Atmos. Meas. Tech., 18, 2083-2101, 2025
https://doi.org/10.5194/amt-18-2083-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Atmospheric
Measurement
Techniques

Infrared radiometric image classification and segmentation of cloud
structures using a deep-learning framework from ground-based
infrared thermal camera observations

Kélian Sommer', Wassim Kabalan?, and Romain Brunet’

I aboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, Montpellier, France
2Astroparticule et Cosmologie, Université Paris Cité, CNRS, 75013 Paris, France
3 Aix-Marseille Université, CNRS, CNES, LAM, Marseille, France

Correspondence: Kélian Sommer (kelian.sommer @umontpellier.fr), Wassim Kabalan (wassim @apc.in2p3.fr), and Romain

Brunet (romain.brunet @lam.fr)

Received: 12 January 2024 — Discussion started: 22 March 2024

Revised: 28 July 2024 — Accepted: 29 August 2024 — Published: 12 May 2025

Abstract. Infrared thermal cameras offer reliable means of
assessing atmospheric conditions by measuring the down-
ward radiance from the sky, facilitating their usage in cloud
monitoring endeavors. The precise identification and detec-
tion of clouds in images pose great challenges stemming
from the indistinct boundaries inherent to cloud formations.
Various methodologies for segmentation have been previ-
ously suggested. Most of them rely on color as the distin-
guishing criterion for cloud identification in the visible spec-
tral domain and thus lack the ability to detect cloud struc-
tures in gray-scaled images with satisfying accuracy. In this
work, we propose a new complete deep-learning framework
to perform image classification and segmentation with con-
volutional neural networks. We demonstrate the effective-
ness of this technique by conducting a series of tests and
validations based on self-captured infrared sky images. Our
findings reveal that the models can effectively differentiate
between image types and accurately capture detailed cloud
structure information at the pixel level, even when trained
with a single binary ground-truth mask per input sample. The
classifier model achieves an excellent accuracy of 99 % in
image type distinction, while the segmentation model attains
a mean pixel accuracy of 95 % in our dataset. We emphasize
that our framework exhibits strong viability and can be used
for infrared thermal ground-based cloud monitoring opera-
tions over extended durations. We expect to take advantage
of this framework for astronomical applications by providing
cloud cover selection criteria for ground-based photometric
observations within the StarDICE experiment.

1 Introduction

Accurate and continuous monitoring of cloud properties con-
tributes to a profound understanding of atmospheric pro-
cesses and their subsequent impacts on various Earth sys-
tems (Liou, 1992). It provides essential insights for weather
predictions and climate dynamics (Hu et al., 2004; Petzold
et al., 2015). Observation methods can be divided into two
primary distinct categories: downward satellite-based obser-
vations (Roy et al., 2017; Martin, 2008) and upward ground-
based observations with all-sky cameras, lidar, radar, and
other instruments (Wilczak et al., 1996). The principal aim
of satellite-based observations is to investigate the upper re-
gions of clouds, facilitating the examination and analysis
of global atmospheric patterns and climate conditions over
expansive geographical areas (Schiffer and Rossow, 1983;
Boers et al., 2006; Geer et al., 2017; Varnai and Marshak,
2018). In contrast, ground-based cloud observation excels
in the surveillance of localized regions, furnishing valuable
data pertaining to the lower segments of clouds by giving
information on cloud altitude, cloud extent, and cloud typol-
ogy (Bower et al., 2000; Zhou et al., 2019). A combination
of these two measurement techniques enhances our overall
comprehension of cloud behavior (Mokhov and Schlesinger,
1994; Schreiner et al., 1993; Yamashita and Yoshimura,
2012; Yoshimura and Yamashita, 2013).

Ground-based observations have been extensively used
in recent years and have become a viable means to de-
tect, study, and identify cloud formations (Paczynski, 2000,
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Skidmore et al., 2008, Tzoumanikas et al., 2016; Ugolnikov
et al.,, 2017; Mommert, 2020; Tzoumanikas et al., 2016;
Roman et al., 2022). As technological evolution has ush-
ered in a new era of monitoring methodologies (Mandat
et al., 2014), the utilization of infrared thermal cameras has
emerged as a promising avenue for atmospheric investiga-
tions through precise radiometric measurements (Szejwach,
1982; Shaw and Nugent, 2013; Liandrat et al., 2017b; Lopez
et al., 2017; Klebe et al., 2014; Nikolenko and Maslov,
2021).

Because of their practical use, high sensitivity, low cost,
operating range, and wide field of view (FOV) (Rogalski,
2011; Rogalski and Chrzanowski, 2014; Kimata, 2018), un-
cooled infrared thermal cameras are particularly useful for
medicine (Ring and Ammer, 2012); agriculture (Ishimwe
et al., 2014); aerial (Wilczak et al., 1996); defense (Gallo
et al., 1993; Akula et al., 2011); surveillance (Wong et al.,
2009); weather forecasting (Sun et al., 2008; Liandrat et al.,
2017a); or even astronomical applications to determine the
cloud cover fraction during operations and, therefore, to as-
sess the quality of scientific observations (Sebag et al., 2010;
Lewis et al., 2010; Klebe et al., 2012, 2014; Reil et al.,
2014). Indeed, uncooled infrared micro-bolometer array sen-
sors working in the 8—14 um spectral band can directly de-
tect the longwave infrared (LWIR) thermal emission of both
clouds and the atmospheric background, excluding the scat-
tered light of the sun or starlight (Houghton and Lee, 1972).
These LWIR sensors are able to provide high-contrast im-
ages and allow fine radiometric measurements to detect low-
emissivity cirrus clouds (Lewis et al., 2010; Shaw and Nu-
gent, 2013).

Over recent years, multiple automatic ground-based ob-
servation systems have been developed. For example, the in-
frared cloud imager (ICI; see Thurairajah and Shaw, 2005)
can detect clouds and assess cloud coverage both in day-
light and during the nighttime with a dedicated infrared sen-
sor. Sharma et al. (2015) designed an instrument to detect
the cloud infrared radiation to be used in the search for a
potential site for India’s National Large Optical Telescope
project. The development of the Radiometric All-Sky In-
frared Camera (RASICAM, referenced in Lewis et al., 2010,
and Reil et al., 2014) was aimed at enabling automated, real-
time quantitative evaluation of nighttime sky conditions for
the Dark Energy Survey (Dark Energy Survey Collabora-
tion et al., 2016). This particular camera is designed to de-
tect, locate, and analyze the motion and properties of thin,
high-altitude cirrus clouds and contrails by measuring their
brightness temperature against the sky background. The All-
Sky Infrared Visible Analyzer (ASIVA) is a similar instru-
ment whose primary goal is to provide radiometrically cali-
brated imagery in the LWIR band to estimate fractional sky
cover and sky or cloud brightness temperature, emissivity,
and cloud height (Klebe et al., 2014). The ASC-200 system
(Wang et al., 2021b) combines information from two all-sky
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cameras facing the sky operating in both the visible spectrum
(450-650 nm) and the LWIR band.

As next-generation cosmological surveys require more de-
manding precision in terms of photometric observations —
implying better characterization of the atmosphere — moni-
toring telescope instrument FOVs with LWIR thermal cam-
eras may provide significant assets with regard to (i) classi-
fying observation quality in real time, (ii) evaluating poten-
tial cloud coverage (Smith and Toumi, 2008; Liandrat et al.,
2017b; Aebi et al., 2018; Wang et al., 2021b), and (iii) es-
timating precipitable water vapor (PWV) content (Kelsey
et al., 2022; Hack et al., 2023; Salamalikis et al., 2023).

In this study, we plan to address the first objective. We
use an LWIR thermal infrared camera with a specifically
chosen narrower FOV that aims to image the surrounding
area of the StarDICE telescope FOV. The StarDICE metrol-
ogy experiment (Betoule et al., 2022) aims to measure CAL-
SPEC (Bohlin, 2014) spectrophotometric standard star abso-
lute fluxes at the 0.1 % relative uncertainty level. Enhanced
characterization of atmospheric conditions is required to
reach the target sensitivity (Hazenberg, 2019). As a prelim-
inary step, basic knowledge of the atmospheric conditions
in the telescope FOV may provide valuable insights into the
quality of spectrophotometric measurements. However, these
kinds of infrared instruments operate at high frame rates
and produce considerable amounts of data, making them ex-
tremely difficult for human observers to analyze. Therefore,
to determine cloud presence in infrared images, deep convo-
lutional neural networks (CNNs) appear to be a viable ap-
proach to process images in real time. Multiple models re-
lying on CNNs have been developed, such as CloudSegNet
(Dev et al., 2019a), CloudU-Net (Shi et al., 2021b) CloudU-
Netv2 (Shi et al., 2021a), SegCloud (Xie et al., 2020), Tran-
sCloudSeg (Liu et al., 2022), CloudDeepLabV3 (Li et al.,
2023), ACLNet (Makwana et al., 2022), DeepCloud (Ye
et al., 2017), CloudRAEDnet (Shi et al., 2022), DMNet
(Zhao et al., 2022), and DPNet (Zhang et al., 2022). Nonethe-
less, these methodologies exclusively address RGB-colored
images (Li et al., 2011; Dev et al., 2016). Colors or hue pro-
vides the essential information for segmentation (especially
red and blue channels). In the case of LWIR thermal im-
ages, we implement a model capable of achieving compara-
ble accuracy for single-channel gray-scaled images. Inspired
by their large successes in image classification and structure
detection for various computer vision tasks, we propose a
dedicated deep-learning framework. Our approach is specif-
ically designed for gray-scaled infrared images and consists
of (i) classifying images (e.g, detecting if any cloud is present
in the image and discriminating between clear and cloudy
images) and (ii) identifying cloud structure (e.g., generating
a pixel-based probabilistic segmentation map and verifying
if the CCD camera FOV is impacted).

The remainder of the paper is structured as follows. The
background of the scientific context and related works is pre-
sented in Sect. 2. Section 3 details the experimental setup and
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dataset. Section 4 introduces the proposed framework, de-
scribing deep-learning architectures and training procedures.
Experimental results and comparisons with other datasets are
provided in Sect. 5. Relevant matters and future perspectives
are discussed in Sect. 6. Section 7 summarizes the main re-
sults and finally concludes the paper.

2 Background
2.1 Motivation

StarDICE represents one of the initiatives focused on cre-
ating a measurement process that bridges the gap between
laboratory flux standards (such as silicon photodiodes cal-
ibrated by NIST; see Larason and Houston, 2008) and the
stars found in the CALSPEC library of spectrophotometric
references (Bohlin et al., 2020). Since type-la supernovae
(SNe Ia) and most astronomical surveys rely on the calibra-
tion of these standard stars for their measurements (Bohlin
et al., 2011; Conley et al., 2011; Rubin et al., 2015; Scol-
nic et al., 2015; Currie et al., 2020; Brout et al., 2022; Rubin
et al., 2022), successfully establishing this connection with
high precision effectively addresses the calibration challenge
associated with the Hubble diagram for cosmology and the
study of dark energy driving the accelerated expansion of the
universe (see Goobar and Leibundgut, 2011, for a review of
SNe Ia in cosmology).

The StarDICE proposal relies on the near-field calibration
of a stable light source (Betoule et al., 2022). It serves as
a distant in situ reference for a compact astronomical tele-
scope. One of the largest remaining sources of systematic
uncertainty when observing stellar sources from the ground
is the Earth’s atmospheric transmission (Stubbs and Tonry,
2012; Stubbs and Brown, 2015; Li et al., 2016). It is depen-
dent on many environmental conditions and processes, in-
cluding absorption and scattering by molecular constituents
(02, O3, and others), absorption by PWYV, scattering by
aerosols, and shadowing by larger ice crystals and water
droplets in clouds that is independent of wavelength and re-
sponsible for gray extinction (Burke et al., 2010, 2017). Cur-
rent atmospheric transmission or extinction models do not
integrate the possible impact of clouds. Indeed, the forma-
tion of thin clouds through the condensation of water droplets
and ice can result in clouds that are extremely faint and that
cannot be perceived in the visible spectrum with the naked
eye. These clouds often exhibit complex spatial structures, as
demonstrated in Burke et al. (2013). Clouds passing through
the photometric instrument’s FOV result in an attenuation
of stellar flux. Previously, this issue was addressed by in-
corporating a gray extinction correction, involving the fit-
ting of an empirical normalization parameter for each obser-
vation. Nevertheless, as highlighted by Burke et al. (2010),
this approach has been proven to be insufficient due to cal-
ibration limitations arising from the dynamic and evolving
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nature of cloud cover conditions. To tackle this challenge
in the StarDICE experiment, our solution involves employ-
ing an infrared thermal camera. This specialized equipment
offers high-sensitivity radiometric measurements, capturing
the sky radiance within the atmosphere’s transparency win-
dow (10-12 um). With the help of additional cloud spatial
structure identification analytical capabilities, this instrument
may be the key to assessing photometric observation quality
and label science images with superior state-of-the-art accu-
racy. The primary initial objective is to generate a catalog of
optical exposures from the telescope that are suitable for ex-
tracting stellar photometric flux and conducting subsequent
analysis.

2.2 Related work

In recent years, numerous cloud sky—cloud segmentation al-
gorithms have been introduced, along with the increased de-
velopment of all-sky ground-based cloud monitoring stations
(Long et al., 2006; Yang et al., 2012; Krauz et al., 2020;
Fa et al., 2019; Mommert, 2020; Li et al., 2022). Indeed,
cloud segmentation is a big challenge for remote sensing
applications as clouds come in various shapes and forms.
Most modern approaches aim to use computer vision algo-
rithms and train them based on very specific publicly avail-
able cloud image databases such as SWIMSEG (Dev et al.,
2016), SWINSEG (Dev et al., 2019b, 2017), SWINySEG
(Dev et al., 2019a), WSISEG (Xie et al., 2020), HYTA (Li
et al., 2011), and TLCDD (TLCDD, 2022). Many proposed
solutions are focused on visible RGB images. CloudSegNet
(Dev et al., 2019a) is a lightweight deep-learning encoder—
decoder network that detects clouds in daytime and night-
time visible color images. CloudU-Net (Shi et al., 2021b)
modifies CloudSegNet architecture by adding dilated con-
volution, skip connection, and fully connected conditional
random field (CRF; see McCallum, 2012) layers to demon-
strate better segmentation performance overall. It uses the
powerful U-Net architecture (Ronneberger et al., 2015) origi-
nally applied to medical image segmentation. CloudU-Netv2
(Shi et al., 2021a) replaces the upsampling in CloudU-Net
with bilinear upsampling, improves the discrimination abil-
ity of feature representation, and uses the rectified Adam
optimizer (RAadm is a variant of the Adam stochastic op-
timizer (Kingma and Ba, 2014) that introduces a term to
rectify the variance of the adaptive learning rate; see Liu
et al., 2019). SegCloud (Xie et al., 2020) has been trained
based on 400 images and possesses a symmetric encoder—
decoder structure and outputs low- and high-level cloud fea-
ture maps at the same resolution as input images. Tran-
sCloudSeg (Liu et al., 2022) addresses the loss of global in-
formation due to the limited receptive field size of the fil-
ters in CNNs by proposing a hybrid model containing both
the CNN and a transformer (Vaswani et al., 2017) as the en-
coders to obtain different features. CloudDeepLabV3+ (Li
et al., 2023) designs a lightweight ground-based cloud image
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adaptive segmentation method that integrates multi-scale fea-
ture aggregation and multi-level attention feature enhance-
ment. ACLNet (Makwana et al., 2022) uses EfficientNet-BO
as the backbone, atrous spatial pyramid pooling (ASPP; see
Chen et al., 2017) to learn at multiple receptive fields, and a
global attention module (GAM; see Liu et al., 2021) to ex-
tract fine-grained details from the image. It provides a lower
error rate, higher recall, and higher F1 score than state-of-
the-art cloud segmentation models. DeepCloud (Ye et al.,
2017) uses the method of Fisher vector encoding, which is
applied to execute the spatial feature aggregation and high-
dimensional feature mapping of the raw deep convolutional
features. CloudRAEDnet (Shi et al., 2022) proposes a resid-
ual attention-based encoder—decoder network and trains it
based on the SWINYSEG dataset.

The majority of these models are typically structured us-
ing an encoder—decoder architecture, which is the primary in-
novation brought forth by incorporating CNNs (O’Shea and
Nash, 2015). The encoder is tailored to acquire representa-
tional features, facilitating the extraction of semantic infor-
mation while the decoder reconstructs these representational
features into the segmentation mask, allowing for pixel-level
classification (Badrinarayanan et al., 2017; Alzubaidi et al.,
2021).

Others have proposed solutions for all-sky infrared image
classification. Liu et al. (2011) apply pre-processing steps
(smoothing noise reduction, enhancement through top-hat
transformation and high-pass filtering, and edge detection)
before extracting features that are useful for distinguishing
cirriform, cumuliform, and waveform clouds. A simple rect-
angle method as a supervised classifier is applied. They find
a 90 % agreement between a priori classification carried out
manually by visual inspection and their algorithm based on
277 images. Sun et al. (2011) suggested (i) a method for de-
termining clear-sky radiance thresholds, (ii) a cloud identi-
fication method made up of a combined threshold and tex-
ture method, and (iii) an algorithm to retrieve cloud base
height from downwelling infrared radiance. They showed
that structural features are better than texture features in clas-
sifying clouds. Luo et al. (2018) proposed a three-step pro-
cess: (i) pre-processing, (ii) feature extraction, and (iii) a
classification method to group images into five cloud cat-
egories (stratiform, cumuliform, waveform, cirriform, and
clear) based on manifold and texture features using a sup-
port vector machine (SVM; see Cortes and Vapnik, 1995).
Their experimental results demonstrate a higher recognition
rate, with an increase of 2 %—10 % based on ground-based
infrared image datasets. These methods classify clouds into
separate categories based on their typology. Until now, all
the previously examined approaches, while effective within
their specific domains, proved to be unsuccessful when ap-
plied to our particular use case. Therefore, we propose a new
deep-learning framework based on a linear classifier and U-
Net architectures to identify cloud images and to detect cloud
structures in real time.
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3 Experimental setup and datasets
3.1 Description of the instrument

Our instrument is an infrared thermal camera similar to the
Thurairajah and Shaw (2005) device — specifically the FLIR
Tau2 — which operates in the LWIR band, covering the 8-
14 um range. It features a focal plane array (FPA) consisting
of 640 x 512 uncooled micro-bolometers, capturing images
at a frame rate of 8.33 Hz. The camera is paired with a 60 mm
lens at f#1.25 aperture, resulting in a 10.4 x 8.3 degree®
imaging area. The primary purpose of deploying this in-
strument on the equatorial mount adjacent to the StarDICE
photometric telescope is to continuously assess the atmo-
spheric conditions (specifically gray extinction) within the
line of sight of the visible CCD camera during observations.
The IR instrument FOV is chosen to be larger than the tele-
scope FOV (0.5 x 0.5 degree?) to anticipate the movement
of clouds in the smaller FOV of interest. Through metic-
ulous calibration, radiative transfer calculations, and data
analysis using simulations, we can extract valuable informa-
tion about the sky to monitor real-time atmospheric condi-
tions. In Figs. 1 and 2, we show the instrument mounted
on a prototype equatorial mount with the necessary com-
mand and control equipment and one sample gray-scale im-
age, respectively. We also monitor the surrounding and in-
ternal temperatures of the camera in real time to correct for
temperature-related variations in sensor response. The de-
vice is controlled and commanded via the ThermalCapture
Grabber USB 2.0 interface, which grants access to full 14-
bit radiometric raw data. We have developed an open-access
Python program, available on GitHub (https://github.com/
Kelian98/tau2_thermalcapture, last access: 1 January 2024;
https://doi.org/10.5281/zenodo.15311830, Sommer, 2025),
to control the camera’s functions and capture images. These
images are saved in FITS format (Wells et al., 1981). In this
study, we only consider raw analog-to-digital unit (ADU) im-
ages for simplification purposes, but the method would be
identical with radiometrically calibrated images.

3.2 Datasets and pre-processing

A substantial quantity of images is essential for the effective
training and testing of both the classifier and segmentation
algorithms. Our dataset comprises LWIR sky images that we
captured ourselves. It encompasses a total of 3400 cloudy
and clear-sky images for the classifier and 4445 sky im-
ages with cloudy-only images for the segmentation algorithm
and their associated ground-truth masks. By ground truth,
we mean the empirically and manually generated masks. To
speed up computations and minimize memory consumption,
we downsampled the original-sized images into 160 x 128
resolution. Cloudy-sky images were collected during a two-
night period in early 2023 at Prades-le-Lez (43°41'51” N,
3°51’53” E) during highly variable weather conditions. Con-
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Figure 1. Infrared instrument installed on the equatorial table of the
prototype experiment at Prades-le-Lez (France), next to the CMOS
camera and telescope performing photometric measurements of
stars.
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Figure 2. Original gray-scale raw infrared thermal image in ADU
(640 x 512 pixels).

versely, cloud-free images were obtained over a shorter pe-
riod a month later.

To compensate for the lack of cloud-free images and to
prevent potential biases in training due to data imbalance, we
generated synthetic cloud-free images to create a compos-
ite dataset containing as many images as the cloudy dataset.
These synthetic images replicate realistic observations by
simulating 2D horizontal gradients, mimicking the increase
in sky downwelling radiance as the camera’s field of view
tilts toward high zenith angles (i.e., low-elevation angles).
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Realistic sources of noises affecting uncooled infrared ther-
mal cameras are introduced, including read noise, fixed-
pattern noise, sky noise, and the narcissus effect. This ad-
dition ensures that the spatial noise in the synthetic images
closely resembles that of actual cloud-free images. Figure 3
illustrates a typical cloud-free image alongside a syntheti-
cally generated one, with the spatial noise indicated for each.
It is worth noting that the absolute ADU value has no impact
as the data are normalized before training.

All images and masks are visually inspected. Samples pre-
senting artifacts such as tree branches from surroundings or
buildings in the FOV corners are discarded. As the cam-
era acquisition frame rate enables us to get ~ 8 images per
second, the pre-processing algorithm included constraints on
consecutive image selection based on their time series. Se-
lected frames are taken with at least 2 s between each other
to introduce a wider range of displayed clouds.

Ground-truth masks identifying cloud structure in cloud
images were manually created through multiple distinct
steps of non-linear stretching procedures using Astropy (As-
tropy Collaboration, 2013; The Astropy Collaboration, 2018)
methods for each image in the dataset. They consist of a
Boolean 2D array of the same image size, where “true” iden-
tified pixels represent cloud pixels, and “false” identified pix-
els represent clear-sky areas. This step has been partially au-
tomated. Binary masks that do not capture the cloud structure
sufficiently have been kept aside to test segmentation model
performance. Figure 5 depicts three raw images with their
associated manually generated ground-truth cloud masks for
training purposes.

Furthermore, we performed multiple random augmenta-
tions (e.g, flip, shear, rotate, shift, and zoom) on each origi-
nal image to artificially enlarge the size of each dataset and to
reduce overfitting (Perez and Wang, 2017; Mikotajczyk and
Grochowski, 2018; Yang et al., 2022). All augmented images
are produced through the random sequential applications of
these five distinct operations to initial images. These opera-
tions are executed with a random varying degree of intensity
contained in specific ranges. Random rotations are applied
within an amplitude ranging from —45 to +45°. Shear is
introduced with a random magnitude ranging from —0.2 to
+0.2. Shifting operations are applied to between 0 and 50
pixels in terms of both width and height to avoid the gener-
ation of unrealistic symmetric structures. Zoom operation is
applied within the range of 1 to 3. No other transformation,
such as histogram equalization or contrast enhancement, is
applied to prevent any bias or alteration in the segmenta-
tion performance. After the selection and augmentation pro-
cedures, we conducted a visual examination of all the created
sky or cloud images to ensure that they appeared to be realis-
tic. Since all the parameters in the image augmentation pro-
cess undergo controlled adjustments, our generated images
closely mirror authentic sky and/or cloud scenes. Datasets
for both models are split into training and validation subsets,
with ratios of 80 % and 20 %, respectively.
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Figure 3. Comparison of a real observed clear-sky image (a) and a synthetically generated realistic image (b). Spatial noise is indicated in
the top-right corner of each image. Synthetic images demonstrate high fidelity with regard to overall spatial noise.

4 Methodology
4.1 Overall framework

In this section, we outline the architectural designs of two
distinct deep-learning models tailored to automate classifi-
cation and segmentation tasks. On the one hand, we imple-
ment a linear classifier for image classification, whose spe-
cific goal is to discriminate between cloud-free (photometric)
and cloudy images (non-photometric). On the other hand, the
segmentation for cloud structure detection is performed via
an optimized U-Net model (Ronneberger et al., 2015) based
on pre-classified cloudy images. The output probability map
can later be thresholded according to the user’s needs to pro-
duce the desired predicted binary pixel segmentation map
and to allow us to obtain finer details regarding the photo-
metric state of the field at the pixel level. Figure 4 illustrates
the proposed deep-learning framework compared to conven-
tional segmentation algorithms.

4.2 TImage classification

For our image classification model, we used a RidgeClas-
sifier from scikit-learn (Pedregosa et al., 2011) to classify
images as pure sky (clear) or cloudy. The RidgeClassifier
is a linear classification model that employs ridge regres-
sion (Hoerl and Kennard, 1970), a technique that introduces
a regularization term. This regularization helps in addressing
multicollinearity, improving the model’s stability and robust-
ness, particularly in scenarios with high-dimensional data or
collinear predictors. By balancing the trade-off between bias
and variance, the RidgeClassifier effectively minimizes over-
fitting, making it a suitable choice for our image classifica-
tion task. The training process for the model involves using
a dataset consisting of 2720 images, where half of them are
cloud infrared images and the other half are cloud-free in-
frared images, each paired with appropriate ground-truth la-
bels. The datasets are deliberately balanced to avoid any bi-
ases in the model that might favor one class over the other.
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Figure 4. Schematic diagram of the framework proposed in this
work. An original infrared image goes through the classifier and is
labeled as cloudy or clear. Then, the modified U-Net segmentation
model identifies cloud structure in the image to finally produce a
probabilistic segmentation map that is used to produce a reliable
metric for our application.

4.3 Image segmentation

For cloud structure identification, we adopted the U-Net ar-
chitecture due to its proven efficiency in semantic segmen-
tation tasks (Ronneberger et al., 2015). The U-Net model
comprises an encoder and a decoder, which facilitate the
capturing of context-rich features and precise delineation
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of cloud structures. The encoder employs convolutions and
max-pooling layers to progressively downsample the input
image, thereby capturing high-level features. These features
are then decoded using up-convolutions and skip connec-
tions, enabling the accurate reconstruction of the segmented
cloud structures. Figure 5 illustrates some examples of in-
frared cloud images alongside their corresponding ground-
truth masks and predictions. Figure 6 depicts the architecture
of the segmentation model.

4.3.1 Encoder block

The encoder block of the segmentation model consists
of four sets of double-convolution blocks (hereafter Dou-
bleConv) and four max-pooling layers. A normalized and
binned radiometric image of a fixed input size (160 x 128
pixels) is fed into the model. The DoubleConv contains two
sequential convolutional layers, each followed by a rectified
linear unit (ReLU) activation function (Agarap, 2018). The
initial DoubleConv block applies a set of learnable filters to
the input image, extracting low-level features. Subsequent
DoubleConv blocks increase the complexity of the learned
features by applying convolutions to the feature map gener-
ated by the previous layer, creating a hierarchy of increas-
ingly abstract features. Following each set of DoubleConv
blocks, a max-pooling layer is applied to downsample the
feature map, reducing its spatial dimensions while retaining
the most salient information. The architecture follows a pat-
tern of decreasing spatial dimensions while increasing the
feature depth as we move through the encoder, with the spec-
ified channels at each level being 128, 64, 32, and 16, respec-
tively.

4.3.2 Decoder block

The decoder block also comprises four sets of DoubleConv
blocks, mirroring the encoder structure in reverse order (so,
in our case, 16, 32, 64, and 128). In contrast to the en-
coder’s sequence, which involves a max-pooling layer fol-
lowing each DoubleConv block for downsampling, the de-
coder employs an upsampling layer preceding each Dou-
bleConv block. The upsampling operation effectively in-
creases the spatial dimensions of the feature map, preparing it
for concatenation with the corresponding, non-downsampled
feature map from the encoder provided by the skip connec-
tions. Post-concatenation, the DoubleConv block is applied
to process the merged feature map. This upsampling fol-
lowed by a convolution is also known as convolutional trans-
position or ConvTranspose. These skip connections ensure
coherent and effective feature fusion. This structural config-
uration is essential for seamlessly integrating both local and
global contextual information, thereby improving the accu-
racy of segmentation.
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4.3.3 Model output

The image segmentation model generates a probabilistic
mask, assigning a probability value to each pixel, indicating
its likelihood of being associated with the cloud category.
Using an array of 160 x 128 sigmoid functions, the model
produces a continuous probability range between 0 and 1 for
individual pixels.

4.3.4 Fine-tuning the U-Net model

In the original U-Net paper from Ronneberger et al. (2015),
a basic convolutional block was interposed between the en-
coder and decoder, functioning as a bottleneck to refine fea-
ture maps before their upscaling in the decoding path. Yet,
through empirical analysis, we identified that this bottle-
neck was not necessary for our data processing. While many
U-Net adaptations utilize a basic convolutional block for
both encoding and decoding, our findings indicated that, dur-
ing training, the double-convolution blocks outperformed the
simple-convolution approach.

4.4 Training procedure and implementation details

The training process comprises two distinct phases, address-
ing the classifier model and the U-Net segmentation model.
The loss function employed for training is the binary cross-
entropy, which quantifies the difference between predicted
probabilities and actual binary class labels for each instance
in the dataset. Mathematically, given an instance’s true bi-
nary label y (0 or 1) and the predicted probability p of it
belonging to class 1, the binary cross-entropy loss L is cal-
culated as follows:

1
L= —ﬁlZy,- 10g (fu (x))+(1—yi)-log (1 — fu(x1)), (1)

where L is the binary cross-entropy loss. N is the total num-
ber of instances in the dataset, i is the index representing an
individual instance, y; is the ith true binary label (0 or 1),
and f,,(x;) is the predicted probability that belongs to class
1 based on the model with parameters w. The goal of training
is to minimize this loss function by adjusting the model pa-
rameter weights w to better align the predicted probabilities
fuw(x;) with the true labels y;.

Both the classifier and the segmentation algorithms are im-
plemented using the Python programming language, with the
aid of the Flax package (Heek et al., 2023), a neural network
library that is part of the JAX ecosystem (Bradbury et al.,
2018). Training is conducted on the GPU cluster infrastruc-
ture of the MESO@LR (https://meso-lr.umontpellier.fr/, last
access: 1 January 2024) high-performance computing cen-
ter, utilizing an NVIDIA Quadro RTX 6000. To expedite
computations and to encapsulate the global trend, images
are normalized and downsampled to the fixed resolution of
160 x 128. The models are trained using the Adam optimizer
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Figure 5. Examples of results with the segmentation model and Otsu’s method. Each line represents a different image. The segmentation
model displays well-defined cloud structure edges and gives better results than the ground-truth masks and Otsu’s algorithm.

(Kingma and Ba, 2014), with a batch size of 64 images. The
learning rate is initiated at A = 1073 and decreases with a
cosine learning rate decay function (Loshchilov and Hutter,
2017). To prevent overfitting and expedite the training pro-
cess, an early stopping mechanism is employed, which halts
the training if the loss value does not exhibit a decline below
a certain threshold after 15 epochs.

During the training of the U-Net model, the
hyperparameter-tuning process is carried out to iden-
tify the optimal architecture configuration. This process is
facilitated by the Optuna framework (Akiba et al., 2019),
which employs a sampling strategy algorithm to explore var-
ious configurations. The configurations tested cover a range
of different filter numbers and sizes in the convolutional

Atmos. Meas. Tech., 18, 2083-2101, 2025

layers of the U-Net. Among the numerous configurations
tested, the architecture with channels specified as 128, 64,
32, and 16 for the encoder and decoder blocks achieved the
lowest loss, indicating superior performance in segmenting
cloud structures.

Furthermore, a pruning strategy is integrated within the
Optuna framework to curtail the exploration of sub-optimal
configurations early in the training process, thereby signif-
icantly reducing the computational resources and time re-
quired for the hyperparameter-tuning process. This strategy
employs a Median Pruner, which ceases the training of trials
exhibiting performance lower than the median performance
of completed trials (He et al., 2018; Vadera and Ameen,
2020). The results of the hyperparameter-tuning process re-
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Figure 6. Schematic diagram of the proposed U-Net-based segmentation model architecture. Yellow boxes represent convolutions. Each
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veal that the architecture with the specified channels of 128,
64, 32, and 16 outperforms others in terms of loss minimiza-

tion. 1
AUC = / R (FPR—1 (t)) dt (6)
0

5 Experiments
In the above, true positive (TP) denotes the number of cor-

5.1 Performance metrics rectly classified positive instances, false positive (FP) de-

notes the number of negative instances that were incorrectly
In order to evaluate the performance of the proposed models, classified as positive, false negative (FN) denotes the num-
we adopt several metrics: accuracy (A), precision (P), recall  per of positive instances that were incorrectly classified as

(R), F1 score (F1), the area under the curve (AUC), and the  pegative, and true negative (TN) denotes the number of cor-
binary cross-entropy loss £ defined in Eq. (1). All of these rectly classified negative instances; false-positive rate (FPR)
metrics are defined in the equations below. measures the model’s ability to incorrectly identify negative
instances as positive among all actual negatives and is calcu-

TP+T
- +IN (2)  lated as FPR = FP / (FP + TN).
TP+ TN+ FP +FN
_ TP 3) 5.2 Results
TP +FP
TP 5.2.1 Classifier
R= ——— “)
TP +FN . -
27.P.R We measure the performance of our models using precision
Fl= P——I—R (®)] and recall metrics. In this context, precision measures the

proportion of correctly predicted cloudy images among all
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Table 1. Evaluation metrics for the proposed segmentation model
based on publicly available state-of-the-art datasets. Note that RGB
color images are transformed into gray-scale images as the IRIS-
CloudDeep segmentation model is optimized for these types of data.
The best values are denoted in bold font (A denotes accuracy, BC
loss denotes binary cross-entropy loss, AUC denotes area under the
curve). FS describes from-scratch training, whereas FT means fine-
tuning training.

Datasets A[%] BCloss AUC
LWIRISEG 95.17 0.1142 0.98
SWIMSEG 57.51 6.4259 53.32
SWIMSEG FT  84.56 0.3425 84.30
SWIMSEG FS  88.65 0.2680 95.76
SWINSEG 67.06 47272 69.55
SWINSEG FT 91.64 0.1999 91.29
SWINSEG FS 93.25 0.1670 93.64

images classified as cloudy. It reflects the classifier’s ability
to minimize false positives, where a false positive is an in-
stance of predicting an image to contain clouds when it does
not. On the other hand, the recall metric quantifies the pro-
portion of actual cloudy images that are correctly identified
by the classifier, addressing its capacity to reduce false neg-
atives. In our case, a false-negative classification refers to an
image that contains clouds but that is not recognized as such
by the classifier. Table 2 presents the results of the chosen
model for the validation subset. All metrics prove the model
effectiveness in classifying images, with accuracy, precision,
recall, and F'1 score all being above 99 %. The AUC value of
0.99 portrays the classifier as robust. The training process on
the entire dataset with 10-fold cross-validation takes under
5 min of computing on an average desktop computer.

5.2.2 Segmentation

The results presented in Table 1 demonstrate the efficacy of
our segmentation model, achieving an accuracy of 94.64 %
and an AUC value of 0.97. Figure 7 depicts the binary cross-
entropy loss as a function of training epochs. The shape of
the decay in these curves aligns with anticipated training pat-
terns, confirming the model’s normal training behavior. The
loss stabilizes around the 300-iteration mark, serving as a
benchmark for the model’s application.

Figure 8 illustrates the resulting receiver operating char-
acteristic (ROC) curve. As in Dev et al. (2019a), we adopt
a threshold of 0.5, nearly balancing true- and false-positive
rates. However, users can adjust this threshold to meet
specific requirements regarding true-positive rates (TPRs)
and/or FPRs. Figure 5 shows the results for some images
of the validation subset. We find excellent segmentation of
cloud structure in the infrared images.
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Figure 7. Training and testing losses of the segmentation model
over epochs. The blue curve is for the training subset, whereas the
red curve is for the testing subset. After 300 epochs, both curves
asymptotically stabilize at a value of approximately 0.10.

Table 2. Evaluation metrics for the proposed classification models
and comparison between segmentation methods (A denotes accu-
racy, P denotes precision, R denotes recall, F'1 denotes F'1 score,
and AUC denotes area under the curve). The best values are denoted
in bold font.

A[%] P[%] RI[%] F1[%] AUC

Classification models

Ridge regression 99.26 99.31  99.28 99.28  0.99
Logistic regression ~ 94.85 9495 9525 9485  0.94
Perceptron 93.14 9327 93.86 93.12 093
SVM 91.35 9152 9250 91.31 091

Segmentation methods

LWIRISEG 95.17 96.54  97.89 97.21 098
Otsu’s algorithm 59.16 100.00 52.53 68.88  0.76

5.3 Application with cloud counting

In our methodological framework, the initial step involves
the application of Otsu’s thresholding (Otsu, 1979) to trans-
form infrared sky images into a binary format. This effec-
tively segregates the cloud features from the background,
providing a simplified representation where clouds are dis-
tinctly highlighted. Following this, the connected-component
labeling technique, as implemented by the function skim-
age.measure.label, is employed. This function discerns con-
nected regions within the binary array, where connectivity is
defined by the presence of adjacent pixels sharing the same
value.

This labeling process assigns a unique identifier to each
contiguous cloud region, thus enabling an accurate enumer-
ation of individual cloud formations. By comparing this au-
tomated count to visual assessments, our analysis revealed a
consistent accuracy in the segmented-image counts. Figure 9
shows examples of cloud counting for different images along
with the original, ground-truth and probabilistic segmen-
tation images. The segmented images frequently provided
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counts that closely matched visual estimations, surpassing
the performance of raw and binary-mask-derived counts, par-
ticularly in scenarios where images suffered from high noise
levels. Such robustness underscores the advantage of our seg-
mentation approach in providing reliable cloud quantifica-
tion.

6 Discussion
6.1 Limited benchmarking comparison

Comparing machine-learning models optimized for differ-
ent types of input data can be meaningful in certain con-
texts, but it requires careful consideration. The most crit-
ical factor is the nature of the data. State-of-the-art mod-
els presented in Sect. 2 are optimized for different types
of data (three-channel RGB images). It may seem incoher-
ent to compare the performance with single-channel gray-
scale infrared images. Indeed, these data types have distinct
characteristics, and models may perform differently based on
these differences. Some models (Sun et al., 2011; Liu et al.,
2011; Luo et al., 2018) have been proposed to target infrared
images with categorization tasks. Considering whether the
models can be adapted or fine-tuned to work with both RGB
and infrared data is challenging. This might involve multi-
modal learning approaches (Liu et al., 2018; Li et al., 2020;
Wei et al., 2023) or transfer-learning techniques (Manzo and
Pellino, 2021; Wang et al., 2021a; Zhou et al., 2021), which
are not within the intended purpose of this work.

Nevertheless, we attempt to evaluate the robustness of
our segmentation model by testing its ability to generalize
to other datasets, including SWIMSEG (Dev et al., 2016),
SWINSEG (Dev et al., 2019b, 2017), and WSISEG (Xie
et al., 2020).

We transform RGB images into gray-scaled images with
the OpenCV (Bradski, 2000) color conversion method
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COLOR_RGB2GRAY, defined by the following equation:
RGB — gray =0.299-R+0.587-G+0.114-B, ™

where R, G, and B are, respectively, red, green, and blue
channels of the input color image. Metrics for each dataset
are summarized in Table 1.

While the results indicate accurate recognition of most
cloud structures in the images by our models, applying a
model trained on our dataset directly to another dataset yields
less satisfactory performance due to the sub-optimal trans-
formation of color images to gray scale. The method’s effi-
ciency is hindered by the strong blue color channels result-
ing from Rayleigh scattering (Bates, 1984), particularly af-
fecting its performance based on publicly available datasets
transformed in this manner. Further efforts are required to
enhance the conversion of RGB color to gray-scale images,
aiming for a comparable contrast to infrared thermal images.
Still, our framework demonstrates satisfactory results when
exclusively trained on the modified images (FS in Table 1) as
opposed to our original gray-scale images.

6.2 Comparison of segmentation predictions against
ground-truth binary mask

The segmentation model occasionally exhibited superior per-
formance compared to the ground-truth masks, as evidenced
by examples in Fig. 5. Notably, in this instance, the ground-
truth mask failed to identify certain sky patches on the left
side of the image. Conversely, the segmentation model’s pre-
diction demonstrated a non-zero probability of the existence
of sky patches in those areas. This discrepancy arises from
the model’s utilization of a non-linear mapping technique
employing a multi-layer perceptron with ReLU activations.
This mapping aims to transform a normalized continuous
pixel array into a binary pixel array. Consequently, regions
containing sky pixels (denoted by low pixel values) possess
the potential to be assigned a low probability value for cloud
presence, even when the ground-truth mask assigns certainty
(a value of 1) to those patches as cloud-covered areas.

6.3 Comparison of segmentation model with Otsu’s
method

To validate its effectiveness, the segmentation model is eval-
uated against the conventional Otsu algorithm with the val-
idation subset from our own LWIRISEG dataset. Otsu’s
method consists of an adaptive thresholding algorithm that
automatically computes the threshold from the image his-
togram distribution without parameters, supervision, or any
prior information (Otsu, 1979). Figure 5 depicts some typical
comparison results between the two methods and the ground-
truth masks given to the deep-learning model for training.
The metrics defined in Sect. 5.1 are computed with Otsu’s al-
gorithm and are presented in Table 2. This demonstrates that
the proposed deep-learning modified U-Net model performs
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(a)  Original image

(b) Ground-truth mask
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Figure 9. Examples of cloud counting for different input images. The number of automatically identified clouds is shown in the top-left corner
of each subplot. For the upper and center rows (a—f), the segmentation map allows the computation of the most accurate result. Panels (g)—(i)
depict an example where the computation fails based on the original image, the ground-truth mask, and the probabilistic segmentation mask.

significantly better than Otsu’s algorithm, with mean pixel
accuracies being 95.17 % and 59.16 %, respectively. Perfect
precision of 100 % means that Otsu’s algorithm does not pro-
duce any false positives, implying that it is overly conserva-
tive in making positive predictions. As noted by Xie et al.
(2020), the primary reason for the sub-par performance of
Otsu’s algorithm is its reliance on pixels of the same class
having similar gray values, which contradicts the character-
istics exhibited by clouds. These experimental findings vali-
date the effectiveness of the segmentation model, highlight-
ing its practical significance for upcoming observations.

6.4 Comparison between linear and non-linear
methods for classification

In our analysis of infrared sky images, we assessed the
suitability of linear classifiers against more complex deep-
learning models. Employing linear classifiers such as SVM,
logistic regression, perceptron, and ridge regression, opti-
mized via stochastic gradient descent (SGD) with 12 regular-
izations, we aimed to prevent overfitting and maintain model
simplicity. Among these, ridge regression emerged as the top
performer.

Dimensionality reduction techniques supported these find-
ings. Principal component analysis (PCA) demonstrated that
two principal components could explain a significant por-
tion of the variance (96.1 %), implying that the data are al-
most linearly separable. However, non-linear dimensional-
ity reduction through uniform manifold approximation and
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projection (UMAP) perfectly segregated cloudy from cloud-
free images, indicating that, while the data are nearly linearly
separable, non-linear methods provide strong separation, as
shown in Fig. 10.

In summary, for the task at hand, deep learning models
such as ResNet (He et al., 2015) may seem excessive. A well-
tuned linear model, particularly ridge regression, is equally
effective, if not more so, due to its interpretability and sim-
plicity. The near-linear nature of the data suggests that sim-
pler models could suffice for such classification challenges.

6.5 Future perspectives

The framework established in this paper is one subpart of the
StarDICE data processing operations. This will serve the rest
of the analysis by identifying and classifying the quality of
photometric exposures performed in parallel.

The work undertaken in this paper will be used and the
associated module will include the following operations for
analysis: (i) classifying infrared sky images obtained by the
imaging system in real time, (ii) analyzing cloud-labeled sky
images and deriving the corresponding cloud structure and
cover using the segmentation algorithm, and (iii) generating
alerts or flags in accordance with the results.

As mentioned in Sect. 6.1, we were able to train a model
based on our gray-scale images and another model based on
RGB images, and both models produced great results. How-
ever, using a model trained on gray-scale images to predict
masks for RGB images or even RGB images transformed
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Figure 10. (a) First two principal components of the PCA of the entire dataset, representing 96.1 % of the variance, with the label “clear”
referring to the cloud-free images. (b) Two-dimensional representation of UMAP of the same dataset.

to gray scale yielded poor results. Additionally, training a
model on all the data resulted in sub-optimal performance.
As a future endeavor, we can explore the usage of a multi-
modal deep-learning model that can work with both RGB
and gray-scale images.

Improving the accuracy and robustness of our framework
could involve further training on a larger dataset in more vari-
able conditions. With the upcoming remote-operation capa-
bilities of the telescope system expected to yield a substantial
volume of data next year, we anticipate capturing a broader
spectrum of sky atmospheric conditions. In this case, a single
network could predict two types of outputs (e.g, pixel seg-
mentation map and a metric describing image quality). Still,
additional effort will be necessary to categorize the images
based on the varying cloud coverage types.

Finally, the standard U-Net model lacks temporal correla-
tion. No information about the displacement of the cloud is
taken into account. We could gain in model accuracy by in-
corporating the temporal information using recurrent neural
network (RNN)-based algorithms (Sherstinsky, 2020) or the
temporal U-Net to effectively model temporal information in
sequences (Funke et al., 2023).

7 Conclusion

In this paper, we proposed a deep-learning framework for
the classification and segmentation of ground-based infrared
thermal images. As far as we know, it is the first frame-
work that attempts to apply two sequential models for com-
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plementary tasks on single-channel gray-scaled infrared im-
ages. Specifically, we presented the linear classifier and the
U-Net-based segmentation model tailored to extract cloud
structures from pre-identified cloud images both during the
day or at night. The segmentation model provides the capa-
bility to identify clear-sky portions in infrared images, cre-
ating a catalog of optical images suitable for photometric
measurements and analysis. Extensive experimental results
on a combination of self-acquired data and transformed pub-
licly available datasets have demonstrated the effectiveness
and performance of the proposed framework. We success-
fully increased the size of training, testing, and validation
subsets with random application of augmentation methods.
We developed an accurate simulation tool to produce real-
istic clear-sky images. Some limitations are due to the low
number of strictly different images in various conditions and
errors introduced by ground-truth masks incorrectly labeled
manually. Nevertheless, we demonstrated that the segmen-
tation model can rectify poor ground-truth masks and some-
times produce better results. In the future, additional data will
be collected by the infrared instrument, capturing various
weather conditions. The framework may be re-trained based
on heavier datasets, which will probably increase its accu-
racy. Furthermore, if enough data are collected with many
different cloud categories and proven-to-be-accurate radio-
metric calibration, we will be able to expand the segmen-
tation model to perform cloud typology through multi-label
segmentation. The framework established in this work will
serve as a basis for the sky quality assessment and further
analysis for the StarDICE metrology experiment.
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2096

Code and data availability. The code for controlling
the FLIR Tau2 camera is publicly available online at
https://doi.org/10.5281/zenodo.15311830 (Sommer, 2025).
The source code for the work presented in this study is publicly
available online at https://doi.org/10.5281/zenodo.15316607
(Sommer et al., 2025). Datasets and other supporting materials will
be made available from the corresponding author Kélian Sommer
(kelian.sommer @umontpellier.fr) and Wassim Kabalan (was-
sim@apc.in2p3.fr) upon request. Some of the results in this paper
have been derived using astropy (https://www.astropy.org/, last
access: 1 January 2024; Astropy Collaboration, 2013; The Astropy
Collaboration, 2018), flax (http://github.com/google/flax,
last access: 1 January 2024; Heek et al, 2023), jax
(http://github.com/google/jax, last access: 1 January 2024;
Bradbury et al., 2018), matplotlib (https://matplotlib.org/, last
access: 1 January 2024; Hunter, 2007), numpy (https://numpy.org/,
last access: 1 January 2024; Harris et al.,, 2020), opencv
(https://github.com/itseez/opencv, last access: 1 January 2024;
Itseez, 2015), pandas (https://doi.org/10.5281/zenodo.3509134,
Pandas Development Team, 2020), scipy (https://scipy.org/, last
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