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Abstract. We present gridded surface air quality datasets
over South Korea for three key species – ozone (O3), carbon
monoxide (CO), and nitrogen oxides (NOx) – during the time
frame of the Korea–US Air Quality (KORUS-AQ) mission
(May–June 2016). Mixing ratios for the key species were
mapped to 0.1°× 0.1° grid cells (hourly resolution), which
were constructed from the 300+ air quality network sites
using inverse distance weighting with simple declustering.
Cross-comparing the interpolated fields against the site data
that were used to create them reveals high prediction skill for
O3 (80 %) throughout South Korea and moderate skill (60 %)
for CO and NOx on average in densely observed regions af-
ter individual mean bias corrections. The gridded O3 and CO
interpolations predict the NASA DC-8 observations in the
planetary boundary layer (PBL) with high skill (80 %) in the
Seoul Metropolitan Area (SMA) after subtracting the mean
bias. DC-8 NOx observations were much less predictable on
account of consistently negative vertical gradients within the
PBL. Our gridded products capture the mean of and vari-
ability in O3 throughout South Korea and the mean of and
variability in CO and surface NOx in most site-dense urban
centres (SMA, Cheongju, Gwangju, Daegu, Changwon, and
Busan).

1 Introduction

Air quality control has become a priority in the Republic of
Korea following an upward trend in ozone (O3) pollution in
all major cities since the 1980s (Susaya et al., 2013). In May–
June 2016, the Korea–US Air Quality (KORUS-AQ) mission
was launched with the goal of improving knowledge of the
factors controlling South Korean air pollution; this mission

gathered extensive observational data via aircraft, ground sta-
tions, ships, and remote sensing (Crawford et al., 2021).

Comparisons of modelled grid-cell values (i.e. averages)
with point data from station sites remain awkward, espe-
cially in high-emission environments with high sub-grid and
temporal variability. Ground site comparisons in South Ko-
rea have thus far used the arithmetic mean of sites within
a grid cell or ungridded quantile analysis (Lennartson et
al., 2018; Peterson et al., 2019; Eck et al., 2020; Jordan et
al., 2020; Schroeder et al., 2020; Park et al., 2021; Oak et
al., 2022; Travis et al., 2022), but these unweighted means
can be biased by site clustering, and they lose information
outside the cells. In this work we develop a gridded dataset
of key surface-level pollutants (in this case, O3, NOx , CO)
observed during the KORUS-AQ time frame. In contrast
to arithmetic means, we apply inverse distance weighting
(IDW) interpolations (Shepard, 1968) improved by Schnell
et al. (2014) to create country-wide continuous mapping of
the National Institute of Environmental Research (NIER)
ground site data. We subsequently integrate the interpolated
field over a 0.1°× 0.1° grid. To evaluate the interpolation, we
predict NIER station measurements using the leave-one-out
cross-validation method; we predict observations from two
research sites (Olympic Park and Taehwa Forest) to verify
instrumental cohesion, and we compare our gridded fields
with DC-8 observations within the planetary boundary layer
(PBL) to gauge how well the data products reproduce up-
per PBL abundances. In addition to providing gridded PBL
datasets, we discuss the applicability and limitations of our
methodology for each key species.

The observational datasets are described in Sect. 2 and the
methods in Sect. 3. Results are summarized in Sect. 4. Con-
clusions and recommendations are presented in Sect. 5.
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2 KORUS-AQ data

All KORUS-AQ datasets introduced in this section in-
cluding the raw 5 min NIER station data are available
via https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01
(KORUS-AQ Science Team, 2019). The NIER station data
are access-controlled, but we record our processed hourly av-
eraged NIER station data and our quality control flags for the
raw data in our repository (see Wilson, 2025).

2.1 NIER air quality stations

The AirKorea monitoring network (https://www.airkorea.or.
kr/eng, last access: 4 January 2025) provided ground mea-
surements of the key species averaged every 5 min at 323
stations across South Korea, of which 319 reported O3, 311
reported CO, and 321 reported NOx (Fig. 1). We calculate
hourly median readings centred on the hour for each sta-
tion but omit clearly erroneous O3 and NOx dropouts from
the average. High outliers exceeding 5 standard deviations
above the mean of a weekly period were also discarded along
with dropouts, which were manifest as stably low concentra-
tions (1–4 ppb) persisting for multiple hours in stark contrast
with the typical variability at the site. We were able to flag
most dropouts algorithmically by analysing the cumulative
density functions (CDFs) of the station data partitioned into
non-overlapping weekly intervals; improbably low frequency
data often featured flat empirical gradients (less than 100th of
the median CDF gradient) at the tail of the CDF. This tech-
nique proved insufficient at some stations however, and so
we manually removed dropouts that were not flagged by our
algorithm, as did Eck et al. (2020). The NIER instruments
and procedures are not well documented, and there remain
some oddities: CO was reported with 1 ppb precision at 68
sites and with 100 ppb precision at the remaining 250 sites.

2.2 Research stations

2.2.1 Olympic Park

The Olympic Park research station lies at the southeast edge
of Seoul at 37.5216° N, 127.1242° E, 30 m above sea level,
and served as a reference for ground-level Seoul pollution
during the KORUS-AQ campaign (red star in Fig. 1). Hourly
averages for the key species were recorded using Ecotech
EC9841 NOx , Ecotech EC9830 CO, and Ecotech EC9810
O3 instruments (PI: Cho Seogu) during the KORUS-AQ pe-
riod (10 May 01:00:00 to 18 June 00:00:00 LT). As the
Olympic Park station has four proximal NIER stations within
5 km, reproducing this research station data from the NIER
interpolation should be a test of the small-scale variability in
Seoul pollution provided the instruments are well calibrated.

2.2.2 Taehwa Forest

The Taehwa Forest wilderness site lies 30 km southeast of
Olympic Park at 37.3123° N, 127.3105° E, at 200 m eleva-
tion (blue star in Fig. 1). It was used primarily to investi-
gate the mixing of urban Seoul pollution with the biogenic
volatile organic compounds (BVOCs) of the forest. The three
key species were measured by the existing NIER instruments
(PI: Youngjae Li) but supplemented by a Thermo Scientific
42i instrument for NO and a cavity ring-down spectroscopy
instrument for NO2 (PI: Kim Saewung; Kim et al., 2022).

2.3 NASA DC-8

The DC-8 aircraft routinely profiled the air over Taehwa For-
est via loop manoeuvres in the morning and afternoon on
flight days between 2 May and 11 June 2016. It sampled
other regions above South Korea and the Yellow Sea accord-
ing to pollution plume transport and cloud forecasts. We use
the 10 s merged data of our three key species. O3 and NOx
(NO and NO2) were measured with a four-channel chemi-
luminescence instrument (Weinheimer et al., 1994), and CO
was measured by the Differential Absorption CO Measure-
ment (DACOM) instrument (Sachse et al., 1991). We also use
the 10 s data for latitude, longitude, radar altitude, UTC time,
and potential temperature (PI: Melissa Yang). From the DC-8
potential temperature measurements and ERA5 surface data
(Fig. A1), we can show that the ERA5 PBL heights accu-
rately select DC-8 observations that are adiabatically mixed
from the surface (i.e. dθ/dz∼ 0), which is confirmed by the
afternoon O3 and CO profiles (Fig. A2). To determine when
the aircraft was in the PBL and thus could be compared with
the interpolated surface map, we use the ERA5 PBL height
data from reanalysis (hourly, 0.25°× 0.25° grid; Hersbach et
al., 2023). This approach is more accurate than simply as-
suming that all DC-8 observations below 1.5 km radar alti-
tude fall within the PBL (e.g. Oak et al., 2019).

3 Methods

Interpolation techniques compute an objective estimate
Z′(x, t) of a field Z(x, t) at any geographic location x and
time t as a weighted mean of observations Zk(t) at stations
indexed by k with weights wk(x):

Z′ (x, t)=
∑

k
[wk(x)Zk(t)]

/∑
k
wk(x). (1)

Ordinary kriging and inverse distance weighting (IDW) are
two common interpolation methods that operate by this
premise but differ in how the station weights (wk) are calcu-
lated (Matheron, 1963; Shepard, 1968). Kriging is a family
of statistical techniques based on the supposition that phe-
nomena are autocorrelated in space, relying on an empirical
distance-based covariance model of Z(x, t) determined from
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Figure 1. Left: the geographical distribution of NIER ground stations and the two surface research stations operating during the KORUS-
AQ campaign. High-precision stations (white circles) recorded CO at 1 ppb precision; low-precision stations (grey circles) recorded CO at
100 ppb increments. Right: effective NIER station density (colour) within a 10 km radius (Q; see Eq. 3) gridded over 0.1°× 0.1° cells. The
number of contiguous DC-8 flight transects through each box in the PBL is printed in each cell. The aircraft radar altitude was evaluated
against the ERA5 PBL height (based on hourly 0.25°× 0.25° gridded data; Hersbach et al., 2023). The ERA5 data were interpolated in time
to match the aircraft data.

the station data. In our work we find minimal Pearson’s cor-
relation between pairwise site covariance and proximity for
any of the key species, so we opt for the modified IDW ap-
proach of Schnell et al. (2014).

We examine the autocovariance functions of the sites to
characterize the temporal variability in each key species at
5 min resolution. The autocovariance function for a given
phase shift (e.g. 10 min) is defined as the covariance of a
time series of data with itself but phase-shifted by 10 min.
The O3 site autocovariance functions feature strong diurnal
cycles, preserving on average half of the respective site vari-
ances for a 24 h phase shift, compared with 35 % for CO and
NOx . Sub-10 min variability accounts for 3 % of the O3 site
variance and 12 % of the CO and NOx variance on average.
Heterogeneous emissions and micrometeorology may be at-
tributed to some of the CO and NOx short-timescale variabil-
ity seen in some Seoul sites and many CO-measuring sites
in the Gwangyang–Yeosu–Suncheon zone, while rural sites
suggest a possible instrumental noise component of the NOx
variability (see Fig. B1 of Appendix B).

3.1 Inverse distance weighting

In IDW techniques, weights are calculated from the recip-
rocal distances between estimation point x and the station
coordinates xk , scaled by the exponent β. The greater den-
sity of observations in some regions creates a source of over-
sampling bias. Schnell et al. (2014) address this clustering
effect by reducing all station weights by Mk , the number of
other stations within distance D of site k, discounting sites
with missing readings on an hourly basis. In order to smooth
the spatial heterogeneity in Z′(x, t) at small length scales,
the distance D also serves as the minimum cutoff of x− xk
and hence determines the maximum weighting wk(x) of any
nearby station. L is a maximum cutoff of x− xk used to re-
duce excess calculations for extremely distant and unimpor-
tant sites. The weight formulae are summarized in Eq. (2):

wk(x)=
D−β

Mk
for x− xk ≤D,

wk(x)=
(x−xk)

−β

Mk
for D < x− xk ≤ L,

wk(x)= 0 for x− xk > L.

(2)

Our NIER station data consist of k ∈ {1,2, . . .,323} locations
(Fig. 1) and t ∈ {1,2, . . .,936} hourly observations (10 May
01:00:00 to 18 June 00:00:00 LT) for each of our three key
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species (O3, CO, NOx), with some unreported or erroneous
data. We optimize β and D for each key species Z by ran-
domly removing a fifth of the stations from the algorithm
and then predicting the abundance at each missing station
k′, adjusting each parameter until a 2D minimum is reached.
In minimizing the total root-mean-square error between pre-
dictions Z′

k′
(t) and observations Zk′(t) over the time se-

ries, we find similar optimal values for each species (β ∼ 2,
D∼ 5 km, L∼ 80 km), with no significant improvement for
larger L values. The effective density of observationsQ(x) is
defined as the effective number of NIER sites within a 10 km
radius of x in Eq. (3) (also called quality of prediction, Eq. 5
of Schnell et al., 2014). We expect Q to correlate with pre-
diction accuracy:

Q(x)= 10β
∑

k
wk(x). (3)

Compared with the arithmetic mean gridding, the gridded
IDW observations show no significant mean bias. How-
ever, significant mean absolute deviations can be seen in
the densely observed (Q> 10) Seoul Metropolitan Area and
southeast coastal cities. In such regions, the mean absolute
deviations for O3, CO, and NOx are 5, 58, and 9 ppb, respec-
tively. Conversely, the most sparsely measured regions show
the best agreement between the two methods due to mutual
sampling of a single station. Both methods are fundamen-
tally limited by sampling density, particularly in urban cen-
tres with high spatial emission variability. The differences
seen in the most densely observed regions highlight the in-
stability of the arithmetic mean method with respect to grid
size and boundary manipulation.

3.2 Statistical techniques

To evaluate the accuracy and predictive capability of an inter-
polation, we examine the error E(t) in a time series of pre-
dictions Pre(t) and observations Obs(t) at a given location
for a given species with all time points equally weighted. We
calculate a sequence of three error series defined as follows:

E1(t)= Pre(t)−Obs(t),

E2(t)= Pre(t)−Obs(t)−
(

Pre(t)−Obs(t)
)
,

E3(t)= bPre(t)−Obs(t)−
(
bPre(t)−Obs(t)

)
,

(4)

where E1(t) is the absolute error in the predictions; E2(t)
is the error after correcting for the mean prediction bias(

Pre(t)−Obs(t)
)

; and E3(t) is the error relative to a sim-
ple linear regression (LR) model of Pre(t) vs. Obs(t) fitted
by ordinary least squares, i.e. after correcting for mean bias
and slope (b). We then apply the coefficient of determina-
tion to compute the fraction of the observed sample variance,
Var(Obs(t)), explained by, for example, the raw predictions
(E1(t)):

R2
E1 = 1−

mean
(
E1(t)2

)
Var(Obs(t))

. (5)

Figure 2. Left: box plots of normalized mean bias: NMB(k)=
mean(Pre(k, t)−Obs(k, t))/mean(Obs(k, t)). Right: standard de-
viation ratio σ (Pre(k, t))/σ (Obs(k, t)) for interpolated time series
at each NIER site using leave-one-out cross-validation. Whiskers
show the range of non-outliers, where outliers are data beyond 1.5
interquartile ranges from the outer quartiles. Results are shown for
O3 (blue), CO (red), and NOx (green). Mean bias is normalized by
the observed mean, and the ratio of standard deviations is analogous
to the gradient of a linear regression.

And we do similarly forE2(t) andE3(t). R2
E1 is a predictive

accuracy statistic that ranges from minus infinity to 1 and is
identical to the forecast skill score referenced to the mean
of observations (Murphy, 1988). R2

E2 describes how well the
predictions capture the temporal variability in the observa-
tions regardless of any mean bias and has the same range as
R2
E1.R2

E3 is the common definition ofR2 in regression analy-
sis and ranges from zero to 1 due to the fitting constraint.R2

E3
describes the predictability of the observations from the LR
model regardless of any difference in the mean or variance of
Pre(t) and Obs(t). A score of zero for a given R2

E is equiv-
alent to predicting a static mean of observations across the
time domain. The maximum score for R2

E1 and R2
E2 is lim-

ited by the interpolation variance, which is typically damped
relative to the contributing stations, especially in regions with
highly heterogeneous emissions. Figure 2 (right-hand side)
suggests the average station predictability (R2

E1 and R2
E2)

score has an upper bound of around 0.9 for O3 and 0.8 for
CO and NOx .

Leave-one-out cross-validation

In this trial, we sequentially remove each station k and then
interpolate (predict) its value from the remaining stations:
Pre(k, t)= Z′(k, t), where Obs(k, t)= Z(k, t) (see Eq. 4;
Brauer et al., 2003; Hochadel et al., 2006). A perfect in-
terpolation would accurately reproduce the mean and stan-
dard deviation of the measurements, indicating (1) no mean
bias error and (2) preservation of daily maxima and minima.
Our optimized IDW interpolation has clearly worked well in
terms of mean bias (left half of Fig. 2). The box quartiles
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and non-outlier whiskers (i.e. the full range of values within
one-and-a-half 1.5 interquartile ranges from the outer quar-
tiles) are well centred on zero bias, with the spread broaden-
ing from O3 to CO to NOx . The symmetry of the whiskers
comes from the case where two sites, distant from the re-
maining sites but near one another, are the only sites used
to interpolate one another, and hence if one site has twice
the mean value of another, we get symmetric plus–minus
biases for each site. The median of the mean NOx site bi-
ases is +13 %, and this appears to be an artefact of low
NOx abundances in rural (Q< 5) locations. The absolute
mean NOx bias averages −0.6 ppb (urban −3.0 ppb, rural
+6.5 ppb). Incoherence among nearby urban stations com-
bines to dampen the interpolation variability, especially for
CO and NOx , which feature independent high spatial vari-
ability from local sources. This is shown on the right half of
Fig. 2, where most of the standard deviation ratio quantiles
lie below unity. We believe this reduced standard deviation in
the prediction time series better represents the average over a
grid cell that contains several incoherent sites.

The sequences of R2
E scores (E1–E3) for each site and

each species are shown in Fig. 3. The O3 scores (top row) are
consistently high across the sequence. Scores ofR2

E1 through
R2
E3 for O3 indicate that the O3 interpolation was accurate

and unbiased at almost all NIER stations in South Korea. For
CO (middle row) and NOx (bottom row), there is an improve-
ment in absolute prediction accuracy (R2

E1) as the density
of observations (Q) increases and further improvement after
correcting the mean bias in the predictions (R2

E2). The lin-
ear regression models (R2

E3) offer an obvious improvement
to predictability in rural regions (low Q) where information
is lacking but no significant improvement in well-sampled
urban regions (high Q). With no large net mean bias for
any key species (Fig. 2), we assert that the average of our
interpolations should capture the mean of and possibly the
variability in a well-mixed gridded domain. We test this as-
sertion later using aircraft PBL observations averaged into
0.1°× 0.1° cells. The high range of R2

E values for NOx and
CO, even whereQ> 10, suggests that absolute mean error in
the prediction is a problem for many sites, implying they are
driven by very small scale (< 1 km) local emissions in con-
trast to O3, which is not emitted directly. For NOx , the se-
quence from E1 to E2 greatly improves the prediction accu-
racy. For CO, there remains a large fraction of unpredictable
sites, often with very high standard deviations (dark-red cir-
cles), implying large nearby emissions. Figure 4 (top-middle
and top-right panels) shows the clustering of such sites for
CO and NOx in Daejeon (central–western South Korea) and
in the southern coastal cities of Gwangyang, Yeosu, Sun-
cheon, Jinju, and Ulsan (no NOx data). When we compare
the leave-one-out cross-validation (LOOCV) performance of
NOx with the complete interpolation (i.e. no stations omit-
ted; see bottom panel of Fig. 4), we see R2

E2 scores change
by> 0.4 at, for example, rural sites, the Busan shoreline, and
the manufacturing district sites of northern Yeosu and eastern

Gwangyang. These discrepancies indicate undersampling of
NOx across rural South Korea and in some urban districts
with locally contrasting emission activity.

We have additionally compared the interpolation accuracy
during the four meteorological phases presented by Peterson
et al. (2019), i.e. dynamic, anticyclone, low-level transport,
and Rex blocking, although we did not identify any obvi-
ous patterns across the phases (see Fig. C1 of Appendix C).
An alternative test of meteorological influence is daytime
(07:00 to 20:00 LT) vs. nighttime (21:00 to 06:00 LT) pre-
dictability, i.e. prevailingly turbulent vs. stably stratified at-
mospheric surface conditions. Ozone and NOx , but not CO,
showed greater LOOCV predictability (R2

E2) during the day-
time than nighttime by around +0.1 and +0.05, respectively
(see Fig. C2). More efficient turbulent mixing during day-
time vs. nighttime likely smoothed some of the small-scale
emission heterogeneity, resulting in more predictable fields.

3.3 Gridded air quality data

A major objective of this study was to obtain grid-cell av-
erages (0.1°× 0.1°, approx. 10 km× 10 km) for testing re-
gional air quality models. Within each 0.1°× 0.1° cell, we in-
terpolate the key species to 25 points on a 0.02°× 0.02° grid
centred in the cell and then average these values. The aver-
ages do not account for latitudinal differences in quadrangle
areas, which are minor for South Korean latitudes. We apply
the same treatment to the density of observations to produce
the gridded Q values as seen in Fig. 1 (right-hand side).

3.4 Aircraft cell averages

We collect the measurements of O3, CO, and NOx from
NASA DC-8 taken over land at radar altitudes below the PBL
heights taken from the ERA5 data. The DC-8 measurements
used here are 10 s merged measurements corresponding to
approximately 1 km flight segments S ∈ {1,2, . . .,13942}. To
compare the segments with the gridded site data, we average
the contiguous segments through each grid cell to produce
transect-averaged observations Obs(T ), where transects T ∈
{1,2, . . .,2106} contain around seven segments whose mid-
points lie in the cell bounds. For the prediction set Pre(T ), we
interpolate the traversed cells in time to match the mean air-
craft time of flight during the respective transects. The num-
ber of transects through each cell is indicated by the gridded
numbers in Fig. 1 (right-hand side).

4 Results

4.1 Research site prediction

Research stations provide case studies where the quality of
measurements is carefully controlled, and so instrumental
drift, noise, and biases are minimized. For each key species,
we compare the NIER station data interpolated to the coordi-
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Figure 3. Generalized coefficient of determinations (R2
E

, Eq. 5) for NIER station predictions vs. the effective density of nearby observations
(Q, effective number of sites in a 10 km radius). The three columns show the sequenceR2

E1,R2
E2, andR2

E3. The three rows are for the species
O3 (top), CO (middle), and NOx (bottom). The calculations use the leave-one-out cross-validation method at each NIER station (circles)
coloured by the standard deviation of observations. The connected blue crosses show the median R2

E
values for five percentile partitions of

Q: 0 %–20 %, 20 %–40 %, 40 %–60 %, 60 %–80 %, and 80 %–100 %.

nates of the research stations, at either Olympic Park or Tae-
hwa Forest, against the research station instruments (Fig. 5).
Olympic Park and Taehwa Forest have effective sampling
densities (Q) of 16 and 6 stations per 10 km, respectively.
Figure 5 shows accurate prediction of O3 at both sites with
predictably more scatter at Taehwa Forest, where less infor-
mation was available. We see a similar pattern for CO but
with a mean bias (predicted NIER interpolated value minus
research instrument measurement) of +100 ppb at Taehwa
Forest. NOx is predicted reasonably well at Olympic Park
except in the highest measured range (> 100 ppb), but pre-
dictions appear random at Taehwa Forest. Table 1 indicates
excellent prediction accuracy at Olympic Park for all species
(R2
E1) and at Taehwa Forest for O3. At Taehwa Forest, CO

prediction improves when mean biases are removed (R2
E2),

but NOx remains unpredictable. The linear regressions (R2
E3)

lead to very little improvement over mean bias correction
(R2
E2), implying that the temporal variability measured by the

research stations was well captured. HighR2
E1 scores suggest

good co-calibration between the Olympic Park instruments
and surrounding NIER instruments. We are unable to char-
acterize the mean biases at Taehwa Forest.

As an isolated wilderness site, Taehwa Forest presents a
unique problem for interpolating NOx values based on NIER
stations. The closest three NIER sites surround the forest sta-
tion at a distance of around 10–15 km, and all are subject to
NOx roadside emissions; thus our interpolation maps these
high-NOx values into the relatively NOx-depleted forest.

4.2 DC-8 comparison

Figure 6 (top panel) shows that the gridded surface site pre-
dictions of the DC-8 O3 observations are consistently lower
than observed but remain strongly correlated. CO predic-
tions (Fig. 6, middle panel) show a consistent bias of around
+100 ppb but otherwise capture the variability in the air-
craft CO measurements reasonably well. NOx predictions
(Fig. 6, bottom panel) show a consistent positive bias along
with randomness in the low measured range (< 10 ppb).
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Figure 4. The geographical distribution of NIER station prediction accuracies with the mean prediction bias removed from each station (R2
E2,

Eqs. 4 and 5), shown for the three key species: O3 (left), CO (middle), and NOx (right). Top: R2
E2 scores for the LOOCV interpolations.

Middle: R2
E2 scores for the complete interpolation, i.e. without omitting the data from predicted sites. Bottom: the difference between the

complete and LOOCV interpolation R2
E2 scores. Negative R2

E2 values are truncated to zero. Approximate city bounds are shown via text
and boxes in the top-left panel.

Table 1. The generalized coefficients of determination R2
E1, R2

E2, and R2
E3 (Eq. 5) for predictions vs. measurements at research stations

(Olympic Park and Taehwa Forest) and along flight transects in the PBL. Each flight transect is a median of contiguous 10 s observations
through a grid cell (see Fig. 1 for sampling distribution and Fig. 5 for scatter plots), and the predictions are gridded values interpolated
linearly in time to match the aircraft time of flight and then averaged. E1, E2, and E3 are time series of prediction errors defined in Eq. (4).
NOx measurements at Taehwa Forest are taken from Kim et al. (2022).

Olympic Park Taehwa Forest DC-8 (all transects) DC-8 (Q> 10 transects)

Species R2
E1 R2

E2 R2
E3 R2

E1 R2
E2 R2

E3 R2
E1 R2

E2 R2
E3 R2

E1 R2
E2 R2

E3

O3 0.90 0.92 0.96 0.68 0.82 0.82 0.02 0.69 0.69 0.26 0.81 0.90
CO 0.73 0.75 0.76 −2.70 0.69 0.71 −2.20 0.28 0.41 −0.91 0.83 0.84
NOx 0.67 0.68 0.68 −12.0 −3.60 0.00 −2.60 0.34 0.62 −0.84 0.51 0.73

The gridded O3 and CO predictions are highly accurate
(R2
E2= 80 %) in grid cells with effective observation density

(Q) exceeding 10, mainly sampled in the Seoul Metropoli-
tan Area (Fig. 1, right-hand side). These findings show that
with enough ground information, our gridded O3 and CO

datasets can predict upper PBL variability even in regions
with intense small-scale emission heterogeneity. NOx is ex-
ceptional, however, due to the rapid fall-off in abundance
with altitude even within the PBL (Fig. A2 of Appendix A;
see also Fig. 2 from Kim et al., 2021). We believe that O3
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Figure 5. Predicted vs. measured abundances of the three key
species at the Olympic Park (red) and Taehwa Forest (blue) research
stations. Predicted abundances are computed as point interpolations
as per Eq. (1). Dashed lines are linear regression (LR) models fitted
by ordinary least squares.

titration in the Seoul Metropolitan Area leads to a slight un-
derestimation in predicted variability, as shown by a 10 % in-
crease in predictability using linear regression (R2

E3= 90 %,
Table 1). We note however that the recurring flight patterns
did not uniformly sample our grid domain and may have
over- or undersampled some regions. Obtaining vertically
averaged concentrations rather than surface values remains
a challenge given the substantial near-surface gradients in-

Figure 6. Comparison of 10 s DC-8 observations in the PBL and
gridded (0.1°× 0.1°) hourly ground station data. Each data point
represents the median of the contiguous aircraft transect through
a grid cell (y axis) and the median of the gridded ground station
data interpolated linearly in time to match the aircraft time of flight
(x axis).

ferred from Figs. 6 and A2, and this suggests the need for
vertically resolved chemical and dynamical modelling.

5 Conclusions

We create gridded (0.1°× 0.1°) observational datasets from
NIER ground station measurements of air quality over South
Korea. Unlike the arithmetic mean gridding technique, this
method includes information from all nearby stations, in-
cluding those outside the cell boundary, while mitigat-
ing sampling bias from site clustering. We identified sig-
nificant mean absolute deviations between the IDW and
arithmetic mean gridding techniques in, for example, the
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Seoul Metropolitan Area, where IDW proved most accurate,
prompting caution with respect to the use of arithmetic mean
gridding.

Our results suggest that the mean of and variability in
ground-level O3 were well captured over the whole of South
Korea. For CO and NOx , our LOOCV analysis revealed
mean biases in certain NIER site predictions but otherwise
good prediction accuracy in most densely observed urban
regions after the biases were subtracted. The well-predicted
regions include the Seoul Metropolitan Area, Busan, Chang-
won, Daegu, and Cheongju, whereas prediction accuracy was
poorer in the conjoined coastal cities of Gwangyang, Yeosu,
and Suncheon, as well as in Ulsan; predictability in these re-
gions would benefit from denser sampling. The aircraft com-
parisons confirm that the variability in O3 and CO in the PBL
is well captured from the surface stations; however, NOx ver-
tical gradients in the PBL confound attempts to predict the
aircraft NOx measurements.

Inverse distance weighting is susceptible to errors from
over- or undersampling of intense emission sources such
as roadsides and industrial sectors. The characteristic con-
centrations of these regions may also be projected beyond
the reach of the emission sources as seen in the high CO
and NOx biases at Taehwa Forest. These error sources are
not unique to IDW. Nevertheless, improvements in NOx
predictability might be found with land-use regression and
machine learning approaches as reviewed by Karroum et
al. (2020), although these are outside the scope of the present
paper. Such techniques can account for reactive NOx decay
away from sources, potentially mitigating errors from source
sampling bias and over-projection. It would be interesting
to compare the site predictability values vs. sampling den-
sity for these alternate techniques, particularly in regions that
were undersampled according to LOOCV.

Appendix A

Figure A1. DC-8 10 s potential temperature (θair) measurements
(dots) in a 0.5° radius of Taehwa Forest research station with grid-
ded (0.25°× 0.25°) surface potential temperature (θground) sub-
tracted, taken below (a) and above (b) the ERA5 designated
PBL height. Lines connecting dots indicate contiguous transects,
and all data were taken during ascent or descent (aircraft ver-
tical speed> 1 m s−1). θground was calculated using the ERA5
2 m temperature and surface pressure fields at native resolution
(0.25°× 0.25°, hourly), interpolated in time to match the aircraft
time of flight.
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Figure A2. Vertical profiles of the DC-8-measured O3 (a), CO (b), and NOx (c) in the ERA5 PBL within a 0.5° radius of Taehwa Forest
research station. All data are sampled between the hours of 12:00 and 17:00 LT, and quartiles are shown for aircraft data (blue) partitioned
into altitude bins (0–250, 250–750, 750–1250, and 1250–1750 m) and for the available ground research station measurements at Taehwa
Forest (red) supplemented by Kim et al. (2022) (green).

Appendix B

Figure B1. The sub-10 min temporal variability in the quality-controlled O3 (left), CO (middle), and NOx (right) site data at 5 min resolution.
Sub-10 min variability for individual sites was calculated as the site autocovariance subject to a 10 min phase shift (KXX(t, t + 10min))
subtracted from the total site variance (Var(X)), normalized by Var(X).
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Appendix C

Figure C1. The median prediction accuracy (R2
E2) of O3 (blue), CO (red), and NOx (green) within percentile bins (0 %–20 %, 20 %–40 %,

40 %–60 %, 60 %–80 %, and 80 %–100 %) during the meteorological phases (dynamic, anticyclone, transport, and Rex blocking) described
by Peterson et al. (2019).

Figure C2. As in Fig. C1 but for daytime (07:00 to 20:00 LT inclusive) and nighttime (21:00 to 06:00 LT inclusive) data.

Data availability. Gridded data products and the
datasets used in the analysis are available from Wil-
son (2025) at https://doi.org/10.5061/dryad.sf7m0cgf5.
All KORUS-AQ data used in this paper are available via
https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01 (KORUS-
AQ Science Team, 2019).
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