational snow modelling systems
(SAFRAN; Durand et al., 1993; Lespinas et al., 2015) to pro-
vide precipitation estimates at scales of a few hundred square
kilometres. However, scarce observations may be insufficient
to constrain high-resolution precipitation analyses in moun-
tainous areas (Soci et al., 2016), even when specifically de-
signed for this purpose (Schirmer and Jamieson, 2015).

Radar measurements provide high-resolution spatial esti-
mates of precipitation. However, they are subject to uncer-
tainties in mountainous regions, mainly due to the interac-
tion between the radar beam and the terrain (ground clutter
and partial masks) (Germann et al., 2022; Foresti et al., 2018;

Faure et al., 2019; Yu et al., 2018; Foehn et al., 2018; Ghaemi
et al., 2023). Methods have been developed to correct radar-
based precipitation fields (Vogl et al., 2012) and to assess
the associated uncertainty (Kirstetter et al., 2010, 2015; Vil-
larini et al., 2014). The combination of radar measurements
and in situ observations of precipitation (Sideris et al., 2014;
Sivasubramaniam et al., 2019; Champeaux et al., 2009) does
not fully mitigate these uncertainties, as in situ measure-
ments generally do not sample areas where these uncer-
tainties are the most significant. More sophisticated prod-
ucts combining NWP outputs, surface observations, and pre-
cipitation estimates from radar measurements (CaPA; Fortin
et al., 2015, 2018; Khedhaouiria et al., 2022) suffer from sig-
nificant biases in winter (Lespinas et al., 2015). The poten-
tial of using radar observations for detailed snowpack mod-
elling has only been investigated on a relatively large scale
over the French Alps (Birman et al., 2017). Over the Aus-
trian Alps, the SNOWGRID system (Olefs et al., 2013) uses
radar observations via the INCA now-casting system (Haiden
et al., 2011) to force a simple snowpack model designed for
hydrological applications. The low quality of precipitation
estimates based on radar measurements in complex terrain
currently prevents their direct use to successfully force a de-
tailed snowpack model at high spatial resolution (Haddjeri
et al., 2023). In particular, the spatial structure of the error
associated with such products in mountainous areas and its
overall magnitude have not been investigated in depth.

As noted above, Cluzet et al. (2022) and Deschamps-
Berger et al. (2022) showed that any precipitation analy-
sis designed for a snow cover modelling system with as-
similation of snow observations must include an estimate
of the precipitation analysis errors. In particular, snow data
assimilation is effective when uncertainties in the precipita-
tion forcing are correctly identified and accounted for, which
can be achieved through accurate and reliable ensemble pre-
cipitation analysis (Cluzet et al., 2021). In the context of
high-resolution modelling, radar-based precipitation analy-
ses present the advantage of providing already spatialised
precipitation estimates. A variety of methods have been de-
veloped to produce ensembles of estimated precipitation
from radar and gauge measurements with varying degrees
of complexity (Clark and Slater, 2005; Germann et al., 2009;
Mandapaka and Germann, 2010; Dai et al., 2014; Kirstetter
et al., 2015; Frei and Isotta, 2019). However, they were not
designed to meet the requirements of snow data assimilation
in a high-resolution snowpack modelling system. Ensemble
methods combining radar-based precipitation estimates and
NWP output are more common in the now-casting context
(Foresti et al., 2012; Nerini et al., 2019; Atencia et al., 2020a;
Sideris et al., 2020). In this case, NWP output is used to prop-
agate the precipitation estimation in time but not to mitigate
the inherent flaws in the radar product itself.

To address this gap, the aim of this study is to explore the
combination of different products based on radar, gauge, and
NWP data (Sect. 2) to produce ensemble precipitation anal-
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Figure 1. Relief at 250 m resolution of the French Alps domain
used in this study, showing the three radars used in radar-based pre-
cipitation estimation products, the automatic observation stations,
and the reference ski-resort observation stations used for verifica-
tion. The Grandes Rousses and Mont Blanc areas, on which parts of
this study are focused, are framed, and the cross section of Fig. 2 is
marked with a grey line.

yses (Sect. 3.2) over mountainous areas. An evaluation of
the quality of several available precipitation estimation prod-
ucts is first performed (Sect. 4.1). Then, a pre-processing step
of the best product is proposed to remove spatial artefacts.
Finally, this study develops three different methods for en-
semble analysis of daily precipitation to investigate the ben-
efits of combining observational precipitation estimates and
NWP outputs. These methods are then applied to produce
ensemble analyses of daily precipitation at a 1 km resolu-
tion (see Sect. 3.2). Section 4.2 evaluates their performance,
and Sect. 5.3 discusses their respective advantages and disad-
vantages. This study focuses specifically on the French Alps,
but the proposed methodology can be applied to any moun-
tainous area with at least 1 year of radar-based and NWP
model precipitation estimates. These analyses are expected
to appropriately quantify precipitation uncertainties in order
to guarantee the efficiency of the assimilation of snow obser-
vations in snow cover simulations.

2 Precipitation dataset

This study focuses on the French Alps region (Fig. 1) for the
period from 1 August 2021 to 1 August 2022.

Three different observational precipitation estimates and
one from a high-resolution NWP model were considered. To

avoid confusion between snow variables, we follow the inter-
national classification for seasonal snow on the ground (Fierz
et al., 2009) and express all precipitation in kgm−2. A 24 h
accumulation of all precipitation products up to 08:00 CEWT
is analysed in this study.

2.1 Radar product (PANTHERE)

PANTHERE (Tabary, 2007; Figueras i Ventura and Tabary,
2013) is an operational quantitative precipitation estimation
(QPE) product based on the combination of most of the
French metropolitan radar data. It has a 1 km horizontal res-
olution and a temporal resolution of 5 min, aggregated in this
study into 24 h precipitation accumulations at 08:00 CEWT
each day. Each radar measures the reflectivity and dual-
polarisation variables with a resolution of 240 m× 0.5°, up to
a maximum range of 255 km, and at several elevation angles
(see grey radar beams in Fig. 2a). After a correction step to
account for measurement problems, the reflectivity Z is con-
verted to an instantaneous precipitation rate R (kgm−2 h−1)
using a Z–R relationship (Marshall and Palmer, 1948) that
is constant in space and time. This precipitation rate is then
corrected by applying a vertical profile of reflectivity (VPR)
correction factor. The purpose of this step is to correct for the
expected variation in reflectivity with altitude due to differ-
ent hydrometeor types and in particular to correct for the in-
crease in reflectivity in the melt region, known as the “bright
band”. Although this method is effective in most cases, it
has some limitations: it assumes a constant precipitation rate
below the bright band, so processes such as evaporation or
low-level enhancement of precipitation must be considered
(Le Bastard et al., 2019).

After this processing of the volumetric radar data, the pre-
cipitation rate at ground level is estimated from a combina-
tion of collocated precipitation rates estimated at all heights,
weighted by their quality index, which depends on, among
other factors, the height of the measurement. The final 5 min
QPE at ground level is then obtained by accumulating the
precipitation rates over time. In this study, precipitation ac-
cumulations over 24 h are considered. Despite all these steps
to calculate the QPE, its quality in space is variable. In
general, the uncertainty of the estimate increases with the
height of the radar beam above the ground, implying that the
most valuable radar information comes from the lowest radar
heights and that the quality of the precipitation estimate tends
to decrease far away from the radar. In particular, Fig. 2a il-
lustrates that stratiform precipitation systems are not detected
by radar beams above the top of precipitation clouds.

In mountainous areas, the radar beam will also often inter-
cept the ground. Radar elevations affected by ground clutter
are rejected by the algorithm (red frame in Fig. 2), and the
lowest information comes from the next beam above, which
affects the quality of the precipitation estimate. In addition,
the conical shape of the radar beam means that the beam
width increases with distance from the radar (up to about
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Figure 2. (a) Illustration of radar measurement issues from the Moucherotte radar towards the Pic Blanc in the Grandes Rousses massif (grey
line in Fig. 1). Radar beams from four elevation angles are shown to illustrate the vertical sampling of the atmosphere and its limitations in
complex terrain. The effect of ground clutter management in the PANTHERE algorithm and the link with the underestimation of precipitation
over mountain ridges are illustrated over the Pic Blanc (framed in red). The horizontal coloured band in panel (a) is the ANTILOPE precip-
itation accumulation on the ground between 1 August 2021 and 1 July 2022 along the transect between the Moucherotte radar, which is the
primary contributor to the PANTHERE precipitation estimation in this area, and the Pic Blanc. The positions of two automatic gauges and
a ski-resort observation site are also shown to illustrate the altitudes of typical in situ observations used in the ANTILOPE product and the
reference observations used in this study, as well as the lack of in situ observations at altitudes above 2000 m. (b) ANTILOPE precipitation
accumulation between 1 August 2021 and 1 July 2022 over the relief of the Grandes Rousses domain (framed in red in Fig. 1).

1000 m at a distance of 50 km). It can also be partially af-
fected by the presence of a mountain (blue frame in Fig. 2).
In this case, the affected beam information is considered un-
usable behind the mountain if the mask blocks more than
70 % of the total energy; otherwise the signal is corrected for
attenuation.

Faure et al. (2017) evaluated the quality of PANTHERE
precipitation estimation over the French Alps and showed an
increasing underestimation of precipitation towards the east
due to radar beam blockage and increasing distance from
radars. They also identified specific areas affected by signif-
icant underestimations related to ground clutter handling (as
shown in Fig. 2) and concluded that the clutter correction is
ineffective in a high-mountain context. Similarly, Faure et al.
(2019) studied the vertical distribution of PANTHERE pre-
cipitation estimates and highlighted a general overestimation
of the radar QPE at the bottom of the valleys and an under-
estimation at the highest altitudes.

2.2 Radar–gauge combination product: ANTILOPE

ANTILOPE (Champeaux et al., 2009) is an operational com-
posite analysis combining radar precipitation estimates from
PANTHERE and precipitation observations from automatic
gauges (see Fig. 1). It is available at a 1 km resolution, and
24 h accumulations at 08:00 CEWT have been used in this
study. The fusion of these two sources of information is based
on a scale separation between small-scale convective and
large-scale stratiform precipitation. Precipitation associated
with radar-detected convective cells is corrected by a spa-
tialisation of the local differences between radar and gauge

precipitation estimates using inverse distance interpolation.
Large-scale precipitation is estimated by a spatialisation of
the gauge values by an ordinary kriging with external drift
method, using either a correlogram computed from radar im-
ages or an exponential variogram model if no radar image is
available. In contrast to PANTHERE, the quality of ANTI-
LOPE precipitation estimation in mountainous areas is not
well documented. The strong dependence of the ANTILOPE
product on the radar-based precipitation estimate suggests
that the main drawbacks of radar measurements described
in Sect. 2.1 also affect the ANTILOPE quality. However, the
use of rain-gauge observations may reduce the magnitude of
the errors, with possible exceptions in the case of assimila-
tion of non-heated gauges not detected by the control steps.

2.3 Gauge kriging

In order to document the added value of the radar informa-
tion used in ANTILOPE, a precipitation estimation based on
the same kriging method (using an exponential variogram)
of the same set of gauges (automatic stations, Fig. 1) as
those used in the ANTILOPE algorithm but without any
radar information was set up and evaluated for this study.
This represents 512 stations across the study area with el-
evations ranging from 0 to 2730 m a.s.l. and a mean eleva-
tion of 809 m a.s.l. The resulting precipitation fields have the
same 1 km resolution as the ANTILOPE and PANTHERE
products and are used similarly. The temporal resolution used
in this study is 24 h. As already mentioned, gauge measure-
ments are known to be affected by significant undercatch in
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the case of solid precipitation and in windy conditions (Ras-
mussen et al., 2012; Kochendorfer et al., 2020).

2.4 Numerical weather prediction model

In this study, data from the deterministic NWP model
AROME (Seity et al., 2011; Brousseau et al., 2016) and its
ensemble version have been used in a complementary way.

The French operational high-resolution NWP model
AROME provides hourly precipitation forecasts with a 1 km
resolution. Daily precipitation accumulations (liquid and
solid) are directly derived from the 24 h forecast at a valid-
ity time of 07:00 UTC (08:00 CEWT). Yearly AROME pre-
cipitation accumulation is then calculated as the accumula-
tion of daily precipitation between 1 August 2021 and 1 Au-
gust 2022.

A 16-member ensemble version of the AROME NWP
model is also operational at a 2.5 km resolution (Bouttier
et al., 2016). Its precipitation forecasts are statistically post-
processed with the method developed by Taillardat et al.
(2019), based on quantile regression forests, to provide an
unbiased and well-distributed ensemble of hourly precipita-
tion forecasts, hereafter referred to as PEAROME. The cal-
ibration uses ANTILOPE precipitation estimates as a ref-
erence and is performed at two AROME EPS initialisation
times (09:00 and 21:00 UTC) with lead times of up to 45 h
(Taillardat and Mestre, 2020). Physically realistic precipita-
tion patterns are then reconstructed using the ensemble cop-
ula coupling method of Schefzik et al. (2013). However, the
training method has been evaluated over mainland France
(Taillardat and Mestre, 2020), and its performance over the
French Alps is not well known. The daily precipitation used
in this study is the precipitation accumulation between lead
times of 10 and 34 h from the 21:00 UTC initialisation time.
The raw precipitation fields are downscaled to the ANTI-
LOPE 1 km grid by a bi-linear interpolation so that the model
and observations can be compared at the same spatial and
temporal resolution.

2.5 Evaluation data

The evaluation dataset comes from the observation network
of the ski resorts of the French Alps (Fig. 1). These obser-
vations are not used by the ANTILOPE product (and there-
fore not used in gauge kriging). This network provides a set
of daily humanmade meteorological and snowpack observa-
tions specifically designed for avalanche forecasting during
the winter season (generally from mid-December to mid-
April, depending on the opening and closing dates of the
resorts). For this study, observations of 24 h precipitation ac-
cumulation in a bucket weighted at 08:00 CET are used as
the reference for all evaluations. Consequently, all precipita-
tion products are evaluated in terms of 24 h water equivalent
accumulations starting at 08:00 CET (07:00 UTC in winter,
06:00 UTC in summer). Evaluation data are only available

for the period from 1 December 2021 to 30 April 2022. This
means that there is a 1 h gap between the precipitation accu-
mulation of the different products (up to 07:00 UTC) and the
reference observations (up to 08:00 CET) for the month of
April after the time change. However, this gap is expected to
have a very limited impact on the results, as fewer reference
observations are available in April (due to the closure of ski
resorts), and only two significant precipitation events occur
during this period. A human estimate of the highest altitude
reached by the rain–snow limit during the same period is also
available and used in this work. When focusing on solid pre-
cipitation, only days when the rain–snow limit altitude was
below the station altitude were considered.

Ski-resort observations have limitations for the evaluation
of gridded precipitation estimates:

– Human measurement time may vary slightly between
stations and days.

– The mountainous environment is known to affect the
measurements from the gauges, with possible snow ac-
cumulation in the gauges or undercatch in windy condi-
tions (these measurement errors are sometimes detected
and corrected or removed in the monitoring process of
the observations and also affect the automatic gauges
used by the ANTILOPE product).

– Local gauge observations do not have the same rep-
resentativeness as a gridded estimate over a pixel of
about 1 km2.

Nevertheless, these are the only available independent data
for the evaluation of the various precipitation products.

3 Method

3.1 ANTILOPE observation error

A precipitation analysis requires the specification of the er-
ror of the various products involved. As mentioned earlier,
radar-based observations are known to suffer from important
shortcoming in mountainous areas (Germann et al., 2022). In
particular, unrealistic spatial patterns of ANTILOPE yearly
precipitation accumulation estimates can be visually identi-
fied over some mountain ridges. Figure 2b shows that AN-
TILOPE yearly precipitation accumulations over the ridges
of Pic Blanc and La Meije (around 600 kgm−2) are un-
realistically low. In comparison, the same accumulation at
lower altitudes between the two peaks benefiting from di-
rect gauge measurements is more than twice as large (up
to 1300 kgm−2). Figure 3a shows the same pattern over the
Mont Blanc (circle in red) where yearly precipitation accu-
mulation (less than 200 kgm−2 per year, 5 times less than in
the Chamonix Valley, circle in green) is unrealistically low.
These patterns are also visible in the daily precipitation fields
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(Fig. 5) and are probably due to the presence of ground clut-
ter (see Sect. 2.1).

The most common approach to overcoming the limitations
of radar-based precipitation estimates in mountainous areas
is to combine them with other sources of information or to
apply a calibration step (Germann et al., 2022). However,
these methods suffer from the lack of observations at high
elevations (Fig. 1). McRoberts and Nielsen-Gammon (2017)
proposed a method to detect and correct pixels affected by
partial beam blockage based on an analysis of the radar pre-
cipitation estimation climatology, but it does not specifically
focus on ground clutter, which is prevalent in mountainous
areas. Haiden et al. (2011) use radar precipitation estimates
where ground clutters have been statistically filtered, and
other perturbations are dealt with in a pre-processing step
based on a climatological scaling of the radar data. Here, we
propose a method to mitigate the unrealistic spatial patterns
in ANTILOPE precipitation fields. A first method to esti-
mate the climatological errors in ANTILOPE is described in
Sect. 3.1.1, and an evaluation of the method is provided in
Sect. 4.2. This estimated climatological error is then used to
remove the unrealistic spatial structures in ANTILOPE 24 h
precipitation fields (Sect. 3.1.4).

3.1.1 ANTILOPE climatological error estimation

We propose a method based on a comparison between ANTI-
LOPE, the automatic gauge measurements (whether used in
ANTILOPE or not), and the AROME yearly precipitation ac-
cumulations to provide an estimate R̂ of the true climatolog-
ical ANTILOPE ratio (RTRUE) defined as the ratio between
the ANTILOPE precipitation accumulation (PANT) and the
true precipitation accumulation (P TRUE, unknown) over the
same period:

RTRUE
=
PANT

P TRUE . (1)

Where a gauge is available, we assume PGAUGE
= P TRUE so

that

R̂ = RGAUGE
=

PANT

PGAUGE . (2)

If R̂ can be spatialised, it can be used as a correction factor
for daily precipitation fields in order to remove systematic
errors.

A spatialised ANTILOPE uncertainty index is also pro-
vided, which measures the relative confidence between the
different pixels of the domain.

The general idea of the method is to extrapolate the ratios
measured at the location of gauges to any location without
reference observations considering precipitation accumula-
tions simulated by the AROME NWP model, which are con-
sidered to better represent mean vertical gradients. The esti-
mation method is illustrated in Fig. 3 over the Mont Blanc

pixel (hereafter referred to with the subscript i and circled in
red in Fig. 3a, b, c).

3.1.2 Ratio estimation

The estimation of the ratio R̂i for any pixel i (e.g. Mont Blanc
point in Fig. 3) is based on

– the ratio between the ANTILOPE yearly precipita-
tion accumulation and gauge measurements RGAUGE

k at
nearby gauges k (circled in green in Fig. 3a, b, c);

– the ratio between the ANTILOPE yearly precipitation
accumulation at pixel i, PANT

i , and the ANTILOPE ac-
cumulation, PANT

k , with a distance dik separating pixels
i and k;

– the ratio between the AROME yearly precipitation ac-
cumulations PARO

i and PARO
k over pixels i and k (indi-

cated by the purple arrow in Fig. 3b, c).

R̂ik = R
GAUGE
k .

PANT
i

PANT
k

.
PARO
k

PARO
i

(3)

This estimated ratio conveys the hypothesis that the expected
precipitation accumulation over an unobserved pixel can be
retrieved from the precipitation accumulation observed at a
nearby gauge by applying the AROME precipitation accu-
mulation ratio between these two locations. The underlying
hypothesis is that AROME simulates realistic vertical gradi-
ents of precipitation even if it may be biased.

Considering all k ∈ [1,n] nearby gauges (Fig. 3a) and giv-
ing them a weight proportional to the distance dik from pixel
i (e.g. Mont Blanc),

wik =max (0,1−
dik

d0
), (4)

where d0 = 20 km is the distance range parameter, arbitrar-
ily chosen based on the density of the surface observation
network, and a weighted ensemble of estimated ratios is ob-
tained (bars of the same colour in Fig. 3d).

The weighted mean (Mi) and the spread (S) of this
weighted ensemble of estimated ratios for pixel i are

Mi =
1
Wi

n∑
k=1

wikR̂ik (5)

and

Si =

√√√√ 1
Wi

n∑
k=1

wik(R̂ik −Mi)
2, where Wi =

n∑
k=1

wik. (6)

The conversion of this weighted ensemble into a single
ratio value Ri is illustrated in Fig. 3d and follows the idea
that
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Figure 3. Illustration of the climatological ANTILOPE error estimation over the Mont Blanc (circled in red) based on (a) the yearly ANTI-
LOPE precipitation accumulation (PANT) from 30 October 2021 to 2 June 2022 and the mean ANTILOPE/gauge ratio (RGAUGE) observed
at automatic stations and (b) the AROME precipitation accumulation. The marker associated with each evaluation station in panel (a) is a
circle if the ratio between ANTILOPE and the reference gauge precipitation estimates is not considered significant (between 0.8 and 1.2)
and a triangle facing up (resp. down) if this ratio is significantly higher (resp. lower) than 1.

– the lower the weighted spread Si (i.e. the ratios R̂ik esti-
mated with the n nearby gauges are similar), the closer
the estimated ratio R̂i is to the weighted ensemble mean
Mi ;

– the higher the weighted spread Si (i.e. the ratios R̂ik
estimated with the n nearby gauges give divergent in-
formation), the closer the estimated ratio R̂i is to 1 (no
relevant information can be derived, so no correction is
applied); this situation is illustrated by the blue bars in
Fig. 3d.

Thus, the estimated ratio over the pixel i (the Mont Blanc in
the example) is given by

R̂i =Ki ×Mi + 1× (1−Ki), where Ki

= e
−
Si×ln(10)
|Mi−1| (Ki = 1 if Mi = 0). (7)

Ki ensures that the estimated ratio lies between 1 and the
weighted mean (Mi) depending on the spread Si of the esti-
mated ratio values. The constant exponential decay is fixed
to ensure that if the weighted spread of the ensemble of esti-
mated ratios among the n gauges (Si) is high, the confidence
that Mi is a good estimator of RTRUE

i is low.

3.1.3 Uncertainty index estimation

The associated climatological uncertainty indexUi is defined
so that it increases with

– |R̂i−1|, with a magnitude depending on the uncertainty
associated with the estimation method, measured byKi ;

– the discrepancies between the individual ratio estimates
associated with each gauge, which increase with Si and
|Mi − 1|.

The relationship between ANTILOPE errors and RTRUE was
estimated over rain gauge stations by computing a linear re-
gression between the ANTILOPE error compared to refer-
ence gauge measurements and the ratio RGAUGE between
ANTILOPE and reference gauges (see Fig. C1). This statis-
tical relationship is used with the other estimators R̂i andMi

to estimate an uncertainty Ui at each point of the domain.
Ui (in kg m−2) is thus defined as a sum of two terms:

Ui = (1+Ki)× (Ai + 1)+ (1+ Si)× (Bi + 1), (8)
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where

Ai =

{
−20.137× (R̂i − 1) if R̂i < 1
16.787× (R̂i − 1) if R̂i ≥ 1

and Bi =

{
−20.137× (Mi − 1) if Mi < 1
16.787× (Mi − 1) if Mi ≥ 1. (9)

By construction, Ui > 2 kgm−2, and in extreme cases, the
following occurs:

– When all estimated R̂ik values are identical, Si = 0 and
Ki = 1, so Ui is obtained from Ai and proportional to
|R̂i−1|. This value increases as the estimated ratio devi-
ates from 1, thereby indicating a likely systematic bias.

– On the contrary, when the estimated R̂ik values are very
contrasted (large Si and Ki close to 0), Ui is mainly ob-
tained from Bi and proportional to |Mi − 1| × (1+ Si).
This value increases with Si , increasing the estimated
uncertainty in the case that diverging ratio estimates are
obtained when applying the method to different refer-
ence gauges.

Figure 4 shows the ratio (Fig. 4a) and uncertainty (Fig. 4b)
fields estimated with this method using data from the winter
of 2021/2022. The yearly accumulation field after correction
with the estimated ratio is shown in Fig. 7b.

3.1.4 Dynamic correction of ANTILOPE daily
precipitation fields

To deal with the unrealistic spatial patterns described in
Sect. 3.1, a pre-processing step is applied to the daily AN-
TILOPE precipitation estimation fields and is illustrated in
Fig. 5. A first correction is applied to mitigate climatological
errors using the estimated climatological ratio field obtained
in Sect. 3.1.1 (Figs. 4a and 5b). For each pixel i of the do-
main with a precipitation value PANT

i estimated by ANTI-
LOPE (Fig. 5a), the precipitation value after climatological

correction (Fig. 5c) is given by P di =
PANT
i

Ri
.

A modified weighted moving average (WMA) filter is then
applied using the uncertainty index (Figs. 4b and 5c) ob-
tained with the method described in Sect. 3.1.1. The WMA
window includes all pixels within a d0 = 20 km radius from
pixel i (red circle in Fig. 5c). To estimate the filtered precipi-
tation of pixel i, each pixel k within this window is assigned
a weight cik =

1−dik/d0
Uk/U0

, where dik is the distance to the pixel
at the centre of the moving window, Uk is the uncertainty
index of pixel k (see Sect. 3.1), and U0 = 1 kgm−2 is a nor-
malisation factor. Considering all n pixels of the window, the
weighted mean precipitation (P di ) and the variance (Vi) of all
weighted precipitation values over the window associated to
pixel i are

−

{
P di =

1
Ci

∑n
k=1cikP

d
ik

Vi =
1
Ci

∑n
k=1cik(P

d
ik −P

d
i )

2
where Ci =

n∑
k=1

cik.

(10)

While a standard WMA filter would have regarded P di as
the new precipitation estimate for pixel i, in this work the
filtered value is combined with the local value with respective
weights depending on the estimated spatial error (Fig. 5e):

Pi =
P di cii +P

d
i
Ci
n

cii +
Ci
n

. (11)

This weighted correction ensures that a pixel with a low es-
timated spatial error (cii>>Ci

n
) is not affected by the WMA

filter, while a pixel with a high estimated spatial error (cii �
Ci
n

) is closer to the average precipitation value in the locali-
sation area.

The observation error (Fig. 5f) is finally defined as the
weighted spatial standard deviation of the daily precipitation
over this window:

Ei =
√
Vi . (12)

3.2 Ensemble analysis

Three different methods are proposed to produce ensemble
precipitation analyses of daily precipitation fields based on
the pre-processed ANTILOPE precipitation fields obtained
with the algorithm described in Sect. 3.1.4. Two of these
methods are based on ensemble data assimilation algorithms
that combine an observation (pre-processed ANTILOPE pre-
cipitation field) and an ensemble of NWP model outputs
(post-processed PEAROME precipitation fields).

3.2.1 Random sampling

The first ensemble analysis method uses output fields of
the ANTILOPE pre-processing step described in Sect. 3.1.4
to construct 16 precipitation fields by random perturbations
around the corrected precipitation field P̃ i (Fig. 5e).

We have chosen to separate the spatial and dynamical
components of the observation error in a similar way to
Villarini et al. (2014). The spatial observation error Ei ac-
counts for the intrinsic spatial structure of the error associ-
ated with measurement issues in the ANTILOPE product de-
scribed in Sect. 3.1 and comes from the pre-processing step
(Sect. 3.1.4). The dynamic error is associated with the uncer-
tainty of each individual event and is expressed as a fraction
of the precipitation intensity. The magnitude of this error has
been estimated from the linear regression between the AN-
TILOPE precipitation intensity and the associated error (not
shown) and is set at 30 % of the precipitation intensity.

The random perturbation for a given ensemble member m
is then determined by two different values:

– Nm is sampled from a normal distribution centred on 0
and with a variance of 1 and applied as a multiplicative
factor to the spatial component of the error.
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Figure 4. (a) Estimated climatological ratio (R̂) based on the mean ratios between ANTILOPE and automatic gauge precipitation measure-
ments and (b) uncertainty index (U ) obtained using the method described in Sect. 3.1.1. The grey lines indicate the 1200, 2400, and 3600 m
isolevels to illustrate the relationship between the estimated ratio and the relief.

– Gm is sampled from a gamma distribution (with a shape
parameter k = 2 and a scale parameter θ =

√
1/k, en-

suring a variance of 1) shifted by kθ so that the mean of
the distribution is 0.

For each pixel i of the domain with a corrected precipi-
tation Pi (Eq. 11) and an associated error Ei (Eq. 12), the
precipitation in member m of the output ensemble is thus

Pmi =max(Pi(1+ 0.3Gm)+Nm.Ei,0). (13)

Drawing random values from distributions with a mean cen-
tred on 0 ensures that the resulting ensemble mean is ex-
pected to be Pi , unless the magnitude of the spatial error
is greater than the precipitation value itself (in which case
the 0 kgm−2 lower bound may shift the ensemble mean up-
wards).

This random sampling (RS) analysis is the direct transla-
tion of the ANTILOPE pre-processing step, which produces
a corrected precipitation field and associated error, into an
ensemble analysis. It can be considered a benchmark prod-
uct for ensemble analysis.

3.2.2 Particle filter

The second ensemble analysis is based on particle filter the-
ory. Particle filters (PFs) are sequential Monte Carlo algo-
rithms commonly used for data assimilation in non-linear
systems (van Leeuwen, 2009). These methods are based on
the approximation of the model probability density func-
tion (PDF) by an ensemble of model states (called ensem-
ble members and denoted X in the following equations).
When an observation Pi is available, this ensemble of model
states is updated in two steps. First, the different members

are weighted according to their likelihood (distance to the
observation). Then, the model state PDF is updated by re-
sampling the different members according to their weights:
members with high weights are replicated, while those with
lower weights are dropped. To deal with the known prob-
lems of the PF algorithm for large numbers of observations,
Snyder et al. (2008) suggest reducing the dimension of the
problem by splitting a large set of observations into smaller
subsets. Here we chose to apply the particle filter algorithm
for each pixel independently, reducing the problem dimen-
sion to one observation for a 16-member ensemble. Thus,
the likelihood of the PEAROME precipitation forecast Xmi
of member m over a pixel i can be simply formulated as
a function of the corresponding ANTILOPE pre-processed
precipitation Pi (Eq. 11) and its associated error Ei :

Li = e
−

(
(Xm
i
−Pi )

Ei

)2

. (14)

The main disadvantage of this local approach is the loss of
spatial consistency. In fact, the analysed precipitation accu-
mulation of neighbouring pixels can be obtained from com-
binations of different members. To obtain consistent precip-
itation fields, a field reconstruction step based on an ensem-
ble copula coupling method (Schefzik et al., 2013) is ap-
plied during the resampling step. This resampling procedure
is based on preserving the rank structure of the ensemble
members from the original ensemble to the analysed one, en-
suring, for example, that the same member has the highest
precipitation value on a pixel before and after the analysis. In
this way, large-scale structures are preserved in the analysis,
although local discrepancies may persist.
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Figure 5. Illustration of the ANTILOPE pre-processing step applied
for daily precipitation fields. First the climatological ratio (R̂) esti-
mated with the method described in Sect. 3.1.1 is used as a climato-
logical correction factor to mitigate systematic errors. The resulting
precipitation field (P d ) is then filtered with a modified weighted
moving average (WMA) method, which produces a smoother out-
put daily precipitation field (P ) and an associated error field (E).
The weights used in the WMA step are a combination of an inverse
distance weighting and the uncertainty index (U ) estimated using
the method described in Sect. 3.1.1.

3.2.3 Ensemble Kalman filter

The last ensemble analysis is based on the ensemble Kalman
filter (EnKF) algorithm (Evensen, 2003). EnKFs are Monte
Carlo implementations of the Kalman filter (Kalman, 1960),
where an ensemble of simulations is used to sample the
model state (background) distribution. The main advantage
over the PF is that it preserves the spatial consistency of the
analysed fields. We have chosen an approach inspired by that
of Atencia et al. (2020b), using only the analysis step of the
EnKF, which consists of updating each ensemble member
with the information coming from an observation. It is as-
sumed that the cross-correlations between the background
and the observation are negligible so that each pixel of the

domain is processed independently. For a given pixel i, the
precipitation estimated by the ensemble member m (Xmi ) is
pulled towards the corresponding observation (ANTILOPE
pre-processed precipitation Pi from Eq. 11):

X̃mi =X
m
i +Ki(Pi −X

m
i ), (15)

where the so-called gain factor Ki defines the relative influ-
ence of the original background value and the observation,
based on the observation error Ei defined in Eq. (12) and the
background error represented by the 16-member (N = 16)
ensemble spread Bi = 1

N−1
∑N
m=1(X

m
i −X

m
i )(X

m
i −X

m
i ):

Ki = Bi(Bi +Ei)
−1. (16)

3.3 Evaluation method

The aim of this work is to produce an ensemble precipi-
tation analysis with a resolution of 1 km over the French
Alps, which should ideally fulfil the standard requirements
expected from ensemble modelling systems (reliability and
resolution). This ensemble analysis should reduce the sys-
tematic biases of the ensemble mean and improve precip-
itation estimation as compared to other existing products.
Finally, spatial artefacts affecting the radar-based precipita-
tion fields must not be propagated to the analysis, meaning
that each individual ensemble member should feature realis-
tic spatial structures.

While the first three requirements can be evaluated at the
point scale with the available independent observations of
the ski-resort network, the lack of a spatialised reference ob-
servation of the precipitation fields implies that an objective
evaluation of the spatial structure of the analysed fields is not
directly possible at this stage.

The different products were evaluated during the
2021/2022 winter season. Each available ski-resort observa-
tion of 24 h precipitation at 08:00 CET was compared with
the corresponding 24 h precipitation estimate at 07:00 UTC
on the corresponding 1 km pixel for each product. First, a
comprehensive evaluation of existing precipitation estima-
tion products is provided. In the case of deterministic prod-
ucts, this evaluation focuses on the magnitude of systematic
biases and their spatial distribution, as well as on the con-
sistency of the spatial structure of the precipitation fields.
For ensemble products, ensemble characteristics such as the
spread skill are also taken into account. As all proposed en-
semble analysis methods rely on a pre-processing of the AN-
TILOPE precipitation estimation product, an objective eval-
uation of the pre-processing step and its performance com-
pared to existing products is provided. A subjective compar-
ison of the spatial structures of the precipitation fields is also
discussed. Finally, the three ensemble analysis methods are
evaluated, and their performances are compared in terms of
mean bias, spread skill, and overall predictive value added.

Biases, ratios, and root mean square deviations are com-
puted for each reference station by comparing the estimated
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and observed time series of 24 h precipitation records. For
ensemble products, the estimated value is taken as the ensem-
ble mean. The predictive added value of the different prod-
ucts is assessed using two probabilistic scores commonly
used for ensemble prediction systems: the Brier score (BS;
Brier, 1950) and the continuous ranked probability score
(CRPS; Matheson and Winkler, 1976; Candille and Tala-
grand, 2005). More details on these scores can be found in
Appendix B. Another important aspect of ensemble fore-
casting is the reliability of the ensemble spread: an ensem-
ble forecasting system is reliable if the magnitude of its
spread for different events and locations matches the associ-
ated spread of the ensemble mean error. This can be inferred
from a scatter plot of the ensemble spread against the ensem-
ble mean error (Hopson, 2014).

4 Results

4.1 Evaluation of existing precipitation products

The main results of the evaluation of the existing prod-
ucts (PANTHERE, gauge kriging, ANTILOPE, and post-
processed PEAROME) are summarised in Fig. 6, showing
the distributions of the root mean square deviation from the
ski-resort reference observations for all data (Fig. 6a) and for
observed precipitation events above 10 kgm−2 in 24 h only
(Fig. 6b). This figure shows that the precipitation estimation
from the network of automatic observation stations (KRIG-
ING) performs better than the estimation from radar mea-
surements only (PANTHERE) in mountainous areas. The
RMSE of the combination of these two sources of infor-
mation (ANTILOPE) is of the same order of magnitude as
that of the KRIGING product but is sometimes improved for
precipitation events above 10 kgm−2in24h (b). Similar re-
sults are obtained when only snowfall events are considered
(Fig. C2). Other results (frequency of relative errors less than
20 %, not shown) also support the choice of ANTILOPE as
the best precipitation product available for an ensemble anal-
ysis system, especially since ANTILOPE performs equally
well when only solid precipitation is considered (see Fig. C2
in Appendix C). Figure 7a shows that the mean ratio between
ANTILOPE-estimated precipitation and the corresponding
ski-resort reference observations can reach both very high
(above 1.5, in red) and very low (below 0.5, in black) values,
even for stations separated by only a few kilometres. How-
ever, the spatial distribution of ANTILOPE’s performance
shows that even if there is no widespread systematic bias,
there is a high spatial variability in its performance. More-
over, the lack of evaluation stations at high altitudes or near
mountain ridges does not allow for good documentation of
the spatial artefacts already discussed in Sect. 3.1.

Finally, the RMSE of the PEAROME ensemble mean
is much higher than that of all observation-based products
(see Fig. 6). This indicates that even after statistical post-

Figure 6. Distribution of the root mean square deviation of the
existing precipitation estimation products from all ski-resort refer-
ence observations of daily precipitation (a) and daily precipitation
above 10 kgm−2 (b) over all evaluation stations. Precipitation es-
timates come from radar-only observations (PANTHERE), a krig-
ing of gauge observations (KRIGING), a fusion of radar and gauge
observations (ANTILOPE), and the ensemble mean of the post-
processed high-resolution ensemble NWP model (PEAROME).

processing, PEAROME forecasts provide a less reliable es-
timate of precipitation than observation-based products. An
evaluation using metrics specifically adapted to ensemble
forecasting, such as the Brier score (BS) or the continuous
ranked probability score (CRPS), shows that the probabilistic
nature of PEAROME does not compensate for deficiencies in
deterministic estimation (Fig. 9).

4.2 Evaluation of precipitation analyses

4.2.1 Impact of the pre-processing procedure

The ensemble precipitation analyses in this study are
based on the ANTILOPE pre-processing step described in
Sect. 3.1.4, which relies on the error estimation method de-
scribed in Sect. 3.1.1. Figure 7b demonstrates the ability of
this method to identify ANTILOPE biases, showing the same
information as Fig. 7a but with unbiased precipitation esti-
mates using the ratio from Fig. 4a. Spatial artefacts that are
visible in the yearly precipitation accumulation of Fig. 7a ap-
pear to be reduced in Fig. 7b. In addition, the mean ratio with
reference ski-resort observations after climatological correc-
tion is often closer to 1 (green dots) than that for raw ANTI-
LOPE precipitation estimates.

Figures 8 and 9 show the performance of the full pre-
processing step. The error estimation method reduces biases
with ratios closer to 1 after the ANTILOPE pre-processing
step (light blue) compared to before (brown), as confirmed
by Fig. 8. In addition, Fig. 9 shows that this pre-processing
step improves both CRPS and BS, regardless of the precipi-
tation threshold.

4.2.2 Skill of ensemble analyses

All ensemble analyses (RS, PF, and EnKF) evaluated in
Figs. 8 and 9 show better performance than the pre-processed
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Figure 7. Yearly ANTILOPE precipitation accumulation over the entire French Alps domain and mean ratio with the available evaluation
data from the ski-resort network before (a) and after (b) application of the climatological correction factor obtained by the observation error
estimation method. The marker associated with each evaluation station is a circle if the ratio between ANTILOPE and the reference gauge
precipitation estimates is not considered significant (between 0.8 and 1.2) and a triangle facing up (resp. down) if this ratio is significantly
higher (resp. lower) than 1. The black rectangle indicates the Mont Blanc area from which the precipitation fields shown in Figs. 3 and 5 are
derived.

Figure 8. Ratio between estimated and observed accumulated pre-
cipitation over all ski-resort reference stations for the different
methods assessed in this study.

ANTILOPE and PEAROME products respectively. Fig-
ure 9a shows a clear improvement of the BS for the three en-
semble analysis methods, which all have similar performance
for low- to moderate-precipitation events (up to 10 kgm−2 in
24 h). However, for precipitation above 10 kgm−2, the basic
RS method outperforms the two methods based on ensem-
ble data analysis. For precipitation events above 25 kgm−2,
the PF and EnKF analyses do not perform significantly bet-
ter than the deterministic ANTILOPE pre-processing. This
result is confirmed by the CRPS values (Fig. 9b), which are
significantly lower for the RS analysis than for the PF and
EnKF analyses.

4.2.3 Spread-skill consistency

The spread of the raw PEAROME ensemble and the three
ensemble analyses is shown in Fig. 10 as a function of the en-
semble mean. Ideally, the spread should be of the same mag-
nitude as the quadratic error of the ensemble mean (along
the one-to-one line) as described by Hopson (2014). The
post-processing of the PEAROME ensemble (Fig. 10a) is
specifically designed to optimise statistical ensemble proper-
ties such as the mean spread. The magnitude of the ensemble
spread is consistently comparable to the magnitude of the en-
semble mean error, with approximately the same mean value
(indicated by the dashed red lines).

The spread skill of the RS analysis (Fig. 10b) shows that
the magnitude of the ensemble spread matches the magnitude
of the ensemble mean error, with the spread on average be-
ing slightly higher than the error (dashed red lines). The blue
regression line shows that high errors also tend to be under-
estimated by the ensemble spread but not as much as for the
raw PEAROME product. The RS ensemble spread is more
often close to 0 kgm−2, indicating a higher confidence in the
precipitation estimate than in the PEAROME ensemble.

Figure 10c and d show that the spread of the two ensem-
ble analyses based on ensemble data assimilation methods
clearly underestimates the magnitude of the ensemble mean
error. The spread of both analyses barely exceeds 10 kgm−2,
while the ensemble mean error is often above 15 kgm−2.

It is also worth noting that the ensemble mean error of
the three ensemble analyses is on average significantly lower
than that of the PEAROME ensemble (vertical dashed red
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Figure 9. Evolution of the mean Brier score over all evaluation stations and dates for different daily precipitation thresholds ranging from 1
to 30 kgm−2 (a). Distribution of the mean continuous ranked probability score over the reference stations (b). Six precipitation estimation
products are shown: existing products in orange shades, deterministic products in light colours, and ensemble products in dark colours.

Figure 10. Spread skill of the different ensemble products. Each
cross represents a specific evaluation point and date, and its colour
indicates the corresponding 24 h precipitation. The blue line is the
regression line of the scatter plot. The horizontal (resp. vertical) red
line shows the mean ensemble error (resp. ensemble spread).

lines indicate an error almost twice lower) and does not reach
the same extreme values (in particular, the RS analysis mean
error exceeds 25 kg m−2 only once).

4.2.4 Spatial patterns

Figure 11 shows an example of four precipitation fields for
each of the four ensemble products over the Mont Blanc area
(see Fig. 1) for the same date as the fields in Fig. 5. This illus-
trates the spatial variability of precipitation produced by the
different analysis methods. The RS analysis produces very
smooth fields, similar to the corresponding pre-processed

ANTILOPE field (Fig. 5e), but with different precipitation
intensities. The fields resulting from the PF and EnKF anal-
yses are a combination of this pre-processed ANTILOPE
field and the corresponding PEAROME fields, also visible in
Fig. 11e and f. Despite the field reconstruction step described
in Sect. 3.2.2, the application of the particle filter algorithm at
the pixel scale results in rather noisy fields. EnKF precipita-
tion fields better preserve the spatial variability of the corre-
sponding PEAROME fields, with a convergence of intensity
towards the pre-processed ANTILOPE field. As explained in
Sect. 3.3, the lack of spatialised reference observations pre-
vents any objective evaluation of the spatial structures of the
different analyses, except that noisy PF precipitation fields
are a serious shortcoming for further exploitation of this pre-
cipitation analysis.

5 Discussion

5.1 Precipitation estimation products in mountainous
areas

The evaluation of different precipitation products with an
independent observation network in ski resorts (Sect. 4.1)
shows that observation-based estimates provide better re-
sults than forecasts from the PEAROME ensemble, even af-
ter a post-processing step designed to remove biases and
improve reliability. This contradicts, at least for the French
Alps, the conclusion of Lundquist et al. (2019) that high-
resolution precipitation models outperform observations in
mountainous areas. However, these products have comple-
mentary qualities and shortcomings.

Although radar observation provides spatialised informa-
tion, its quality is very heterogeneous in space and suffers
from important limitations in mountainous areas. Ground
clutter and partial beam blocking are common due to the
complex topography, and the management of these dis-
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Figure 11. Example of 24 h precipitation fields of 4 December 2021
over the Mont Blanc area (see Fig. 1). (a) Raw ANTILOPE ob-
servation. (b) Pre-processed ANTILOPE field. (c) Members 1 to 4
of the post-processed PEAROME ensemble. (d) Members 1 to 4
of the random sampling analysis around the pre-processed ANTI-
LOPE field (b). (e) Members 1 to 4 of the particle filter analysis.
(f) Members 1 to 4 of the ensemble Kalman filter analysis. The full
16-member ensembles for each ensemble product are shown in Ap-
pendix C.

turbances in the radar processing algorithm described in
Sect. 2.1 does not compensate for the loss of information.

The most obvious effect of the interception of a radar beam
by a mountain is a significant underestimation of the mean
precipitation above the pixels affected by ground clutter,
which produces spatial artefacts in the precipitation fields.
This degradation of precipitation estimation due to increased
height of the lowest usable radar measurement above ground
is particularly pronounced for stratiform precipitation sys-
tems with relatively small vertical extent (Germann et al.,
2022). This is the case for the majority of the winter precipi-
tation events in the French Alps on which this study focuses,
thus limiting the extrapolation of its conclusions to convec-
tive situations.

Radar-based precipitation estimates are also less reliable
over valleys, where the height difference between the radar
beams and the ground is more important (Fig. 2), and precip-
itation variations below the beams are neglected. However,
this problem is compensated for in the ANTILOPE product
by the use of many in situ measurements at these altitudes
(Fig. 1). On the contrary, higher-elevation areas are under-
sampled (Fig. 1 shows that only 31 out of 512 available auto-
matic gauges are above 2000 m a.s.l.), so radar measurement
problems at these altitudes cannot be properly corrected. The

lack of reference observations over ridges (Fig. 1) also makes
it impossible to assess the magnitude of the error at these alti-
tudes. This led us to develop a pre-processing step, described
in Sect. 3.1.4, to mitigate the resulting spatial artefacts and
provide a spatialised assessment of the highly variable un-
certainty in this product.

5.2 Observation error

Most of the results of this study are based on the spatialisa-
tion of the error associated with the ANTILOPE precipitation
product. Despite the positive results at the local scale shown
in Sect. 4.2, this method has some limitations and possible
improvements have been identified:

– The WMA filter described in Sect. 3.1.4 tends to smooth
precipitation fields. This is a necessary compromise to
remove unrealistic spatial patterns that would be very
detrimental to snow modelling (with unrealistic snow
amounts near ridges, as illustrated by Haddjeri et al.,
2023, with the ANTILOPE raw product). However, it
can potentially erase realistic spatial structures well de-
tected by the radar, even if the formulation of Eq. (11)
and the parameters in the error estimation method have
been chosen to ensure minimal modification over pix-
els with no clear systematic errors. High-intensity pre-
cipitation kernels are therefore often smoothed by the
pre-processing step, which may affect the detection of
extreme events. The spatial structures of the analysed
precipitation fields could not be evaluated with the ref-
erence dataset used in this study. An indirect evalua-
tion of simulated snow depths based on the precipita-
tion analyses presented here is planned in a future study,
following the workflow already proposed by Haddjeri
et al. (2023). In such a study, we will compare simulated
snow depths with snow depth maps derived from high-
resolution Pleiades satellite images (Deschamps-Berger
et al., 2020) over the Grandes Rousses domain.

– The climatological approach of this method makes it
highly dependent on ANTILOPE evolutions (changes
in the algorithm, in the available radar, or in the in situ
measurements used) so that regular recalibration would
probably be required.

– Additional available radar information, not considered
in this work, could also provide relevant information
for the estimation of the observation error (height above
ground of the lowest available radar beam, position of
ground clutter, etc.).

– As most gauges are located in valleys or at low alti-
tudes, the uncertainty index is generally higher at high
altitudes (Fig. 4b). To mitigate the over-representation
of low-elevation pixels in the WMA filter, the weights
computed in the pre-processing step (Sect. 3.1.4) could
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take into account the elevation difference between pix-
els.

– The uncertainty information generated by the kriging
with the external drift algorithm producing the raw AN-
TILOPE product could be used to improve the estima-
tion of the associated observation error.

– The error estimation method described in Sect. 3.1.1
could be applied to daily precipitation fields in order
to improve the handling of instances where the ANTI-
LOPE error is significantly different from its climato-
logical value.

5.3 Choice of the data assimilation method

The random sampling (RS) ensemble analysis combined
with the pre-processing method described in Sect. 3.1.4
proved to fulfil most of the requirements for a suitable en-
semble precipitation analysis in complex terrain, even if the
accuracy of the spatial structures of the individual fields re-
mains to be evaluated. This result is particularly promising
for the future goal of assimilating satellite snow observations
into snowpack simulations. It accurately accounts for precip-
itation uncertainties and thus addresses the main limitation
raised by Cluzet et al. (2022) and Deschamps-Berger et al.
(2022) to take full advantage of the assimilation of snow ob-
servations. It is based on a very simple ensemble generator
and could probably be significantly improved using meth-
ods inspired by those reviewed in Mandapaka and Germann
(2010). The RS analysis is also the most computationally ef-
ficient and requires less data handling.

On the contrary, the information provided by high-
resolution NWP models may suffer from larger errors on
average but is more physically consistent and can therefore
be expected to have more spatially homogeneous errors than
precipitation estimation derived from radar measurements.
Ensemble forecasts also provide uncertainty information that
is lacking in deterministic observational products. This moti-
vated the use of the AROME climatology for the ANTILOPE
pre-processing step and the PEAROME daily precipitation
fields through data assimilation methods. However, the eval-
uation presented in Sect. 4.2 shows that most of the NWP
added value comes from the use of the AROME climatol-
ogy, at least at the local scale. In particular, the EnKF and
PF analyses proved to be very under-dispersive. This defi-
ciency could be very detrimental in snow simulation sys-
tems based on ensemble assimilation of snow observations
with e.g. the particle filter (Cluzet et al., 2022; Deschamps-
Berger et al., 2022), as in many cases no optimal scenario
would be available among the backgrounds. The assimila-
tion of snow observations would then fail to provide better
estimates of snow conditions. The under-dispersion of both
PF and EnKF analyses is an inherent aspect of these ensem-
ble data assimilation algorithms: the main concept of these
algorithms is to modify an ensemble of initial simulations

(the background state) with the knowledge of an observa-
tion and its associated error. Both PF and EnKF methods
ensure that the resulting analysed ensemble has a smaller
dispersion than the background ensemble: the PF analysis is
a sub-ensemble of the background ensemble, and the EnKF
equations described in Sect. 3.2.3 imply a convergence of all
background members to the observation as long as the ob-
servation error is comparable to the background one (Hotta
and Ota, 2021). Thus, a well-dispersed background ensem-
ble, such as the post-processed PEAROME ensemble used
in this study, can only lead to under-dispersed analysed en-
sembles when PF or EnKF ensemble data assimilation algo-
rithms are applied using observations with lower errors than
the background. This is typically the case with the ANTI-
LOPE product, at least where reference data are available.
However, in instances where the ANTILOPE uncertainty is
significantly higher than the PEAROME error, the impact of
these algorithms on the background ensemble is minimal.

The consistency of the spatial structures produced by these
analyses could not be objectively assessed. However, the PF
analysis fields suffer from obvious spatial artefacts (even af-
ter a field reconstruction step). This PF method is also nu-
merically more expensive when applied at the pixel scale,
which can be a severe limitation for application over large ar-
eas. Applying the PF algorithm simultaneously to the whole
domain would lead to degeneracy due to the very high num-
ber of available observations compared to the ensemble size.
A compromise solution would be to apply the PF algorithm
over well-chosen subdomains, as suggested by Cluzet et al.
(2021), but this would require further strong hypotheses for
the definition of the subdomains. Considering all these ele-
ments, the analysis method based on the EnKF algorithm is
clearly more suitable than the one based on the PF, but it does
not outperform the RS analysis based on observations only
and relying on a simplistic ensemble generation method, at
least at the local scale used for the evaluation in this study.
This result implies that the information provided by direct
radar and in situ precipitation measurements cannot be sig-
nificantly improved by daily high-resolution NWP forecasts
up to a 33 h lead time. However, only a spatialised evaluation
could determine whether the spatial structures produced by
a high-resolution NWP model and transferred to the EnKF
analysis (see Fig. 11) can prove to be complementary infor-
mation with added value.

6 Conclusions

This study first provides an evaluation of state-of-the-art pre-
cipitation estimation products available over the French Alps.
It focuses in particular on radar-based observational prod-
ucts, the quality of which is not well documented but is of-
ten considered to be poor in complex terrain. Our evaluation
against an independent dataset of 24 h precipitation accumu-
lation from ski resorts showed that radar measurements com-
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bined with precipitation estimation from an automatic gauge
network provide the best precipitation estimates among all
products considered. In particular, the performance of such a
product was shown to be significantly better than the output
of the most advanced high-resolution numerical weather pre-
diction model available in this study’s area. This is notewor-
thy because previous studies have suggested that these mod-
els have outperformed observation-based precipitation esti-
mates in some areas (Lundquist et al., 2019). However, sig-
nificant shortcomings related to expected radar measurement
problems were also identified. In this study, we developed
a method to estimate the spatial distribution of climatologi-
cal errors associated with unrealistic spatial patterns, such as
unrealistically low accumulation over ridges, in annual and
daily precipitation fields. This method has been developed
and evaluated for the French Alps but can be applied to any
mountainous area covered by similar precipitation estimation
products. A correction algorithm was applied to daily precip-
itation estimates using the mean precipitation gradient from
the AROME NWP model. Although no objective evaluation
of the spatial structure of the daily precipitation fields pro-
duced by this method could be carried out, this correction
seems to be able to mitigate spatial artefacts visible in the
annual precipitation accumulations and proved to improve
precipitation estimates over a set of reference stations. Some
possible refinements of the method have also been outlined
for future improvements, such as taking advantage of addi-
tional available radar information or the inclusion of topo-
graphic criteria in the weighting step.

Three different ensemble analysis methods were then im-
plemented based on the corrected precipitation fields ob-
tained by the previous method. A first reference analysis
randomly samples values around these observed precipita-
tion fields from their estimated error. Analyses were then
conducted using two ensemble data assimilation algorithms,
namely the particle filter and the ensemble Kalman filter.
These algorithms were used to combine the corrected pre-
cipitation fields with those produced by a high-resolution nu-
merical weather prediction model ensemble. The aim was to
explore the complementarity of these two sources of infor-
mation. The method based on the particle filter turned out
to be both more numerically expensive and to suffer from
major drawbacks, especially regarding the excessive noise in
the produced precipitation fields. The method based on the
ensemble Kalman filter proved to be more suitable but did
not outperform the ensemble analysis based only on the ref-
erence observation dataset used in this study. However, the
spatial structures obtained by both methods are significantly
different, and a spatialised evaluation will be necessary to
determine which is the most appropriate.

Therefore, the next step will be to use the ensemble pre-
cipitation analyses described in this article to force a snow
model. This will allow the resulting simulated snow proper-
ties to be compared with corresponding satellite observations
thanks to the memory effect of the snowpack, which ensures
a strong relationship between the state of the snowpack and
past snowfall (Haddjeri et al., 2023). The main challenge of
this indirect evaluation of precipitation analyses will be the
introduction of additional uncertainties such as the height of
the rain–snow limit (Vionnet et al., 2022) and the errors in the
snowpack model (Essery et al., 2013; Lafaysse et al., 2017).
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Appendix A: ANTILOPE climatological error
estimation method illustration

This section is a numerical illustration of the estima-
tion of the ANTILOPE climatological error on a spe-
cific pixel, designated X, based on two nearby available
gauges on pixels A and B, which are situated at the
same distance from pixel X (dAX = dBX and wAX = wBX
as illustrated in Fig. A1). It is assumed that the ANTI-
LOPE product provides an unbiased estimation of pre-
cipitation accumulation for pixels A and B. This implies
that the ANTILOPE yearly precipitation accumulation is
the same as the one measured at the gauge: PANT

A =

PGAUGE
A = 300 kg m−2 and PANT

B = PGAUGE
B = 700 kgm−2

(thus, RGAUGE
A = RGAUGE

B = 1). Furthermore, it is assumed
that the AROME climatology exhibits 4 times more pre-
cipitation on pixel X (PARO

X = 2000 kgm−2) than on pixel
A (PARO

A = 500 kg m−2) and twice the precipitation than on
pixel B (PARO

B = 1000 kgm−2).
Numerical results of the error estimation method are given

for two different values of ANTILOPE precipitation accu-
mulation on pixel X (PANT

X ) and are summarised in Ta-
ble A1. The first case (PANT

X = 1300 kgm−2) illustrates a sit-
uation where ANTILOPE is free of artefacts on pixel X. This
means that the ANTILOPE yearly precipitation accumula-
tion is consistent with the values on pixels A and B, as well
as with the AROME precipitation ratios. In this situation, es-
timated ratios from reference pixels A and B (R̂XA and R̂XB)
are both relatively close to 1 (1.08 and 0.93 respectively).
Therefore, the estimated ratio on pixel X (R̂X) is very close to
1, and the associated uncertainty (UX = 2.2 kgm−2) is close
to the minimum value possible (2 kgm−2; see Sect. 3.1.3).
The second case illustrates a situation where ANTILOPE is
affected by ground clutter on pixel X. This has been identi-
fied as leading to unrealistically low precipitation accumula-
tions (in this example, PANT

X = 300 kgm−2). In this case, ra-
tios estimated from the reference pixels A and B are both sig-
nificantly lower than 1 and consistent with each other, lead-
ing to an estimated ratio R̂X = 0.23 kgm−2. The associated
uncertainty is consequently very high (UX = 48.6 kgm−2).
The contribution of the first term of Eq. (8) is (1+KX)×

(AX+ 1)= 31.8, twice the contribution of the second term
(1+KX)×(AX+1)= 16.8. The contribution of the first term
for approximately two-thirds of the ultimate uncertainty can
be interpreted as a predominance of an identified systematic
bias in the uncertainty estimation over diverging information
brought about by the presence of gauges in pixels A and B.

In order to complete the illustration, Tables A2 and A3
give the values of the different steps of the error estimation
method applied to pixels A and B benefiting from gauge mea-
surements. It is assumed that pixels A and B are 10 km apart
(dAB = 10 km and wAB = wBA = 0.5). Since the precipita-
tion ratios between pixels A and B are different for AROME
and ANTILOPE, the estimated ratios R̂BA and R̂AB are sig-
nificantly different from 1 (1.17 and 0.86 respectively). How-

Figure A1. Illustration of the ANTILOPE climatological error es-
timation method on a pixel X with two available reference gauges
(on pixels A and B).

ever, the inverse distance weighting ensures that the ulti-
mate value of the estimated ratios R̂A and R̂B does not sig-
nificantly differ from the actual ANTILOPE/GAUGE ratios
RGAUGE

A andRGAUGE
B (1.01 and 0.99 respectively). Similarly,

the estimated uncertainty remains minimal for each pixel
(3.61 and 3.62 kgm−2 respectively) thanks to the presence
of a reference gauge with an identical climatology.
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Table A1. Values of the different steps of the error estimation method depending on the value of the yearly ANTILOPE precipitation
accumulation on pixel X (PANT

X ).

PANT
X [kgm−2] R̂XA R̂XB MX SX KX R̂X AX [kgm−2] BX [kgm−2] UX [kgm−2]

1300 1.08 0.93 1.00 0.08 0.00 1.00 0.00 0.10 2.19
300 0.25 0.21 0.23 0.02 0.98 0.25 15.11 15.46 48.60

Table A2. Values of the different steps of the error estimation method applied to pixel A when dAB = 10 km.

R̂BA MA SA KA R̂A AA [kgm−2] BA [kgm−2] UA [kgm−2]

1.17 1.06 0.08 0.24 1.01 0.23 0.96 3.61

Table A3. Values of the different steps of the error estimation method applied to pixel B when dBA = 10 km.

R̂AB MB SB KB R̂B AB [kgm−2] BB [kgm−2] UB [kgm−2]

0.86 0.95 0.07 0.24 0.99 0.23 0.96 3.62
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Appendix B: Evaluation scores

The Brier score (BS) assesses the ability of an ensemble to
forecast a threshold being exceeded. For each given event
k, the predicted probability yk of a given threshold being
exceeded (the number of members forecasting the event di-
vided by the size of the ensemble) is compared with the cor-
responding binary observation ok of the threshold being ex-
ceeded, and for N events the BS is given by

BS=
1
N

N∑
k=1

(yk − ok)
2. (B1)

Although the BS was originally designed for ensemble sys-
tems, it is also commonly used in a deterministic context
(DeMaria et al., 2009; Vernay et al., 2015), where the pre-
dicted probability yk only takes values of 0 and 1. The Brier
score ranges from 0 to 1, with 0 corresponding to a perfect
score. It is computed for different precipitation thresholds
from 1 to 30 kgm−2 to check the ability of each product to
forecast a variety of precipitation events.

The continuous ranked probability score (CRPS; Mathe-
son and Winkler, 1976) is a measure of the difference be-
tween the ensemble cumulative distribution function Fy pre-
dicted for a given event and the Heaviside function centred
on the associated observation Ho:

CRPS=
∫
R

(
Fy(z)−Ho(z)

)2dz. (B2)

Unlike the ensemble mean bias, the CRPS takes into account
the error of each member of the ensemble: an unbiased en-
semble with a large spread can have a higher CRPS than a
slightly biased ensemble with a small spread.
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Appendix C: Additional results

Figure C1. Linear regression between ANTILOPE/gauge mean ra-
tio (RGAUGE

− 1) and the corresponding RMSE over the 68 ref-
erence stations. The slope coefficients are used in the method de-
scribed in Sect. 3.1.1.

Figure C2. Same as Fig. 6 but considering only snowfall events.
The precipitation phase is determined by the additional ski-resort
observation of the maximum altitude reached by rain during the ob-
servation period. Only situations where this maximum altitude is
below the station altitude are considered here.
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Appendix D: Ensemble precipitation analyses

Figure D1. Raw post-processed PEAROME ensemble 24 h precip-
itation fields of 4 December 2021, downscaled to the ANTILOPE
1 km resolution over the Mont Blanc area (see Fig. 1). The cor-
responding raw ANTILOPE observation and the associated pre-
processed fields are shown in Fig. 11.

Figure D2. The 24 h ensemble precipitation analysis of 4 December
2021 over the Mont Blanc area (see Fig. 1) obtained by a random
sampling around the pre-processed ANTILOPE field (Sect. 3.2.1).
The corresponding raw ANTILOPE observation and the associated
pre-processed fields are shown in Fig. 11.

Figure D3. The 24 h ensemble precipitation analysis of 4 December
2021 over the Mont Blanc area (see Fig. 1) obtained with the parti-
cle filter method (Sect. 3.2.2). The corresponding raw ANTILOPE
observation and the associated pre-processed fields are shown in
Fig. 11, and the post-processed PEAROME ensemble is shown in
Fig. D1.

Figure D4. The 24 h ensemble precipitation analysis of 4 December
2021 over the Mont Blanc area (see Fig. 1) obtained with the en-
semble Kalman filter method (Sect. 3.2.3). The corresponding raw
ANTILOPE observation and the associated pre-processed fields are
shown in Fig. 11, and the post-processed PEAROME ensemble is
shown in Fig. D1.
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