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Abstract. This study presents an algorithm for the detec-
tion of fog and low stratus (FLS) over Europe based on the
infrared bands of the SEVIRI (Spinning Enhanced Visible
and InfraRed Imager) instrument on board the Meteosat Sec-
ond Generation geostationary satellites. As the method op-
erates based on the SEVIRI infrared observations only, it
is expected to be stationary in time and thus can provide a
coherent and detailed view of FLS development over large
areas over the 24 h day cycle. The algorithm is based on a
gradient boosted tree machine learning model that is trained
with ground truth observations from METeorological Aero-
drome Report (METAR) stations and the SEVIRI observa-
tions at bands centered at 8.7, 10.8, 12.0, and 13.4 µm wave-
lengths. The METAR data used here comprise a total num-
ber of 2 544 400 data points spread over the winters (i.e.,
1 September to 31 May) of the years 2016–2022 and 356
locations across Europe. Among them, the data points corre-
sponding to 276 stations and the winters of 2016–2018 and
2019–2021 (∼ 45 % of all data points) were used to train the
algorithm. The remaining data points comprise four indepen-
dent datasets which were used to validate the algorithm’s per-
formance and applicability to time spans and locations within
the study area (i.e., Europe) that extend beyond those cov-
ered by the data points used for the algorithm training, as
well as to compare the algorithm’s accuracy at the locations
of METAR stations with that of the existing state-of-the-art
daytime FLS detection algorithm Satellite-based Operational
Fog Observation Scheme (SOFOS). Validation of the algo-
rithm against the METAR data showed that the algorithm is
well suited for the detection of FLS. Specifically, the algo-

rithm is found to detect FLS with probability of detection
(POD) values ranging from 0.70 to 0.82 (for different inter-
comparison approaches) and false alarm ratios (FARs) be-
tween 0.21 and 0.31. These numbers are very close to those
achieved by SOFOS for differentiating FLS from other sky
conditions at the tested locations and time spans. These re-
sults also showed that the technique’s applicability in the
study region extends beyond the particular locations and time
spans covered by the data points used for training the algo-
rithm.

1 Introduction

Fog and low stratus (FLS) are both persistent aggregations of
water particles in liquid and/or solid phases, i.e., clouds close
to the Earth’s surface. As the cloud base height is the only
real difference between the two (fog: touching the ground;
low stratus: above ground), they are frequently treated to-
gether as a single category from the satellite perspective
(i.e., FLS). FLS influences various aspects of life on the
Earth: on the one hand it may act as source of water sup-
ply (e.g., Shanyengana et al., 2002; Lehnert et al., 2018), as
well as a modifier in the global climate system (Vautard et
al., 2009). On the other hand, it causes large economic costs
in the transport, health, and energy sectors (Köhler et al.,
2017; Pérez-Díaz et al., 2017). For these reasons, continuous
(and ideally near-real-time) detection of FLS and monitoring
of its spatiotemporal patterns and developments is essential.
An important application lies in solar energy usage. With the
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rising share of electricity generated from photovoltaic (PV)
systems, the prediction of current and future solar irradiance
and, hence, PV power output becomes crucial for the opera-
tion of modern power grids. In the context of PV power pro-
duction, the detection and monitoring of FLS is particularly
important as FLS, unlike moving clouds, can persist longer
and impact larger regions simultaneously, making regional
power grid balancing a challenging task.

Geostationary satellites have an outstanding potential for
the detection and monitoring of FLS. That is because they
continuously scan the Earth from the same angle over the
24 h of the diurnal cycle, providing spatiotemporally coher-
ent spectral images of the Earth. To exploit this potential,
to this day several FLS detection methods have been devel-
oped and applied (e.g., Ellrod, 1995; Cermak and Bendix,
2008, 2007; Egli et al., 2018; Nilo et al., 2018; Kim et al.,
2019; Underwood et al., 2004; NWC SAF, 2019; Fuchs et al.,
2022; Klüser et al., 2015), which detect FLS by performing
a sequence of spectral and/or spatial tests on satellite mea-
surements. Although these methods have proven to be useful
exploring the FLS characteristics (e.g., Cermak et al., 2009;
Egli et al., 2017; Pauli et al., 2022a, b, 2024), they usually
consist of a solar-zenith-angle-dependent and separate day-
time and nighttime schemes, making use of spectral chan-
nel characteristics particular for either night or day. This,
however, makes the continuous monitoring and forecasting
of FLS life cycle and occurrence at the critical point of the
day (i.e., sunrise) impossible. For example, an FLS detec-
tion method may operate based on shortwave reflectances,
as FLS-covered regions typically have high reflectivity and
smooth texture in the visible spectral region (Lee et al.,
2011). But as no reflectance data are available during night-
time, a whole other algorithm would be required to be ap-
plied over nighttime. FLS can also be detected by testing the
difference between the brightness temperatures in medium-
wave (MIR) and long-wave (LIR) infrared bands (typically
referring to radiation at wavelengths between 3–8 and 8–
15 µm, respectively) against threshold values. That is be-
cause the FLS droplets are typically smaller than those of
other cloud types. As a result, FLS shows a greater contrast
between the brightness temperatures measured at MIR and
LIR bands compared to other clouds (Hunt, 1973). How-
ever, as MIR has a solar component during daytime, applica-
tion of this technique requires daytime and nighttime separa-
tion. This is, for example, the case for the cloud-type prod-
uct (includes FLS) which can be derived from the algorithm
APOLLO-NG (AVHRR Processing scheme Over cLouds,
Land and Ocean – Next Generation; Klüser et al., 2015) and
the software package NWC/GEO (NWC SAF, 2019), which
is also used by the Royal Netherlands Meteorological In-
stitute for producing the MSG-CPP products (available at
https://msgcpp.knmi.nl/, last access: 17 February 2025). To
overcome this limitation and enable consistent FLS detection
across the entire diurnal cycle, an approach that relies solely
on observations in the LIR bands would be required.

The main objective of the present study is to develop and
validate a single fully diurnal FLS detection algorithm for
Europe based on geostationary satellite observations. The
guiding hypothesis of the present study is that FLS can be
discriminated from cloud-free regions and non-FLS clouds
based on spectral LIR data with an accuracy comparable
with the existing state-of-the-art daytime FLS detection al-
gorithms. Satellite detection of FLS using only LIR bands
only is a quite challenging task and historically believed to
be a rather impossible one (Güls and Bendix, 1996). That
is mainly because FLS emits at temperatures very close to
that of the Earth’s surface. Nonetheless, Andersen and Cer-
mak (2018) succeeded at developing a method for FLS de-
tection over the Namib desert (located in southern Africa)
which operates solely based on the brightness temperatures
measured at the LIR bands of the Spinning Enhanced Visible
and InfraRed Imager (SEVIRI) sensor on board the Meteosat
Second Generation (MSG) spacecraft. Specifically, they dis-
criminated FLS from cloud-free land by analyzing the spatial
structure (texture) of images constructed from the differences
between the brightness temperatures measured at 12.0 and
8.7 µm SEVIRI channels. The main underlying assumptions
associated with this method are (i) the 12.0–8.7 µm values are
typically greater for clouds than for land surface, and (ii) the
12.0–8.7 µm calculated for bare soil shows a higher level of
spatial heterogeneity compared to smooth FLS top surfaces.
Andersen and Cermak (2018) showed that, although small,
there are distinct differences between the spectral signatures
of a clear land and FLS in the LIR region, which makes their
distinction possible. Nevertheless, this method is applicable
to regions where the mentioned assumptions are met (i.e.,
deserts and possibly arid regions) and cannot be easily ex-
trapolated to the much more complex geospheric and atmo-
spheric conditions of Europe. Therefore, to this date, no ap-
proach for the continual 24 h detection of FLS over Europe
exists.

This study presents and validates a single machine learn-
ing (ML) algorithm for the detection of FLS over land
across Europe, based on Meteosat–SEVIRI bands centered
at 8.7, 10.8, 12.0, and 13.4 µm wavelengths. Furthermore,
it provides an intercomparison between the accuracy of this
method and that of the existing state-of-the-art daytime FLS
detection algorithm Satellite-based Operational Fog Obser-
vation Scheme (SOFOS; Cermak and Bendix, 2008; Cermak,
2006) to address the objectives of the study. The method pre-
sented here is based on a gradient boosted tree (XGBoost)
ML model that is trained with observations from METeo-
rological Aerodrome Report (METAR) stations and the LIR
observations of SEVIRI on board Meteosat-10 and Meteosat-
11 platforms. As the method presented here operates solely
based on the spectral data in the LIR region, it is expected to
be applicable during the 24 h of the diurnal cycle over Euro-
pean lands. Thus, it is suitable for continuous monitoring of
FLS over Europe and can reveal a detailed view of the diur-
nal and spatial patterns of FLS over Europe. This can be of
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essential value for the analysis of FLS occurrence and related
processes as well as improvement of methods for PV power
forecasting. It can also serve as a precondition for statistics-
based nowcasting.

2 Data

2.1 Satellite observations

SEVIRI is a multi-purpose scanning (passive) radiometer
on board MSG geostationary satellites operated by the Euro-
pean Organization for Exploitation of Meteorological Satel-
lites (EUMETSAT; Aminou, 2002). This instrument has been
in operation by EUMETSAT at 0° latitude and longitude at
the altitude of ∼ 35 800 km above mean sea level since early
2004 and is intended to remain in service at 0° until 2033
(expected lifetime of the last MSG mission, i.e., Meteosat-
10). SEVIRI measures upwelling radiance at the top of the
atmosphere (TOA) for the Earth’s whole disk covering Eu-
rope, the North Atlantic, and Africa in 12 spectral channels in
15 min intervals (12 min scanning time followed by 3 min of
processing time). Eleven of the SEVIRI channels are narrow-
band channels which are spread over the spectral region be-
tween 0.56 (visible) to 14.4 µm (LIR) and have a sampling
spatial resolution of 3× 3 km2 at nadir. The remaining one
is a broadband high-resolution visible channel (0.6–0.9 µm)
with a sampling resolution of 1 km at nadir. The level 1.5
product of SEVIRI (Hanson and Mueller, 2004; Schmetz
et al., 2002; Tranquilli et al., 2016) consists of geolocated,
radiometrically preprocessed TOA upwelling radiances ob-
served by SEVIRI (spacecraft-specific effects have been re-
moved) at its 12 channels. The present study uses the level
1.5 radiances measured by MSG SEVIRI instruments posi-
tioned at 0° latitude and longitude. The data include mea-
surements from channels centered at 0.6, 0.8, 1.6, 3.9, 8.7,
10.8, and 12.0 µm wavelengths. These data were acquired
from EUMETSAT (EUMETSAT, 2017) for the region cov-
ering Europe and north Africa and includes the winter peri-
ods (i.e., 1 September–31 May) between the years 2016 and
2022. These data were measured by the SEVIRI instruments
on board the MSG-3 and MSG-4 platforms. The acquired
data were calibrated and converted to reflectances (ρ; for 0.6,
0.8, and 1.6 µm channels) and brightness temperatures (BTs;
for 3.9, 8.7, 10.8, 12.0, and 13.4 µm channels) following the
procedure explained in EUMETSAT (2017) using the satpy
Python package (Martin et al., 2021). The summer months
(i.e., June, July, and August) were excluded from the analy-
sis because the FLS occurrence frequency is very low over
these months (Egli et al., 2017) and their inclusion in the
analysis largely affects the imbalance between the observed
FLS-positive and FLS-negative cases (see Table 1 for more
information).

2.2 SOFOS

As a reference for the newly developed algorithm, the exist-
ing and validated satellite-based Operational Fog Observa-
tion Scheme (SOFOS; Cermak and Bendix, 2008; Cermak,
2006) was used. A daytime-only technique, this approach
was developed specifically for MSG SEVIRI and makes use
of the visible, mid-infrared, and thermal-infrared channels in
a series of threshold tests. These include per-pixel spectral
tests as well as tests applied on spatially coherent and dis-
tinct areas of pixels.

2.3 Ground-based observations

The METAR (METeorological Aerodrome Report) data
comprise the reports of weather measurements performed
at a network of meteorological stations located at airports
across the world. The primary objective of these measure-
ments is aviation safety, but they also have an application
in meteorology. The METAR parameters cloud base height
(CBH; m), sky cloud cover (CC; okta), and horizontal visi-
bility (HV; km) for the period 1 September 2016 to 31 May
2022 were acquired and used in the present study to iden-
tify the FLS conditions based on ground-based observations.
These parameters are either retrieved automatically (instru-
mentation is not standardized) or estimated by human ob-
servers at each station at temporal frequencies of 1 h or
less. The temporal frequency of the observations performed
at these stations is related to the weather conditions, air-
port size, and traffic. In particular, stations located at large
and busy airports are equipped with automatic devices and
tend to have a higher frequency of observations compared
to small airports. Also, under weather conditions violating
flight safety such as fog occurrence or extreme weather, the
frequency of the observations at these stations is increased to
ensure flight safety.

The acquired data were first subjected to a quality con-
trol procedure to filter out the stations with unreliable ob-
servations. Specifically, the stations not meeting at least one
of the following conditions were considered unreliable and
were discarded from the analysis: (1) average number of
observations per hour greater than 1.5 for the data period,
(2) average number of empty observations less than 0.05 dur-
ing the data period, or (3) continuous data gaps less than 1
month. The underlying assumption for defining these tests is
that the data from stations with a rather homogeneous fre-
quency of observations is more likely to have reliable accu-
racy and consistency. The quality control thresholds applied
here have been defined empirically and as such are restric-
tive enough to filter out the stations with unreliable obser-
vations and yet relaxed enough to get a reasonable number
of temporally homogeneous observations for further analy-
sis. By applying the abovementioned filters, 591 out of 947
stations were discarded. The locations of the remaining 356
stations were spatially matched with the SEVIRI grid us-
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Figure 1. Geographical location of the selected ground observa-
tion (METAR) sites. The horizontal color bar indicates the elevation
above mean sea level for the study area (m; obtained from EUMET-
SAT Satellite Application Facility on Land Surface Analysis: last
access: 16 January 2023 – 13:36 GMT+1). The filled circles show
the geographical locations of the stations included in the training
and test1 datasets. The triangles illustrate the geographical locations
of the stations included in the datasets test2 and test3 (see Sect. 2.4
for more information). The locations of the stations included in the
test4 dataset are shown with plus (“+”) signs. The vertical color bar
indicates the mean annual FLS occurrence frequency (f ; %) at the
location of the station as described in Sect. 2.4 of the paper based
on the modified ground-based FLS labels (before selecting the con-
fident labels).

ing the smallest distance between the center of each SEVIRI
pixel and the station location. For the temporal matching, the
METAR times of observation were first rounded up to the
closest 15 min intervals (tm) of SEVIRI. Then, the SEVIRI
images with the timestamps tm+15 min were considered the
temporally matched images, as the actual SEVIRI scanning
time for the study area is much closer to the end of each
15 min interval. The location of these stations is illustrated
in Fig. 1. As can be inferred from this figure, the stations se-
lected are spread across Europe (plus four in north Africa),
covering a wide range of regions with various surface types,
altitudes, and meteorological conditions.

3 Methods

3.1 FLS labels

The present study uses the ground-based identified FLS oc-
currences as the basis for algorithm development and val-

idation purposes. The FLS occurrences were identified us-
ing the CBH, CC, and HV measurements performed at the
selected METAR stations (see Sect. 2.2 for more informa-
tion). Fog was defined by HV values below 1 km and low
stratus by CBH below 1 km and CC above 5 oktas (Egli et
al., 2017). Then, Observations with either fog or low stratus
were marked FLS-positive, while those missing HV, CBH, or
CC data were marked undefined. Observations with neither
fog nor low stratus were labeled FLS-negative.

The FLS labels produced this way indicate whether FLS is
detected from the perspective of a ground-based observer/in-
strument. However, these labels may not be consistent with
what is observed from space, as the satellite’s field of view
(FOV) may be contaminated with layers of non-FLS clouds
passing through its line of sight (LOS). This is particularly
relevant in Europe, where about 30 % of FLS events are ob-
scured by other clouds (Cermak, 2018). Additionally, the
FLS-negative labels indicated above do not specify the sky
condition (cloudy or cloud-free land) in the satellite’s FOV.
To cope with these two issues, the non-FLS clouds blocking
the satellite’s LOS were identified using the SEVIRI spec-
tral measurements. Particularly, a series of spectral tests were
performed using the collocated SEVIRI ρ0.6, ρ1.6, BT3.9,
BT8.7, BT10.8, BT12.0, and BT13.4 data corresponding to each
data point. These tests are the same as those used in the SO-
FOS algorithm for classification of the SOFOS classes “wa-
ter”, “cirrus”, and “ice” clouds (Cermak and Bendix, 2008)
and can discriminate non-FLS clouds from FLS and cloud-
free land.

The ground-based FLS labels were updated based on the
above-mentioned tests performed on the SEVIRI data as fol-
lows: FLS-negative observations from ground data were clas-
sified as “clear-sky” if no non-FLS clouds were detected and
as “non-FLS-cloud” if clouds were present. For FLS-positive
points, those with non-FLS clouds present were classified as
“multi-layer” (FLS beneath non-FLS clouds), while others
remained “FLS”. It is worth mentioning that as the non-FLS
cloud screening procedure explained above uses the SEVIRI
ρ0.6, and ρ1.6 data, its applicability is limited to daytime (i.e.,
solar zenith angles ≤ 80°). For this reason, despite the avail-
ability of both the SEVIRI and METAR data over day and
night, the FLS labels derived here are limited to the daytime
only. It should also be noted that, despite overall reliability
of the procedure applied here for the detection of non-FLS
cloud contaminated cases, the method sometimes fails to de-
tect non-FLS clouds, leading to occasional misclassifications
(e.g., multi-layer or non-FLS-cloud cases labeled as FLS or
clear-sky). Nevertheless, initial tests of a machine learning
model showed that using this procedure is essential for mak-
ing the ground observations compatible with what is seen
from space.
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3.2 FLS flag quality assessment

The quality of the modified FLS labels in terms of sky condi-
tion homogeneity was assessed by comparing the labels cor-
responding to each timestamp at each station with that of its
previous and next timestamps at the same station. Particu-
larly, for each three consecutive data points at the same loca-
tion the middle data point was set to

– “no confidence” if the time difference between the first
and third data points was greater than 1 h or the FLS
label if neither the first nor the third data point were the
same as the middle one;

– “semi-confident” if the FLS label for one of the first or
third data points was the same as that of the middle one;

– “confident” if the FLS label for both the first and third
data points was the same as that of the middle one.

This quality control procedure was considered to identify
data points with a homogeneous sky condition and to mini-
mize the uncertainties associated with spatiotemporal match-
ing of the SEVIRI data with the ground station data, the co-
ordinate system used for geolocation of SEVIRI pixels, and
coordinates of the ground stations. The SEVIRI pixels have
a spatial resolution of about 3 km at nadir which results in
a resolution between 4 and 8 km over Europe. Plus, there
is up to 0.3 km of uncertainty associated with the procedure
applied by EUMETSAT for georeferencing SEVIRI images.
Additionally, the satellite is not exactly stationary on the geo-
stationary ring, and its true position varies slightly with time
because all satellites are drifting from their nominal position.
On the other hand, the ground stations are not exactly lo-
cated at the center of the SEVIRI pixels, and some are indeed
on the borders of the pixels. Also, there may exist occasions
where the METAR location within the pixel has a different
sky cover compared to the majority of the pixel area. This
can be the case with pixels contaminated by the edges of non-
FLS clouds or cloud layers which are forming but are not yet
fully developed (see Jahani et al., 2020, 2022; Koren et al.,
2007). The sky conditions for the data points surviving this
quality control procedure are assumed to be homogeneous at
the subpixel level.

3.3 Training and testing datasets

The entire data were split into five datasets, namely “train-
ing”, “test1”, “test2”, “test3”, and “test4”. Table 1 summa-
rizes the characteristics of these datasets, and Fig. 1 shows
the location of the stations included in each of them. The
training dataset was used for training the ML algorithm. The
test1 dataset was intended to evaluate the performance of the
trained model over locations seen by the model during train-
ing but at time spans beyond those used for model training.
The datasets test2, test3, and test4 were intended for quanti-
fying the accuracy of the trained model over locations which

were never seen by the model during the whole study period.
The sampling for the data split was done based on the time
frame of the observations and the FLS occurrence regimes
identified according to FLS flags described in Sect. 2.4.

To split the data, the annual frequency of FLS occurrence
at each station was first determined by calculating the ra-
tio of the daytime FLS-positive labels to all valid labels in
METAR per winter year (i.e., 2016–2017, 2017–2018). In
the second step, the annual ratios were averaged over the
study period to obtain the mean annual frequency of FLS
occurrence at each station (f , range of the values obtained:
0.0 %–12.0 %). In the third step, the stations were grouped
into 23 bins based on their f values (bin widths: 0.5 %).
The entire data corresponding to the stations falling in the
first two f bins (i.e., f < 1 %) were considered the test4
dataset (59 stations). This dataset was intended to evaluate
the algorithm’s performance at locations where FLS rarely
occurs. In the fourth step, from each of the 21 remaining f
bins, one random station per bin was selected to construct
the test2 and test3 datasets. Among all the data points cor-
responding to these 21 stations, those that cover the winters
(September to May) of 2018–2019 and 2021–2022 comprise
the test3 dataset, and the remaining ones comprise the test2
dataset. These two datasets are considered for validating the
algorithms at locations other than those used for training the
ML model. As can be understood, the difference between the
two is the time span covered by them. In particular, the time
spans covered by the test2 dataset are the same as those of the
dataset used for training, and test3 dataset covers time spans
beyond those covered by the training dataset. Lastly, the test1
and training datasets were then constructed by splitting the
data corresponding to the 276 stations which were not allo-
cated to test2, test3 or test4. Specifically, the data points cor-
responding to the winters (September to May) of 2018–2019
and 2021–2022 comprised the test1 dataset, and those cor-
responding to the winters of 2016–2017, 2017–2018, 2019–
2020, and 2020–2021 comprised the training dataset. As can
be inferred, the data points corresponding to the stations with
f less than 1 % were not included in the training dataset.
These data were excluded from the training dataset to de-
crease the imbalance between the FLS-positive and FLS-
negative cases. That is because the initial tests of the algo-
rithm indicated that the data corresponding to the stations
with f less than 1 % in the training dataset vastly increase
the imbalance between FLS-positive and FLS-negative cases,
which leads to a decrease in the algorithm’s skill for detect-
ing the FLS cases. These data points were, however, included
in the analysis as the test4 dataset to evaluate the algorithm’s
performance at places that FLS rarely occurs. Next, the cases
of “no confidence” and “semi-confident” FLS were removed
from the five datasets, and the cases of “multi-layer” con-
ditions were relabeled as non-FLS-cloud for the test1, test2,
test3, and test4 datasets but were removed completely from
the training dataset. They were removed from the training
dataset to eliminate cases that could introduce ambiguity,
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ensuring the ML model is trained on data with a clear dis-
tinction between non-FLS-cloud and the two other classes
(i.e., clear-sky and FLS). The METAR FLS labels generated
in this way (hereafter referred to as “MFLs”) serve as the
ground truth and will be used for the model development and
validation purposes. A summary of the data included in the fi-
nal four datasets is given in Table 1. A schematic description
of the process followed in this section for the creation of the
MFLs included in all five datasets is provided in Fig. A1. As
this table shows, the training, test1, test2, and test3 datasets
contained an overall number of 1 168 921, 644 804, 142 641,
and 588 034 data points, respectively. This table also shows
that the number of non-FLS cases (i.e., clear-sky and non-
FLS-cloud classes combined) is substantially higher than the
FLS cases. Nevertheless, the fraction of FLS cases is in the
same range for the datasets training (3.8 %), test1 (3.3 %),
test2 (4.7 %), and test3 (4.4 %), whereas that of test4 (0.2 %)
is considerably lower than that of the other three datasets. It
should be noted that the FLS labels prior to the application of
quality flags were used for the data split because the goal was
to sample data based on different FLS regimes, whereas the
quality checks were mainly applied to flag data points that
are likely to represent homogeneous sky conditions.

3.4 Machine learning algorithm

In the present study, an XGBoost (gradient boosted tree)
model was developed for FLS detection over Europe based
on SEVIRI observations in the LIR (long-wave infrared)
spectral region. XGBoost is a well-tested supervised ML
(machine learning) technique which has been successfully
applied to many regression and classification problems. It
extracts the nonlinear relationships between sets of input
variables/features and a target output variable through con-
structing an ensemble of sequentially built regression trees
(also referred to as “weak learners”) to the data. The re-
gression trees are added one at a time to the ensemble to
correct for the deficiencies in the previous regression tree
and to minimize a specified loss function. All these trees
together construct a powerful statistical model referred to
as “XGBoost”. For this model, the prediction is performed
by summing over all the regression trees. Once the model
is trained, the role of each input feature in constructing the
boosted decision trees within the model is indicated based
on a metric referred to as “feature importance”. The more
an input feature is used to make key decisions with de-
cision trees, the higher its importance. For more informa-
tion about XGBoost, refer to Mitchell and Frank (2017),
Friedman (2001), and Natekin and Knoll (2013). The open-
source XGBoost Python implementation (https://xgboost.
readthedocs.io/en/stable/index.html, last access: 28 March
2023) was used in the present study.

The XGBoost model was trained to predict the labels
FLS, non-FLS-cloud, and cloud-free based on a set of input
variables generated from the channel combinations BT12.0,

BT8.7–BT12.0, BT10.8–BT12.0, and BT12.0–BT13.4 plus the
standard deviation of each of these variables in a spatial win-
dow 3×3 pixels in size with the central pixel being the target
pixel.

The pixel values of the mentioned variables contain in-
formation about the cloud presence, cloud top height, phase,
and the particle radius for the area falling within the limits of
the target pixel. Specifically, the SEVIRI channels centered
at 8.7, 10.8, and 12.0 µm wavelengths fall within the atmo-
spheric window region (where the absorption by the atmo-
spheric gases is minimal) and the one at 13.4 µm is in a CO2
absorption region. BT8.7–BT12.0 and BT10.8–BT12.0 provide
data on the spectral dependency of the emissivity of the sur-
face/cloud covering the scanned scene. These data give in-
formation about the size and thermodynamic phase of the
particles at the cloud top (Strabala et al., 1994) in the case
of cloudy scenes and about surface properties for the clear-
sky scenes (e.g., Petitcolin and Vermote, 2002; Andersen and
Cermak, 2018). BT12.0–BT13.4 is linked to the absorption
depth of CO2, which can be used as a proxy for determining
the depth of the atmospheric column. This information can
be interpreted as the height of the emitting body (surface/-
cloud). BT12.0 is a proxy for the temperature of the emitting
body, which can play a role in the determination of its height
and phase. The standard deviations of the channel combina-
tions mentioned above summarize the heterogeneity of this
information over the 3× 3 pixel area around the target pixel.
The standard deviations were considered because the differ-
ent land and cloud types tend to show different degrees of
spectral and spatial heterogeneity.

The hyperparameters of the model were tuned to opti-
mize the model’s performance and avoid overfitting. This
was done based on the statistical indicators explained in Ap-
pendix B. To this aim, a grid search was performed to find the
optimum values of the XGBoost hyperparameters learning
rate (0.3), maximum depth (5), minimum child weight (1),
number of regression trees (100), alpha (0), and lambda (1).
The XGBoost model trained this way was then applied to all
SEVIRI scenes acquired in the present study (see Sect. 2.1),
including the SEVIRI pixels over water.

3.5 Feature selection

The set of input variables mentioned in Sect. 3.4 was se-
lected by analyzing the spectral SEVIRI LIR data and the
corresponding MFLs included in the training dataset with
the objective of creating the simplest model possible that
can capture general differences between FLS and the two
other classes (i.e., non-FLS-cloud and cloud-free). Here, the
simplest model is defined as an accurate model (according
to Eqs. B1–B7) capable of detecting FLS based on mini-
mal spectral and spatial input data. To select the most rel-
evant input features for discriminating FLS from the two
other classes (i.e., those that reduce the error the most), we
tested the data corresponding to the LIR channels centered
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Table 1. Summary of the data contained in the training, test1, test2, and test3 datasets. The values given in this table are based on the final
datasets (i.e., they are derived based on confident FLS labels).

Label frequency in
Dataset Time span Stations Total the entire dataset (%)

data points Clear-sky FLS Non-FLS-cloud

Training 2016–2017 276 1 168 921 35.6 3.8 60.6
2017–2018
2019–2020
2020–2021

Test1 2018–2019 276 644 804 33.4 3.3 63.3
2021–2022

Test2 2016–2017 21 95 818 32.3 4.7 63.0
2017–2018
2019–2020
2020–2021

Test3 2018–2019 21 46 823 33.9 4.4 61.7
2021–2022

Test4 2016–2022 59 588 034 39.1 0.2 60.7

at 8.7, 9.7, 10.8, 12.0, and 13.4 µm wavelengths along with
all the 10 possible combinations which can be derived from
subtracting them from one another. This was done by apply-
ing the feature selection technique referred to as “backwards
elimination”. To this aim, an XGBoost model was initially
trained to predict FLS labels using all the input features.
The features were then iteratively removed (one feature was
dropped per iteration) based on their low gains in fitting (fea-
ture importance), leading to a series of models totaling 15.
The simplest combination of input features was then selected
by comparing the accuracy of models 2 to 15 with that of the
first model (the most complex one was considered the ref-
erence). This revealed that the accuracy drops gradually as
features decrease, with a significant drop when a key feature
is removed. The model just before this drop signifies the min-
imal essential feature set. Additional tests also indicated that
including the standard deviations of these variables in a 3×3
pixel area around the target pixel helps to increase the accu-
racy of the model, and for this reason they were considered
input features to the model.

3.6 Validation

The skills of the newly proposed ML and the existing SOFOS
FLS detection algorithms were quantified and compared by
validating them against the MFLs corresponding to the train-
ing, test1, and test2 datasets. The validation for each dataset
was performed by calculating the statistical indicators prob-
ability of detection (POD), false alarm ratio (FAR), proba-
bility of false detection (PFD), critical success index (CSI),
accuracy (ACC), bias score (BS), and distance from optimal
point (d) as indicated in Appendix B. These statistical indi-

cators were calculated using all data points included in each
dataset to evaluate and compare both algorithms’ overall per-
formance over the training and four test datasets.

4 Results and discussion

Figure 2 summarizes the results obtained from validating the
ML and SOFOS FLS algorithms against the MFLs corre-
sponding to the training, test1, test2, test3, and test4 datasets.
The statistical indicators given in this figure were calcu-
lated using all data points present in the five datasets (see
Table 1 for more information); therefore they can be inter-
preted as the overall performance of the algorithms over all
regions and time spans covered by each dataset. Validation
of the ML product versus the MFLs included in the train-
ing dataset revealed an overall classification accuracy of 0.60
and 0.98 in terms of CSI and ACC metrics for the algo-
rithm, respectively. The algorithm was able to correctly label
about 80 % of the FLS and 99 % of the non-FLS (clear-sky
or non-FLS-cloud) situations included in the training dataset
(POD: 0.80; PFD: 0.99). The FAR score obtained by the ML
product for the same dataset was 0.30, which resulted in a
d of 0.36. The FAR of 0.30 indicates that 30 % of the sit-
uations labeled as FLS by the ML product were reported
as non-FLS by the ground-based MFLs. Because of these
false alarms the FLS occurrence frequency computed for the
training dataset based on the ML product is overestimated
by about 14 % compared to the determination made by the
MFLs (BS: 1.14). Overall, these numbers show that the ML
algorithm proposed here was capable of detecting the major-
ity of the FLS situations over the locations and time spans in-
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cluded in the training dataset. Considering that the algorithm
was trained using these exact data points, it can be inferred
that the algorithm was able to capture the subtle yet dis-
cernible distinctions between FLS and non-FLS situations (in
the LIR spectral region) at locations and time spans covered
by the training dataset. This is further reinforced by compar-
ing these error metrics with those calculated for the daytime
SOFOS algorithm for validation versus the same dataset: the
CSI, ACC, and PFD scores obtained by SOFOS were 0.59,
0.98, and 0.98, respectively, which are close to what was
obtained by the ML algorithm. On the other hand, SOFOS
showed a higher POD (0.92) compared to the ML algorithm,
which was achieved at the cost of a higher FAR (0.38), lead-
ing to larger d and BS (0.38 and 1.47, respectively). Specif-
ically, the number of data points labeled as FLS by SOFOS
was 14 027 (29 %) greater than what was reported as FLS by
the ML algorithm. Only about one-third of these data points,
however, were correct calls, and the rest were false alarms.
In fact, all of these false alarms must have been identified as
clear-sky by the MFLs. That is because the criteria consid-
ered in the MFLs for screening out the non-FLS clouds is the
same as the one used by SOFOS. Thus, the case of the non-
FLS-cloud class included in the MFLs matches well with that
of SOFOS, and the validation approach presented here essen-
tially evaluates the skill of SOFOS in discriminating the FLS
and clear-sky situations from each other. One implication of
these differences can be the fact that the ML algorithm con-
siders a stricter criterion compared to SOFOS for classifying
a situation as FLS, resulting in a more confident FLS identifi-
cation. On the other hand, these misclassifications could also
correspond to the cases of snow-covered land under clear-
sky conditions. Nonetheless, heterogeneity of topography at
a subpixel scale could have a strong impact on this evalu-
ation. This is particularly important here due to the coarse
resolution of the SEVIRI pixels over Europe. Subpixel het-
erogeneity of topography can be problematic for validating
these products as the sky conditions in the area covered by
the SEVIRI pixel are not well represented by station mea-
surements. Specifically, there may exist situations where the
station measurements indicate a clear-sky condition, whereas
the majority of the SEVIRI pixel area is covered by FLS (and
vice versa). However, understanding the influence of topo-
graphical heterogeneity at a subpixel scale on the FAR and
BS scores can be quite challenging and is out of the scope of
the current study.

Based on the preceding discussion, it can be inferred that
the ML algorithm is competent and appropriate for distin-
guishing between FLS and non-FLS situations. This accom-
plishment aligns with the initial hypothesis of this study,
which states that spectral LIR data can be used to differ-
entiate FLS from cloud-free land and non-FLS clouds with
comparable accuracy to an existing state-of-the-art daytime
FLS detection algorithm. The information provided in Fig. 2
overall suggests that the ML algorithm applicability expands
beyond locations and time periods covered by the training

dataset. Specifically, the results obtained from validation ver-
sus the test1 dataset confirm the technique’s applicability to
time periods that are not included in the training dataset. The
CSI, ACC, and PFD scores obtained by the ML model for
validation versus the test1 dataset were, respectively, equal to
0.60, 0.98, and 0.99, which are the same as those reported for
the training dataset. Nonetheless, POD and FAR values de-
rived from validating the ML algorithm with the test1 dataset
were slightly higher than those obtained through validation
with the training dataset (0.82 and 0.31, respectively). Con-
sequently, this results in a slightly increased BS (1.18), while
the value of d remains the same (0.36). As can be inferred
from Fig. 2, the statistics obtained by the ML algorithm over
test2 and test3 compare very well with those obtained by
SOFOS. In particular, ACC, CSI, and PFD were merely the
same for both algorithms over the two test datasets. On the
other hand, the POD and FAR values obtained by SOFOS
were both higher than those obtained by the ML algorithm,
which results in a similar d but higher BS scores. Validation
with the test2 dataset confirms the algorithm’s FLS detec-
tion capability at locations outside the training dataset but
within the same time spans. The results obtained from the
test3 dataset prove the algorithm’s effectiveness at locations
and time periods not encountered during training. Validation
versus the test4 dataset is particularly important here because
neither of the two algorithms were originally designed for
regions included in the dataset. Nonetheless, results obtained
from this validation should be interpreted with care due to the
low number of FLS cases (as identified by MFLs) included
in this dataset. In particular, the test4 dataset only includes
nearly 0.2 % FLS cases, and as a result, even one random
misclassification can have a strong impact on the error met-
rics FAR, d , CSI, and BS. For this reason, the evaluation of
the algorithm in this region is done solely based on the met-
rics POD, PFD, and ACC. As can be seen in Fig. 2, validation
of the ML (SOFOS) algorithm with test4 yielded high values
of POD, PFD, and ACC equal to 0.70 (0.76), ∼ 1.0 (∼ 1.0),
and∼ 1.0 (∼ 1.0), respectively. These numbers prove that the
ML algorithm developed in the present study is applicable to
regions where FLS rarely occurs.

Overall, the error metrics given above (and shown in
Fig. 2) show that the ML FLS detection algorithm devel-
oped here is suited for application over Europe. In particular,
the algorithm features an accuracy very similar to that of the
state-of-the-art daytime SOFOS algorithm but has the advan-
tage of operating based on SEVIRI LIR bands, which allows
its application over the 24 h of the diurnal cycle. It is worth
mentioning that the error metrics calculated here for SOFOS
are somewhat different compared with those reported in Cer-
mak and Bendix (2008) and Egli et al. (2018) for this algo-
rithm, although the METAR data were used for validation
purposes in the two studies. Specifically, the POD, FAR, and
CSI, as reported by Cermak and Bendix (2008) for SOFOS,
ranged from 0.76 to 0.83, 0.02 to 0.06, and 0.73 to 0.82, re-
spectively. In the study by Egli et al. (2018), the reported val-
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Figure 2. Validation results of the ML (black circles) and SOFOS FLS detection algorithms (red triangles) versus the modified METAR FLS
labels (MFLs) for the training, test1, test2, test3, and test4 datasets.

ues of POD and FAR for SOFOS were 0.52 and 0.66, respec-
tively. There are several reasons contributing to these differ-
ences. One reason can be the additional processing steps in-
volved in the present study for the generation of MFLs com-
pared to the other two studies: applying the quality flags and
marking the non-FLS cloud contaminated pixels. The differ-
ence in the location of the stations selected and the number of
data points utilized for the validation highly impact the vali-
dation results. Additionally, as these error metrics are calcu-
lated as relative statistics, the absolute number of FLS and
non-FLS cases included in the datasets used for validation
can make a big difference in the results obtained. This is par-
ticularly important here because they are calculated relative
to a small subset of the data: the FLS-positive cases (as iden-
tified by the truth or predicted product) which are inherently
low in number. This is especially relevant in Europe, where
about 30 % of FLS events are obscured by other clouds (Cer-
mak, 2018). As a result of the relatively small denomina-
tor, they can show a relatively high degree of sensitivity to
a few misclassifications. In addition, it should be noted that
they do not provide a global image about the overall classi-
fication accuracy of the product, as they do not account for
the true-negative instances, which are very large in number
for FLS. For these reasons, although the metrics POD, FAR,
CSI, and BS provide essential and detailed information about
the product’s performance, they need to be interpreted with
care. To account for these two matters the error metrics ACC
and PFD were introduced. As the denominator of these met-
rics is rather large and they take the true-negative instances
into consideration, they are expected to be better suited for
showing the product’s overall performance over the whole
dataset.

Figure 3 provides detailed insights into the false-negative
and false-positive (see Appendix B) predictions of the FLS
ML technique across the five datasets. In Fig. 3a it can
be seen that the majority (∼ 80 %–90 %) of pixels falsely
classified as FLS by the ML algorithm (i.e., false alarms)
were actually clear-sky pixels. Similarly, Fig. 3b shows that

∼ 83 %–92 % of false-negative pixels (i.e., undetected FLS
pixels) were predicted as clear-sky pixels by the ML algo-
rithm. These results suggest that the algorithm has room for
improvement in distinguishing between clear sky and FLS.
Indeed, finding it challenging for the algorithm to separate
clear-sky from FLS (especially in the complex geo- and at-
mospheric conditions of Europe) is expected because FLS
emits at temperatures close to the Earth’s surface, resulting
in only small differences between the LIR spectral signatures
of clear-sky and FLS conditions. Although the algorithm
shows some limitations in distinguishing between clear-sky
and FLS, its performance is acceptable for meeting the objec-
tives of the study, especially given that it is a lightweight ap-
proach relying solely on calibrated MSG SEVIRI LIR data.
Nevertheless, its accuracy can be further enhanced by incor-
porating auxiliary datasets. For example, integrating digital
elevation maps (e.g., as in Egli et al., 2018) and surface or
atmospheric temperature and humidity information from ex-
ternal sources (e.g., from reanalysis as in NWC SAF, 2019)
could improve POD and FAR. Additionally, applying pixel-
or spatial-based pre- and/or postprocessing steps, such as
those used in Pauli et al. (2022a) and Andersen and Cer-
mak (2018) may help to better identify FLS events and cor-
rect potential misclassifications, leading to a decreased FAR.
These enhancements, however, fall outside the scope of the
present study and are left for future work.

Figure 4 illustrates the calibrated SEVIRI level 1.5 prod-
ucts over the study region on 2 March 2021 – a represen-
tative day with the presence of persistent FLS in Europe –
at three distinct scan times (13:00, 16:30, and 20:00 UTC),
along with the corresponding outputs generated by the ML
FLS detection algorithm developed in this study. In this fig-
ure, the panels in the left column (a, d, and g) show ρ0.6. Pan-
els in the middle column (b, e, and h) show a false-color RGB
image constructed based on the SEVIRI LIR data, with the
red, green, and blue channels being BT12.0–BT13.4, BT8.7–
BT12.0, and BT10.8–BT12.0, respectively. Panels in the right
column (c, f, and i) illustrate the classifications produced
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Figure 3. Detailed information on false-positive and false-negative (see Appendix B) predictions of the FLS ML technique across training,
test1, test2, test3, and test4 datasets. Panel (a) shows the percentage of false-positive instances that were clear-sky and non-FLS cloud con-
taminated according to the ground truth dataset (i.e., MFL). Panel (b) shows the percentage of false-negative instances that were categorized
as clear-sky and non-FLS-cloud by the ML algorithm.

by the ML FLS detection algorithm, with the classification
categories including clear-sky (khaki), FLS (red), and non-
FLS-cloud (blue). In each panel, solar zenith angle values
are represented by colored contour lines. The data presented
in this figure highlight the consistency of the ML FLS detec-
tion algorithm across different conditions: daytime (top row),
the day–night transition (middle row), and nighttime (bottom
row), as well as over various surface types, including water,
land, and land–water transition points. Supplement Video S1
shows the full sequence of the false-color RGB satellite im-
ages and the corresponding classification maps over the 24 h
cycle of 2 March 2021.

The presence of a widespread FLS event around 55° N,
with partial contamination by non-FLS clouds can be ob-
served in Fig. 4a. Additionally, two smaller regions are vis-
ible: one near 50° N, 15° E and another near 50° N, 10° W.
These areas are characterized by a smooth texture and high
reflectivity. In Fig. 4b, the FLS-covered regions are distin-
guishable by their smooth texture and dark red coloration,
while the non-FLS clouds appear in green with greater spa-
tial variability compared to FLS regions. Figure 4c demon-
strates the algorithm’s effectiveness in identifying both FLS-
covered regions and the non-FLS clouds passing over these
areas. Notably, the algorithm’s performance remains robust,
with no sudden changes or misclassifications observed, even
when applied to water, land, or land–water transition points.
Apart from slight changes in the coverage, FLS persists over
the mentioned regions until the end of that day (see Supple-
ment Video S1 for more information), which can be traced
in Fig. 4e and h. As can be seen in Fig. 3f and i, the algo-
rithm continues to accordingly and consistently identify the
FLS-covered regions over land and water during the day–
night transition time and at night. Here again, the algorithm’s
performance remains robust, with no sudden or solar-zenith-
angle-dependent changes/misclassifications observed.

However, it is worth mentioning that for the three scans
shown here the algorithm categorizes the area near 47° N,
10° E (the Alps), which appears to be snow-covered, as non-

FLS cloud contaminated. This is because, as Fig. 4b, e, and h
show, snow-covered land and non-FLS clouds exhibit similar
characteristics in the LIR range.

5 Summary, conclusions, and outlook

The main objective of the present study was to develop a di-
urnally stable algorithm for the detection of FLS over Europe
based on observations from the SEVIRI instrument on board
MSG satellites with an accuracy comparable with that of a
state-of-the-art daytime FLS detection algorithm. The algo-
rithm proposed here consists of a gradient boosting (XG-
Boost) machine learning model that is trained to classify each
SEVIRI pixel as clear-sky, FLS, or non-FLS-cloud based
on SEVIRI observations in the LIR bands. Specifically, the
classification is performed based on pixel values of BT12.0,
BT8.7–BT12.0, BT10.8–BT12.0, and BT12.0–BT13.4 plus the
standard deviation of each of these variables in a spatial win-
dow 3×3 pixels in size with the central pixel being the target
pixel.

A total of 6 years of daytime ground-based observations
from METeorological Aerodrome Report (METAR) stations
at 356 European locations were utilized to generate ground
truth FLS labels for training and evaluating the algorithm.
Lastly, a comparison between the accuracies of the newly
proposed ML and the existing daytime FLS detection algo-
rithm (SOFOS) was performed to address the objective of the
study.

The results obtained from validating the FLS products
against the training and the four test datasets revealed that
the ML FLS detection algorithm proposed here is capable of
discriminating FLS from other sky conditions and that its ap-
plicability in the study region (i.e., Europe) extends beyond
the particular locations and time spans covered by the data
points used for training the algorithm. Specifically, the ML
algorithm features an accuracy very close to that of SOFOS
over all five datasets. The main difference between the two is
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Figure 4. Comparison between calibrated SEVIRI level 1.5 products over the study region on 2 March 2021 at three different scan times
(13:00, 16:30, and 20:00 UTC) and the corresponding outputs yielded from the ML FLS detection algorithm developed in the present study.
Panels in the left (a, d, and g), middle (b, e, and h), and right columns (c, f, and i), respectively, represent ρ0.6 (%); false-color RGB composite
based on BT8.7, BT12.0, and BT13.4; and the classifications produced by the ML FLS detection algorithm. FLS classification categories
include clear-sky (khaki), FLS (red), and non-FLS-cloud (blue). Overlaid colored contour lines represent solar zenith angle (degrees) for
reference. Note: solar zenith angles greater than 95° are represented in turquoise. Supplement Video S1 shows the full sequence of the
false-color RGB satellite images and the corresponding classification maps over the 24 h cycle of 2 March 2021.

in the POD, FAR, and BS metrics: SOFOS features a slightly
higher POD compared to the ML algorithm. On the other
hand, it suffers from a higher FAR and BS compared to the
ML algorithm. One could argue that these differences occur
due to the fact that the ML algorithm considers a more re-
stricted criteria for classifying a situation as FLS, resulting in
a more confident FLS classification. Another advantage that
the ML algorithm has over SOFOS is that it operates solely
based on SEVIRI channels in the LIR spectral region, which
allows it to be applicable over the 24 h of the day cycle. In
addition, the ML FLS detection algorithm presented here is
efficient in terms of computation time. This makes the algo-
rithm very suitable for operational purposes such as monitor-
ing, nowcasting, and forecasting of FLS as well as reprocess-
ing the historical SEVIRI data. Furthermore, as the algorithm
is the first of its kind that is a single algorithm applicable over
day and night over Europe, it can potentially provide new in-

sights into the FLS life cycle over Europe and help enhance
the performance of existing FLS forecast products. This will
be of particular use in the development of short-term fore-
casts of FLS dissipation for applications such as photovoltaic
power forecasting.

While the algorithm achieves the accuracy required for
this study, a closer examination of its false-positive and
false-negative (see Appendix B) predictions across the five
datasets suggests that it could be improved in distinguish-
ing between clear-sky and FLS conditions. Its accuracy can
be enhanced by incorporating auxiliary datasets (e.g., digi-
tal elevation maps and surface and atmospheric temperature
and humidity information from external sources) and pixel-
or spatial-based pre- and/or postprocessing steps.

It should be noted that there are limitations associated with
the validation procedure performed here: although the algo-
rithm presented here classifies the state of the sky in the three
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categories clear-sky, FLS, and non-FLS-cloud, the validation
procedure presented here only evaluates its skill in differenti-
ating the FLS situations from clear-sky and non-FLS-cloud.
Its skill in discriminating between clear-sky and non-FLS-
cloud situations remains unvalidated due to limited informa-
tion obtained from METAR observations. Further, although
the ML algorithm presented here operates based on SEVIRI
LIR bands, we were not able to provide a quantitative eval-
uation of its accuracy over nighttime, as the procedure ap-
plied here for the identification of the non-FLS clouds falling
within SEVIRI’s FOV consisted of thresholding the SEVIRI
channels falling within the limits of the solar spectrum. Ad-
ditionally, it should be noted that all data points used in the
present study for algorithm evaluation are located over land
and limited to the European region. For this reason, the algo-
rithm’s applicability over water and in other areas was not
quantitatively validated. Nevertheless, the diurnal stability
and applicability of the algorithm over water as well as its
ability to discriminate non-FLS clouds from clear-sky situa-
tions were confirmed through the visual inspection of several
sequences of satellite images and the corresponding classifi-
cation maps. See Supplement Video S1 for more information.
In this animation, the left panel shows a false-color RGB im-
age constructed based on the calibrated SEVIRI level 1.5
data with the red, green, and blue channels being BT12.0–
BT13.4, BT8.7–BT12.0, and BT10.8–BT12.0, respectively. In
this panel, the green color represents the high clouds, and
the light and dark red colors represent clear-sky and FLS, re-
spectively. The right panel shows the outputs of the ML FLS
detection algorithm developed in the present study.

In addition to the limitations discussed above, there are
other limiting factors contributing to the validation process
performed here, which originate from the spatiotemporal
matching of the SEVIRI pixels with the METAR locations,
heterogeneity of the land surface topography and sky con-
dition at the subpixel level, and the differences in the mea-
surement devices and calibration standards used to generate
the METAR observations. However, the encouraging results
obtained show that the spatiotemporal matching of SEVIRI
and METAR datasets in this study has been effective and the
preprocessing procedure applied here successfully screened
out many of the ambiguous situations.

In summary, the FLS detection algorithm developed here
is accurate and applicable over the 24 h cycle of the day, pro-
viding new insights into FLS studies and enabling the devel-
opment of existing/new FLS fore- and/or now-casting tech-
niques. The positive results obtained here, and the potential
of the algorithm encourage the extension of the validation to
other regions observed by the SEVIRI instrument. Ideally,
the algorithm presented here can be further developed to dis-
criminate between fog and low stratus, detect FLS layers that
are placed underneath optically thin non-FLS clouds, and/or
differentiate snow-covered from snow-free lands.

Appendix A: Workflow followed for the creation of the
training and testing datasets

Figure A1. Schematic description of the process followed in Sect. 2
for the creation of the MFLs (modified FLS labels) included in the
training, test1, test2, test3, and test4 datasets.

Figure A1 schematically describes the process followed in
Sect. 2 for the creation of the MFLs (modified FLS labels)
included in the training, test1, test2, test3, and test4 datasets.
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Table B1. Confusion matrix explaining how the true positives, false
negatives, false positives, and true negatives are determined.

Truth (MFL)

FLS Not FLS

Product FLS True positive (TP) False positive (FP)
Not FLS False negative (FN) True negative (TN)

Appendix B: Equations of statistical validation metrics

POD=NTP/(NTP+NFN) (B1)
FAR=NFP/(NTP+NFP) (B2)
PFD=NTN/(NFP+NTN) (B3)
CSI=NTP/(NTP+NFN+NFP) (B4)
ACC= (NTP+NTN)/(NTP+NTN+NFP+NFN) (B5)
BS= (NTP+NFP)/(NTP+NFN) (B6)

d = ((POD− 1)2+FAR2)0.5 (B7)

Here NTP, NFN, NFP, and NTN, respectively, are the num-
ber of true positives, false negatives, false positives, and true
negatives, as described in Table B1. POD quantifies the skill
of the method in correctly identifying the FLS cases. FAR
indicates the portion of false alarms among all the cases clas-
sified as FLS by the algorithm. PFD highlights the portion
of the non-FLS cases which have been correctly classified
as non-FLS by the algorithm. CSI is a metric indicating the
overall correctness of the FLS classification. ACC shows the
portion of the cases which have been correctly identified as
FLS and non-FLS. The metrics POD, FAR, PFD, CSI, and
ACC vary between 0 and 1. An ideal detection algorithm
should have a POD, PFD, CSI, and ACC equal to 1 and FAR
equal to 0. BS reflects the overall bias of the product. BS
varies between 0 and +∝, with the optimal value being 1.
The values of BS greater and smaller than 1 reflect over- and
underestimation of the FLS class, respectively. As can be in-
ferred from Eq. (6), d is a metric obtained by combining the
statistical indicators POD and FAR and compares the per-
formance of the algorithm with the ideal algorithm (FAR:
0; POD: 1). In other words, it indicates how distant the per-
formance of the FLS detection algorithm is in comparison
to that of the best algorithm which can ideally exist. The d
value varies between 0 and

√
2, with 0 being the ideal value.

Code availability. The Python implementations of SOFOS and
the FLS detection model developed here can be provided upon
request. The source codes for the XGBoost Python imple-
mentations used in the present study can be freely obtained
from https://xgboost.readthedocs.io/en/stable/index.html (xgboost,
2022). The satpy Python package can be freely accessed from
https://doi.org/10.5281/zenodo.4904606 (Martin et al., 2021).

Data availability. All the raw data used in the present study are
publicly available, and details on the datasets are provided in
Sect. 2. MSG SEVIRI data used in this study were provided by EU-
METSAT (European Organization for the Exploitation of Meteo-
rological Satellites) and can be accessed via https://www.eumetsat.
int/access-our-data (EUMETSAT, 2017). The elevation map used
in Fig. 1 was obtained from the EUMETSAT LSA-SAF (Satel-
lite Application Facility on Land Surface Analysis) auxiliary data
at https://lsa-saf.eumetsat.int/en/user-support/auxiliary-data/ (EU-
METSAT, 2023). METAR data used in the present study were
obtained from https://mesonet.agron.iastate.edu/request/download.
phtml (Iowa State University, 2021).
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