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Figure S1. The start times of 500 randomly selected calibration periods for the MAS1 NO sensor. 

 

 

Figure S2. (a) Setup and (b-e) NO2, NO, CO, and O3 long-term field data comparison of four MAS units with the 

AQMS in Hong Kong in 2019. (f) shows the temperature and RH measured inside the four MAS gas sensor 

modules. 

 



 

Figure S3. (a) Laboratory environmental chamber setup and (b) the response of 3 MASs' NO sensors under 

multiple point concentrations in laboratory temperature and humidity test. 

 

 

Figure S4. MAS1 NO2 sensor calibrated data overview. 

 



 

Figure S5. MAS1 NO sensor calibrated data overview. 

 

 

Figure S6. The potential range of the calibration slope, validation R2 and RMSE for a given calibration period for 

each MAS (a) NO2, (b) NO, (c) CO, and (d) O3 sensors. Different colored lines represent the results of different 

MAS units. The vertical error bar is the 25%–75% distribution of the results under different calibration periods. 

 



 

Figure S7. (a) NO2 and (b) NO bubble plot of median R2 of MAS units 7 and 8 (located in the high-concentration 

region (Shanghai)) and two factors: calibration period and concentration span. The size of the bubbles represents 

the number of samples. The color of these bubbles represents the median R2 values in corresponding categories. 

Red represents higher R2 values, while blue represents lower R2 values. 

 

 



Figure S8. (a)-(c) The potential range of calibration slope, the R2, and the RMSE of the validation set for MASs 

1-4 NO sensors, under various time averaging with a calibration period of 1 day. Different colored lines represent 

the results of different MAS units. The vertical error bar is the 25%–75% distribution of the results under 

different categories. (e)-(f) The calibration slope median, the R2 median, and the RMSE median of the validation 

set for MAS1 NO sensors across all calibration periods, with different colors denoting time averages ranging 

from one minute to three hours. 

 

 

Figure S9. (a)-(c) The potential range of calibration slope, the R2, and the RMSE of the validation set for MASs 

1-4 CO sensors, under various time averaging with a calibration period of 1 day. Different colored lines represent 

the results of different MAS units. The vertical error bar is the 25%–75% distribution of the results under 

different categories. (e)-(f) The calibration slope median, the R2 median, and the RMSE median of the validation 

set for MAS1 CO sensors across all calibration periods, with different colors denoting time averages ranging 

from one minute to three hours. 

 



 

Figure S10. (a)-(c) The potential range of calibration slope, the R2, and the RMSE of the validation set for MASs 

1-4 O3 sensors, under various time averaging with a calibration period of 1 day. Different colored lines represent 

the results of different MAS units. The vertical error bar is the 25%–75% distribution of the results under 

different categories. (e)-(f) The calibration slope median, the R2 median, and the RMSE median of the validation 

set for MAS1 O3 sensors across all calibration periods, with different colors denoting time averages ranging from 

one minute to three hours. 

 



 

Figure S11. Comparison of the distribution between reference data and the MAS1 NO2 sensor data after 

calibration using varying time averaging. The purple and green dashed lines represent the normal distribution of 

the sensor and reference fitting, respectively. μ and σ represent the mean and standard deviation of the normal 

distribution, respectively. 

 

S1. Potential causes of sensor calibration coefficient variation from mathematical perspective 

To delve deeper into the enhanced calibration performance with increased time averaging, the principles 

of linear regression are pivotal (Marill, 2004). In calibrating sensor data via linear regression (Reference 

= a × Sensor_raw + b + ε), it is posited that the dependent variable Y (Reference) consists of the linear 

portion (a × Sensor_raw + b) and a residual component (ε) adhering to a normal distribution (Tripepi et 

al., 2008). The residuals in this model should conform to the white noise criteria  (Kulperger, 1998; 

Rahmatullah Imon, 2009), signifying their independence, identical distribution, and lack of 

autocorrelation. These residuals should also be uncorrelated with both the independent variable X 

(Sensor_raw) and dependent variable Y, maintaining a zero mean and constant variance, indicative of 

'homoscedasticity' or its absence, 'heteroscedasticity'. 

Analyzing the residuals is essential for grasping sensor data nuances and validating the model's 

calibration coefficients(Law and Jackson, 2017). Figure S12 displays the residual plot in the X and Y 

axes, where residuals display a random, homoscedastic distribution over X values but turn 



heteroscedastic with a strong linear tie to Y in minute-level data. This pattern suggests overlooked 

influential factors in the calibration model (Tripepi et al., 2008), which significantly interact with Y, 

affecting the residuals systematically. 

Consequently, the predictive capability of the calibration model may be compromised since it fails to 

encapsulate these crucial variables' effects on Y. However, averaging X and Y over time tends to 

normalize the residuals' homoscedasticity in the hourly data along the Y axis, possibly due to mitigating 

heteroscedasticity-inducing elements during time averaging (Long and Ervin, 2000). This leads to a 

more homoscedastic arrangement in Y and a mitigated impact on the X-Y regression relationship. While 

further analysis is needed to pinpoint the factors affecting residual behavior, it's clear that extended time 

averaging of sensor data facilitates calibration coefficients nearing the ideal solution, highlighting the 

importance of appropriate time averaging in achieving optimal calibration.  

  

Figure S12. (a) Scatter plots of the reference and sensor_raw data of MAS1’s NO2 sensor at hourly and minute-

level time averaging, respectively. (b) Distribution of sensor residuals (Reference - Sensor) in the sensor 

direction. (c) Distribution of sensor residuals in the reference direction. The red and blue lines in (b) and (c) are 

the fitted trends of the residuals. 
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