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Abstract. Accurate and continuous measurements of at-
mospheric carbon dioxide (CO2) are essential for climate
change research and monitoring of emission reduction ef-
forts. NASA’s Orbiting Carbon Observatory (OCO-2 and 3)
satellites have been deployed to infer the column-averaged
CO2 dry-air mixing ratio (XCO2 ) from passive spectroscopy,
with a designed uncertainty of less than 1 ppm for the re-
gional average. This accuracy is often not met in cloudy re-
gions because clouds in the vicinity of a footprint introduce
biases in the XCO2 retrievals. These arise from limitations
in the one-dimensional (1D) forward radiative transfer (RT)
model, which does not capture the spectral radiance pertur-
bations introduced by clouds adjacent to a clear footprint.
Our paper introduces a three-dimensional (3D) RT pipeline
to explicitly account for these effects in real-world satellite
observations. This is done by ingesting collocated imagery
and reanalysis products to calculate the cloud-induced per-
turbations at the footprint level. To make that computation-
ally feasible, a simple approximation for their spectral de-
pendence is used. The calculated perturbations are then used
to reverse (undo) the cloud vicinity effects at the radiance
level, at which point the standard 1D OCO-2 retrieval code
can be applied without modifications. For two cases over
land, we demonstrate that this approach indeed reduces the
XCO2 anomalies near clouds. We also characterize the depen-
dence of the XCO2 footprint-level bias on the distance from
clouds and other key scene parameters, such as surface re-

flectance. Although this dependence may be specific to cloud
type, aerosols, and other factors, we illustrate how it could be
parameterized to bypass our physics-based 3D-RT pipeline
for use in an operational framework. In the future, we intend
to explore this possibility by applying our tool to a variety of
scenes over land and ocean.

1 Introduction

Precise global carbon dioxide (CO2) measurements are es-
sential for a deeper understanding of surface CO2 sources
and sinks and their response to climate change, emissions
reductions, and other mitigation strategies. The Greenhouse
Gases Observing Satellites (GOSAT, GOSAT-2; Nakajima
et al., 2010; Imasu et al., 2023) and the Orbiting Carbon
Observatory (OCO-2, OCO-3; Crisp, 2015; Eldering et al.,
2019), launched by the Japan Aerospace Exploration Agency
(JAXA) and NASA, respectively, are currently in space to ob-
serve CO2 and other greenhouse gases. They have been de-
signed to precisely measure CO2 column dry-air mixing ra-
tios (XCO2 ) through the analysis of reflected solar radiances
in the oxygen A-band at 765 nm (O2 A), as well as the weak
and strong CO2 bands near 1.61 µm (WCO2) and 2.06 µm
(SCO2).
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High accuracy is imperative for remote sensing mea-
surements of XCO2 to effectively contribute to carbon flux
(sources and sinks) studies. Miller et al. (2007) suggest that
the regional uncertainty should be within 0.3 %–0.5 % (1 to
2 ppm) to meaningfully contribute to carbon flux estimates.
Deng et al. (2016) and Crowell et al. (2018) highlight the im-
portance of achieving high XCO2 measurement accuracy for
reliable CO2 flux estimation. Deng et al. (2016) show that
the assimilation of GOSAT XCO2 data with a precision of ap-
proximately 0.5–1.0 ppm can significantly improve regional
CO2 flux estimates over land and ocean. Similarly, Crow-
ell et al. (2018) emphasize that an XCO2 precision of 0.5–
1.0 ppm is essential for detecting regional flux perturbations,
especially in cloud-prone and high-latitude regions where
CO2 fluxes are difficult to constrain accurately using ground-
based sensors alone. Precision and accuracy in CO2 remote
sensing are contingent on factors including spectroscopy, cal-
ibration, aerosol scattering and absorption, and atmospheric
water vapor (Nelson et al., 2022; Worden et al., 2017; Connor
et al., 2016). The OCO missions employ an XCO2 retrieval
algorithm that integrates these elements along with observa-
tional conditions, such as solar zenith angle (SZA), viewing
zenith angle, and geolocation (OCO-2 L2 ATBD, 2020), and
uses a priori data such as CO2 vertical profiles and surface re-
flectance to initialize spectral calculations via a computation-
efficient one-dimensional (1D) radiative transfer (RT) model.
The retrieval process iteratively refines the initial a priori es-
timates through optimal estimation methods (Rogers, 2000)
until convergence between calculated and observed spectra
is achieved.

Despite advancements in trace gas retrieval algorithms, the
presence of clouds near satellite footprints remains a sig-
nificant challenge. While retrievals typically exclude mea-
surements over cloudy regions, photons scattered by nearby
clouds can bias XCO2 retrievals due to the neglect of pho-
ton transfer between atmospheric columns in the 1D-RT
model. Recent studies (Massie et al., 2017, 2021, 2023;
Kylling et al., 2022) have highlighted the presence of the
three-dimensional (3D) cloud bias in trace gas retrievals,
including OCO and TROPOspheric Monitoring Instrument
(TROPOMI) nitrogen dioxide (NO2) retrievals. The cloud-
related bias is also evident when examining individual foot-
prints. With clouds covering roughly 70 % of the globe
(Wylie et al., 2005; King et al., 2013) and 40 % of the OCO-
2 measurements being within 4 km of clouds (Massie et al.,
2021), addressing cloud-induced bias is crucial for refining
XCO2 retrieval accuracy.

Schmidt et al. (2019) explain that lateral photon trans-
port represents missing physics in the operational OCO al-
gorithm, and any adjustments for differences between 1D-
RT and 3D-RT could introduce additional inaccuracies in
XCO2 retrieval. Evaluating these differences requires a high-
resolution 3D-RT model capable of simulating spectra across
multiple wavelengths. Recent advancements have acceler-
ated high-resolution 3D-RT simulations for multiwavelength

applications. For instance, Partain et al. (2000) introduced
an enhanced implementation of the equivalence theorem,
which decouples scattering and absorption calculations, al-
lowing for accurate spectral integration without repeated
multiple-scattering computations for Monte Carlo models.
Emde et al. (2011) developed the Absorption Lines Impor-
tance Sampling (ALIS) technique, which efficiently com-
putes high-resolution polarized spectra by leveraging Monte
Carlo photon tracing across multiple wavelengths simultane-
ously. Iwabuchi and Okamura (2017) also adopted a similar
way of using the same photon paths for various wavelengths
to accelerate multiwavelength 3D-RT simulation. Doicu et
al. (2020) accelerated the spherical harmonics discrete or-
dinate method (SHDOM) 3D-RT model, which is different
from Monte Carlo-based 3D radiative transfer models, by
combining the correlated k-distribution method with dimen-
sionality reduction techniques, such as principal component
analysis.

While these acceleration methods have the potential to im-
prove the accuracy of trace gas retrievals by taking into ac-
count missing physics (horizontal photon transport), current
operational retrievals still do not use true 3D-RT in trace gas
retrieval processes. Here, we adopt the approach introduced
by Schmidt et al. (2019) as a practical method to approxi-
mate the 1D-RT and 3D-RT differences in spectral radiance
observations, building on the concept of 3D-RT radiance per-
turbations, defined as the spectral percentage difference be-
tween 3D and 1D radiance simulations. The simulations in
this study are performed using a modified version of the Edu-
cation and Research 3D Radiative Transfer Toolbox (EaR3T;
Chen et al., 2023), tailored specifically for OCO (EaR3T-
OCO). The 3D perturbations proved to be a linear function
of the radiance (or reflectance) itself across the relevant dy-
namic range of reflectance, which allows its representation
by a simple slope and intercept for each of the three OCO-2
bands, with further details provided in Sect. 2. We also in-
troduce a “bypass” parameterization that relates slopes and
intercepts to factors such as cloud distance and scene re-
flectance, enabling the quantification of 3D cloud effects un-
der varying conditions.

Although the reflectance-dependent physical mechanisms
of the XCO2 3D cloud retrieval bias are now largely under-
stood, strategies for applying these insights to bias correc-
tion have thus far been done empirically or statistically. For
example, Massie et al. (2023) proposed an empirical lookup
table to correct 3D cloud biases based on a 3D metric, and
Mauceri et al. (2023) used machine learning techniques com-
bined with Total Carbon Column Observing Network (TC-
CON) observations. While both approaches are operationally
applicable, they rely on statistical corrections rather than the
actual physical radiance difference in the 3D cloud effect
across the entire spectrum. In contrast, we present a new
physics-based mitigation framework that directly applies the
linear representation of the 3D cloud effect to real OCO-2
observations. This approach aims to remove the 3D pertur-
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bation at the radiance level before reapplying the operational
1D retrieval, thereby improving the accuracy of the retrieved
XCO2 .

The remainder of this paper is organized as follows: Sect. 2
provides background on the linear 3D perturbation concept.
Section 3 details data used in this study and EaR3T-OCO
simulation. Section 4 (and Appendix B) outlines our method-
ology for deriving slope and intercept parameters at a limited
set of wavelengths and for using them to mitigate XCO2 bi-
ases. Section 5 shows how these parameters are used to cor-
rect the observed radiance spectra and, by extension, the re-
trieved mitigated XCO2 . Finally, Sect. 6 provides conclusions,
and Sect. 7 discusses future work. Appendix C explains the
functionality of EaR3T-OCO in detail.

2 Background information

This study builds on Schmidt et al. (2019), which found a
linear relationship between radiance perturbations and re-
flectance due to 3D-RT effects. They define the 3D-RT ra-
diance perturbation as the percent difference between the ra-
diances calculated by 3D and 1D radiative transfer models,
as formulated in Eq. (1).

Perturbationλ =
I 3D
λ − I

IPA
λ

I IPA
λ

=
I 3D
λ

I IPA
λ

,1 (1)

The magnitude of this perturbation is not uniform across
the observed wavelength spectrum but depends on the re-
flectance (Rλ), defined as follows:

Rλ =
Iλ×π

STOA
0λ × cosθs

, (2)

where STOA
0λ in the denominator denotes the solar irradiance

at the top of the atmosphere (TOA) for a given wavelength λ,
and θs is the solar zenith angle.

Within the dynamic range of interest for reflectance, the
dependence of the perturbation on the reflectance is linear.
This is illustrated in Fig. 1, which shows simulated obser-
vations in the O2 A-band (Schmidt et al., 2019). For small
reflectance, the scatter increases due to a limited number of
photons in the calculations (Appendix B4). A line is fitted to
the data to represent the first-order dependence of the 3D-RT
perturbation on the reflectance. This can be done with either
all wavelengths (grey dots) or a subset (red), which is strate-
gically chosen to encompass the full reflectance range.

The slope and intercept parameters, sxy and ixy , are
obtained through weighted linear regression as shown in
Eq. (3), where the weights are the inverse of the perturba-
tion uncertainty (computational noise; see Appendix B4).
The slope and intercept indicate distinct physical phenom-
ena: a nonzero slope corresponds to wavelength-dependent
variations and differences in 1D and 3D radiances, pho-
ton path lengths, and absorption. Multiple scattering in 3D-

Figure 1. Example of the linear relationship between perturbation
and reflectance. The grey dots represent the complete wavelength
range, while the red dots indicate the subset selected for the O2 A-
band simulation. The black and red lines represent the linear fits of
the grey and red dots, respectively.

RT increases the photon path lengths and enhances absorp-
tion across different wavelengths, leading to nonzero per-
turbations, as expressed by Eq. (1) (percentage differences
between 1D and 3D radiances). This effect is more pro-
nounced at wavelengths with higher absorption, which ex-
perience greater attenuation compared to those with weaker
absorption for the same photon path length. As a result, the
perturbations vary depending on the reflectance and absorp-
tion depth, a phenomenon referred to as spectral distortion
in our study. The intercept is related to the often-reported
increase in reflectance near clouds or decrease in shadows,
whereas the slope accounts for spectroscopic effects for a
small spectral range, where the scattering effect can be con-
sidered spectral-independent.

Perturbationλ = ixy + sxy × R3D
λ (3)

3 Data

3.1 OCO-2 data

Version 10r OCO-2 data, hosted by NASA’s Goddard
Earth Science Data and Information Services Center
(GES DISC) archive (https://oco2.gesdisc.eosdis.nasa.gov/
data/OCO2_DATA, last access: 25 October 2024), are used
in this research. The Level 1B calibrated and geolocated sci-
ence radiance spectra (L1bScND) are specified in all three
OCO-2 bands, facilitating simulation comparison and re-
trieval adjustment. Additionally, solar zenith and azimuth
angles, as well as viewing zenith and azimuth angles from
this product, serve as inputs for the simulation. The standard
Level 2 geolocated XCO2 retrieval results (L2StdND) pro-
vide the retrieved CO2 dry-air mixing ratio and surface re-
flectance information for the three bands. Note that the XCO2
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in the L2StdND files is raw XCO2 before the bias correction
provided by the algorithm team. We also employed Level 2
meteorological parameters interpolated from the global as-
similation model for each sounding (L2MetND) and Level
2 CO2 prior profile based on the CO2 monthly flask record,
global meteorology, and age of air (L2CO2Prior) to construct
the atmosphere for the simulation (refer to Appendix B1).

3.2 MODIS Aqua data

The MODIS Aqua satellite, launched in May 2002, is part
of NASA’s A-Train constellation but exited the formation
due to fuel issues. As MODIS Aqua shared the same or-
bit as OCO-2 and arrived at the same scene approximately
6 min after OCO-2, the collocated information from MODIS
Aqua offers valuable insights into the meteorological and
surface conditions of the OCO-2 footprints and the spa-
tial distances of clouds to the footprints. Several products
derived from MODIS Aqua observations are used in this
study, including MODIS Level 1B radiance products at the
0.25, 0.5, and 1 km scales (channels 1 to 7, MYD02QKM,
MYD02HKM, and MYD021KM; MODIS Characterization
Support Team (MCST), 2017a–c), the geolocation product
(MYD03, MODIS Characterization Support Team (MCST),
2017d), the Level 2 cloud product (MYD06, Platnick et al.,
2015), the Level 2 aerosol product (MYD04_L2, Levy and
Hsu, 2015), and the surface reflectance product (MCD43A3,
Schaaf and Wang, 2021) from data collection 6.1. These vari-
ous products contribute to a comprehensive understanding of
the atmospheric and surface conditions relevant to the OCO-
2 measurements, thereby enhancing the accuracy and relia-
bility of our analysis.

4 Methods

4.1 Case description

In order to investigate the XCO2 retrieval biases resulting
from cloud scattering, we have selected a case that features
high XCO2 anomalies in close proximity to clouds, as shown
in Fig. 2. The chosen case is located in central Asia, span-
ning 33.85° N, 55.15° E to 34.30° N, 55.45° E. The study fo-
cuses on the conditions observed on 18 October 2018, with
stronger reflectance for all three OCO-2 bands. The surface
level based on the MODIS MYD03 file is shown in Fig. A1,
with the OCO-2 Met file specifying an average altitude near
790 m. The average solar zenith angle and observation zenith
angle for OCO-2 footprints are 48.5 and 0.31°, and the mean
surface albedos for the O2 A, WCO2, and SCO2 bands are
0.288, 0.375, and 0.370, respectively. The average aerosol
optical depth (AOD) at 550 nm from the MODIS MYD04
file is 0.179 over the domain. Figure A1 specifies the surface
altitude level from the MODIS MYD03 data file, in addition
to the atmosphere profile for this case, derived by the method
described in Appendix B1.

Figure 2. Satellite true-color imagery of MODIS Aqua from NASA
Worldview on 18 October 2018, with OCO-2 retrieved XCO2 over-
laid.

4.2 Overview of radiative transfer model simulation

The Education and Research 3D Radiative Transfer Tool-
box v0.1.1 (Chen et al., 2023) for OCO (EaR3T-OCO) was
adapted to simulate 1D and 3D radiances for OCO-2 obser-
vations. The RT model simulates the photon–environment in-
teractions based on the physical mechanisms that are under-
stood, such as absorption, scattering, and reflection. Since
this research aims to investigate the differences between 1D
and 3D radiances, referred to as 3D radiative perturbations,
both 1D and 3D RT calculations are utilized. These pertur-
bations, expressed as linear functions of reflectance, are pa-
rameterized with slope and intercept values for each spectral
band. The atmospheric environment used for the RT simu-
lation also impacts the results. Detailed descriptions of the
atmospheric structure, vertical layering, and the computation
of number densities for absorption coefficients are provided
in Appendix B.

4.3 Perturbations, reflectance, slopes, and intercept
derivation

Building on the foundational concepts of perturbation and
reflectance introduced in Sect. 2 (refer to Eqs. 1–2), we run
the EaR3T-OCO simulator in 1D and 3D mode to calculate
I IPA
λ and I 3D

λ . From these simulated radiances, we obtain the
reflectances and perturbations. These are used to derive the
slope and intercept parameters for quantifying the 3D effect.
We apply a weighted linear regression (see Eq. 3) to ensure
that more accurate data exert a greater influence on the pa-
rameter estimation. This approach yields not only the slope
and intercept values but also their respective uncertainties,
providing a comprehensive picture of the 3D effect’s vari-
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ability and reliability. The slope and intercept parameters ob-
tained are used to quantify the magnitude of the 3D effect, a
detailed discussion of which is presented in Sect. 5.2 to 5.5.
Additionally, the parameters play a crucial role in the offline
mitigation strategies explored in Sect. 5.6.

4.4 OCO retrieval algorithm and spectra mitigation

The retrieval algorithm plays a vital role in determining XCO2

based on the radiances of the three bands. Notably, the re-
trieval algorithm accounts for various processes, and post-
retrieval processing calculates linear bias corrections (O’Dell
et al., 2018). Different retrieval versions may yield diverse
outcomes even with identical inputs. In this study, we uti-
lize the OCO retrieval algorithm version B10.04 to compare
with version 10r XCO2 . The retrieval code is publicly avail-
able on NASA’s GitHub repository (https://github.com/nasa/
RtRetrievalFramework, last access: 24 January 2023).

Given that the 1D-RT model does not account for ad-
ditional scattered photons, the mitigation strategy proposed
in this study involves modifying the observed spectra to
eliminate radiance changes induced by the 3D effect. This
adjustment process is referred to as “radiance adjustment”
and is derived from Eqs. (1) to (3). Upon deriving the 3D
parameters in Sect. 4.3, we calculate the adjusted OCO-
2 spectra

(
I

IPA (adjusted)
λ

)
using Eq. (4) with the observed

radiance spectra
(
I

3D (obs)
λ

)
and corresponding reflectance(

Robs
λ

)
, slope (sxy), and intercept (ixy). Assuming the ab-

sence of 3D effects in the adjusted 1D radiance, we can em-
ploy the B10.04 retrieval algorithm to the adjusted spectra(
I

IPA (adjusted)
λ

)
to obtain mitigated XCO2 .

I
IPA (adjusted)
λ (x, y)=

I
3D (obs)
λ (x, y)

(ixy + sxy × R
obs
λ + 1)

(4)

5 Results

5.1 3D-RT simulation radiance closure

In order to derive the slope (s) and intercept (i) parameters
that accurately represent the 3D cloud effect in the OCO-2
observations, it is crucial to perform realistic radiance simu-
lations near the satellite’s footprint. Chen et al. (2023) show
that the extent of radiance closure (the percent difference in
the forward radiance model and observed radiances) can in-
dicate the correctness of the retrieved cloud properties. Fig-
ure 3a–b present the 3D-RT simulation and MODIS obser-
vation of 650 nm using the cloud optical thickness (COT),
cloud effective radius (CER), and cloud top height (CTH)
shown in Fig. A2. The heat map in Fig. 3c shows good agree-
ment between the simulation and observation, with an R2

of 0.69 and a slope of 0.71. We then used the same CTH,

CER, and COT settings to model the wavelengths in the O2
A, WCO2, and SCO2 bands.

Multiple reflectances or wavelengths are needed to derive
s and i for the linear expression of the perturbations and re-
flectances of three bands. To balance computational demands
with accuracy, we selected 11 wavelengths evenly distributed
over the high 60 % transmittance based on sorted clear-sky
transmittance for further RT simulation (depicted in Fig. 4 as
an example, the transmittance of full spectra is presented in
Fig. A3). The transmittance is calculated based on the atmo-
sphere profiles of pressure, temperature, gas optical depth,
aerosol optical properties, and cloud optical properties. This
reduction in simulated wavelengths is feasible due to the lin-
ear relationship between perturbations and reflectance. Em-
ploying a reduced number of wavelengths uniformly dis-
tributed across the reflectance space effectively minimizes
computational demands while still permitting the derivation
of s and i for the linear relationships within each band. Note
that the number of wavelengths (11) utilized for determining
the 3D parameters is adaptable. Employing additional wave-
lengths could decrease the uncertainty in the derived s and i,
albeit at the expense of increased computation time.

Since the radiance simulation is cyclic at the edges, leak-
ing radiance from one edge to the other could introduce un-
realistic artifacts from RT simulations. We extended the mar-
gin by 0.15° on each side but excluded the additional margins
during the analysis. Figure A4 illustrates the simulation and
the analysis domains, with cloud distribution and cloud dis-
tance serving as the background.

5.2 3D cloud effect parameter analysis

We employed simulated radiance data across three distinct
bands to quantify the 3D cloud effect perturbation: s and i.
With the horizontal grid cell size around 0.25 km, we derived
an approximate mean radiance for a 1 km2 area by calcu-
lating the average radiance of the 5× 5 nearest grid points,
thereby approximating the OCO-2 footprint. We excluded
the data if the 25 nearest grid points contained cloud pix-
els used in the RT simulation. The distribution of s and i for
the O2 A-band (sO2 A, iO2 A) is illustrated in Fig. 5, with the
cloud positions denoted by red dots.

The analysis shows that the magnitudes of the 3D cloud
effect parameters diminish (s and i get close to 0) as the
grid point distance from the cloud increases. This decrease
in magnitude corresponds to the smaller 3D cloud effect
when the cloud is not in close proximity. Additionally, we
divided the clear-sky area into two distinct categories: bright
and shadow areas. The bright area represents grid points that
receive more scattered photons, whereas the shadow area
encompasses grid points within the cloud shadow region.
Separating these categories is necessary due to the nega-
tive and positive intercepts associated with the shadow and
bright areas. Notably, both categories exhibit positive s for
the three different bands, exhibiting characteristics consis-
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Figure 3. MODIS observation at 650 nm from MODIS MYD02QKM data (a) and 3D radiance simulation at 650 nm by EaR3T (b). A
scatterplot comparison between (a) and (b) is depicted in (c).

Figure 4. (a) Sorted clear-sky transmittance as per Appendix B2; the wavelength index presents the lowest to highest transmittance. (b) Il-
lustration of the selected wavelength distribution in reflectance space versus the Eq. (3) perturbation for 34.08° N, 55.31° E.

tent with those described by Schmidt et al. (2019). Although
it is instructive to discuss both cloud brightening and cloud
shadowing effects, Massie et al. (2023) determined that there
are relatively few cloud shadow retrievals in the OCO-2 Lite
files since many observations impacted by shadowing are
screened by the OCO-2 pre-retrieval cloud screening algo-
rithms. Hereafter, bright-area analyses are the primary focus
of our study.

Upon plotting s and i as a function of various definitions
of the distance of a given pixel to the surrounding clouds,
we identified an exponential decay relationship between the
3D cloud effect parameters and the effective horizontal cloud
distance (De, Fig. 6), which is defined as the average distance
of the pixel to the surrounding cloudy pixels weighted by the
inverse square distance to the cloudy pixel (Eq. 5):

De =

∑
i ∈ {surrounding clouds}wiDi∑
i ∈ {surrounding clouds},wi

(5)

where Di is the distance of a given pixel to a pixel location
of a surrounding cloud, and wi =D−2

i is the weight. The
exponential drop-off shown in Fig. 6 aligns with the result
shown in Fig. 6 of Massie et al. (2021), although they used
the nearest cloud distance.

The effective cloud distance (De) helps minimize the ef-
fect of a tiny isolated cloud versus multiple scattered clouds,
as displayed in Fig. A4. This exponential decay relationship
can be attributed to atmospheric attenuation proportional to
their current values. Subsequently, we fitted these parameters
and De using Eqs. (6)–(7):

s = as × exp
(
−
De

ds

)
(6)

i = ai × exp
(
−
De

di

)
, (7)

where amplitude (as , ai) and e-folding distance (ds , di) are
the fitting parameters (separate sets for s and i, the slope
(s) and intercept (i) parameters that represent the 3D cloud
effect). The data are partitioned into multiple columns, em-
ploying a bin size of 0.05 reflectance, and we utilize the me-
dian of each bin for the fitting procedure. However, we ob-
served that the median s and i values did not approach zero
as the cloud distance increased, possibly due to an inadequate
number of grid points at larger cloud distances. To rectify this
issue, we optimized the fitting coefficients by iteratively in-
creasing the number of points employed in the fitting process
until the maximum R2 value was attained.
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Figure 5. Distribution of (a) s and (b) i of the O2 A-band. Red dots denote the cloud pixels employed in the RT simulation.

The intercept parameter relates to what is traditionally
known as the 3D-RT effect in spectrometry for a wavelength
range with minimal gas absorption, whereas the slope is
its spectroscopic equivalent, representing spectral distortion
due to strongly varying gas absorption cross-sections over a
wavelength range. Even slight changes in absorption may re-
sult in substantial changes in the retrieved trace gas concen-
tration. The disparity in ds for each band is not statistically
significant, suggesting a similarity in the photon path histo-
ries across the different spectral bands.

The initial method, denoted the baseline method, applies
Eq. (4) on an observation-pixel-by-pixel basis and uses only
about 1 % of the available wavelengths in the three OCO-2
spectra. This method significantly reduces computation time
for 3D-RT calculations for a given cloud scene. Next, using
the exponential relationships in Eqs. (6)–(7), the 3D effect
can be quantified by determining 12 3D-effect parameters:
two amplitudes and two e-folding distances (as , ds and ai ,
di) for each band. These parameters can be applied to the full
scene. Once the effective distance De is known for a pixel,
the adjusted radiance I IPA (adjusted)

λ can be readily determined
without further 3D-RT simulations (see Sect. 5.6 for exam-
ples). An ensemble of 12 3D-effect parameters can be calcu-
lated for various cloud spatial distributions, cloud properties,
and associated aerosol optical depths. As discussed below in
Sect. 5.5, the 12 3D-effect parameters can be further param-
eterized in terms of surface albedo and the cosine of SZA.
This parametric approach will be denoted the bypass method,
allowing for the evaluation of the 3D cloud effect and poten-
tially eliminating the need for 3D-RT simulations altogether.

5.3 Impact of aerosol

Upon establishing the relationship between the 3D cloud
effect parameters and the cloud distance, we proceeded to

analyze the impact of aerosols on this phenomenon since
aerosols play an important role in shortwave radiation. In
the presence of aerosols, photons near clouds experience
increased extinction (scattering or absorption depending on
aerosol radiative properties), making them travel shorter hor-
izontal distances. Consequently, the e-folding distance is ex-
pected to be smaller when higher aerosol loading occurs. To
maintain consistency with the previous section, we kept sev-
eral variables constant, including COT, CER, CTH, cloud po-
sition, and atmospheric conditions. However, we introduced
a homogeneous aerosol layer into the scenario to investigate
its effect on the fitting amplitude and e-folding distance, as
detailed in Sect. 5.2. The aerosol optical depth (AOD) data
were obtained from the MODIS MYD04 data file using the
aerosol optical depth and Ångström exponent at 550 nm. The
top height of the aerosol layer was determined by the prevail-
ing cloud top heights below 4 km, and we assumed uniform
AOD values for layers beneath this top height. Aerosol opti-
cal depths in the O2 A, WCO2, and SCO2 bands are 0.098,
0.038, and 0.024, respectively.

In the simulation incorporating aerosols, the analysis was
conducted utilizing the methodology discussed in Sect. 5.2.
Analogous correlations were identified between the 3D cloud
parameters and De, as shown in Fig. 7 and Table 2. Notably,
the presence of an aerosol layer exhibited a pronounced im-
pact on the O2 A and SCO2 bands. This observation aligns
with the absorption strength of each spectral band. Conse-
quently, ds associated with the O2 A and SCO2 bands wit-
ness a reduction while as of those two bands increases. This
suggests that, in the presence of aerosols, the spectral dis-
tortion processes within the strong absorption bands are pre-
dominantly localized in proximity to the cloud. These find-
ings underscore the pronounced influence of aerosols on the
spectral distortion of bands with strong absorptivity.
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Figure 6. Exponential fitting (dashed green lines) of three bands in the bright area. The black dots present data from each pixel, while the
background shading indicates the density of the black dots’ distribution. The red points denote the median of each bin, and the blue error
bars indicate the first and third quantiles for each bin.

Table 1. Amplitude and e-folding distances for s and i fittings in the O2 A, WCO2, and SCO2 bands for the simulation shown in Fig. 5.
Errors represent fitting uncertainty only and may be underestimated.

Slope Intercept

sO2 A sWCO2 sSCO2 iO2 A iWCO2 iSCO2

as or ai 0.263± 0.088 0.120± 0.033 0.102± 0.022 0.667± 0.257 0.667± 0.213 0.745± 0.259
ds or di (km) 4.86± 0.99 5.06± 0.86 6.17± 1.04 2.81± 0.33 3.03± 0.31 2.67± 0.29

Note that our simulation relied on the assumption of uni-
form aerosol distribution within the boundary layer, derived
from the mean AOD obtained from the MODIS product.
However, this assumption may not always hold true in real-
world scenarios. We show that the presence of aerosols can
lead to alterations in both the s and i of the O2 A and SCO2

bands, potentially increasing the uncertainty associated with
the derivation of 3D-effect parameters.

Currently, we assume an even distribution of aerosols in
the boundary layer in our radiance simulations. However, as
Minomura et al. (2001) demonstrate, the effect of aerosols on
radiance scattering can vary significantly depending on verti-
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Figure 7. Exponential fitting (dashed green lines) of the three OCO-2 bands in the bright area of the simulation with a homogeneous aerosol
layer. The black dots present data from each pixel, while the background shading indicates the black dots’ distribution density. The red points
denote the median of each bin, and the blue error bars indicate the first and third quantiles for each bin.

Table 2. Amplitude and e-folding distances for s and i fittings of the simulation with a homogeneous aerosol layer in the O2 A, WCO2, and
SCO2 bands. Errors represent fitting uncertainty only and may be underestimated.

Slope Intercept

sO2 A sWCO2 sSCO2 iO2 A iWCO2 iSCO2

as or ai 0.457± 0.094 0.123± 0.037 0.250± 0.041 0.755± 0.327 0.648± 0.227 0.847± 0.406
ds or di (km) 3.82± 0.44 5.04± 0.89 4.58± 0.78 2.69± 0.32 2.91± 0.31 2.35± 0.33

cal distribution – mainly when surface albedo differences are
pronounced or the aerosol layer is low. In contrast, elevated
aerosol layers can extend the horizontal range of adjacency
effects, potentially altering the scaling of slope and intercept
parameters. This is also applicable to spectroscopy. Conse-
quently, nonuniform vertical aerosol distributions or uncer-

tainties in boundary layer height could introduce variability
in evaluating 3D cloud effects. Vertical aerosol and cloud dis-
tribution information, such as the data from CALIPSO on
the A-train, could be beneficial for improving the accuracy
of simulations, but they are not implemented in the initial
EaR3T-OCO software release.
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5.4 Impact of footprint size

Since the OCO instrument series have a narrow field of view
(FOV), 1.3 km× 2.3 km compared to 78 km2 (10.5 km in di-
ameter) for the GOSAT series, the 3D cloud bias is con-
sidered more significant for the OCO retrieval when small
footprints are in close proximity to clouds. Numerous up-
coming satellites for CO2 remote sensing will adopt sim-
ilar retrieval algorithms but feature varying footprint sizes
in accordance with their specific mission objectives. For ex-
ample, the Copernicus Anthropogenic CO2 Monitoring Mis-
sion (CO2M) by the European Space Agency (ESA) plans to
have a footprint size of 4 km2 (2 km by 2 km; Kuhlmann et
al., 2020). MicroCarb by the Centre National d’Etudes Spa-
tiales (CNES) will have a larger footprint size of 40.5 km2

(4.5 km by 9 km; Cansot et al., 2023). Thus, exploring the
influence of footprint size on 3D-effect parameters is vital.
We performed an analysis analogous to the one described in
Sect. 5.3 but expanded the average domain from the clos-
est 5× 5 grid points (approximately 1× 1 km2) to 9× 9 and
13× 13 grid points (approximately 2× 2 and 3× 3 km2).
Figure A5 displays the updated distributions of s and i. The s
and i and cloud distance fitting results in the bypass method,
presented in Table 3, indicate a decrease in as across all three
bands. This decline aligns with the expectation that larger
footprints would mitigate the spectral distortion effect, re-
ducing the prevalence of the 3D cloud biases. No statistically
significant change exists in ai and di in the intercept values
across different footprint sizes.

In addition, ds exhibit an increase compared to the smaller
footprint size. This implies that even though the baseline ra-
diance change may demonstrate a minor deviation compared
to the 1D-RT simulation as the footprint size expands, the
perturbation difference in relation to reflectance might per-
sist due to the increasing ds . We suggest that future satel-
lite missions, regardless of footprint size, consider account-
ing for 3D biases to improve the accuracy of XCO2 retrievals.
Studies need to be conducted to ensure that, given the bands,
footprint size, and other attributes, the retrieval error induced
by 3D clouds does not exceed the mission requirements –
similar to what has been demonstrated for OCO-2 in this
study. For missions utilizing larger footprint sizes to achieve
broader global coverage, the 3D cloud effect may be dimin-
ished but distributed over a more extensive area. Conversely,
missions designed with smaller footprint sizes than OCO-
2, particularly those targeting enhanced data acquisition in
cloud-prone regions such as the Amazon basin – where land
nadir observations have been reported to exhibit biases up to
−0.48 ppm in both hemispheres (Massie et al., 2023) – must
rigorously account for 3D radiative transfer effects. While
new missions may propose alternative retrieval algorithms,
such as leveraging a reference gas with an absorption band
adjacent to the CO2 band (Frankenberg et al., 2024), these
approaches require thorough validation. Therefore, it is im-
perative that such missions integrate robust 3D-RT mitiga-

tion strategies, such as those proposed in Sect. 5.6, into their
design and planning phases to ensure compliance with mis-
sion requirements.

5.5 Impact of solar zenith angle and surface reflectance

Solar zenith angle and surface albedo are significant factors
influencing the 3D cloud effect, represented by a parameter-
ized set of 12 relationships. To investigate their impact on
the 3D cloud effect, we also kept several variables constant,
including COT, CER, CTH, cloud position, AOD, and atmo-
spheric conditions, the setup used in Sect. 5.3, and manually
changed the SZA and surface reflectance. Figures A5 and A6
illustrate how these variables impact the 3D cloud effect in
the O2 A-band under different conditions. Combining results
across various solar zenith angles and surface albedo values,
we developed a two-variable linear parameterization using
as and ds (slope parameters) and ai and di (intercept param-
eters). As summarized in Table 4, we observe that the am-
plitude of the slope and intercept is inversely proportional to
surface albedo and directly proportional to the cosine of the
solar zenith angle (denoted µ). Additionally, the e-folding
distances of the slope (ds) are negatively proportional to both
surface albedo and µ, while those of the intercept are posi-
tively proportional to surface albedo and negatively propor-
tional to µ. In general, higher surface albedo reduces the 3D
cloud effect, as additional photons reaching the sensor repre-
sent a smaller fraction of the total signal. Conversely, lower
solar zenith angles result in a smaller amplitude but longer e-
folding distance, causing the 3D effect to extend further from
the clouds.

5.6 3D-effect mitigation

Utilizing the derived s and i for the 3D effect, we can miti-
gate the associated biases through the “radiance adjustment”
process, as elaborated in Sect. 4.4. The assumption is that the
3D effect is removed in the adjusted 1D radiance, allowing
us to retrieve the mitigated XCO2 using existing operational
retrieval algorithms. To mitigate the 3D biases in XCO2 , it
is essential to compute the 3D parameters (s and i for the
three OCO-2 spectral bands) for all footprints that pass the
prescreening (quality flag = 0 or 1).

Both the baseline and bypass methods rely on the same
mitigation framework but differ in how s and i are obtained
for each footprint. In the baseline method, 3D-RT simula-
tions are performed on a per-pixel basis to directly obtain
s and i. By contrast, the bypass method first calculates De
for each footprint based on the cloud position, incorporating
parallax and wind correction (refer to Fig. A4 as an exam-
ple), and then uses the exponential-fit coefficients in Table 2
to map De to s and i. Finally, the adjusted spectra are de-
rived for both methods in accordance with Eq. (4). Figure 8
presents an example of the original and corresponding ad-
justed spectra of the O2 A-band. In this study, we demon-
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Table 3. Amplitude and e-folding distances for s and i, determined using different average grid points in simulations with a homogeneous
aerosol layer for the O2 A, WCO2, and SCO2 bands. Errors represent fitting uncertainty only and may be underestimated.

Grid points Slope Intercept

sO2 A sWCO2 sSCO2 iO2 A iWCO2 iSCO2

as or ai 1× 1 0.457± 0.094 0.123± 0.037 0.250± 0.041 0.755± 0.327 0.648± 0.227 0.847± 0.406
2× 2 0.355± 0.110 0.097± 0.025 0.217± 0.044 0.758± 0.483 0.698± 0.360 1.138± 0.785
3× 34 0.180± 0.044 0.079± 0.031 0.173± 0.058 0.971± 0.738 0.922± 0.551 1.768± 1.548

ds or di (km) 1× 1 3.82± 0.44 5.04± 0.89 4.58± 0.78 2.69± 0.32 2.91± 0.31 2.35± 0.33
2× 2 4.24± 0.68 5.82± 0.95 4.94± 0.62 2.61± 0.45 2.78± 0.40 2.16± 0.36
3× 3 6.20± 1.03 6.46± 1.57 5.46± 1.07 2.47± 0.46 2.61± 0.40 2.00± 0.36

Table 4. The parameterization of as and ds of the slope and ai and di of the intercept for the three OCO-2 bands. Errors represent fitting
uncertainty only and may be underestimated.

Slope Intercept

O2 A as =−0.34× albO2A+ 0.57 × µ− 0.03 ai =−0.60× albO2A+ 0.36 × µ+ 0.72
ds =−3.2× albO2A− 9.9 × µ+ 14.9 di = 0.42× albO2A− 2.1 × µ+ 5.2

WCO2 as =−0.15× albWCO2+ 0.11 × µ− 0.05 ai =−2.07× albWCO2+ 1.65 × µ+ 1.17
ds =−30.7× albWCO2− 7.0 × µ+ 27.5 di = 0.63× albWCO2− 1.6 × µ+ 3.7

SCO2 as =−0.18× albSCO2+ 0.29 × µ− 0.03 ai =−2.77× albSCO2+ 2.22 × µ+ 1.14
ds =−22.6× albSCO2− 21.2 × µ+ 34.9 di = 0.51× albSCO2− 1.73 × µ+ 3.35

strate the integration of our mitigation framework into cur-
rent operational retrieval algorithms to effectively reduce the
3D cloud bias.

Using the B10.04 retrieval algorithm (refer to Sect. 4.4),
we calculate the newly retrieved XCO2 values for each foot-
print. Figure 9 displays the distribution of retrieved XCO2 be-
fore and after the spectral adjustment, superimposed on the
collocated MODIS Aqua image. The elevated XCO2 near the
cloud decreases after the adjustment approximation, with the
newly retrieved XCO2 values reduced by approximately 0 to
3 ppm for De greater than 5 km and by more than 3 ppm for
De less than 5 km. A comparison of 1XCO2 (the newly re-
trieved XCO2 minus the original L2 value) against De is pre-
sented in Fig. 10 for both methods. Both methods exhibit
analogous 1XCO2 patterns and offer similar average reduc-
tions. Specifically, the bypass method registers an average
1XCO2 of −0.778 ppm, in contrast to the baseline method,
which delineates an average1XCO2 of−0.876 ppm. The ob-
served variance of1XCO2 potentially emanates from simpli-
fied assumptions in the bypass method. Larger biases near
cloud edges are captured more accurately by the baseline
method, but both approaches confirm that the bias diminishes
with increasing cloud distance.

The goal of the OCO-2 mission is to determine XCO2 un-
certainty to within 1 ppm. Setting the true mixing ratio to the
mean XCO2 for an effective distance exceeding 15 km, we
see that XCO2 scatter is accentuated within 15 km of clouds,
as demarcated by the black markers in Fig. 11a. The miti-

gated XCO2 after the spectra adjustment, represented by the
red markers in Fig. 11a, exhibits reduced scatter within 15 km
of clouds, a fact further corroborated by the full width at half
maximum (FWHM) depicted in Fig. 11b. Cumulatively, the
bypass method aligns favorably with the baseline methodol-
ogy, offering the added benefit of small computational de-
mands. Our physically based adjustment thus achieves 3D
bias reduction near clouds at the radiance level for the first
time, while still allowing the use of the original 1D retrieval
code.

The processing time per footprint for the baseline analysis
is approximately 7 min when using 32 CPUs (AMD EPYC
Processor 7713) on a cluster to simulate 1× 109 photons
for the full experimental domain. This is contrasted with the
standard retrieval time of roughly 2.5 min per footprint us-
ing 16 CPUs (Intel Xeon Processor E5-2623 v3) on a lo-
cal workstation. Although the 3D computation time of 7 min
marks a significant improvement over full-spectra 3D simu-
lation, the additional 3D-RT calculations required to account
for the missing physics could extend the duration to nearly
6 times that of a standard retrieval on a per-footprint, per-
CPU basis. The bypass method offers a pragmatic alternative
to mitigating the 3D cloud effect for large-scale applications
while conserving computational resources. This method can
be supplemented by periodic full calculations to increase the
accuracy of the bypass approach but needs to be tested on a
larger dataset before further application.
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Figure 8. Example of an O2 A spectrum before and after radiance adjustment.

Figure 9. Satellite true-color imagery of MODIS Aqua from NASA Worldview on 18 October 2018 with (a) XCO2 in OCO-2 Level 2 data,
(b) mitigated XCO2 retrieved from the adjusted spectra, and (c) the difference between the mitigated and original XCO2 values.

To evaluate the applicability of the bypass approach,
we applied the parameter set in Table 2 to another scene
(Fig. A7a) from the same month and a nearby region. We
also conducted a baseline 3D-RT simulation for direct com-
parison (Fig. A8). The results indicate that the bypass method
follows a trend similar to the baseline method, although with
smaller mitigation magnitudes. Differences between the two
(Fig. 9) are likely due to variations in surface altitude, albedo,
solar geometry, AOD, and other factors. Although promis-
ing, the bypass approach may benefit from additional tuning
to account for these scene variables. However, it can be less
effective under complex cloud–surface conditions.

6 Conclusions

This research uses the EaR3T-OCO radiance simulator,
which considers the scene context of givens, to evaluate
and mitigate the impact of missing physics in the context-
agnostic operational retrieval that stems from clouds in the
vicinity of an OCO-2 sounding. We then used the simulator
to undo the effects of such clouds by reversing the pertur-

bations relative to the clear sky that were exerted on the ob-
served radiances. In essence, the observed radiance spectra
were mapped back to what they would have been in the ab-
sence of clouds in the vicinity of a footprint. This radiance
mapping is done based on the difference between simulated
1D and 3D radiance calculations (3D perturbations). After
this mapping, the standard XCO2 retrieval can then be ap-
plied. In this way, we introduced a physics-based mitigation
of 3D-RT effects on trace gas spectroscopy products, previ-
ously regarded as intractable for real-world applications such
as this.

To avoid “brute-force” computing full-spectrum 3D ef-
fects, we introduced a physics-based acceleration approach
with only a few representative wavelengths. The resulting
3D perturbations are encapsulated by 12 linear fit parame-
ters (slope and offset), reducing the complexity of the cor-
rection. This acceleration method is distinct from previously
published methods, including approaches to “freeze” photon
paths for various wavelengths (Emde et al., 2011; Iwabuchi
and Okamura, 2017). The spectral perturbation parameters
can also be linked to macroscopic scene parameters to ana-
lyze their influence on 3D cloud effects. If successful, this
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Figure 10. (a) Relationship of 1XCO2 withDe as depicted in Fig. 7c based on parameterized slopes and intercepts from the bypass method.
1XCO2 is defined as the difference between the newly retrieved XCO2 and Level 2 XCO2 . (b) Corresponding relationship using slopes and
intercepts derived from the baseline approach.

Figure 11. (a) Scatterplot comparing the XCO2 anomaly of the
OCO-2 L2 product (in black) to its value post-spectra adjustment
(in red), plotted against De. The XCO2 anomaly is defined as re-
trieved XCO2 – true XCO2 , with the true XCO2 defined by the aver-
age XCO2 of footprints with a De greater than 15 km (403.714 ppm
in this case). The orange shade indicates the 1 ppm mission require-
ment. (b) Histograms and probability density functions (PDFs) for
the XCO2 anomaly of the OCO-2 L2 product (in black) and post-
spectra adjustment (in red) within a 15 km De. This corresponds
to the blue-shaded region in (a). The FWHM values of the PDFs
of v10r and adjusted data points are 5.38 and 4.87, and the PDF
averages are 0.796 and −0.178, respectively. The average change
in XCO2 after the spectra adjustment for De less than 15 km is
−1.131 ppm.

method could bypass 3D-RT calculations altogether while
retaining the core physics. By applying this bypass param-
eterization approach, the mitigation of cloud effects at the
radiance level becomes feasible for operational applications,
offering a stronger physical foundation compared to statis-
tical mitigation methods and enabling broad applicability to
OCO-2 and 3 and other spectroscopy missions that have col-
located imagery.

Although further validation is required for a wider diver-
sity of scenes, including variations in cloud top height, cloud
morphology, aerosols, and different viewing modes, the lin-
ear perturbation representation and our mitigation framework
approach account for the principal drivers of 3D cloud ef-
fects. Moreover, it highlights the fact that aerosols and foot-
print size can influence the magnitude of the 3D cloud effect,
especially for future satellites such as MicroCarb, CO2M,
and GOSAT-GW. In general, our research elucidates the 3D
cloud perturbation on spectroscopy with high spectral resolu-
tion (trace gas retrievals) as opposed to spectrometry (cloud
and aerosol imagery retrievals), where 3D effects are tradi-
tionally studied more extensively. Addressing these effects at
the radiance level is suggested because that is where the op-
erational standard 1D retrievals lack the necessary physics.
We also understand that the effects are spectrally dependent,
with cloud morphology, band-specific surface reflectance,
and aerosol properties acting as the primary drivers. Our
work can become the stepping stone toward more accurate
and efficient trace gas retrievals in the vicinity of clouds.
Looking ahead, adapting this mitigation to operational work-
flows could markedly improve XCO2 accuracy in cloud-prone
regions – including the Amazon – and thereby enhance the
fidelity of CO2 flux inversions.

7 Future work

This research emphasizes the substantial impact of aerosols,
solar zenith angles, and surface albedo on the 3D-effect pa-
rameters of the three OCO bands. Concurrently, cloud prop-
erties emerge as critical determinants of these 3D-effect pa-
rameters. With additional simulations, there is an opportunity
to incorporate the impacts of various factors into the existing
parameterization framework. The current investigation con-
centrates on scenarios over land in nadir mode. We will de-
velop a similar parameterization (as in Table 3) for ocean and
land in glint mode.
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Appendix A: Supplementary figures

Appendix A contains supplementary information to comple-
ment the details of the simulation setting. These elements
cover various topics, from atmospheric profiles and cloud-
related parameters to radiative transfer simulations.

Figure A1. Contour plot showcasing surface height from the
MODIS MYD03 file for the outer simulation domain and the in-
ner analysis domain.

Figure A2. The cloud optical thickness (a), cloud liquid effective radius (b), and cloud top height (c) for the 3D simulation at 650 nm.
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Figure A3. Simulated transmittance of (a) O2 A, (c) WCO2, and (e) SCO2 bands derived from the atmospheric structure presented in
Fig. B1. The right panels present the sorted transmittance with the selected wavelength index for (b) O2 A, (d) WCO2, and (f) SCO2 bands.
The orange markers on the left panels denote the corresponding selected wavelengths shown in the right panels.

Figure A4. Distribution of the effective cloud distance, with blue
dots marking the positions of the clouds. The black rectangle des-
ignates the analysis domain, while the entire domain represents the
region of the RT simulation.
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Figure A5. Parameterization of (a) slope and (b) intercept for the O2 A band with effective cloud distance, varied by solar zenith angle,
while holding surface albedo constant.

Figure A6. Parameterization of (a) slope and (b) intercept for the O2 A band with effective cloud distance, varied by surface albedo, while
holding solar zenith angle constant.

Figure A7. Satellite true-color imagery of MODIS Aqua from NASA Worldview on 5 October 2019 with (a) XCO2 in OCO-2 Level 2 data,
(b) mitigated XCO2 retrieved from the adjusted spectra, and (c) the difference between the mitigated and original XCO2 values.
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Figure A8. (a) Scatterplot comparing the XCO2 anomaly of the
OCO-2 L2 product (in black) to its value post-spectra adjustment
(in red) for the case shown in the figure above, plotted against De.
The XCO2 anomaly is defined as retrieved XCO2 – true XCO2 , with
the true XCO2 defined by the average XCO2 of footprints with an
e greater than 15 km (405.96 ppm in this case). The orange shade
indicates the 1 ppm mission requirement. (b) Histograms and prob-
ability density functions (PDFs) for the XCO2 anomaly of the OCO-
2 L2 product (in black) and post-spectra adjustment (in red) for De
within 15 km. This corresponds to the blue-shaded region in (a).
The FWHM values of the PDFs of v10r and adjusted data points
are 5.25 and 4.28, and the PDF averages are 0.93 and 0.18, respec-
tively. The average change in XCO2 after the spectra adjustment for
De less than 15 km is −0.86 ppm.

Figure A9. (a) Relationship of 1XCO2 with De based on parameterized slopes and intercepts from the bypass method in Table 2. (b) The
corresponding relationship using slopes and intercepts derived from the baseline approach for Fig. A7.
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Appendix B: Radiative transfer simulations

B1 Vertical atmospheric structure

The atmosphere profile for the simulation is constructed
based on the OCO-2 Met and CO2 prior data, and it is ver-
tically divided into 29 layers. The surface altitude and pres-
sure are determined by the average surface height of the foot-
prints analyzed. The heights of the other layers are then lin-
early interpolated from the surface to 5 km for 11 points,
with 0.5 km intervals from 5 to 10 km, 1 km intervals from
10 to 14 km, and 5 km intervals from 20 to 40 km, which was
the top height of the simulation. The pressure profile corre-
sponding to these heights is calculated using a method simi-
lar that of to the MERRA-2 reanalysis product (Bosilovich et
al., 2015) from NASA’s Global Modeling Assimilation Of-
fice (GMAO). The temperature and horizontal wind profiles
are then retrieved from the OCO-2 Met data by linear inter-
polation between pressure and temperature/wind.

Accurate number densities of O2, CO2, and water vapor
are crucial for calculating the absorption coefficients. We as-
sumed that the atmosphere followed the ideal gas law to esti-
mate the number density of each layer. O2 number density is
determined by multiplying its dry-air mixing ratio (0.20935;
OCO-2 L2 ATBD, 2021) with the dry-air number density.
CO2 number density is calculated similarly by using the CO2
prior profile. We use the specific humidity in the OCO-2 Met
data as well as the temperature and pressure to derive the
water vapor volume mixing ratio (VMR) profile. H2O VMR
is essential to obtain more accurate absorption coefficients
to consider the water vapor broadening, which is discussed
further in Appendix B2. The H2O VMR profile is also con-
verted into number density for further absorption calculation.
The derived profiles are displayed in Fig. B1. These steps en-
sure that the atmospheric parameters used in the simulation
are as accurate as possible.

B2 Absorption coefficients

For missions with high spectral resolution, such as GOSAT
and OCO, accurate absorption coefficients within the ob-
served range are indispensable for meticulously modeling
the absorption process. This study utilizes the same precal-
culated lookup tables of absorption coefficients (ABSCO ta-
bles) employed in version 10 of the OCO retrieval algorithm
(ABSCO V5.1, Payne et al., 2020). These ABSCO tables fur-
nish line-by-line absorption cross-sections for O2, CO2, and
H2O within the observed wavelength range. They also ac-
count for line mixing, speed dependence of molecular col-
lisions, and collision-induced absorption (OCO L2 ATBD,
2021). Due to the design of OCO instruments and the vary-
ing viewing angles of the eight footprints within the same
swath, the wavelengths of each band exhibit slight discrep-
ancies (OCO L1B ATBD, 2021). To mitigate excessive com-

putational demands, we opt to use solely the wavelengths of
the first footprint.

The ABSCO tables are functions of the pressure, temper-
ature, and water H2O VMR. Because the grid points of pres-
sure, temperature, and H2O VMR are discrete, we calculate
the absorption coefficients by applying trilinear interpolation
to approximate the cross-section of each line. The instru-
ment line shape provided in the OCO L1B file was used to
weigh various lines when calculating the absorption coeffi-
cient for each wavelength. With the molecule number densi-
ties of O2, CO2, and water vapor established during the step
in Appendix B1, we compute the absorption coefficients in
km−1 for O2 A, WCO2, and SCO2 for lines whose relative
cross-sections exceeded 0.05 compared to the largest within
the instrument line shape range. The clear-sky transmittance
for each wavelength can be calculated using the derived ab-
sorption coefficients.

B3 Cloud detection and properties

MODIS products provide cloud mask information with a
cloud identification accuracy of about 90 % over land be-
tween 60° N and 60° S (Frey et al., 2020). However, unde-
tected clouds can lead to a significant radiance inconsistency
in RT simulation for a small footprint. To address this, we
detect clouds based on the reflectance difference between the
observation and white-sky surface albedo provided by the
MODIS 43 product. We use various reflectance thresholds
for different cases to ensure that most clouds are detected.
This cloud detection approach is distinct from the method
used by Chen et al. (2023) and is specifically designed for
this study.

Once the cloudy pixels are identified, we retrieve the cloud
top height (CTH) of the nearest location from the MODIS
MYD02 cloud file and assign it to each cloudy grid point.
The cloud effective radius (CER) is manually set to 10 µm
for low clouds and 25 µm for high clouds in this study. We
plan to use the actual MODIS CER values in future ver-
sions to capture more realistic variations. To determine each
pixel’s cloud optical thickness (COT), we run the RT model
over several COTs and derive the COT–radiance relationship
by ourselves to ensure the radiance consistency in the 1D-
RT simulation. The COT of each pixel is then determined
by applying the COT–radiance relationship. To adjust for the
projection and observation time difference between OCO-2
and MODIS Aqua, we apply a cloud position adjustment as
described by Chen et al. (2023). The adjustment includes a
geometry parallax shift in the cloud position due to the time
shift, wind speed, and direction determined by CTH.

By necessity, this study assumes fixed cloud geometric
thickness (1 km for cloud top heights smaller than 4 km and
a cloud base at 3 km for cloud top heights greater than 4 km).
The additional photon path caused by multiple scattering
within clouds influences the magnitude of the 3D cloud ef-
fect, so the slopes are sensitive to the choice of geometric
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Figure B1. (a) Skew-T diagram of the atmosphere and (b) CO2 and H2O VMR profiles of the Fig. 1 scene.

cloud thickness. Unfortunately, this parameter is not readily
available from operational products. Some attempts are be-
ing made to exploit the O2 A channel of OCO-2 (Zinner et
al., 2019; Li and Yang, 2024). Once these are mature, the in-
formation will be used by our algorithm. Generally, since the
vertical cloud properties can influence the magnitude and dis-
tribution of the 3D cloud effect, further investigation of the
impact of cloud properties, including COT, CTH, and cloud
base height, on the 3D cloud effect is recommended for fu-
ture research.

B4 RT model and tools

This research uses a modified version of the Education and
Research 3D Radiative Transfer Toolbox v0.1.1 (Chen et al.,
2023) for OCO (EaR3T-OCO) to model the 1D and 3D radi-
ances of the scene. The Monte Carlo Atmospheric Radiative
Transfer Simulator version 0.10.4 (MCARaTS; Iwabuchi,
2006) serves as the core engine for this simulator, which au-
tomatically ingests satellite products and simulates 1D and
3D spectral radiances. MCARaTS iteratively traces the path
of each photon and calculates the distribution of photons
based on the final probability. Chen et al. (2023) demonstrate
the ability of EaR3T to simulate the radiance observed by
OCO-2. We utilize the framework and example application
outlined in Chen et al. (2023) to develop a specialized version
of the application, which is described in Appendix B. We im-
prove the atmospheric structure based on the OCO-2 Level 2
products and the absorption coefficient derivation method, as
described in Appendix B1 and B2. For the simulation of each
wavelength, 1× 109 photons are used and distributed to var-
ious absorption lines for a single run. The mean radiance and
the standard deviation are then calculated from three runs to
estimate the uncertainty.

Appendix C: Code walk through

The code utilized for this study can be accessed from GitHub
at https://github.com/ywchen-tw/OCO2 (last access: 29 Jan-
uary 2025). Subsequent sections specify the configuration
file settings and provide an overview of the simulation and
analysis process.

C1 Configuration file

The configuration file in CSV format controls the changeable
parameters for the EaR3T-OCO simulation. The following ta-
ble describes the meaning and data type of each variable. If
a variable is not required to be specified, the default value is
used.
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Table C1. Comprehensive overview of configuration file parameters, including names, descriptions, data types, and requirements.

Parameter name Description Data type Required

descriptor Case description String Y

date Date of interest Integer, YYYYMMDD Y

juld Julian date of the year Integer

pngwesn Region for retrieving the MODIS RGB image 4 floats Y

subdomain Region for analysis 4 floats Y

path_sat_data Directory of satellite files String Y

l2 File name of geolocated XCO2 retrieval results data String

lt File name of OCO-2 Level 2 bias-corrected XCO2
and other select fields from the full-physics
retrieval aggregated as daily files

String

l1b File name of calibrated, geolocated OCO-2 science
spectra

String

dia File name of geolocated XCO2 retrieval results and
algorithm diagnostic information

String

met File name of OCO-2 Level 2 meteorological
parameters interpolated from a global assimilation
model for each sounding

String

imap File name of geolocated retrieved values of XCO2
and fluorescence generated by the IMAP-DOAS
algorithm

String

co2prior File name of OCO-2 Level 2 CO2 prior based on
CO2 monthly flask record,
global meteorology, and age of air

String

sol File name of the solar spectra String

nx Interval of the selected wavelength Integer, default = 5

Trn_min Minimum ratio of the largest transmittance for
wavelength selection

Float, 0≤ Trn_min
< 1, default = 0

abs_interpolation Option for doing the interpolation Single, linear, or
trilinear, the default is
trilinear

_aerosol Add a homogeneous aerosol layer TRUE or FALSE

asy Aerosol asymmetry parameter Float

cth_thick Cloud top height for thick clouds (km) Float

cgt_thick Cloud geometric thickness for thick clouds (km) Float

cth_thin Cloud top height for thin clouds (km) Float

cgt_thin Cloud geometric thickness for thin clouds (km) Float

cot_Nphotons Number of photons used for the COT–Ref
relationship simulation

Float

path_out Directory of output files String

o2 File name of O2 A-band simulation output String

wco2 File name of WCO2 band simulation output String

sco2 File name of SCO2 band simulation output String

retrieval Retrieval version

ref_threshold Radiance threshold at 470 nm as a cloudy pixel Float Y

modis_650_N_photons Number of photons used for the 650 nm simulation Integer Y

oco_N_photons Number of photons used for OCO-3 band
simulation

Integer Y
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Figure C1. Workflow schematic of the preprocess function in the oco_simulation.py code.

Figure C2. Workflow schematic of the run_case_modis and run_ case_oco functions in the oco_simulation.py code.
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Figure C3. Workflow schematic of the case_analysis.py code and the oco_retrieve.py code.

C2 Preprocess

The oco_simulation.py code is the main code for data acqui-
sition and radiance simulation. Here, we focus on the first
part of the code (the preprocess function), which deals with
data download and preprocessing.

1. satellite_download function. This function accesses the
configuration file variables, subsequently downloading
the pertinent MODIS and OCO-2 data as dictated by
the specified date and geolocation details.

2. create_oco_atm function. Leveraging OCO-2 data, this
function constructs vertical profiles for temperature,
water vapor, and wind.

3. oco_abs function. Based on the atmospheric profiles,
this function computes the optimal absorption coeffi-
cients for all three OCO-2 bands, subsequently identi-
fying the wavelengths for simulation.

4. cdata_sat_raw function. This function extracts data
from the MODIS and OCO-2 files, then restructures this
data to a 250 m resolution.

5. cdata_cld_ipa function. Using the EaR3T simulator,
this function establishes a COT–radiance relationship
and designates a COT for every grid point.

Upon completion of the preprocessing stage, the system
will generate the following files.

– zpt.h5. This file details the vertical atmospheric struc-
ture.

– pre-data.h5. This file contains information on cloud and
radiance.

– atm_abs_band_nx.h5. This file captures data on the ab-
sorption coefficients.

C3 Simulation

The second part of the oco_simulation.py code (run_
case_modis and run_case_oco functions) is primarily con-
cerned with radiance simulation.

1. run_case_modis function. This function drives the
EaR3T simulator to simulate radiance at 650 nm, oper-
ating in either independent pixel approximation (IPA)
or 3D mode. It employs the correlated k-distribution
method, as detailed in Chen et al. (2023). Upon com-
pletion, simulation results are stored in the post_data.h5
file.

2. run_case_oco function. This function activates the
EaR3T simulator to simulate radiance for each desig-
nated wavelength identified by the oco_abs function.
It utilizes the IPA mode for clear-sky simulations and
the 3D mode for real-world conditions. The respec-
tive simulation outcomes for each band are archived as
data_all_YYYYMMDD_xxxx_ xxxx_band.h5.

C4 Postprocess

Following the radiance simulation, we proceeded with an
analysis leveraging the case_analysis.py code and subse-
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quently executed oco_retrieve.py to extract the mitigated
XCO2 .

1. case_analysis function. This function accesses the out-
put files from the radiance simulation and computes
the mean radiance across various average sizes, a pro-
cess managed by the near_rad_calc function. Next,
the slopes_propagation function determines the slope
and intercept for each grid point. With the help of
the weighted_cld_dist_calc function, the effective cloud
distance for each grid point is gauged based on cloud
positioning. The fitting_3bands function determines the
most suitable fitting coefficients for the 3D parame-
ters and the effective cloud distance. Following this,
the effective cloud distance for every footprint is estab-
lished and used to derive the corresponding parameter-
ized slopes and intercepts. All results are consolidated
in the configuration file.

2. oco_retrieve function. Initially, this function adjusts the
radiance of the footprint in line with the set slopes and
intercepts. It then triggers the OCO retrieval algorithm
with the modified spectra to obtain the mitigated XCO2 .

3. case_retrieval_analysis function. This function reviews
the output of the mitigated XCO2 and juxtaposes the
findings with the OCO-2 L2 product.

Appendix D: Abbreviation

D1 Abbreviations and their full names in this paper

Abbreviation Full name
A-train Earth Observing System Afternoon

Constellation
ABSCO Absorption coefficients
AOD Aerosol optical depth
CER Cloud effective radius
CO2 Carbon dioxide
COT Cloud optical thickness
CTH Cloud top height
EaR3T Education and Research 3D Radiative

Transfer Toolbox
FOV Field of view
FWHM Full width at half maximum
GMAO Global Modeling and Assimilation Office
GOSAT Greenhouse Gases Observing Satellite
L (0,1...) Level 0, Level 1, etc. (data product)
IPA Independent pixel approximation
MCARaTS Monte Carlo Atmospheric Radiative

Transfer Simulator
MODIS Moderate-Resolution Imaging

Spectroradiometer
O2 A Oxygen A-band
OCO Orbiting Carbon Observatory
ppm parts per million
R2 Determination coefficient
RT Radiative transfer
SCO2 Strong CO2
TCCON Total Carbon Column Observing Network
SZA Solar zenith angle
TOA Top of atmosphere
VMR Volume mixing ratio
WCO2 Weak CO2
XCO2 Column-averaged CO2 dry-air

mole fraction

Code availability. The EaR3T code (Chen et al., 2023a) is
available at https://github.com/hong-chen/er3t (last access:
24 June 2024) and https://doi.org/10.5281/zenodo.7734965
(Chen et al., 2023b), and the EaR3T-OCO code is available
at https://github.com/ywchen-tw/OCO2 (last access: 29 Jan-
uary 2025) and https://doi.org/10.5281/zenodo.15086808 (Chen,
2025).

Data availability. Version 10r of OCO-2 data can be accessed
at https://doi.org/10.5067/6O3GEUK7U2JG (OCO-2 Science
Team et al., 2019a), https://doi.org/10.5067/46J4Z696YA09
(OCO-2 Science Team et al., 2019b),
https://doi.org/10.5067/FQ25VEK3DLRR (OCO-2 Science
Team et al., 2019c), https://doi.org/10.5067/OJZZW0LIGSDH
(OCO-2 Science Team et al., 2019d),
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https://doi.org/10.5067/6SBROTA57TFH (OCO-2 Science Team
et al., 2020a), and https://doi.org/10.5067/E4E140XDMPO2
(OCO-2 Science Team et al., 2020b). The MODIS-
related data from data collection 6.1, including
MYD02QKM, MYD02HKM, MYD021KM, MYD03,
MYD06, MYD04_L2, and MCD43A3, are available at
https://doi.org/10.5067/MODIS/MYD02QKM.061 (MCST,
2017b), https://doi.org/10.5067/MODIS/MYD02HKM.061
(MCST, 2017c), https://doi.org/10.5067/MODIS/MYD021KM.061
(MCST, 2017a), https://doi.org/10.5067/MODIS/MYD03.061
(MCST, 2017d), https://doi.org/10.5067/MODIS/MOD06_L2.061
(Platnick et al., 2015), https://doi.org/10.5067/MODIS/MYD04_L2.061
(Levy and Hsu, 2015), and
https://doi.org/10.5067/MODIS/MCD43A3.061 (Schaaf and
Wang, 2021). We acknowledge the use of imagery from the
Worldview Snapshots application (https://wvs.earthdata.nasa.gov,
last access: 25 January 2025), part of the Earth Observing System
Data and Information System (EOSDIS).
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