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Abstract. To accurately study the characteristics of an air
pollution emitter, it is necessary to isolate the contribution
of that emitter to total measured pollution concentrations. A
variety of published methods exist to complete this task, like
placing measurements upwind the emitter, employing a dis-
tant background measurement station, or algorithmic meth-
ods that extract a background from the time series of mea-
sured concentrations (e.g. wavelet decomposition). In this
study, we measured nitrogen oxides (NOy), carbon monox-
ide (CO), carbon dioxide (CO;), and fine particulate matter
(PM3 5) at four sites spanning Toronto, Ontario, Canada. We
first characterized the spatial variability of background con-
centrations across the city and then tested the accuracy of
seven different algorithmic methods of estimating true mea-
sured upwind-of-emitter backgrounds near Toronto’s High-
way 401 by using the data collected at a downwind site.
These methods included time-series and regression methods,
including machine learning (XGBoost). We observed back-
ground concentrations had notable spatial variability, except
for PM; 5. When predicting backgrounds upwind the high-
way, we found a distant measurement station provided an ac-
curate background only during some times of day and was
least accurate during rush hours. When testing algorithmic
predictions of upwind-of-highway backgrounds, we found
that regression models surpassed the performance of time-
series methods, with best predictions having R? exceeding
0.8 for all four pollutants. Despite the better performance of
regression models, time-series methods still provided reason-
able estimates. We also found that emitter-specific covariates
(e.g. traffic counts, on-site dispersion modelling) did not play

an important role in regressions, suggesting backgrounds can
be well characterized by time of day, meteorology, and dis-
tant measurement stations. Based on our results, we provide
ranked recommendations for choosing background estima-
tion methods. We suggest future air pollution research char-
acterizing individual emitters includes careful consideration
of how background concentrations are estimated.

1 Introduction

Across air pollution literature, there is a common distinc-
tion between stationary field measurement sites located well
away from any known sources that record background pol-
lution concentrations and those that record /ocal concentra-
tions, such as near-road sites, influenced by emissions from
nearby “local” sources. Generally, background concentra-
tions are considered to arise from a mix of more distant up-
wind anthropogenic and natural sources and processes, while
local concentrations are impacted by one or more nearby
sources of interest. The difference between the concentration
of an air pollutant measured at near-source and background
sites can be attributed to local emissions. Within this process
of apportioning the measured total concentration, the contri-
bution of emissions from nearby sources is referred to as the
local or emitted concentration, while that within air masses
arriving from upwind of a measurement site is referred to as
the background concentration.

Good measures of background concentrations are impor-
tant for isolating local sources of pollution. Ideal outdoor
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field measurements would include instruments both up- and
downwind of the source of interest such that the source’s con-
tribution is the difference between the two. However, this is
not always possible: requiring two simultaneous measure-
ments increases instrumentation and operation cost, there
may not be an appropriate upwind location to place instru-
ments, and widely varying wind directions might necessitate
more than just one upwind—downwind measurement pair. For
these reasons, tools for estimating background concentra-
tions (Cpkg) Without a second measurement site are valuable.
With reliable Cyy, estimates, researchers can isolate contin-
uous measurements of their sources of interest, which is vi-
tal for source attribution and measuring emission rates and
emission factors.

If measurements immediately upwind of a source of inter-
est are not available, researchers might utilize either an urban
background station or tracer species to isolate contributions
from sources of interest. Urban background stations are typ-
ically within a few kilometres of the study location but are
removed from any major nearby sources. These sites might
be located in a park or a nearby rural area. Tracer species
are those that are specific to the source of interest — if a re-
searcher knows a measured emissions source is the only ma-
jor nearby source of a particular species, they can be con-
fident their measured source is the only contributor to mea-
sured concentrations of that species.

Unfortunately, both approaches, despite their prevalence
in the literature, have limitations. Urban background stations
might not be completely isolated from all sources, or back-
ground concentrations might vary spatially between the ur-
ban background station and the study site (particularly in
the context of the strict definition of “background concen-
tration” we provide below). For tracer species, in many cases
the source of interest cannot be guaranteed to be the only
measured contributor. For example, nitrogen oxides (NO,)
are often considered a tracer for traffic emissions, but in a
dense urban area measured NO, concentrations will contain
emissions from many different roads, so no single road can
be isolated.

Beyond these common approaches, there exist some other
methods for estimating background concentrations, particu-
larly for application to continuous time-series measurements
of atmospheric pollution. Notable methods include the fol-
lowing:

— measuring pollutant concentrations immediately up-
wind of the source of interest, as mentioned above, such
as in highway studies by Zhu et al. (2002), Kohler et
al. (2005), and Frey et al. (2022);

— designating a geographically distinct measurement sta-
tion as an urban or regional background, with that
station typically having few nearby emissions sources
(Hicks et al., 2021; Hilker et al., 2019);
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— comparing times when a measurement site is up- and
downwind of a target source (Hilker et al., 2019);

— identifying a background or apportioning sources via
wavelet decomposition (Klems et al., 2010; Sabali-
auskas et al., 2014; Wei et al., 2019);

— an iterative algorithm employed and tested by
Wang (2018) and Hilker et al. (2019) that heuristically
estimates a background signal similar to that produced
from wavelet decomposition, which is termed a pseudo-
wavelet (In brief, this method takes a smoothed interpo-
lation of minima in the measured near-source concen-
tration within a moving time window.);

— inverse dispersion modelling, where multiple downwind
measurements are paired with a dispersion model es-
timating downwind concentrations given an emission
rate (Inverse dispersion modelling approaches are usu-
ally applied to measure emission rates from the source
of interest, though concentration upwind of the emitter
should be produced as a by-product of this calculation
(Fushimi et al., 1997; Olaguer, 2022).);

— clustering algorithms, where clustering can identify
sources by grouping correlated pollutants and may not
necessarily delineate between local and background
sources (However, Rodriguez et al. (2024) demon-
strated a separation of local and non-local sources using
a fuzzy clustering algorithm.);

— geospatial interpolation from urban background sta-
tions, which can estimate the spatial variability of
background concentrations, such as in Arunachalam et
al. (2014);

— localized iterative regression within a time series of con-
centrations to extract a baseline signal, as described by
Ruckstuhl et al. (2012) (However, this study presented
a method to further decompose measurements from a
background site, implying a definition of background
concentration that is geographically broader than what
we consider in this study.).

1.1 Defining “background concentration”

To address the limitations of the methods identified above,
we propose a definition for background that is useful for iso-
lating emissions sources of interest: background concentra-
tions, Cpkg, are the portions of the total measured concentra-
tions that were not emitted from the local emission source
of interest. This definition is similar to the one provided
by Arunachalam et al. (2014). With this definition, the total
measured concentration, Cpyeas, 1S strictly a sum of the local
concentration, Clocal, and background concentration, Cpg:

Cimeas = Clocal + Cbkg- (D
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As a corollary to this definition, Clocq is only the portion of
Cheas that was emitted from the source of interest, and thus
the local concentration becomes useful for estimating emis-
sions, source characteristics, etc. This definition recognizes
that the background concentration may vary across regions
such as a city because of the many sources present. At the
same time, the background concentration across a city can
be relatively homogenous if much of the background origi-
nates from sources or processes well upwind of a city, as is
often the case for pollutants such as PM» 5 and CO». Ideally,
this background concentration should be measured directly
upwind the source of interest, with no interstitial sources.
The up- and downwind measurements should also be near
enough to each other and the emissions source that dilution of
background concentrations while they travel between the up-
and downwind instruments is not of concern. This is the con-
figuration at the highway field site studied here, which had
instruments placed up- and downwind a major urban high-
way in Toronto, Canada. While it is desirable for the back-
ground site to be as close as possible to the emissions source
of interest, the nearer the background site is to the emis-
sion source, the greater the potential for emissions from that
source to contribute at times to the concentrations measured
at the background site. We posit that this definition of back-
ground concentration lends itself readily to useful measure-
ments of Clocal. Accordingly, it is desirable that researchers
measuring rates and/or characteristics of emissions sources
can estimate Cpkg When direct measurement is not possible,
as previously discussed.

We note that this definition differs from existing interpre-
tations of background in air pollution research, where back-
ground might be interpreted as either a minimum or base-
line concentration or as pollution arising from long-range
transport from multiple distant sources (Gémez-Losada et
al., 2016, 2018). These existing definitions would imply ho-
mogeneous and temporally constant concentrations spread
across an entire neighbourhood, city, or region. Measuring
such a background concentration might require a rural mea-
surement or an urban measurement isolated from any single
source. In our case, we are interested in measuring Cpge for
the purpose of extracting Clocal, SO emissions from sources
other than the targeted emitter are only a problem if they are
so nearby as to render the measurement of Cypkg obviously
unusable.

1.2 Study outline and objectives

In this study we tested the accuracy of a variety of methods
for estimating background concentration at a field site adja-
cent a large roadway emissions source. We first qualitatively
examined how background concentrations varied across an
urban area (Sect. 3.1). We then tested the accuracy of seven
algorithms for predicting background concentrations at the
near-road site (Sect. 3.2). The algorithmic methods were dif-
ferentiated into two classes. Frequency methods used the
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time-series nature of Cieqs to predict Cpkg, on the theoret-
ical basis that background concentrations vary on a longer
temporal scale than a nearby source and that Cpkg = Creas
at least occasionally. Regression methods were those that in-
corporated additional covariates measured or estimated at the
study site and were regressed to the measured upwind back-
ground concentrations. We evaluated the accuracy of each
algorithmic estimate of background concentration by tem-
porarily deploying a low-cost air pollution sensor platform to
the upwind side of the tested highway site. Finally, we eval-
uated the relative importance of regression model covariates
in estimating background concentrations (Sect. 3.3 and 3.4)
and considered limitations (Sect. 3.5).

This study was completed as part of the larger Study of
Winter Air Pollution in Toronto (SWAPIT) campaign, a col-
laborative effort between the academic, government, and pri-
vate institutions in the Toronto, Ontario, region.

2 Methodology
2.1 Field measurements

We gathered field measurements at four sites through-
out Toronto, Ontario, Canada, from 23 November 2023 to
12 April 2024, totalling just over 141 d of measurements. All
measurements occurred during winter and early spring con-
ditions in Toronto when photosynthesis of CO, is minimal.
The next two sections describe the sampling sites and instru-
ments.

2.1.1 Site descriptions

The primary highway field site was located adjacent a stretch
of Toronto’s Highway 401 located at UTM 617300m E
4840900m N 17N (see A in Fig. 1, top; Fig. 1 bottom).
This stretch of highway is one of the busiest in North Amer-
ica, with over 400 000 annual average daily traffic (AADT)
counts as reported by the Ontario Ministry of Transporta-
tion (2021). It is 17 lanes and 113 m wide, is adjacent to the
measurement sites, and runs in a primarily west—east direc-
tion, offset 18° towards a southwest—northeast direction. This
site included two instrument locations. The first was a perma-
nent roadside station on the south side of the highway that
was frequently downwind the road. The second location was
a background sensor placed north of the highway, which was
frequently upwind the road. The north site was designated as
the background site based on predominant wind directions
and the fact that this site featured a temporarily deployed
low-cost sensor platform, while the south site features a per-
manent air quality station operated by the Ontario Ministry
of the Environment, Conservation and Parks. Figure 1 maps
this and the remaining study sites.

In addition to the primary highway site, we recorded pol-
lution concentrations at three additional sites throughout the
Toronto area. The first site was the Wallberg urban near-road
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Figure 1. Top: locations of measurement sites throughout Toronto region. Bottom: detailed map of the Highway 401 field study site. Bottom

inset: wind rose measured at Highway 401 roadside (downwind)

station during the study period. Throughout this document, the High-

way 401 downwind roadside station is referred to as “highway roadside downwind” or “highway downwind”, and the Highway 401 upwind
background site is referred to as “highway upwind background” or “highway upwind”.

site, located at the University of Toronto’s Wallberg Memo-
rial Building at UTM 629381 m E 4835252 m N 17N (Site B
in Fig. 1). This site features a similar set of air pollution in-
struments to the permanent Highway 401 downwind site and
was located 15 m from a major urban road and 40 m from an
intersection. The remaining two sites were designated as dis-
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tant urban background sites, not near any emissions sources
of comparable magnitude to Highway 401. The first urban
background site was Downsview, located at UTM 623330 m
E 4848631 m N 17N (Site C in Fig. 1). This site is in a green
space near an office building and is about 175 m from the
nearest road. The final site was the Hanlan’s Point urban
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background station, located at UTM 630025 m E 4830061 m
N 17N (Site D in Fig. 1). This site is located on an island in
Lake Ontario, south of Toronto’s downtown core. The Han-
lan’s Point site is isolated from any nearby sources, with the
only notable emissions source being a regional airport over a
kilometre to the north. Measurements were collected during
winter to early spring, so we expect green space near back-
ground sites to have a minimal CO»-sink effect.

All sites listed here except the highway upwind back-
ground site were equipped with a similar set of air contami-
nant instruments, detailed in the next section.

2.1.2 Airborne pollutants, traffic, and meteorology

We employed a variety of instruments to measure air pol-
lutant concentrations, meteorology, and traffic counts. The
instruments deployed at each site except the highway up-
wind background are listed in Table 1. We selected NO,
(NO +NO»), CO, PM3 5, and CO; to cover a range of dom-
inant sources: we expect PM 5 and CO; to have large re-
gional background concentrations, while CO and NO, are
more sensitive to proximity to sources. For PM» s, given the
dominance of regional transport and secondary formation,
and the consequential homogeneity of this pollutant’s con-
centration across urban areas, we expect that differentiating
between local and background pollution might be difficult.
However, we retained PM> 5 to serve as a counterexample to
the other pollutants, which have greater differences between
local and background concentrations.

We acquired additional micrometeorological measure-
ments for dispersion models from various sources, which
we detail in Appendix A; we used dispersion model out-
puts as exogenous variables for regression methods. At the
Highway 401 north background site, we deployed a low-cost
AirSENCE air pollution measurement system (AUG Signals,
Toronto, Canada). This system hosts a variety of low-cost
sensor systems to simultaneously measure a variety of pollu-
tants, including the pollutants tested here. Morris et al. (2020)
have previously explored the performance of the AirSENCE
system.

For PMj; 5 at the Hanlan’s Point site, we collected concen-
trations measured with the Teledyne API T640 rather than
the Thermo Fisher SHARP instrument deployed at each other
site (also again except for the low-cost instrument upwind the
highway). Zheng et al. (2018) directly compared two T640s
to the same model SHARP used here and reported variations
up to 3 to Sugm™3 in concentration ranges similar to those
typically measured here, with the T640 more often reporting
slightly higher concentrations than the SHARP. The possi-
bility that PM» s measured at Hanlan’s Point may be slightly
inflated should be kept in mind when reading results that di-
rectly compare concentrations across sites. Presumably, the
low-cost sensor-based PM> 5 we measured north of the high-
way also deviated from reference instruments by similar or
larger amounts; however, as explained below, we produced a
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corrective calibration for the low-cost sensor platform prior
to deployment. We also found that when directly comparing
hourly PM» 5 concentrations between SHARP and T640 in-
struments across sites used in this study, variation between
instruments was similar to variation between sites, suggest-
ing no systematic bias due to instrument differences (Ap-
pendix E). Should any disagreement between instruments ex-
ist anyways, this should only affect our results in cases where
measured concentrations are compared directly — in cases
where data were included in regression models, any offset
in measured concentration should have a limited impact on
regression results, as regression models can account for sys-
tematic biases.

We averaged sub-minutely measurements to the nearest
minute to allow time-matched comparison across the in-
struments. To ensure the low-cost AirSENCE instruments
reported concentrations comparable with reference instru-
ments, we applied multiple quality control and calibration
steps prior to analysis. In particular, we addressed calibration
and drift in some of the low-cost sensors through comparison
with other sites and corrected the low-cost PM, 5 measure-
ments for hygroscopicity with the correction procedure de-
vised by Crilley et al. (2018). We also placed the AirSENCE
device atop the downwind highway station for nearly 18d
at the start of our measurement campaign and used this co-
location period to calibrate the AirSENCE’s sensors against
the station’s reference instruments, controlling for interfer-
ence from humidity, pressure, and temperature. Finally, in
some cases for CO and CO; to avoid concentration biases be-
tween sites due to different instrument calibration schedules,
we calculated a 0.1 % rolling percentile concentration at each
site and set each site’s rolling quantile equal. We describe
these preprocessing steps in greater detail in Appendix B.

Additional information on some of these same sampling
sites and instruments can be found in publications by Wang
etal. (2018), Hilker et al. (2019), and Jeong et al. (2020); this
list is not exhaustive, and these sites have been employed in
a variety of prior air pollution studies.

2.2 Separating measured local and background
concentrations at the highway site

To choose when we could consider the difference between
near-road and upwind measurements as local concentrations,
Clocal, We considered the relationship between measured con-
centrations and wind at the highway site. From Fig. F1
we identified which wind directions to subsample from our
measurements to isolate local and background signals: we
selected periods where wind direction relative to the road
was between 80° to the northwest and 40° to the north-
east. The asymmetry in downwind directions relative to the
road could be explained by traffic-induced turbulence, which
can influence bulk air flow above the road (Hashad et al.,
2022). Since the station south of the highway is nearest to
an eastbound lane, those lanes might add a westerly compo-

Atmos. Meas. Tech., 18, 2201-2240, 2025



2206

T. D. Edwards et al.: Comparing methods to estimate near-road background pollution

Table 1. Air pollution, meteorology, and traffic count instruments deployed at each measurement site except the highway upwind background

site.

Measurand Symbol Method Instrument name Manufacturer
Nitrogen oxides NO, NO, NO,  Chemiluminescence 42i Thermo Fisher
Carbon monoxide CO Infrared absorbance 48i
Fine particulate PM> 5 Nephelometry and beta ~ 5030(i) SHARPP
matter attenuation

Spectrometry T640° Teledyne API
Carbon dioxide CO, Non-dispersive infrared  LI-840A LI-COR Biosciences
On-site meteorology 7T, P,RH, u, 6 Various WXT520 Vaisala
Traffic counts? Nipv, NMupyv  Radar Smart Sensor 125 HD  Wavetronix

4 Traffic counts were only recorded at the Highway 401 downwind site and only for the nearest eight lanes. LDV — light-duty vehicles, MHDV — medium-
and heavy-duty vehicles. b PM; 5 at the Hanlan’s Point background station was measured with a Teledyne API T640, while other sites used the Thermo

Fisher 5030 or 5030i SHARP.

nent to the observed wind direction. From Fig. F2 we also
observe that some downwind roadside (Cpneas) and traffic-
related (Clocal = Cmeas — Cokg) concentrations diverged be-
low wind speeds of about 1.0ms~!. At low wind speeds,
measurement of wind direction becomes unreliable, so iden-
tifying up- and downwind periods is not possible with stag-
nant winds. Further, at low wind speeds the likelihood of
vehicle-induced turbulence effecting the background mea-
surements increases. To avoid analysing the lowest wind
speed periods where these issues might be prevalent, we also
restricted highway measurements to non-stagnant winds (i.e.
>1ms™)).

2.3 Predicting background concentrations at the
highway site

2.3.1 On-site background concentration (Cpyg)
prediction methods

We tested nine methods of estimating background concentra-
tion measured upwind the highway: two urban background
stations, three frequency methods, three regression methods,
and a final ensemble method.

The urban background stations we tested were the same
two urban background stations mentioned previously:

— The Downsview station is located in an urban area but
175 m from the nearest road (Site C in Fig. 1).

— The Hanlan’s Point station is located on an island in
Lake Ontario, isolated from nearby emissions (Site D
in Fig. 1).

We tested three frequency methods:

— A naive rolling minimum, with the length of the rolling
window optimized to minimize prediction error, is a ba-
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sic method that was included as a minimally simple ap-
proach.

— The pseudo-wavelet method was devised by Wang et
al. (2018).

— A rolling ball background subtraction was used, as
rolling ball algorithms are common in image process-
ing, where they are used to correct unevenly intense im-
age backgrounds. To our knowledge, this is the first case
of a rolling ball algorithm applied in air pollution re-
search.

We included three regression methods:

— Traditional ordinary least squares (OLS) multiple linear
regression was used.

— Regularized (elastic net) regression is a linear model
with regularization terms to control for overfitting.

— Machine learning regression with XGBoost can produce
accurate non-linear predictions and has many hyperpa-
rameters that can be tuned to control overfitting, degree
of variable interaction, model complexity, etc. The XG-
Boost model has been successfully deployed previously
in air quality studies, demonstrating its potential useful-
ness (Xu et al., 2020b, a). See Appendix C for details
on how we specified XGBoost models.

For each regression method we included a variety of
predictive covariates in addition to concentration measured
downwind of the road, including concentrations measured at
the distant urban background stations, traffic count, predic-
tions of pollutant dilution from the RLINE dispersion model,
meteorology measured at the Highway 401 site, and more
(Snyder et al., 2013). In some cases, we transformed covari-
ates prior to fitting regression models to increase the linearity
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of the relationship between covariate and measured Cyyg, and
for regression models we scaled predictors. Finally, we in-
cluded one additional ensemble model: this final method was
a regularized (ridge) regression using the predictions from
each of the prior listed methods as inputs. Extended descrip-
tions of each of the algorithmic methods are provided in Ap-
pendix C.

2.3.2 Optimizing prediction methods and evaluating
accuracy

Many of the above methods for predicting Cypig require user-
specific parameters. To select these parameters, we applied
a similar process across each method. For each algorith-
mic method, we optimized for parameters that produced the
lowest prediction error by either iterating over parameters
or via Bayesian hyperoptimization (Akiba et al., 2019). In
each case we evaluated prediction error with 5-fold cross-
validation to control for overfitting. The only exception was
OLS, which has no hyperparameters to tune; however, we
still evaluated its accuracy with the same cross-validation
scheme. Additional details on Cyy, prediction method opti-
mization and evaluation, including details on optimized hy-
perparameters, cross-validation, and metrics, are included in
the Appendix.

3 Results and discussion

3.1 Geographic variability of urban background
concentrations

After defining when a measurement is considered back-
ground at the highway site, we first compared average
background concentrations at the three sites in the Greater
Toronto Area. Figure 2 summarizes average concentrations,
while Fig. 3 depicts their diurnal patterns. From these figures,
we can directly compare typical levels and daily patterns in
background concentrations across a city. Table 2 quantifies
geographic and temporal variability in local and background
concentrations at the same sites.

For CO, CO,, and NO,, we recorded the greatest aver-
age concentrations at the Highway 401 downwind site, and
for PM, 5 it was second greatest. High concentrations down-
wind the road are sensible given the intensity of traffic on this
road. For example, the ratio of downwind/upwind concen-
tration was greatest for NO,: median total downwind NO,
was 2.7 times greater than upwind background NO, at the
highway site. In the context of Fig. 2, background NO, ap-
pears similar between the highway, Downsview, and Han-
lan’s sites; however, this is misleading: low average back-
ground NO, concentrations mean that the percent differences
between sites are relatively greater than for pollutants like
PM; 5 and CO,, which have large backgrounds. This intro-
duces a contradiction: when background concentrations are
low compared to near-source concentrations, assuming a low

https://doi.org/10.5194/amt-18-2201-2025
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Figure 2. Box-and-whisker plots of minutely concentrations mea-
sured at the various sites throughout Toronto. Darker hatched boxes
indicate sites near and/or downwind a road (i.e. non-background
sites). Boxes extend to 25th and 75th quantiles; whiskers extend an
additional 1.5 interquartile ranges. Middle bars are medians. Note
that highway sites were limited to periods with appropriate wind
directions and speeds, as described in the methodology.

or zero background introduces little error. At the same time
assuming a homogenous background concentration creates
the greatest percent error between background sites. This
means even a rough estimate of the NO, background will
be adequate when the application is subtracting this small
value from a much larger total NO, concentration measured
downwind an emissions source. In contrast, it is challeng-
ing to evaluate how background NO, differs between loca-
tions, given these concentrations will be small and difficult
to estimate reliably. This is reflected in Fig. 3, where diur-
nal background NO, measured at the Hanlan’s Point site is
never equal to the other two background sites, whereas CO»
and CO had similar concentrations across all sites during at
least some times of the day.
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For the Highway 401 site, these figures depict measurements from the background sensor only during periods where the background sensor
was upwind the road and wind was not stagnant, producing a valid measure of Cpgg as defined in the methodology. Downsview (DV) and
Hanlan’s backgrounds had no wind direction restrictions; when wind limits were applied to all sites (not shown), PM, 5 levels were similar

across all three sites.

Table 2. Mean and standard deviations (SD), coefficient of variation (CV = SD / mean) of pollutants measured at each study site, and means
and standard deviations of differences between selected sites. The HWY Down-HWY Up row is the difference between up- and downwind
at the highway site, summarizing variability in local (Cmeas — Cpkg) concentrations. The Downsview—Hanlan’s row is the difference between
Downsview and Hanlan’s Point sites, capturing geographic variability in backgrounds. Values are rounded to two significant figures.

CO[ppbv]l |  COplppmvl |  NOy[ppbvl | PMys[ugm=]

Mean SD (6\Y% ‘ Mean SD (6\Y% ‘ Mean SD (6\Y% ‘ Mean SD (6AY
Highway downwind roadside 380 160 0.42 460 30 0.064 45 33 074 64 56 0.87
Highway upwind background 230 120 0.54 440 30 0.068 16 18 1.1 48 47 099
Downsview 220 97 043 450 23 0.053 15 17 1.2 6.5 62 095
Hanlan’s Point 220 62 0.28 440 15 0.034 79 11 1.3 63 47 0.5
Wallberg (downtown) 240 85 0.36 450 20  0.044 14 12 0.9 59 48 0.82
HWY Down-HWY Up 150 110 0.69 17 17 0.99 28 25 0.9 1.8 39 2.2
Downsview—Hanlan’s 9.9 84 8.5 8 19 2.4 69 13 1.9 0.19 45 24

Note: the highway upwind background only included periods where the sensor was upwind (northerly) of the road, whereas other sites were not restricted by wind
direction or speed. In the case of PMj s, if these wind direction and speed limits were applied to all sites, backgrounds at other sites were more comparable to the

highway upwind background site (Fig. 5).

For CO, we measured similar background levels at the
Highway 401 downwind site and the Downsview urban back-
ground site, with the largest deviations between the two oc-
curring during morning rush hour (Fig. 3). There are two pos-
sible explanations for this morning divergence: first, higher
nearby anthropogenic activity and emissions coupled with
lower wind speeds in mornings would increase heterogeneity
in urban background concentrations across the city. Second,
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during low morning wind speeds, emissions from the high-
way might reach the background station. However, we sub-
sampled our highway upwind background measurements for
periods with non-stagnant winds, so this second explanation
should have a limited effect on our measurements. Thus the
morning rush-hour background CO differences in Fig. 3 indi-
cate increased spatial background heterogeneity during these
times. CO measured at the Hanlan’s Point urban background
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station was fairly level throughout the day, with a possible
slight peak during morning rush hour. CO at Hanlan’s Point
was roughly 5 % to 25 % lower than the backgrounds mea-
sured elsewhere in the city, except during midday to early
afternoon when concentrations were lowest and similar at
all three sites. At the Highway 401 site we measured back-
ground concentrations only when the sensor was upwind the
road. Further upwind was a suburban residential area north
of the highway, so emissions from gas-fuelled furnaces may
compound the background heterogeneity from low morning
wind speeds we mentioned previously, especially given that
our measurement campaign took place during winter months.

Like CO, background CO; concentrations had correlated
diurnal trends and levels at the highway and Downsview lo-
cations, with higher rush-hour concentrations at the highway.
This is indicative of spatial heterogeneity in CO; concentra-
tions across the city, especially during mornings, as we ob-
served for CO. Given that we calibrated CO; baselines across
sites, these differences indicate the near-road sites measured
more transient high CO; concentrations, which suggests non-
constant sources upwind of these sites. The difference be-
tween CO, measured at the urban background stations and
the highway upwind background means those distant urban
background stations would not serve as adequate estimates of
background CO; at the highway site if considering minutely
or hourly data. Conversely, the similarity in overall average
background CO; concentrations suggests that if we were to
consider only long-term (i.e. 24 h or greater) averages, dis-
tant urban background stations provide reasonable estimates
of average background CO, concentrations (Fig. 2 and Ta-
ble 2). More precisely, when comparing long-term averages
in Table 2, the difference between the highway upwind back-
ground and Downsview was less than 10 % for CO, CO»,
and NO,, indicating that for such longer-term comparisons
an urban background station would provide a fair estimate of
upwind background — it should be noted, however, that this
required restricting the highway upwind background by wind
direction and speed, while stations like the Downsview site
had no such restriction.

The only notable feature in diurnal patterns of PMj s
background concentrations was a shallow noon-to-early-
afternoon valley at Downsview and Hanlan’s Point, which
may be due to a combination of increased mixing, and evap-
oration under higher midday temperatures of secondary am-
monium nitrate formed in the early morning. The High-
way 401 background sensor recorded the lowest average
PM, 5 concentrations, but this difference disappeared when
the highway site’s wind direction and speed limits were ap-
plied to other sites. In other words, we found PM; 5 was
spatially homogeneous across Toronto (Fig. 2). This may
be reflective of dominant sources and processes contribut-
ing to particulate matter in Toronto. Lee et al. (2003) ob-
served over 2 decades ago that secondary processes were a
major source of total PM> 5 in Toronto, while more recently
Jeong et al. (2020) showed that, while source profiles have
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changed in the intervening years, secondary sources remain
dominant. The importance of such secondary formation pro-
cesses coupled with the trends in Figs. 2 and 3 indicates
that separating the contributions of background concentra-
tions and primary emissions to PM> 5 concentrations might
not be feasible using time-series (frequency) and regression
methods such as those discussed here. Conversely, homo-
geneity of PM»> 5 concentrations means urban background
stations should provide a good estimate of background PM5 5
throughout the city.

For CO, CO3, and NO,, the correlation in diurnal patterns
between background concentrations measured at the high-
way and Downsview sites suggests that the Downsview sta-
tion, situated within the city but about 175 m from the near-
est notable traffic emissions source, may serve as an ade-
quate estimate of upwind concentrations for measurements
near sources like the highway in Toronto but that the ac-
curacy of this estimate would be reduced during mornings
and evenings, when spatial heterogeneity across the city in
background concentrations may be larger. Across pollutants,
the level of hour-to-hour variability in Fig. 3 and standard
deviations in Table 2 correlated with the proximity of sites
to pollution emissions sources. The highway upwind back-
ground, while isolated from the road of interest via wind di-
rection, was still located in a dense urban area with a va-
riety of emissions sources and had strong diurnal patterns
throughout the day. We observed less hour-to-hour variabil-
ity at the Downsview and Hanlan’s Point urban background
stations. The Downsview site measurements were closer in
magnitude to the highway upwind background, but variabil-
ity was lower, especially during morning and evening. The
Downsview station is separated from immediate sources but
is still within a few hundred metres of emissions sources,
while concentrations measured at the more isolated Hanlan’s
Point were typically lower than all other sites (except for
PM; 5). Hanlan’s Point lays on an island in Lake Ontario
south of Toronto — while there is an airport on the same is-
land, its runway is over 1 km away. We posit the lower CO,
CO,, and NO, at Hanlan’s Point can be explained from an
absence of nearby sources, while the similar PM; 5 is ex-
plained by both the dominance of secondary and regional
particle sources.

Figure 4 shows scatters and kernel density estimates
(KDEs) of measured background CO, at the three back-
ground sites. Similar plots for the remaining measured pol-
lutants are available in Appendix J. From these scatters we
can derive similar conclusions about the relationship between
background concentrations at various sites across the city. As
we observed in Figs. 2 and 3, background concentrations at
the near-road site might be reasonably estimated for some but
not all pollutants. We observed that CO and CO, measured
at the Downsview urban background station were somewhat
correlated with background levels measured at the highway —
thus we expect concentrations measured at Downsview to be
important covariates in regression models predicting high-
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Figure 4. Paired scatters and kernel density estimates (KDEs) of measured background carbon dioxide concentrations, at three stationary
measurement sites in the Greater Toronto Area. Red lines are 1: 1. The KDE plots on the diagonal show the unitless distribution of the

measurements with areas summing to unity.

way Cpkg for CO and CO; — but we noted that the corre-
lation between Downsview and Highway 401 background
concentrations was less clear for NO,.. PM, 5 concentrations
were mostly homogeneous across the city and thus appeared
more strongly correlated in scatters (Fig. J3). Background
NO, concentrations were the least comparable between sites
(Fig. J2), corroborating our earlier observation that, despite
having low concentrations, NO, background concentrations
are paradoxically very spatially heterogeneous and have a
high degree of source-specific contribution at near-source
sites. From these results we can rank pollutants in order of in-
creasing background concentration geospatial heterogeneity:
PM; 5 < CO, &~ CO < NO,. While PM3 ;5 is clearly the most
homogeneous and NO, the most heterogeneous, the distinc-
tion in variability between CO; and CO is less clear.

We also observed that this ranking of geographic variabil-
ity was similar to the relative temporal variabilities in back-
ground concentration for each pollutant. The coefficients
of variation for the difference between the Downsview and
Hanlan’s Point sites in Table 2 reflect a similar ordering, with
the inter-site difference in PM» s having the most variability
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relative to its mean and NO, having the least. From these
comparisons of measured local and background concentra-
tions, we can conclude that in some cases the urban back-
ground sites can provide a suitable estimate of highway up-
wind background concentrations, but for some pollutants and
times of day, a direct measurement or algorithmic estimate of
background concentration is necessary. Accordingly, we fur-
ther applied and tested each of the background concentration
prediction algorithms we introduced in the methodology.

3.2 Comparing performance of background
concentration estimates

Figure 5 shows diurnal patterns of measured and predicted
concentrations at the Highway 401 site. The lines for XG-
Boost and pseudo-wavelet show background concentrations
estimated from the highway downwind data. This figure il-
lustrates the degree of agreement across the background con-
centrations estimates and contrasts this relative to the total
concentrations measured downwind of the highway.

Figure 6 shows measured—predicted scatters for a selection
of background concentration prediction algorithms. From
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Figure 5. Diurnal trends of measured total (black), measured background (blue), and predicted background (dashed purple, green, and red)
concentrations at the Highway 401 site. Only periods containing valid measures of Cpgg upwind of the highway as defined in the methodology
are included in these figures. Note that measured background trends may differ slightly from Fig. 3 as this figure only includes periods where
all shown measured and predicted backgrounds were concurrently available. Due to model accuracy and the effect of averaging to the nearest
hour, the lines for “Highway upwind bkg.” and “XGBoost bkg.” are sometimes superimposed.

these scatters we observed that the accuracy of a method
in estimating measured background concentrations was cor-
related with model complexity — the computationally com-
plex XGBoost model produced the most qualitatively ac-
curate scatters of those shown in Fig. 6, while the simpler
frequency (pseudo-wavelet) and urban background station
(Downsview) estimates were accurate at times but clearly
less reliable than the XGBoost predictions.

For PM3 5, we noted that our ability to produce an algo-
rithmic estimate of measured background concentration was
limited. Poor accuracy of predictions is likely explained by
the aforementioned sources and processes unique to PM; 5
out of all the pollutants studied here. For the remaining pol-
lutants, accuracy varied between methods but appeared gen-
erally superior to that of PM; 5. However, as previously men-
tioned, this does not preclude us from viewing PM» 5 as a
counterexample by which we can judge other, more accu-
rately predicted pollutants.

Figure 7 shows the root mean square error (RMSE) and
coefficient of determination (R2) of CO Cpkg predictions us-
ing each method, including the urban background stations,
roughly ordered by increasing complexity and accuracy. The
same metrics for NOy, CO;, and PM> 5 are available in Ap-
pendix H. Where Fig. 6 permits us to qualitatively examine
Chpkg prediction accuracy, Fig. 7 (and Figs. H1 to H3) quan-
titatively corroborates our observations that accuracy tended
to increase with model complexity. Unsurprisingly, the XG-
Boost and ensemble models generally had the greatest accu-
racy out of all algorithmic methods, according to prediction
RMSE and R%. When compared with urban background sta-
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tions, frequency methods tended to have similar error to mea-
sured background data from Downsview in predicting Cpyg
(except for NOy ), and regression methods, particularly XG-
Boost, had less error and greater R>. OLS and elastic net
had lower accuracy than XGBoost models, indicating some
degree of variable interaction or nonlinearity existed in back-
ground concentration behaviour, but the increase in accuracy
from linear regression to machine learning was minor for all
pollutants. Hanlan’s Point always had greater error and lower
R? than Downsview, a trend reflecting our above discussion
on the suitability of using a distant urban background station
for predicting on-site Cpkg. For CO; and NO,, the incremen-
tal gain in prediction accuracy between frequency and re-
gression methods was more apparent than for PM; 5 and CO,
suggesting accurate prediction of CO, and NO, might more
strongly rely on information contained in predictors other
than downwind Ciye,s. Interestingly, for NO, the predictive
accuracy of frequency methods was worse than simply us-
ing measurements from the Downsview background station
to predict Cpkg. This suggests background NO, cannot be ex-
tracted from downwind total NO, alone with high accuracy,
although as previously discussed high accuracy is not needed
for applications like resolving local contributions since back-
ground NO, is generally much lower than local NO;,. For
every other pollutant the accuracy of the Downsview back-
ground station in predicting Cpxg Was nearer to that of fre-
quency methods, though in some cases still had slightly bet-
ter accuracy than frequency methods. However, this differ-
ence was small compared to the difference for NO,. This
observation might also be reflective of our previously men-
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Figure 6. Measured—predicted scatters for selected methods of estimating background concentration at the Highway 401 site. Measured
concentrations are true Cpgg recorded by the AirSENCE device north and upwind of the highway. Scatters only include periods where Cpg
measures were valid as defined in the methodology and only periods where all background estimates were available. Red 1:1 lines are

included to illustrate the expected relationship.

tioned sensitivity in estimating background NO, due to its
relatively low average concentrations.

For PMy 5, the accuracy of algorithmic Cpk predictions
did exceed that of the Downsview station, but the relative
incremental gain in accuracy was less clear than for other
pollutants, suggesting little benefit can be gained for algo-
rithmically predicting background PM; 5 over simply using
an urban background station. Only the XGBoost and ensem-
ble models had notably superior accuracy for PM; 5, indi-
cating that greater complexity is necessary to accuracy pre-
dict background PM3 5 than for other pollutants. These trends
broadly align with our prior discussion on the homogeneity
and complexity of sources and processes governing back-
ground PM> 5. However, the RMSE of the low-cost sensor
placed upwind of the highway versus a reference sensor was
greater than the mean difference between up- and downwind
PM; 5 at the highway (see Appendix B), suggesting that in
addition to the homogeneity of PM» 5 (Figs. 2 to 4), our abil-
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ity to separate Cpkg from Creas Was limited for PMy 5, which
would inherently limit our ability to predict the same.

For CO and CO,, there is some similarity in accuracy
for frequency methods and regression methods. RMSE and
R? for CO predictions from regression methods were only
slightly better than RMSE for frequency methods. For CO,,
prediction RMSE and R? appeared to improve from fre-
quency methods to regression methods, and again to the en-
semble model, indicating similar levels of accuracy within
each class of algorithmic prediction models.

3.3 Importance of site-specific covariates

We fit each method to only a single field study site, so it is
difficult to conclude if our results are generalizable for urban
background concentrations or if they are specific to this site.
However, we can gain some insight into the generality of our
conclusions by testing the importance of site-specific infor-
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mation in producing accurate estimates of background con-
centrations with the regression methods tested here. Specif-
ically, to test the importance of on-site information in pre-
dicting background concentrations, we refit our XGBoost
model after shuffling covariates specific to the highway site,
but XGBoost hyperparameters and the total number of vari-
ables remained unchanged. Shuffling covariates refers to the
process by which one input variable at a time is randomly
shuffled, so the measurements of that variable are no longer
in order relative to other input and target features. By shuf-
fling covariates and refitting, we remove possible correlations
between site-specific features and the target measured back-
ground concentration but retain the same set of features so
we can refit the XGBoost model without retuning hyperpa-
rameters, enabling comparison of XGBoost predictions with
and without highway-specific inputs.

To produce this regression, we shuffled covariates specific
to the highway emissions source, including RLINE disper-
sion estimates, highway traffic counts, and traffic-weighted
average vehicle speed. The site-specific measurements we
left unshuffled were downwind total concentrations, Cpeas,
the target upwind background concentrations, Cpkg, and me-
teorology. We chose not to shuffle meteorology based on
our observation that meteorology is usually similar across
the city at any moment in time and thus could feasibly be
measured off-site. Meteorological measurements are also of-
ten widely available or measurable with relatively low-cost
instruments. Figure 8 shows normalized prediction errors
for Cpkg predicted via XGBoost for each pollutant with and
without shuffling.
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The errors in Fig. 8 suggest that removing information spe-
cific to the highway site did not produce a significant change
in XGBoost model accuracy. The absolute percent difference
between RMSE with and without site-specific variables shuf-
fled was less than 5 % for all pollutants, and differences were
within 1 standard deviation across cross-validation folds, in-
dicating little or no significant difference between models
with and without shuffled site-specific variables. This indi-
cates that most of the variability in Cpkg was explained by
highway downwind concentrations and other covariates not
specific to the highway — it is also reflective of our obser-
vations in Fig. 7 (and figures in Appendix H) that predict-
ing Cpkg With concentrations measured at the Downsview ur-
ban background station, while less accurate than some other
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methods, still produced prediction R? exceeding 0.5 for all
pollutants. Since concentrations measured at Downsview and
the highway were included as predictors in both cases in
Fig. 8, we can indirectly conclude that concentrations mea-
sured at Downsview coupled with concentrations measured
downwind the highway together contain most of the infor-
mation necessary to accurately predict Cpkg and that adding
more emissions-source-specific covariates only marginally
increased prediction accuracy.

This lack of difference between XGBoost accuracy with
and without site-specific features might imply our model of
background concentrations is not site-specific. That is, the
XGBoost model without highway-specific covariates might
be transferable to other locations. This in turn would mean
that the spatial variation of background across the city is
mostly encompassed within information provided by mea-
suring the total concentrations at different sites, consistent
with the assumption underlying frequency-based methods.
With only one near-source site in this study with up- and
downwind measurements, we did not further test this trans-
ferability. At the very least, this result shows our methodol-
ogy might be successfully repeated at new near-source sites
without requiring as many site-specific covariates as we in-
cluded here.

3.4 Regression model feature importance

We can examine feature importance in the XGBoost models
for each pollutant to gauge covariate importance for estimat-
ing Cpke. We achieve this using Shapley additive explana-
tions (SHAP) — SHAP plots can provide explanations of fea-
ture importance for complex nonlinear models where simple
coefficients are not available, as is the case with XGBoost
(Lundberg and Lee, 2017). Additional examples of SHAP
values in the context of air pollution research can be found
from Xu et al. (2020a, b). Figure 9 shows SHAP beeswarm
plots for the XGBoost model predicting highway upwind
background Cpkg for each pollutant.

The SHAP values in Fig. 9 suggest that for CO, CO,, and
NO,, the most important predictors of upwind background
at the Highway 401 site were concentrations measured at the
Downsview urban background site and hour of day. This is
consistent with each of our prior discussed results: generally,
concentrations measured at Downsview can provide a fair es-
timate of mean background concentration levels, but these
estimates may be inaccurate during some hours of the day,
and predictions can be notably improved through inclusion
of additional information. The fact that time of day is an im-
portant predictor aligns with our observation that Downsview
serves as a fair background estimate, except during morning
and to a lesser degree evening rush hours (i.e. except dur-
ing some hours of the day). Outside these important pre-
dictors, meteorology had notable importance for all pollu-
tants. Lastly, for PM; 5 pollutant concentrations measured at
Downsview, while still important, had a lower impact on pre-
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dictions, which is yet again reflective of the difficulty in pre-
dicting background PM; 5 at the highway site.

Concentrations measured downwind the highway, Cmeas,
were much less important predictors in XGBoost than con-
centrations measured at Downsview. This was unexpected
both based on theory and when comparing against other
methods: Creas should always be a direct sum of Cpkg and
local emissions, and thus we expect it to explain some vari-
ability in background concentrations. This result was also in
contrast to regression coefficients from our linear elastic net
fits, which fit large coefficients on Cpeas for all pollutants
(Appendix L). Regardless, the results of this SHAP analy-
sis suggest that Cpeas had a comparatively small impact on
XGBoost predictions. On the other hand, we found that our
frequency methods, which take only Cpeas as an input, had
fair accuracy. These two results together suggest that to ex-
tract useful estimates of Cpkg from Ciyeas, algorithmic meth-
ods benefit by considering not just concurrent measurements
but past and future values of Creas as well. In this study, we
did not include lagged values of Cpeas in regression mod-
els, so further exploration of such covariate transformations
might benefit Cyg prediction accuracy and understanding of
background concentration behaviour.

The importance of temperature for some predictions might
be explained by an uneven distribution of measured tempera-
tures. Most of our measurements occurred in winter with low
temperatures, while a minority of measurements at the end of
our study had higher temperatures. Because there are fewer
samples with high temperatures, regression models risk plac-
ing a greater relative importance on those samples, inflating
the relative importance of temperature. This can be improved
upon in future studies by extending a similar regression fit-
ting approach to a longer measurement period.

3.5 Limitations of analysis

As this study examined only a single urban area, the appli-
cability of our results to other urban areas relies on the as-
sumption that many cities feature a similar variety and het-
erogeneity of emissions sources and geography. The sites ex-
plored here, including both urban background and near-road
up- and downwind sites, represented a variety of geographic
features, including proximity to a large body of water, green
space, and proximity to emissions sources other than the road
targeted at the highway site. While our analysis of XGBoost
model accuracy without site-specific features in Fig. 8 lends
support to the idea that our model of background concentra-
tions is not specific to the highway site, this conclusion is
indirect and a better method of testing transferability would
be to apply our methods at new sites.

We also only explored background concentrations for four
airborne pollutants: three gaseous and one particulate. For
the gaseous pollutants tested, we expect that loss or forma-
tion via reaction will be low. While NO and NO, concentra-
tions can vary rapidly near roads through reaction, we only
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Figure 9. SHAP beeswarm plots for XGBoost models predicting upwind background concentration at the highway site. These figures indicate
relative degree of importance — for example, a blue dot far to the right on a feature indicates that a low value of that feature was associated
with a high predicted concentration. Each dot represents one predicted concentration and one value of that feature (bkg: background; dv:

Downsview; hwy: highway; meas: measured).

considered the sum of the two, NO,, which should remain
constant over the distances from the highway investigated
here. This simplicity of behaviour will simplify our mod-
els, and it is plausible that background pollutants with more
complex reaction mechanisms or sources might require more
covariates to accurately predict with regression models. For
example, modelling background ozone would probably ben-
efit from including insolation as an exogenous predictor.

Lastly, it remains unclear if these models would transfer
well to sites with different geometry, emissions sources, or
weather. It is plausible that the strength of the methods tested
here is due to the simplicity of the major source observed: the
size and business of Highway 401 lends confidence to the as-
sertion that it will be the dominant source of local airborne
pollution at the downwind highway site. Traffic also has con-
sistent diurnal patterns, and emissions intensity is easily in-
ferred through a simple traffic count, which itself has a strong
diurnal pattern. If the regression models presented here were
refit near a source with different characteristics, such as an
industrial source emitting at all hours of the day, or at a mea-
surement site with multiple strong upwind sources, it stands
to reason that predictive performance would be degraded.

4 Conclusions and recommendations

Based on the results of this study, we recommend that munic-
ipalities or air pollution specialists deploying sensors or mon-
itors with the aim of resolving the contribution of specific
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emissions sources consider carefully how they will measure
or algorithmically isolate the contribution of background to
total measured concentrations. Our sites in Toronto reflected
a variety of geographic features (varying built environments,
water proximity, green space, etc.), indicating that our find-
ing of varying background concentrations might apply to
other cities, since these features are common across many
urban areas. From our analysis of background concentration
prediction methods, we can recommend which method users
should choose based on their use case and availability of data.
These recommendations are loosely ordered by decreasing
strength of accuracy alongside decreasing cost:

1. If possible, direct measurement of background concen-
trations and wind immediately upwind the source of in-
terest should always be preferred.

2. In cases where measurements of upwind Cyy, are avail-
able for some but not all of the study period, we recom-
mend applying a regression approach. XGBoost or sim-
ilar machine learning approaches are preferable to tra-
ditional regressions, as they allow for nonlinearity and
unspecified interactions. Conversely, we caution against
applying regression models outside the conditions they
were trained in, such as different sites or seasons.

3. For applications where only long-term averages (i.e.
24h or longer) are of concern, using a distant urban
background station as a proxy for true on-site Cpkg mea-
surements will prove sufficiently accurate; however, for
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higher-resolution measurements, urban background sta-
tions may prove inaccurate during periods of peak emis-
sions, like during rush hour near a roadway.

4. For applications where both upwind Cpge measure-
ments and a suitable urban background station are
both unavailable or too costly, we suggest applying
one of the frequency methods described here, partic-
ularly the pseudo-wavelet method developed by Wang
et al. (2018) or the rolling ball algorithm. For these
frequency methods, in roadway applications we sug-
gest using hyperparameters like those identified here
(see Appendix K). For pollutants other than those mea-
sured here, we suggest applying parameters like those
we identified, based on similarity in pollutant behaviour
— for example, if a pollutant is expected to be a strong
tracer or a local source, as NO, is for traffic, we sug-
gest applying similar hyperparameters as used for NO,
in this study.

5. In a similar vein, for cases where municipalities are
deploying networks of sensors or epidemiologists are
exploring geographic variability of background con-
centrations vs. local emissions, we suggest applying
the pseudo-wavelet or rolling ball frequency methods.
While the context of our tests here were up- and down-
wind differences targeting a single roadway emissions
source, the theoretical basis of frequency methods — that
background concentrations vary on a longer timescale
than local emissions — extends these methods to pollu-
tion concentrations regardless of proximity to one par-
ticular source. The pseudo-wavelet method applied in
this context is also touched upon by Wang et al. (2018)
and Hilker et al. (2019).

Generally, we do not suggest applying the naive rolling
minimum method — superior frequency methods only require
minimal additional computational cost. The usefulness of the
ensemble method is also dubious. While the ensemble model
did produce the best output in this case, this is to be expected;
an ensemble model should outperform its constituent mod-
els. However, the extent of information and effort required to
implement such a model for predicting Cpyg seems to exceed
the potential benefit of gains in predictive accuracy. Finally,
we suggest any study targeting specific emissions sources
carefully consider how to extract local versus background
contributions to measured concentrations, including but not
limited to applying one of the methods tested here. We also
encourage additional research in separating local and back-
ground concentrations, especially with different emissions
sources or regions or for different types of measurements,
such as mobile monitoring or distributed sensor networks.
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Appendix A: Micrometeorological and other inputs for
RLINE

We used the RLINE model to produce dispersion estimates as
an input feature for regression models in this study (Snyder
et al., 2013). The RLINE model uses outputs from the AER-
MET micrometeorological pre-processor produced by the
United States Environmental Protection Agency (U.S. EPA,
2004). AERMET requires a variety of micrometeorological
measurements as inputs, which can be provided in a vari-
ety of formats. We employed measurements from Toronto’s
Pearson International Airport, acquired from the National
Centers for Environmental Information Integrated Surface
Database (National Centers for Environmental Information,
2025), and upper air measurements at Buffalo Niagara Inter-
national Airport, acquired from the National Oceanic and At-
mospheric Administration’s radiosonde database (National
Oceanic and Atmospheric Administration, 2024).

We identified lane and receptor geometry using ArcGIS
Pro and Google Earth Pro. We set initial vertical dispersion,
07.init» Using the recommended formula in the RLINE user
manual, which in turn points to EPA guidance (Environmen-
tal Protection Agency, 2010; Snyder and Heist, 2013). This
formula uses vehicle heights and fleet mix to estimate initial
dispersion — we assumed vehicle heights of 1.5 m for light-
duty vehicles and 4.15m for medium- and heavy-duty ve-
hicles, based on the same EPA guidance document and the
law in Ontario governing maximum vehicle height (Ontario,
2012). Other inputs were taken from recommendations in the
RLINE user manual.

Appendix B: Data processing

Analysis code and raw data can be made available
upon request. Data processing was conducted primar-
ily in Python, including the open-source library pandas
(https://doi.org/10.5281/zenodo.3509134,  The  pandas
development team, 2020), numpy (Harris et al., 2020),
matplotlib (Hunter, 2007), scipy (Virtanen et al., 2020),
patsy  (https://doi.org/10.5281/zenodo.10459707, Smith
et al.,, 2024), statsmodels (Seabold and Perktold, 2010),
seaborn (Waskom, 2021), shap (Lundberg and Lee, 2017),
windrose (https://doi.org/10.5281/zenodo.13133010,
Celles et al, 2024), xgboost (Chen and Guestrin,
2016), optuna (Akiba et al, 2019), cmcrameri
(https://doi.org/10.5281/zenodo.8409685, Crameri, 2023),
tqdm (https://doi.org/10.5281/zenodo.14231923, da Costa-
Luis et al., 2024), scikitlearn (Pedregosa et al., 2011), and
scikit-image (van der Walt et al., 2014).

To ensure air pollutant concentration measurements were
accurate, realistic, and comparable between sites, we per-
formed an extensive quality assurance and control process
on the raw measurements prior to use. First, gas-phase in-
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struments at the Downsview, Hanlan’s, Wallberg, and High-
way 401 south sites are calibrated regularly.

Prior to analysis, we applied the following steps to raw
measurements:

1. We removed periods identified as invalid measurements
in our measurement database for reasons such as cali-
bration or maintenance. In some cases, we dropped ad-
ditional measurements if it appeared the instrument was
turned back on too soon after calibration.

2. We manually removed some periods that appeared to
have extreme outliers or unusual behaviour sugges-
tive of instrument malfunction, calibration problems, or
transient spikes unrelated to the measured road emis-
sions or background concentrations.

3. We corrected PM; 5 measurements from the AirSENCE
instrument for interference from humidity with the cor-
rection equation suggested by Crilley et al. (2018).

4. We corrected for baseline drift in CO, measured at Han-
lan’s Point, Wallberg, and both Highway 401 stations by
assuming concentrations measured at these sites must
be similar to CO; measured at the Downsview site occa-
sionally over a 48 h period. We selected the Downsview
urban background station as the reference site for this
adjustment because it was calibrated during the sam-
pling campaign. We applied such a correction specifi-
cally by calculating the rolling 48h 0.1 % quantile of
each CO; signal and assuming these rolling quantiles
must be equal — we then added the difference between
the Downsview quantile and each site’s rolling quantile
to the CO; signal at each site (except Downsview, since
it was treated as the reference). We applied a similar
baseline correction for CO only at the Hanlan’s site, as
this site’s CO measurements began drifting near the end
of the measurement period.

5. We calibrated the Highway 401 background AirSENCE
instruments by placing the sensor package on the roof
of the Highway 401 south station for nearly 18 d prior
to deployment to the north side of the highway. With
these 18d raw pollutant measurements, we calibrated
the AirSENCE instrument against measurements from
the south station’s reference instruments. This calibra-
tion was specifically a linear regression, regressing a
target function like the following:

Cret = Bo+ B1Cas + B2T + B3P + B4RH

+ B5CasT + BsCas P + B7CasRH, (B1)
where Crr denotes concentrations recorded by the refer-
ence instruments, Cag denotes concentrations measured

by the AirSENCE low-cost platform, T is ambient tem-
perature, P is ambient pressure, RH is ambient relative
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Table B1. Statistics comparing concentrations measured by the
low-cost AirSENCE sensor platform to reference instruments be-
fore and after calibrating the AirSENCE measurements.

Pollutant ~R? RMSE Ap_;; Fractional

bias

Pre- Cco 0.92 82 0.18 —0.19
calibration ~ CO, 0.83 12 1.0 —0.015
PM, s 0.75 42 0.16 0.19

NO, 0.98 33 0.0025 —0.56

Post- co 0.93 36 0.77 ~0
calibration CO» 0.85 8.7 1.0 ~0
PM> 5 0.78 3.6 0.20 ~0

NO, 0.98 45 0.58 ~0

humidity, and 8 denotes regression coefficients. We re-
gressed this function for each pollutant and then created
predicted values of Cyf for the entire measurement cam-
paign and treated these values as calibrated measure-
ments from the AirSENCE device after we deployed it
to the north (background) side of the highway.

6. After the above steps, we set concentrations less than
zero to 107> for each pollutant. We applied this adjust-
ment to simplify analyses that required taking the loga-
rithm of concentrations.

Table B1 shows some measures comparing AirSENCE
pollutant concentrations to reference instruments at the High-
way 401 south station before and after calibration. These
measures generally appear to indicate that the AirSENCE re-
ported similar concentration measurements to the reference
instruments during the training period after measurements
were preprocessed using steps 1 through 5 above.

The performance statistics in Table B1 imply that, af-
ter calibration, measurements captured by the low-cost
AirSENCE sensors were comparable to those captured by
the reference instruments, with small errors and effectively
no bias for CO, CO,, and NO,.. However, for PM> s, the frac-
tion of values falling within a factor of 1.1 (Ar=1.1) and the
RMSE imply that PM» 5 measurements were relatively less
accurate than other pollutants. This likely compounded with
our observation of homogeneity in PM» 5 background con-
centrations in the Toronto region, further reducing our abil-
ity to separate Cpkg from Cineas for PMj 5 at the Highway 401
site. Accordingly, and as mentioned in the main article body,
our ability to extract meaningful results at the Highway 401
site was lower for PMj 5 than for other pollutants. However,
our observation that PM; s was largely homogeneous across
Toronto remains valid, as the low-cost AirSENCE device was
only deployed at the highway upwind background site.
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Appendix C: Descriptions of background concentration
prediction algorithms

The following sections list the various frequency- and
regression-based algorithms we tested for estimating on-site
upwind background concentrations. Most methods follow a
similar optimization scheme, and all were tuned to produce
the best possible estimate of measured background, Cpkg, at
the highway upwind background site.

Except where otherwise noted, we applied a similar op-
timization method for tuning and fitting each of these al-
gorithmic models. We employed the Optuna Python library,
which applies Bayesian hyperoptimization to search the pos-
sible space of hyperparameters for an optimal configuration
(Akiba et al., 2019). For scoring during optimization, we
calculated the 5-fold cross-validated root mean square er-
ror (RMSE) of predictions. In stratified cross-validation, the
model is fit or regressed to most of the data (the training set)
while a subset is held aside (the test set). After fitting, predic-
tions are generated for the held-out test set and compared to
the target variable in that set. In this study, this means the re-
gression model is fit to 4/5 (80 %) of the measurements, and
then predictions are made using the remaining 1/5 (20 %)
of measurements, and we calculated the RMSE of those pre-
dictions. The mean RMSE across all 5 folds is then taken
as the score for that hyperparameter configuration, and the
set of parameters with the lowest RMSE after some prede-
fined number of optimization trials is selected as the optimal
model.

For frequency-based methods, the concept of creating pre-
dictions for a held-out set is less meaningful, because these
methods use information in the input Cpe,s Signal across a
span of times to produce their Cpkg predictions, so holding
out some data is challenging. However, to produce an RMSE
score that was more comparable to that for regression meth-
ods, we produced a frequency-method Cpe prediction for all
measurements, then calculated the RMSE for the indices as-
sociated with each of the 5 cross-validation folds, and then
took the mean of those 5 RMSE scores as the final score for
that optimization trial. In this way, the score was a mean of
scores, similar to the cross-validation approach in regression
methods. We applied this same mean-of-fold’s-scores ap-
proach when evaluating frequency-method predictions as in
Figs. 7 and H1-H3. We also limited evaluation of frequency
methods to use only those measurement periods where re-
gression methods were also evaluated. We do this because the
large number of predictors in regression methods gives rise
to some gaps in the feature set that are not included during
regression — using only those times made available to regres-
sion methods ensures a fair comparison between background
stations, frequency methods, and regression methods.

We prioritized the RMSE as our regression metric due to
its popularity in the literature and because it produces an er-
ror in units of the target concentration (i.e. ppmv, ppbv, or
ugm™3). However, we note that other metrics might pro-
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duce superior model fits due to their statistical advantages.
In particular, the mean squared log error (MSLE) has advan-
tages for air pollution research, on the basis that atmospheric
pollution concentrations are bounded and not normally dis-
tributed. Airborne concentrations are typically log-normally
distributed, meaning a prediction error underestimating the
true concentration must be bounded between zero and the
true concentration, while an overestimating prediction has
no upper bound. This uneven bounding means algorithms
attempting to minimize the RMSE of airborne concentra-
tions are more likely to produce a prediction that underesti-
mates than overestimates, because the RMSE penalizes pos-
itive and negative errors equally, but only positive errors are
unbounded. The MSLE, on the other hand, more strongly pe-
nalizes underestimations because it log-transforms the target
and prediction, which is appropriate for air pollution concen-
trations where underestimations are more likely to be small
due to their bounded nature. Despite these advantages, we re-
tained the RMSE as our primary metric for the reasons men-
tioned above. Also, a reader can immediately understand an
RMSE score in the context of typical real-world pollutant
concentrations: an RMSE of 10 ppmv for a CO, prediction is
understandable relative to typical real concentrations above
400 ppmv, but a MSLE of 0.001 log-ppmv is not intuitive.

The following sections describe each algorithmic Cpyg
prediction method in detail.

C1 Naive rolling minimum

Baseline or background concentrations in the literature are
frequently estimated as a concentration that is less than and
occasionally but not always equal to the total measured
concentration — in other words, the background concentra-
tion is taken to loosely follow the lower limit of measured
concentrations, while transient peaks are attributed to local
sources. Examples of such approaches include those applied
by Klems et al. (2010), Sabaliauskas et al. (2014), and Hilker
et al. (2019). Similar approaches are also applied in other
fields, such as removing baseline signals in spectroscopic
signals, which share some similar characteristics to pollutant
concentration signals.

Other than taking the absolute minimum measured con-
centration as a baseline, the next simplest approach is to
consider a rolling minimum over some period of continu-
ous measurements. Thus, a rolling minimum background has
only one parameter to tune: the width of the rolling window.
We considered possible window widths in the range of 5 min
to 48 h. Because of the simplicity of this approach, we did
not apply Bayesian hyperoptimization and instead tested all
window widths in this range in 5 min increments.

We did not expect the naive rolling minimum model to
produce reasonable estimates of background concentration.
Instead, we intended this method to serve as a bar by which
to judge the remaining, more sophisticated algorithmic pre-
dictions.
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C2 Pseudo-wavelet

The pseudo-wavelet method estimates a background concen-
tration similarly to wavelet methods a la Klems et al. (2010)
and Sabaliauskas et al. (2014), but it is not a true wavelet al-
gorithm. At a high level, the pseudo-wavelet algorithm pro-
duces multiple interpolations between the two smallest val-
ues of measured downwind concentrations within a rolling
window of varying widths and then averages these interpo-
lations to produce a smoothed estimate of background con-
centration. The algorithm requires three inputs: the mea-
sured total pollutant concentrations, Cpeas; the initial width
of the rolling windows, W, in units of the Cpeas measure-
ment frequency, which in this case was minutes; and a unit-
less smoothing parameter, «.

Additional detail and applications of the pseudo-wavelet
algorithm are provided by Wang et al. (2018), where it was
originally introduced, and by Hilker et al. (2019), who eval-
uated background concentration predictions produced by the
pseudo-wavelet method against some other methods.

C3 Rolling ball

The rolling ball method simulates sliding a ball along the
bottom of the measured total pollutant signal, with the back-
ground being the trace defined by the path of the top of
the ball. This approach is common in image processing to
remove uneven or noisy image backgrounds. We are not
aware of any implementations of this method in air quality
studies, but background concentrations predictions from the
rolling ball algorithm have similar properties to those from
the pseudo-wavelet algorithm. The rolling ball method re-
quires three inputs: Cpe,s and two tuning parameters defining
the shape of the ball.

In air pollution data, the horizontal axis of the Creas signal
is in units of time, while the amplitude is in units of pollu-
tion concentration. Accordingly, the rolling ball algorithm in
practice is more accurately described as sliding an ellipsoid
along the bottom of the Cpeas signal, with the dimensions
of the ellipsoid being defined in different units from each
other. The semi-major axis of the ellipsoid will align with the
concentration (vertical) axis of the pollutant signal and have
units of concentration, while the semi-minor axis will align
with the temporal (horizontal) axis and have units of the pol-
lutant signal’s frequency — in this case, minutes. Thus, the
rolling ball algorithm requires two tuning parameters which
are these semi-axis lengths. To simplify this algorithm, we
fixed the length of the concentration semi-axis as equal to
the standard deviation of the total measured downwind con-
centration, Cpeys, Of the relevant pollutant. This reduced the
number of parameters needing tuning to one. We optimized
this remaining parameter, the length of the temporal semi-
axis, via hyperoptimization. We considered possible widths
in the range of 2 min to 48 h.
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C4 Regression model covariates

Regression-based methods incorporated both the measured
highway downwind concentration signal alongside addi-
tional predictor variables to estimate upwind background
concentrations. They do not incorporate the time-series na-
ture of the measurements, using only concurrent values of
each covariate to estimate background. We did not develop
these regression models from a theoretical basis but from a
primarily statistical basis — we selected covariates for their
potential to improve estimates regardless of any possible
physical interpretation of their effect in a regression model.

The covariates included in each of the base regression
models were the following:

— total concentrations measured downwind the highway,
Cneas, 1n units matching the pollutant;

— concentrations measured at the two urban background
stations, Cpkg,dv and Chpkg,hanlans» also in units matching
the target pollutant;

— counts of vehicles on the highway in each minute, N, in
units of vehicles min~!, and a weighted average vehicle
speed, in kmh™! (Only the nearest 8 of 17 lanes on the
highway were captured by a radar counter.);

— RLINE dispersion predictions, khwy, in units of s m~2;
— squared cosine and sine of wind direction measured at
the highway, cos2(6), sin?(0):

- wind speed measured at the highway, u, in ms~', taken
as the inverse (1/u);

— ambient temperature measured at the highway, 7', in °C,
squared;

— ambient pressure measured at the highway, P, in hPa;

— ambient relative humidity measured at the highway, RH,
in %;

— hour of day and day of week encoded as one-hot
columns for OLS and elastic net and as integers for XG-
Boost.

Concentrations measured at Downsview are denoted with
the subscript dv and Hanlan’s Point with the subscript han-
lans.

We included meteorological measurements from only the
highway site; however, when testing the importance of high-
way site-specific regression features in Sect. 3.3, we did not
permute meteorology variables because these values tend to
be strongly correlated at sites across the city and are thus not
site-specific in the sense that we sought in this analysis. The
purpose of testing highway site-specific feature importance
was to indirectly test model transferability, and since meteo-
rology should be similar across sites, it does not need to be
considered a site-specific feature.
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For all regression models, we scaled covariates to zero
mean and unit variance before fitting.

CS Ordinary least squares regression

As a first-pass regression model we employed a simple or-
dinary least squares (OLS) multiple linear regression, with
each of the above-listed covariates as exogenous regressors.
While we do not necessarily expect the relationship between
measured background concentrations and any particular co-
variate to be linear, we included a linear regression estimate
due to the familiarity and popularity of such models in the
literature.

We expect regularized and non-linear machine learning
models to match or outperform OLS for all pollutants. As
the naive rolling minimum sets the bar for accuracy for all
algorithmic estimates, the OLS model sets a second hurdle
by which to judge more sophisticated regression models.

C6 Regularized (elastic net) regression

Elastic net regression is a linear model like OLS but ap-
plies additional penalties to model loss during fitting based
on the size of regression coefficients, essentially preferring
more parsimonious models with smaller coefficients. Elas-
tic net specifically includes both L1 and L2 regularization
terms, which when applied individually would be referred to
as lasso and ridge regression, respectively. The L1 penalty
shrinks coefficients towards zero, penalizing large coeffi-
cients and performing variable selection. The L2 penalty
shrinks large coefficients asymptotically towards zero. Ap-
plying these penalties to a linear regression model retains
the interpretability of linear regression coefficients but re-
duces the risk of overfitting through both variable selec-
tion and coefficient shrinking. In this application, we expect
the elastic net regression to outperform OLS because we
test our background concentration estimates through cross-
validation, which will help identify models that overfit to
training data. We selected the degrees of L1 and L2 regu-
larization through hyperoptimization.

C7 Machine learning with XGBoost

Machine learning allows for non-linearity and feature in-
teractions in the underlying relationship between true back-
ground and covariates. However, the downsides are a risk of
overfitting, challenging tuning, and reduced interpretability.
XGBoost has many hyperparameters to tune that can indi-
vidually and together strongly influence model performance.
We selected some hyperparameters to tune and others to
hold constant based on trial and error. We optimized maxi-
mum tree depth, number of boosting rounds, learning rate,
L1 and L2 regularization, and XGBoost’s gamma regulariza-
tion term. We held other parameters constant at either their
default values or at values selected through trial and error and
case knowledge. We set minimum and maximum bounds for
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hyperparameter optimization based on best judgement and
again through extensive trial and error.

C8 Ensemble background estimate

As a final algorithmic Cpkg prediction model, we considered
an ensemble of predictions from each of the methods intro-
duced thus far. Our ensemble model was an L2-regularized
(ridge) regression taking each of the other estimated back-
grounds (two urban background stations, three frequency
methods, and three regression methods) as exogenous vari-
ables, along with an intercept. The ensemble regression did
not include the covariates listed above that were included in
the base regression models, instead taking the outputs of the
other models as inputs. We selected the degree of L2 regu-
larization for the ensemble model by searching 160 logarith-
mically spaced values from 10~ to 107, rather than through
randomized Bayesian hyperoptimization.
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Appendix D: Meteorology at the highway field site
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Figure D1. Mean diurnal patterns of wind speed (u), temperature
(T), pressure (P), and relative humidity (RH) measured at the High-
way 401 downwind south station.
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Figure D2. Wind rose depicting dominant wind speeds and direc-
tions at the Highway 401 field study location, measured on the south
and predominantly downwind side of the highway.
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Figure D3. Diurnal heatmap depicting frequency of wind directions
measured on the south side of Highway 401 over the entire study
period. The dashed red line indicates the direction that would be
directly perpendicular and across the road at the measurement point.
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Appendix E: Comparing SHARP and T640 instruments
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Appendix F: Separating local and background signals
by wind speed and direction

Figure F1 shows background and roadside downwind con-
centrations at Highway 401 as a function of concurrent wind
direction. From this figure, we identified the wind directions
appropriate for considering the background sensor north of
the highway to be a true measure of Cpke. As indicated in
the methodology, the range we selected was between 80°
to the northwest and 40° to the northeast — these directions
correspond to approximately 260 and 60° with respect to
north, with the offset of 20° accounting for the angle of
the highway. We chose these limits based largely upon the
ranges where the difference in down- and upwind sensors
(i.e. Ciocal = Cmeas — Cokg = AC) began to trend towards
ZEero.

In addition to decreasing mean concentrations concurrent
with the higher wind speeds as discussed in the methodol-
ogy and visible in Fig. F2, we also observed an unexpected
maximum mean Clocy for some pollutants at wind speeds
~2ms~!. This was most apparent for NO, but was also
present to a lesser extent in CO and CO,. The cause of in-
creasing Clocar at wind speeds below 2ms™! is not clear.
With all other variables (meteorology, emissions, etc.) held
constant, simple dispersion theory predicts decreasing lo-
cal concentrations associated with increasing wind speeds.
There are some possible explanations for this observation:
higher wind speeds typically occur during midday to after-
noon when insolation is greatest, which is concurrent with
higher anthropogenic activity and thus emissions. This pos-
sibility is supported qualitatively by Fig. F3, which shows
similar trends of Ciocq as a function of wind speed but with
the underlying measurements coloured by time of day also
shown. In these figures, we observed that higher wind speeds
and higher concentrations both tended to occur later in the
day — more green points are to the right of the axes in Fig. F3,
indicating that we recorded higher wind speeds more often
later in the day. These simultaneous correlations lend them-
selves to the appearance of a positive correlation between
wind speed and Cjecql. This can be corroborated by compar-
ing the diurnal trends of Cjocqp in Fig. I1 and wind in Fig. D1,
where we observed high average concentrations during the
same times of day as high average wind speeds.

https://doi.org/10.5194/amt-18-2201-2025 Atmos. Meas. Tech., 18, 2201-2240, 2025



2224 T. D. Edwards et al.: Comparing methods to estimate near-road background pollution

Highway 401
400 + F 150 465 — Cmeas
- 100 Coka
350 T 460 1 - == QME[
T S0 T % 4551 3
2 300 - | 2 & E
g 0 5 = 450 2
© L so 2 8 !
2501 445
- —100
440
200 1
L —150
435 A
? e~ >
£ i 2 =
g ! E 2 |
=1 ] o fery a
T ! 3 3 =
n |
= ! 4 H 3
o I
!
{
f
/
; S
-150 -100 -50 0 50 100 150 -150 -100 -50 O 50 100 150

Wind dir. relative to cross-road [deg] Wind dir. relative to cross-road [deg]

Figure F1. Median pollutant concentrations at the Highway 401 site binned by concurrent wind direction in 1° bins. The difference (A) be-
tween the measured (red) and background (blue) concentrations is shown in black on the secondary y axis. Wind direction is adjusted so zero
is directly normal and facing across the road from the roadside downwind measurement site. The highway lays mostly east-west, so positive
directions indicate more easterly winds, and negative directions indicate more westerly winds. Trends were smoothed and interpolated with

a weighted centred rolling mean across 15 adjacent increments, weighted by sample size.
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Figure F2. Mean pollutant concentrations at the Highway 401 site as a function of concurrent wind speed. Trends were generated by
first calculating mean concentrations within 0.1 ms~! bins of concurrent wind speeds. Increments with fewer than 60 measurements were
excluded. Trends were smoothed and interpolated with a weighted centred rolling mean across 11 adjacent increments, weighted by sample
size. For Cjocq1, we only included periods where Cjocq) > 0 when producing these trends.
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Figure F3. Mean pollutant concentrations at the Highway 401 site as a function of concurrent wind speed. Mean trends were generated by
taking mean concentrations within 0.1 m s~1 bins of concurrent wind speeds. Points are underlying measurements used to generate the trends
and are coloured by hour of day the measurement fell within. We only included periods where Cjo¢q) > 0 when producing these scatters and
trends.
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Appendix G: Exemplar time-series trends
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Figure G1. Example of measured and estimated background pollutant signals at the Highway 401 field study site. For clarity, not all
background estimation methods are shown here. Grey-shaded regions indicate when the south site was downwind the highway, indicating

periods where the Cpg signal was a valid measurement of background concentration as defined in the methodology.
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Appendix H: Cygg prediction accuracies for NOy, CO3,

and PMZ‘ 5
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Figure H1. Root mean square error (RMSE, bars) and coefficient of determination (Rz, diamonds) for predicted background NO, at the
highway site, as predicted by each method tested here. Scores show the accuracy of each method in estimating true upwind background
concentration, with lower RMSE and greater R? being better. Scores were calculated as the mean across 5-fold cross-validation.
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Figure H2. Root mean square error (RMSE, bars) and coefficient of determination (Rz, diamonds) for predicted background CO; at the
highway site, as predicted by each method tested here. Scores show the accuracy of each method in estimating true upwind background
concentration, with lower RMSE and greater R? being better. Scores were calculated as the mean across 5-fold cross-validation.
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highway site, as predicted by each method tested here. Scores show the accuracy of each method in estimating true upwind background
concentration, with lower RMSE and greater R? being better. Scores were calculated as the mean across 5-fold cross-validation.

Appendix I: Cjgcq diurnal patterns
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Figure I1. Mean hourly diurnal trends of the difference between measured concentrations downwind the highway (Cmeas) and background
concentrations upwind of the highway (Cpgg) for each pollutant. Periods where the difference, Clocal, Was negative were excluded. When
producing these trends, we limited data to periods where the sensors were up- and downwind of the road but did not apply limits to wind
speed.
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Appendix J: Background concentration scatters
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Figure J1. Paired scatters and kernel density estimates (KDEs) of background carbon monoxide concentrations at three stationary measure-
ment sites in the Greater Toronto Area. Red lines are 1 : 1. For the Highway 401 site, backgrounds were only considered valid when wind
direction and speed fell within the ranges specified in the methodology; figures only show periods where backgrounds were concurrently
measured at each site. To speed calculation of the KDE and lower figure density, a random 10 % subset of measurements are shown here.
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Figure J2. Paired scatters and kernel density estimates (KDEs) of background nitrogen oxides (NO + NO») concentrations at three stationary
measurement sites in the Greater Toronto Area. Red lines are 1 : 1. For the Highway 401 site, backgrounds were only considered valid when
wind direction and speed fell within the ranges specified in the methodology; figures only show periods where backgrounds were concurrently
measured at each site. To speed calculation of the KDE and lower figure density, a random 10 % subset of measurements are shown here.
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Figure J3. Paired scatters and kernel density estimates (KDEs) of background particulate matter < 2.5 um diameter concentrations at three
stationary measurement sites in the Greater Toronto Area. Red lines are 1 : 1. For the Highway 401 site, backgrounds were only considered
valid when wind direction and speed fell within the ranges specified in the methodology; figures only show periods where backgrounds were
concurrently measured at each site. To speed calculation of the KDE and lower figure density, a random 10 % subset of measurements are
shown here. Note that the Hanlan’s Point site used a different PM, 5 instrument — see methodology for details.
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Appendix K: Frequency method optimized
hyperparameters

While frequency methods were often less accurate in predict-
ing Cypkg than regression methods, they can provide insight
into background pollutant behaviour by examining their op-
timized hyperparameters. For the naive rolling minimum and
rolling ball algorithms, both were fit with a single hyperpa-
rameter, and in both cases this single parameter expresses
an effective width of temporal duration of measured road-
side downwind concentrations to consider when estimating
background concentrations. For the naive rolling minimum,
the tuned parameter is the window width in minutes, and for
the rolling ball axis it is the radius along the temporal semi-
axis of the ellipse that is “rolled” along the bottom of the
downwind pollution concentration signal. For both, a larger
parameter produces a predicted Cpkg that has less or slower
temporal variability and a lower average magnitude. For the
pseudo-wavelet method there are two parameters that are
somewhat interchangeable in how they affect the resulting
Chkg prediction, but they can be similarly interpreted because
larger values again produce more slowly varying and smaller
signals.

Table K1 shows the hyperoptimized best parameters for
each frequency method. The differences between optimized
parameters reflected the characteristics and spatial variabil-
ity of the pollutants — particularly the order of pollutants as
ranked by frequency method coefficients loosely correlated
with pollutants as ordered by their coefficients of variation
(CVs) in Table 2. NO, and PM, s had the largest hyperpa-
rameters across methods and the greatest CVs, followed by
CO, and then CO,. Another way to interpret these parameters
is to consider that for all frequency methods, very large hy-
perparameters lead to background predictions that approach
a constant value, so the relative size of these parameters in-
dicates the extent to which the background concentration for
that pollutant might be appropriately estimated as a constant
value. Thus, these parameters provide additional, albeit indi-
rect, evidence for differences in temporal variability of pollu-
tant backgrounds relative to their means. This correlates with
our prior observation that low NO, background concentra-
tions paradoxically make predicting NO, Cypkg both easier
and harder depending on the context.

For the pseudo-wavelet algorithm, the rankings of opti-
mal o« and W parameters were similar to the naive minimum
and rolling ball methods. Larger values of W produce back-
ground concentration predictions that vary more slowly and
less frequently equal the input Cpeas signal and thus make
up a smaller portion of the total measured concentration. In
other words, larger values of W indicate that local emissions
are a more dominant driver of concentration variability. Sim-
ilar conclusions can be drawn for values of «. However, to a
certain extent W and « are interchangeable, as demonstrated
by the examples in Hilker et al. (2019), so it is more chal-
lenging to draw meaningful conclusions about background

Atmos. Meas. Tech., 18, 2201-2240, 2025

Table K1. Hyperoptimized parameters for the naive rolling min-
imum, rolling ball, and pseudo-wavelet (PW) background estima-
tion algorithms. Parameters are in units of minutes except «, which
is unitless.

Naive Ball | PWa PWW
CcO 115 185 15 16
CO, 45 86 7 19
NO, 210 289 23 23
PM, 5 175 360 22 22

concentration characteristics from the pseudo-wavelet algo-
rithm’s parameters than from the naive and rolling ball meth-
ods, which each use a single and more easily interpreted
tuning parameter. Despite this, we find a broad agreement
across frequency methods in the relative magnitudes of opti-
mized parameters between pollutants: these parameters sug-
gest NO, and PM; 5 background concentrations varied less
rapidly relative to their average levels than CO; and CO.
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Appendix L: Elastic net regression coefficients
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Figure L1. Elastic net regression coefficients for predicted highway upwind background CO. The optimal degree of L1 and L2 regularization
was identified via 5-fold stratified cross-validation. Covariates were standardized prior to fitting, so coefficients are unitless.

https://doi.org/10.5194/amt-18-2201-2025 Atmos. Meas. Tech., 18, 2201-2240, 2025



2234 T. D. Edwards et al.: Comparing methods to estimate near-road background pollution

Highway 401 CO,

CCOZ, meas, hwy 7

CCOz,bkg, hanlans
Cco,, bkg, dv T
Avg. veh. speed -

Traffic count
RLINE dispersion -
1/thy 1
Sin(Bhuy)? 1
€0S(Bhuy)? 1
Thuy T

Phwy 1

RHpwy 1

Day of week 6 -
Day of week 5 -
Day of week 4 -
Day of week 3
Day of week 2
Day of week 1
Day of week 0
Hour 23 4

Hour 22 4

Hour 21 1

Hour 20 1

Hour 19 4

Hour 18

Hour 17 A

Hour 16

Hour 15 1

Hour 14 4

Hour 13 4

Hour 12 4

Hour 11 4

Hour 10 1

Hour 9 A

Hour 8

Hour 7 A

Hour 6 -

Hour 5 A

Hour 4 -

Hour 3 A

Hour 2 A

Hour 1 -

Hour 0 A

-2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Coefficient [unitless]

Figure L2. Elastic net regression coefficients for predicted highway upwind background CO,. The optimal degree of L1 and L2 regularization
was identified via 5-fold stratified cross-validation. Covariates were standardized prior to fitting, so coefficients are unitless.
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Figure L3. Elastic net regression coefficients for predicted highway upwind background NO,. The optimal degree of L1 and L2 regulariza-
tion was identified via 5-fold stratified cross-validation. Covariates were standardized prior to fitting, so coefficients are unitless.
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Figure L4. Elastic net regression coefficients for predicted highway upwind background PM, 5. The optimal degree of L1 and L2 regular-
ization was identified via 5-fold stratified cross-validation. Covariates were standardized prior to fitting, so coefficients are unitless.
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Appendix M: Example of cross-validation stratification
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Figure M1. Train—test split with 5-fold cross-validation for predicting highway upwind background NOy. This example figure demonstrates
how measurements were split during cross-validation. In each fold, models were trained on measurements coloured blue and tested against
measurements coloured orange. Black points demonstrate model-predicted background concentrations in each fold.
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